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Abstract

We study bounded and unbounded *-representations of Twisted Generalized Weyl
Algebras and algebras similar to them for different choices of involutions.

1 Introduction

Generalized Weyl Algebras (GWA) were first introduced by Bavula as some natural gen-
eralization of the Weyl algebra A; (see [B2] and references therein). Since then, GWA
have become objects of much interest (see for example [B1, B2, KMP, Sm, Sk, DGO)).
Many known algebras such as U(sl(2,C)), U,(sl(2,C)), down-up algebras and others can
be viewed as generalized Weyl algebras and thus can be studied from some unifying point
of view.

In [MT] we introduce a non-trivial higher rank generalization of GWA, which we call
Twisted Generalized Weyl Algebras. We study simple weight modules over twisted GWA
in a special (torsion-free) case and show that there arise new effects which might be of
interest for further investigations. We also note, that Twisted GWA are not isomorphic to
the higher rank GWA, considered in [B1] in general.

For such algebras it is natural to study their unitarizable modules, i.e. *-representations
in a Hilbert space. The purpose of this paper is to introduce natural *-structures over
twisted generalized Weyl algebras and some their non-commutative (“quantum”) defor-
mations and to study Hilbert space representations of the corresponding x-algebras (real
forms) by bounded and unbounded operators. The class of x-algebras considered in the
paper contains a number of known x-algebras such as U(su(2)), U(sl(2,R)), U,(su(2)),
U,(su(1,1)), SU,4(2) as well as x-algebras generated by Q;;~CCR ([Jor]), twisted canonical
(anti)-commutation relations ([Pus, PW]) and others.

The technique of study of *-representations used in the paper is based on the study
of structure and properties of some dynamical systems. This approach goes back to the
classical papers [M1, M2, EH, Kirl, Ped] and turns out to be a useful tool for investigation
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of representations of many *-algebras ([V1, V2, OS1, OT]). Using this method we obtain a
complete classification of irreducible representations of the introduced real forms of twisted
GWA (the case of commutative ground *-algebra R, see section 2 for the precise definitions)
provided that the corresponding dynamical system is simple, i.e., it possesses a measurable
section. Any such representations is related to an orbit of the dynamical system. Otherwise,
the problem of unitary classification of their representations can be problematic. Namely,
if the dynamical system does not have a measurable section there might exist non-atomic
quasi-invariant measures which generate factor-representations which are not of type I
(IMN]). For a non-commutative *-algebra R of type I, we show that there is a one-to-
one correspondence between weight irreducible representations of the corresponding *-
algebras and projective unitary irreducible representations of some groups isomorphic to
Z!. We study bounded and unbounded *-representations of our algebras. Note that the
first problem that arises when one deals with representations by unbounded operators is to
select the “well-behaved” representations like the integrable representations of Lie algebras.
In the paper we define a class of “well-behaved” representations for our x-algebras and study
them up to unitary equivalence.

The paper is organised in the following way: in section 2 we introduce a deformation
of twisted GWA and define #-structures on it. In section 3 we study bounded represen-
tations of the corresponding *-algebras (real forms). After discussing some properties of
representations, we describe irreducible ones in terms of two models. As a results of our
classification all irreducible weight x-representations of real forms for twisted GWA are
listed in Theorem 4. In section 4 the results obtained in the previous section are general-
ized on a class of unbounded representations.

2 Twisted generalized Weyl construction and its x*-
structures

2.1 Definition of the algebras and *-structures

Throughout the paper C is the complex field, R is the field of real numbers, Z is the ring
of integers, N is the set of all positive integers.

Fix a positive integer n and set N, = {1,2,...,n}. Let R be a unital algebra over
C, {0:]1 < i < n} a set of pairwise commuting automorphisms of R and M a matrix
(1ij)i jen, with complex non-zero entries p;; € C, 4,5 € N,,. Fix central elements ¢; € R,
1 € N,,, satisfying the following relations:

tit; = pigpijeo; (t5)o5 (t), 6,5 € No,i # j. (1)

We define 2 to be an R-algebra generated over R by indetermines X;, Y;, i € N,,
subject to the relations

° XiT = Ui(T)Xi for any r € R7 S Nn’



o Yir=0;(r)Y; for any r € R, i € N;

o X;Y; = p;;Y;X, forany 4,5 € N,, i # j;
o VX, =1,1€N,;

o XY, =04(t;), 1 €N,.

We will say that 2 is obtained from R, M, o;, t;, ©« € N,, by twisted generalized Weyl
construction.

One can easily show that the elements X;, X, Y; and Y satisfy additionally the relations
of the form:

YV, X;Y; = u'i_jl}/;Xi}/}}/; & YiYoi(t;) = Mi_jleEUi(Uj(ti))-

Algebra 2 possesses a natural structure of Z"-graded algebra by setting degR = 0,
degX; = g;, degY; = —g;, © € N,,, where g;, 1 € N,, are the standard generators of Z".

Remark 1. If R is commutative and p;; = 1, 7,7 € N,, then 2 coincides with the algebra
A" defined in [MT]. Twisted GWA 2A(R,04,... ,0p,t1,...,t,) of rank n can be obtained
as the quotient ring 2’ /I, where I is the maximal graded two-sided ideal of 2’ intersecting
R trivially. By [MT, lemma 2], this ideal is unique. It is worth to point out that the
requirement for y;; to be equal 1 is not important. All the results obtained in [MT] can
be reformulated easily for the case j;; # 1. In particular, given a commutative ring R, its
automorphisms o;, ¢ € N,,, a matrix M = (;5)i jen,, tij 7 0 and elements ¢, € R, i € N,
satisfying the relations ¢;t; = uijujiai_l(tj)oj_ (ti), 1,7 € N, i # j, we can define twisted
GWA as follows: A(R,01,-.. ,0n,t1,--. ,tn, M) =2A'/I, where I is the ideal defined above.
This class of algebras contains beside the algebras U(sl(2)), U,(sl(2)), the algebras of
skew differential operators on the quantum n-space known as the quantized Weyl algebras
[DJ, Jord] and some other coordinate rings of quantum symplectic and euclidean spaces.

Assume that p;; = pj; € R and R is a *-algebra satisfying the condition o;(r*) =
(0i(r))* for any r € R, i € N,,. Then the algebra 2 possesses the following #-structures:
Xz* = gi}/;a t;

1

=1;, whereg;, ==41, 1€N,.

ElyeesEn
R .

We will denote the corresponding *-algebras by A

Remark 2. It is clear that any maximal graded two-sided ideal of the x-algebra 25"
is a x-ideal. Thus in the case of commutative R, the introduced *-structures generate
x-structures on the corresponding twisted GWA.



2.2 Examples

1. The universal enveloping algebra U(sl(2,C)). Let R = C[H,T] be the polynomial
ring in two variables, t =T, T* =T, H* = H, o(H) = H—1, o(T) = T + H. Then
AL ~ U(su(2)) and AR' ~ U(sl(2,R))

2. The quantum algebra U,(sl(2,C)). Let R = C[T,k,k™'] (polynomials in T and
Laurent polynomials in k), t =T, T* =T, o(k) = ¢ 'k, o(T) =T + IZ:’;:.

e If g € R and k = k* then 2} ~ su,(2), A" ~ su,(1,1).
o If [¢ = 1 and k* = k="' then AL ~ A" ~ suy(2).

Irreducible representations of the *-algebras su,(2), suy(1,1) were studied in [V3].

3. Quantized Weyl algebras. Let A = ();;) be an n x n matrix with non-zero complex
entries such that \;; = /\j_il, let § = (q1,.-.,¢,) be an n-tuple of elements from C\ {0, 1}.
The n-th quantized Weyl algebra AZ* ([Jord]) is the C-algebra with the generators z;, y;,
1 <4 < n, and the relations

TiTj = QAT
YiYi = NijYilis
riy; = /\jz'yjﬂﬁi, (3)

TiYi = QiNijYiT;,
j—1
Tiy; — 4iyir; = 1+ Z(Qi — Dyixi,
=1

for1<i<j<n.
Let R = C[ty, ... ,t,] be the polynomial ring in n variables, o; be the automorphisms
of R defined by

1—1
0; . p(tla s :tn) — p(tla s 7ti—la 1+ QZtZ + Z(qj - ]-)tjaqiti-i—la .. aqitn)a
j=1

and M = (pij)7 -1, where pi; = Aji and pj; = giAij for i < j. Then A%A is isomorphic to a
quotient of the algebra 2 which is obtained from R, M, 0;, t;, 1 € N,, by twisted generalized
Weyl construction. It is easy to show that the maximal graded ideal of 2 intersecting R
trivially is generated by the elements z;x; — q;\i;T;%:, yiy; — Aijyiy;, 1 <@ < j < n, hence
AR, 01, Opytiyeen ytn, M) 2 ATA,

Assume that ¢;, A\;; € R\ {0}, zf = €54, 4,5 = 1,...,n. The involutions define
s-structures in 2 and the quantum Weyl algebra AZA.

Note that in the case \j; = ¢;\;j = 1 € (0, 1) relations (3) are known as twisted canon-
ical commutation relations ([PW]). x-Representations of the algebra which correspond to
the involution z} = y;, i = 1,... ,n were classified in [PW].
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4. Q;;-CCR. Let A; be a x-algebra generated by elements a;, a;, 1 = 1,... ,d, satisfying
the following @);;- commutation relations:

aja; — Qua;a; =1, aja; = Qija5a;, © # j, (4)
a;a; = jSajaia [ 7é Js (5)

where Q;; € (0,1), |Qi;| = 1ifi # j, Qij = Qji, 1,j = 1,... ,d. The x-algebra A, is a real
form of the generalized Weyl algebra with R = C[T] and t = t* =T, o(T) = Q7 (T — 1).
For d > 1set R = Ag_1 & C[T], where T = T* and [T, a] for any a € Ag_y. Let o(a;) =
Qiati, i =1,...d = 1,0(T) = Q4 (T —1) and t = T. Then AL ~ A,. Representations of
Qij-CCR were studied in [Pr] using another method.

For other examples of twisted generalized Weyl constructions see also Remark 9.

3 x-Representations of twisted generalized Weyl con-
structions

3.1 Bounded representations of 23"

Let H be a separable Hilbert space. Throughout this section L(H) denotes the set of all
bounded operators on H. Let B(R) be the class of Borel subsets of R. For a selfadjoint
operator A we will denote by E4(-) the corresponding resolution of the identity.

Let M be any subset of L(H). We denote by M’ the commutant of M, i.e. the set of
those elements of L(H) that commute with all the elements of M. For a group G we will
denote by G* the set of its characters.

In this section we study bounded representations of 23", i.e. *-homomorphisms
7 AR — L(H) up to unitary equivalence. We recall that representations of a x-
algebra 2 7 in H and # in H are said to be unitarily equivalent if there exists a unitary
operator U : H — H such that Un(a) = #(a)U for any a € 2. Throughout the paper
we will use the notation 7; ~ 7y for unitarily equivalent representations 7y, m. We will
assume also that p;; > 0 for 7,5 € N,.

Let m be a representation of A% *". We will denote the operators 7(z), z € A"
simply by z if no confusion can arise. Let r = U,|r| (r € R), X; = U;|X;| be the polar
decomposition of operators 7 and X; respectively, where |r| = (r*r)'/2, |X;| = (X7 X;)Y/2,
U, and U; are phases of the operators r and X;. We recall, that the phase of an operator
B is a partial isometry with the initial space (ker B): = (ker B*B)* and the final space
(kerB*)L = (kerBB*)L. Since X,L*Xz = ‘5iti and XzXZ* = EiO'i(ti), we have Eiti Z 0,
€Z'0'z'(ti) Z 0, and ‘Xz| = (5iti)1/2; |Xz*| = (EiO'i(ti))l/Q, 1€ Nn

Proposition 1. For any bounded representation of the x-algebra A5 " the following
relations hold

U;U, = Uai(T)Ui; UZEm(A) = E\ai(r)\(A)Uia A€ %(R), re R, 1 eN,, (6)
[Us, Uj]Pyj = 0, Ui, Us]Qi; = 0, i # j, (7)
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where Py; and Q;; are projections onto (ker t;t;)*= and (ker o;(t;t;)) " respectively. Moreover,
U; s centered, 1.e.

[UEU)E, UHU) =0,  [UFU;)., (U)'U]] = 0,

[(USEUE (U U] =0 for any k.1 € N. (8)
Conversely, any family of operators r = U,|r|, Xi = Us(eit;)"?, i € N,, determines a
bounded representation of A7 " if |r|, eiti, €,0i(t;), i € N, are bounded positive operators
and Uy, U;, i € N, are partial isometries satisfying (6)—(7) and the conditions ker U, =
ker |r|, ker U; = kert;.

Proof. jFrom the relations in the algebra A% it follows that X;|r[* = |o;(r)[*X;. By
[SST, Theorem 2.1] we have XEM(A) = Ei;;r)|(A)X; for any A € B(R). To obtain
relations (6) we note that |X;| = (g;t;)'/2, ker X; = ker U; = kert; and ¢; commutes with
any projection E,(A) as a central element of the algebra R. By the definition of polar
decomposition, U;U; = E.4,(R\{0}) and U;U; = E, ;,,)(R\{0}). From this and relations
(6) it follows that Uj; is centered.

The relations connecting U; and U; follow from (2). Indeed,

XiXjt; = pjiX; X05 ' (t:) & Us(eats)2U; (e5t5) 2t = pyaU; (e5t5) 2 Us(eats) 2o (8:)

;From the relation e;t;U; = Uje;o; ' (t;) and the fact that (ker U;)* = (kert;)* is invariant
with respect to o ' (t;) we can conclude that £;0; " (t;)|erv,)+ is positive and (g¢t;)/2U; =
Uj(eio; " (:))"/2. This gives

Uin(éfifij _l(ti)t')1/2t' = ,U,jiU'U'(Ez'Ej _l(t')t ) 1/2 0']_ (tz)
Uin(Eigj (t )t t2)1/2 U;Us(pjipije i€ jo; ( i)t (‘7 (tz))2)1/2
UiUj(eiejo; () t2)1? = UUs(eig o, (E:)t62) 2

By (1) we can conclude now that [U;,U;]P;; = 0. Note that another relation of (2) will
give us the same. Similar arguments applying to the equality X;Y; = p;;Y;X; imply the
relations connecting U; and U7.

The converse implication follows by standard arguments from spectral decomposition
of the operators |r|. O

The question about classification of *-representation up to unitary equivalence can be
very difficult in general for arbitrary %-algebra. If the x-algebra is of type I one has a more
satisfactory theory (see [Dix2]). ;From now on we will assume that R is an algebra of type
I, i.e. for any representation 7 of R the W*-algebra 7(R)" = {n(r),r € R}" is of type I (see
[Dix2] for the precise definition). The algebra 7(R)" is said to be a W*-algebra generated
by m(R). Moreover, we will restrict ourselves to the case countably generated *-algebras.
Denote by R the set of equivalence classes of irreducible representations of R and by H,
the standard n-dimensional Hilbert space.



Theorem 1. Let H be a separable Hilbert space, m a representation of R. Then there
exist a standard Borel space Ty, mutually singular positive measures (pg)gerx on Ur, fig-
measurable fields & — Hi(§) of Hilbert spaces, pg-measurable fields &€ — mp(§) of non-
trivial unitarily non-equivalent irreducible representations on Hy(§) and an isomorphism
of H onto @rexnk frei Hy(&)dug(€), where the ng € NU {oo} are mutually distinct, which
transforms the representation m into

Dre [ mlimic) 9)

keK

Moreover, the representations ff 7, (€)dux (&) are mutually disjoint and the set (ng)kek 1S
unique up to a permutation of the set of indices.

Proof. Let A be the closure of 7(R) in the operator norm. Since R is of type I and
countably generated, we have that A is a separable C*-algebra of type I. The theorem now
follows from the general result about the same decomposition of any representation of A
applied to the identity representation ¥(a) = a for any a € A (see [Dix2, Theorem 8.6.6]).
Here I'; = A is the set of equivalence classes of irreducible representations of A. We also
note that measures u; on I'; are defined uniquely up to equivalence. O

Using standard arguments one can show the uniqueness of the decomposition (9). Namely,
if TL (uf)ker, € = HE(E), € — m}(€) have the same properties then there exists a j-
negligible set N € I'; and uj-negligible set N; € T, k € K, a Borel isomorphism v of
[';/N onto I'} /N; transforming p into a measure ji; equivalent to u; for any k € K, an
isomorphism & — V(&) of the field & — Hg(€), & € I'x/N onto the field & — Hj (&),
& € TL/N; such that V(€) transforms 71, (€) into 7} (v(€)).

Define =Y, and 7(§) = m(§) for £ € Ty, Since 7, are mutually disjoint, there
exists a set M C 'y, u(M) = 0 such that 7(§) and 7(£’) are unitarily non-equivalent for
any £, € I, \ M, £ # €. Let m(§) = ny for & € Ty. The field I'y 5 &€ — m(&) is
p-measurable, hence § — (&) ® I is a p-measurable field of representations of R on I'y
(here I¢ is the identity operator in the space K(§) = Hypn(g) and m =~ [ 7(§) ® Ledu().
This is the disintegration of 7 into primary components.

Remark 3. The set I'; depends on the representation 7. If R is a C*-algebra of type I
then I', can be identified with R with the Borel structure defined by the topology, which
coincides with the Mackey structure (see [Dix2]). Also, in this case one has 7(&) € £ for
any £ € R and the equivalence class of ik 1s uniquely determined by 7.

Our basic assumption is the following: there exist a Borel set I' and a one-to-one
map ¢ : [' — R such that for any representation m of R there exist mutually singular
standard measures p;, k € K on I" and a ), pp-measurable field £ — 7(§) of unitarily
non-equivalent irreducible representations of R on I' such that 7(§) € ¢(¢) and 7 ~
®rexnk [rm(E)dpe(§) or equivalently m ~ [ . 7(§) ® Iedu(€), where p = >, i and
I¢ is the identity operator in K (¢) defined above. The set ny is defined uniquely up to
permutation of indices.



Clearly, 7m(o;) is irreducible for any irreducible representation = of R and i € N,.
Moreover, any two representation 7; and m, of R are unitarily equivalent if and only if
m(0;) and my(0;) are unitarily equivalent. Thus, we can define the action of o; on R
as follows: for any & € R and any m € & set 0;(§) to be the equivalence class of the
representation 7(o;). Since ¢ : I' — R is one-to-one, we can define o; : I' — T to be
ai(&) = o (oi(¢(£))). In general o; : I' — T is not necessarily Borel isomorphism.

If 7 is a representations of 23" then the restriction of 7 to R is a representation
of R. Next Theorem is a realization of 7 in the space H of disintegration of 7(R) into
primary components.

Theorem 2. Let 7 be a representation of A" in a Hilbert space H = [S H(&
R r

029
K (&)du(&) such that g = fr@ (&) @ Iedp(€), where H(E) = H(E)QK (§), (&) = m(&) @1
and (T, ) satisfy the basic assumption. Let A} = {£ € T | m(€)(t;) # 0}, A? = {£ €T |
7w(&)(oi(t;)) # 0}. Then there exist u-negligible Borel sets Ny, No C T and Borel maps ®;,
i=1,...,n such that ®; is an isomorphism of A?\ Ny onto Al \ N, and

(v(r) () = T W)@
(XD F)E) = { 0@(@(&))\/'“%“”@i(a)\/W@(a)(_ti)f(cbz-(g)), €€ AT\ Ny

otherwise.

Here the measure x a1 (£)d®i(11)(€) is absolutely continuous with respect to du(§), AN\N;

¢ — Uy(€) is a measurable field of unitary operators from H(€) into H(®;'(€)) satisfying
the relations

U()T(E)U; (&) = 7(®; '(€))(03),
U; (@57 (€))Ui(€) = Ui (@57 (€))U;(€) (11)

p-almost everywhere on Al U AL, Moreover, o;(§) = ®;(€), € € A2 p-a.e.
i 5 %

Proof. Here we retain the notations from Theorem 1. Denote by P!, Pi, i = 1,...,n
the projections onto (ker m(t;))* and (ker m(o;(t;)))* respectively, R, the von-Neumann
algebra generated by 7(R) and Z the center of R,. Fix i € N,. It is clear that P},
Py € Z C Ry and P} = I Xl (€)du(&) for j = 1,2. Moreover, the subspace PjH is
invariant with respect to 7(r), 7 € R which implies the operators {m}(r) = n(r)P} | r € R}
and {7 (r) = 7 (o;(r)) P}, € R} define representations of R on P} H and P?H respectively
and

@ )

i (r) = / #(E) (P)dp(€), mh(r) = / #(6) (03(r))dpu(©).

Al A?

Let U; be the phase of w(X;). U; is a partial isometry with the initial and final spaces
(ker 7(t;))* and ker m(o;(¢;))* respectively and hence it is a unitary operator from P{H
onto PyH. Moreover, by proposition 1 we have U;Ejr) (A)PiU; = U;Ejr(ry (AU =



E‘W(a (A)UU = E|7r( (r))|(A)P and UzUw(r)PfUZ* = U,UW(T)Ul* = UW(Ji(r))UiUi* =
Ur(o ())P which implies U;ni(r)U; = wi(r), r € R and U;mi(R)"U; = wi(R)" and

(3

U; ZiU; = Zj. Clearly, the center Z} is the algebra of diagonalizable operators in [ g H(®

K(&)du(§).
Now from [Dix1, Theorem 4, p.238] or [Ta, Theorem 8.23] we have that there exist u-

negligible Borel sets Ny, N, C I and Borel isomorphisms ®; of A?\ Ny onto A\ N; such that
the measures p; and ®;(us) are equivalent (i.e. y;(A) = 0 if and only if s (®;'(A)) =0
for any Borel set A C A}), where y; and ps are the restrictions of the measure p onto A}
and A? respectively. Further, there ex1sts a ,u measurable field §¢ — U;(€), € € Al \ My
of unitary operators from H(€) onto H(®; '(£)) such that U;(&)7(&)Uz(€) = 7(®; *(€))(oy)

and
= [ \/ o
Al

Let 7i(a) be a central element from 7%(R). Then 7i(a) is central in w5(R). Hence
7(€)(a) = M)z, T(&)(oi(a)) = )\2(§)I~( , where A;(-), j = 1,2 are Borel complex
functions. ;From (U;ni(a)U; = 7i(a) we obtaln AL (@;(8)) = Xa(€) ,u a.e. AZ. Moreover,
it follows from the definition of the map o; : I' — T" that \y(§) = A1(03(€)) p-a.e. Thus
AL(D3(€)) = Ai(04(€)) for allmost all £ € A?\ N,. Since 7l (R)N7i(R) is dense in Z we get
F(@:(8)) = f(0i(&)) for any Borel function and hence 0;(§) = ®;(£) p-a.e. on A?. Finally,
(11) follows from Proposition 1 ([U;, U;]P;; = 0).

Conversely, one can easily check that any family of operators defined by (10) determines
a representation of A3 ", O

It follows from the above theorem that o; : I' — I is equal to a Borel function p-almost
everywhere if ker 7(o;(¢;)) = {0}.

From now on we will assume that o;, 2 = 1,... ,n are Borel. The mappings 0;, 1 € N,
determine an action of the group Z" on I' by (i1,... ,i,)é = 0" (c2(...0™(€)...)) and
generate the dynamical system (T, (0;)" ).

Let Q¢ = {0 (02(... (0"(£)...)) | (31,-.. ,in) € Z"} denotes the orbit of £ € T'. We
will say that (T, (o)) is simple if there exists a Borel set 7 C I intersecting any orbit of
the dynamical system exactly in one point. This set is called a measurable section of the

dynamical system.

Proposition 2. Assume that (T, (0;)"_,) is simple. Then for any irreducible represen-
tation of AL " the corresponding measure pu is concentrated on a single orbit of the
dynamical system.

Proof. Let m be an irreducible representation of A% *". Then u is ergodic with respect
to (o;)!,, i.e. given Borel set A such that 0;(A) = A for any ¢ = 1,...,n, we have
either p(A) = 0 or u(I'\ A) = 0. In order to prove this, consider the projection P =
fr@ Xa(€)du(€). By Theorem 2, P commutes with any operator from R, and X;, X7,
1 € N,,. Thus, P = \I for some A € R. Since P is a projection, we obtain that either A =0
or A =1 and the statement follows.



Now we show that the existence of measurable section is a sufficient condition for u to
be concentrated on an orbit. Indeed, suppose that this is not the case and denote by A the
support of yu. Then there exists (i1, ... ,i,) € Z" such that u(o}'(...op(7)...) NA) # 0.

Let ji be the restriction of u to the set oi'(...o%(7)...) N A which will be denoted by A.
By the assumption, [ is not concentrated at one point z. Hence there exists a partition
of A into two sets of positive measure: A = A'U A2, A'nA? = ¢, i(AY) > 0. The
sets Q(A?) = {a (.- (gfm(€)...) | €€ A}, i = 1,2 are invariant with respect to each ;.

Moreover, Q(A!) N Q(A?) = (). This contradicts the ergodicity of the measure y. Thus /i
is concentrated at one point. This completes the proof. O

Remark 4. If the dynamical system does not have measurable section the problem of
unitary classification of all irreducible representation of the x-algebra can be very difficult.
In this case there might exist ergodic quasi-invariant measures which are not concentrated
on a single orbit. Such measures generate a wide class of representations which are not of
type I and the description of which is problematic (see, for example, [MN, OS1, V2]).

For the rest of the paper we will assume that the dynamical system defined above
is simple. The investigation of irreducible representations can be restricted to that of
irreducible representations with supp u C v for a fixed orbit v C I'. For ¢ € N,,; we will call
an element A\ € v a forward (a backward) i-break if 7(\)(#;) = 0 (7(X)(03(t;)) = 0), where
7(A) is an irreducible representation in H(\). For A € v denote by P) the set of all £ €
with the following properties: g;7(§)(t;) > 0, €;7(€)(0:(t;)) > 0, there exists (iy,...,i) €
Z" such that & = of:(. (0" (N)...)), & = £1,1 <1 < k and each amll“(. . .ai_k‘sk(g) ),
1 <1 <k is not forward 7;-break if 5, = 1 and is not backward 7;-break if §, = —

Let g; denote the canonical generator &0, ...,0,1,0,... ,Ol of Z". We define P, to

3

be the set of all elements g € Z" such that there exists a decomposition g = g;* ... gfll,
where g‘s . ‘51/\ € P, for any k£ < s. Below we present some constructions of irreducible
representatlons of A7 .

For a representation m with suppm = P, consider the stabilizer K* of A € 7, i.e.
K*» ={g € Z" | g\ = A}, and put K* = K*N P,. Note that if \;, A € Py then K, = K.

Consider the following two models of representations of 23" ".

(90,): Assume that K* is trivial and Py # (. Let H = EBQEPAH(g)\) where H(g)\) =

H()) for any g € Py. We define
(m(r))(gA) = 7(N) (o1 ... () f(g))

for g = (44,... ,i,) € Z™, and partial isometries U;, i = 1,... ,n as follows:
. _10, m(gA)(oi(ti)) = O,
(if)(gh) = { f(g:g)), otherwise.

(M3): Assume that K* is non-trivial, Py # (). Put H = @geprl(g)\), where H(g\) =
H(g)\) ® K(g)\), H(g)\) = H(\) and K(g)\) = K()), g € P, is a separable Hilbert spaces.

10



We define
(m(r)(f ® 1) (g)) = T(A)(01" ... o3 (r)) f(9A) ® h(gA)
for g = (i1,...,4,) € Z". The operators U;, i € N,, are defined by imposing the following
conditions:
U;H(g\) C H(g; 'g)), U7 H(g)) C H(gigh), g € Py,
(Ui‘i’“ LUMf®R)(gh) =0, g= gi_k’sk g

provided that there exists 1 < s < k such that for ¢° = g, fsl’l N % we have that either
7(g°N)(t;,) = 0 and &, = 1, or w(g;,g°\)(t;,) = 0 and §, = —1, (by U, where §; = —1 we

mean U;"), otherwise

N [ ) ® RN, g¢ K
(UZ‘Z .- Ufl (f & h‘))(g)‘) - { W(gfdk 9;151)f(/\) ® S(gi—ka N .g;JI)h()\)’ g€ KX

ik

Here W (g;, O .g;l‘sl) is a unitary operator acting in H(\) and such that

W(gi™ - gz mN (MW (g™ - g5™) = 7\ (o3 - .. 032 (1)), (12)

S(-) is a unitary irreducible projective representation of K* on the space K (\) with mul-
tiplier c(ky, k2) defined by c(ki, ko) I = W (k)W (ko)W = (k1 k), i.e.

S(klkz) = C(lﬁ, kg)S(kl)S(kz) for any kl, ko € K)‘.

(see, for example, [Kir2] for the definition). )
The existence of such operators W (k), £ € K follows from the fact that m(\) and
T(\)(o? " .0;-511) are unitarily equivalent irreducible representations for k = g; L g{l‘sl €

K*. One can show also that W (ki)W (ko)W (k1ks), k1, ks € K, commutes with 7(\)(r),
r € R and hence is a multiple of the identity operator.

Remark 5. If R is commutative then any irreducible representation of R is one-dimensio-
nal. Hence dim H(g)\) = 1. Moreover, since any W (k) = A(k) € C for some |A(k)| =1, we
have [S(k1),S(k2)] = 0 and hence any irreducible representation s(-) is one-dimensional.
This gives us dim H(g\) = 1.

Theorem 3. Any irreducible representation of A7 " is unitarily equivalent to one de-

scribed in the models M;, 1 =1, 2.

Proof. Let m be an irreducible representation of 23" in a Hilbert space H. By Theo-
rem 2 and Proposition 2, there exits an orbit v of the dynamical system generated by o,

1 € N,, such that .
H= @ HOW),

A€supp 7Cry

where H(\) = H(\) @ K()),
(m(r)(f ® h))(A) = m(A)(r) f(A) ® h(A),
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and
UH(N) € Hg7'N), UZH(N) € H(g)). (13)

Let Z be the center of 7(R)". Denote by Ay the W*-algebra generated by w(R) and
polynomials in U;, U; that commute with any operator of Z. Then

where Ay, is the subalgebra of operators acting in H ().

We claim that Ay ) = L(H())), X € supp 7. Suppose, that the statement is false. Then
Aor = Aj, ® Aj , which implies A = A" @ A%, where A is the W*-algebra generated
by m(2% ") and A" = AA} ,, i = 1,2. Indeed, given X = X;X,...X, € A, where
X; € {r € RU,Ut,i = 1,...,n}, we have either XH()) is orthogonal to H(\) or
XH(\) C H\). If XH()\) € H(\) and XH()) # 0 then one can easily see that XPg
commutes with any operator from Z, where Pﬁ()\) is the projection onto H (A\). Hence
XA, C Agy and XA, L YAS, for any X,V € A which forces immediately A" L A*.
The decomposition A = A! & A? is impossible due to irreducibility.

Fix now A € suppw. It is clear that the standard gradation of 23,*" induces the gra-
dation on the algebra .A. From (13) and the equalities ker U; = ker t;, ker U} = ker o;(¢;) it
follows that Ui‘i’“ ...UM H()\) = 0 if there exists 1 < s < k such that either 7(g*\)(t;,) = 0
and d; = 1 or m(g;,9°\)(t;,) = 0 and §; = —1, where ¢° = gz_fsl‘l g5 (for & = —1 we
mean by Ugl the operator U}, ). In the other case, U*U| () = (U‘sk . .Ufll)*Ugf . U‘sl\H(/\) =
I which implies U*U € Z.

Let Si, So be two products of some operators U;, U, ¢ = 1,...,n such that degS; =
deg So. We claim that Si|g\) = S2|g(y) if both Si[z(,) and S|z, are non-zero. This
follows from the fact that Uf"Ufjf # Uijf"f, f e H(), € € suppn implies either
Uf"Ujjf =0or Ufj U f = 0. Indeed, suppose U;U; f # U,;U; f then

Pyl = Ui UiUi Uil gy = Ui Uil Uy = 0

which yield that either U;f = 0 or U;f = 0. The same conclusion can be drawn for
other cases. Thus for any ¢ € P, we can define an operator U(g™")Pux) to be the non-
zero operator of the form UZ-;‘SS - Ui:‘il Py for some decomposition g = gfll e gf:. It
is obvious that the subspace ©,cp U (g"Y)H()) is invariant with respect to (25 "),
hence it coincides with H. Clearly, operators U(g ") are unitary operators from H()\)
to U(g ) H(N). Moreover UU(gHHN) = 0 if 7(g\)(t;) = 0 and U;U(g HH(N) =
Ulgig MYH(N) if g;i'g € P;. Analogously we have that U;U (g~ DWH(N) = 0 if 7(g:g)\) (t:) =
0 and UrU (g~ H)HN) = U((gig) ") H()) if 9i9 € P,.

Assume now that K* is trivial. Then UH()) := U‘Sk Ufllﬁ()\) C H()) if and only if

either Ulg,) =0, or gf}f ...gY" = e and in the last case Ul = Ule)| gy = I. From this
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one can conclude that Ay = (7(R))", Agx = (m(N)(R))", and H()\) = H()). Since

U*(g~ ) (r)U (g~ moy = 7N (07! ... 0 (r),

one can easily get that the representation 7 is unitarily equivalent to one of the represen-
tations from 9.

If the dynamical system is not free then Ay # (7(R))” in general. Fix A\ € 7. By
the same arguments as given above it follows that the representation of our algebra is
irreducible if and only if the family of operators Ay, is irreducible or, equivalently, the
family {m(r), Ui‘ik e Ufll |7 € R, gf: . .gfll e K*} is irreducible as operators on H()). As
before, for gfll .g L €K * we have that either the restriction of the operator UZ-;J’“ e Ui:‘sl
onto H()) is zero or it is unitary as an operator from H()) to H()\). Thus for any k € K*
we can define the operators U (k") Py, as it was done above. It is clear that U (k™) Py,
transforms any irreducible representation into a unitarily equivalent one. Let W (k) be a
unitary operator that transforms 7 () into () (o, *...07™) for k = (i1,...,4) € K*, i.e.

W(k)yr(\) ()W (k) = 7(A) (0,7 ... o7 (r), r € R. (14)

Then U(k~") (W~ (k) ® Ix(n)) commutes with any operator m(A)(r) ® Ix(y), r € R which
implies U(k™") (W~ (k) ® I) = Inp) ® S(k), where S(k) is an operator on K ()). Since

U(ky) and U(ky) commute for any ki, ky € K*,
(W (k1) ® S(k1), W (ks) ® S(ks)] = 0.

(From this it follows easily that there exists s(ki,ks) € C such that W(ky)W (k1) =
s(ko, k) )W (ki)W (ko) and S(k9)S(k1) = s(ki, ko)~ 1S(k1)S (ko). Moreover, the correspond-
ing representation of our algebra is irreducible if and only if the family {S(k), k € K*} is
irreducible.

In the same way we can see that there exist c¢(k1, k2), k1, k2 € K* such that c(ky, kp) =
W(kl)W(kz)W_l(klkg) and S(/ﬁkg) = C(kl,kQ)S(kl)S(kQ) for any kl, kg € K. In par-
ticular, c(ko, k1)c(k1,ko)™" = s(ki, k2). The representation 7 is unitarily equivalent to a
representation from the model 901,. O

Corollary 1. Let w be an irreducible representation of the x-algebra A", X € supp .
Then suppm = P,.

Remark 6. Theorem 3 shows that there is one-to-one correspondence between irreducible
representations 7 of the x-algebra A%*" and irreducible projective unitary representa-
tions of K*, \ € supp .

It is clear that K is a subgroup of Z". Hence K* ~ Z! for some | < n. Let ki, ... , k be
the generators of K* and fix unitary operators W (ki), ... , W (k;) satisfying (14). Defining
W(k) = W(k)%.. . W(k)" for k = k... k™ we get S(k) = S(k)%...S(k1)™, where
S(k;) are unitary operators satisfying the relations

S(k:)S(kj) = s(kj, ki) 'S (k;)S (ki) (15)
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with s(kj, k;) described in the proof of the last theorem. The numbers s(k;, k), i,j =
1,...,l are uniquely defined by the representation. Moreover, any representation can be
obtained in this way. Note that any family of unitary operators S(k;) satisfying (15) defines
a representation of C*-algebra known as the non-commutative tori Ag, where © = (6;;),
e’ i = s(k;j, k;) (see [R]). In particular, if [ = 2, Ag is a rotational algebra. The problem
of unitary classification of all representations of such C*-algebras might be very difficult.
It is known, for example, that a 2-tori Ag is of type I if and only if 615 = —0y; € Q. For
details we refer the reader to [R].

Next theorem provides a description of irreducible *-representations of twisted GWA.
Suppose that R is commutative. Then any irreducible representation R is one-dimensional.
For 7(z) € p(z) € R and r € R we will denote by r(z) the operator = (z)(r).

Theorem 4. Any irreducible representations of the real form A5 " of twisted GWA is
unitarily equivalent to one of the following:
1. Let orbit y and \ € 7y be such that K* is trivial, Py # 0. Then H = I5(Py), re, = 7(1)e,,

Xieg = \/€ili(T)ui(T)e -1,y where x € Py, 05(r)(z) =r(0i(z)), i=1,... ,n and
1,0, () € P,
ui(z) = { 0,0, *(z) € P,

2. Let orbit v and X € y be such that K* is non-trivial, Py # 0 and let s(-) € (K*)*. Then

H == ZQ(P)\),
re; = r(r)es, Xie, = v/eiti(x)Use,

where x € Py, o;(r)(z) = r(oi(z)) and UZf...UflleA = 0 if there exists 1 < s < k
such that either w(g°A)(t;) = 0 and 6s = 1 or w(g;g°N)(t;) = 0 and 65 = —1 (here
9° = gz-jsl‘l... -_‘51). Otherwise Uzi’“...Ui‘slleA = €, 5 b1y if g;c‘s’“...gi_l‘s1 ¢ K> or

U‘s’c LUy = s(gifk‘s’c .g:Mex, ifg;kd’“ .07 e K

Remark 7. It is clear that the formulae above defines an action of all operators U; on any
vector e, € lo(Py).

Proof. Tt follows from remark 5 that dim H()\) = 1. For representations from the model
My we have W(g) = w(g) € C, |w(g)] = 1. If we take w(g) = 1, g € K, we get
S(g) = S@g)%...5(g)™ € Cfor g = g ... g, Setting s(g) = W(g) ® S(g) we obtain
s(-) € (K*)*. The rest follows from Theorem 3. O

Remark 8. It was shown in [MT] that the supports of finite-dimensional modules of
twisted GWA might have more interesting geometrical structure than in the case of classical
GWA. We constructed an example which provides some analogue between the structure of
supports of finite-dimensional modules over classical simple Lie algebras and supports of
finite-dimensional modules of some twisted GWA. The same analogue can be obtained for
the *-algebras 27" and some real forms of simple Lie algebras.
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Remark 9. Using the above results one can obtain a complete classification of irreducible
representations of the x-algebras from examples 1-4. This technique was also applied in
[STP] to study collections (u, v, j1, ... ,j,) of selfadjoint unitary operators satisfying the
following commutation relations:

Jidk = (=1)96k) 55,
ujr = (=1)"®)jpu, vjy, = (=1)*®jp0,

here g(i, k) = g(k,i) € {0,1}, g(i,7) =0, h(k), w(k) € {0,1} for any i,k =1,... ,n. The
corresponding *-algebra can be treated as a *-algebra obtained by twisted generalized Weyl
construction and has applications, for example, to a study of operator Banach algebras
containing a dense x-subalgebra, and construction of invertibility symbols for operators in
algebra. For details we refer the reader to [STP].

3.2 Unbounded representations of 23"

Often *-algebras do not have any bounded representations or their structure is not in-
teresting. In general we have to deal with representations by unbounded operators. The
problem of describing all such representations might be very difficult. Usually one stud-
ies some classes of “well-behaved” representations. In the case of Lie algebras there were
considered the so-called integrable representations which can be extended to unitary rep-
resentations of the corresponding Lie group. For arbitrary x-algebras there is no canon-
ical way how to select good unbounded representations. The problem of defining inte-
grability for some x-algebras and operator relations was studied by many authors (see
[S1, OS1, OT, S2, V2, Wor] and the bibliography therein). In this section we will try to
define unbounded representations for the x-algebra % **. Throughout this section we
will use some notions and facts from the theory of unbounded operator algebras that can
be found in [S1].

Let 2 be a x-algebra with a unit element. A x-representation 7 of 2 in a Hilbert space
H(m) is a homomorphism from 2 into the family of closable operators defined on a dense
domain D(r) that is invariant with respect to 7(a), ¢ € A and n(a*) C (n(a))* for any
a €2

For a closable operator A in a Hilbert space H we denote by D(A) the domain of A and
(A)L the set {c € L(H) | cA C Ac} which is called the strong commutator of A. The strong
commutator of a representation 7 of a x-algebra 2 is defined by 7(2), = Nyea(7(a))’. We

will say that the set D C H is a core for a closed operator A if A|p = A. Here A denotes
the closure of the operator A. L

Let 7 be a representation of 27 **. For simplicity we shall write r instead of 7(r)
for r € R if it does not lead to any confusion. Here r is always supposed to be closed.
Consider the polar decompositions of the operators r = U,|r|, where |r| = (r*r'/2. Let Z
denote the center of 23"

We will say that closed operators r € R, X;, X ¢ =1,... ,n acting on a Hilbert space
H define a representation of A3 " if
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1. the operators r € R generate a closed representation of R on a dense domain D C H,
2. the operators t € Z are normal and F;(A) € (1), for any A € B(C), r € R,

3. D is a core for any r € R,
4. Xl*Xz = Eitia XZXz* = gzo—z(tz) for all 1 = ]_, .., N,
5. relations (6) — (7) hold on H, where U; is the phase of the operator X;.

Proposition 3. Assume that conditions 1 — 5 hold. Then the operators r € R, X;, X}
i € N, define a closed representation m of A" on D. Moreover, D is a core forr € R,
Xi, Xr,i=1,...,n.

Proof. We first prove that D is invariant with respect to U;, U, 1 € N,. Indeed, since
UzE\r\(A) = E|m(7‘)|(A)Uz for any A€ %(R)’ (UZ|T|Q0>¢) = (UZQD, |UZ(T)|¢) for any ¢ €
D(|r|), v € D(|oi(r)|), which gives U;p € D(|o;(r)|) and U;|r|p = |o;(r)|Usp for ¢ € D(|r|).
From this and relations (6)—(7) it follows that U;rp = o;(r)U; for any ¢ € D(r). By
condition 1, the family {r | » € R} defines a closed representation 7 of R on D and hence
D =N,egD(7(r)) = NrerD(r), the last equality is true due to condition 3. From this we
have U;D C D. The same holds for U}, i € N,,.

Since X;X; = &i;, e;t; > 0. By condition 2, E....(A)D(r) C D(r) and E. 4, (A)rp =
rE..;.(A)p for any ¢ € D(r), A € B(R). In the same manner we get (¢;¢;)*/2D C D, and
hence X;D C D. Analogously we obtain that D is invariant with respect to X;. From
this we can conclude that r € R, X;, X7, i € N, determine a representation m of A3 *"
on the domain D. Since D is a core for t;, 0;(t;), D is a core for (g;t;)'/2, (¢;04(t;))*/? and
hence for X;, X7. Finally 7 is closed since 7|g is closed and D = N,cgD(r) is invariant
with respect to X;, X/, i=1,... ,n. O

In the rest of the paper we will consider only representations satisfying 1-5. Denote by
R the von Neumann algebra generated by Ej,(A) and U,, where » € R and A € B(R).
We will need the following auxiliary lemma.

Lemma 1. Let 7 be a representation of AR " defined above. Then
Ry = m(R), N (7 (R))".
Proof. By the definition, the restriction of 7 to R is closed and D is a core for all operators
r. Hence 7(R). N (7(R).)* = {c€ L(H) | cr C re,c*r C rc*,r € R} (see [S1, Proposition
7.2.10]). We denote this set by 7(R),.
Let ¢ € w(R).,. Then ¢D(r) C D(r) and ¢*D(r) C D(r) for every r € R.
Given ¢ € D(r*r), ¥ € D(r), we obtain

(eriro, ) = (r'ro, ) = (ro, 1Y) = (ro, c'r) = (ero, r) = (rep, ry),

which implies rcp € D(r*) and cr*ro = r*regp, ¢ € D(r*r). From this [c, Ej,2(A)] = 0 and
[c, Ey|(A)] = 0 for any A € B(R). Using spectral properties of selfadjoint operators one
obtains ¢D(|r|) € D(|r|) and ¢|r|p = |r|cp for any ¢ € D(|r]).
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Given ¢ € D(r) it follows that

(cUr|r|ip, 1) = (Ur|rleg, v) = (Ir|ep, Uit) = (clrle, Ue) = (Irle, cUY).

On the other hand, (cU,|r|p,v) = (|r|e, Ufc*yp). Therefore, cU,p = U,cp for any ¢ from
the image R(|r|) of the operator |r|. This implies cU, P = U,cP where P is the projection
onto the space (ker |r|)*. Since P = E,|(R\ {0}) = U;U,, U,P = U, and ¢, P commute.
This gives cU, = U,c and consequently ¢ € R/.

Let ¢ € R.. One has c|r| C |r|c and c¢*|r| C |r|c* which implies ¢r = cU,|r| =
U.clr| C Uy|r|lc = re. By the same arguments we obtain ¢*r C rc¢*. This easily forces
R, =7(R).,. O

A representation 7 of an algebra 2 on a Hilbert space H is said to be irreducible if
there is no non-trivial closed subspace K of H such that every operator 7(a), a € 2 can
be written as a direct sum 7(a) = a; ® ap where a; and ay are linear operators on K and
HN K+ respectively. A non-trivial closed subspace K C H possessing the above properties
is called reducing for .

Lemma 2. Let m be a x-representation of A5 " by unbounded operatorsr € R, X;, X},
1=1,...,n defined on a domain D of a Hilbert space H. For each closed linear subspace
K of H the following conditions are equivalent:

1. K is reducing for m;

2. The projection Px onto K belongs to the set

Proof. By [S1, lemma 8.3.3] K is reducing for 7 if and only if Px € 7(™A%*").. To obtain
the statement it is sufficient to prove that {c € T | c = c¢*} = {c e n(AZ"), | c = ¢*}.
Let ¢ = ¢* € w(AR )., It follows that ¢D C D and ¢ € n(R), N (7(R),)* = R..
Hence the operators ¢ and t; (respectively ¢ and (g;;)'/?) strongly commute, i.e. their
spectral projections commute. Applying the same argument as in Lemma 1 we get cU; =
U;c and finally, ¢ € T;.
Let ¢ = ¢* € Ty. Thus ¢ € n(R). and hence ¢D C D. Since U;D C D, U}D

D and (et;)'/2D C D (see the proof of proposition 3), we get cX;D = cU;(et;)"/?D
Uic(et;)?D = Us(et;)Y/?ecD = X;eD. This implies ¢ € 7 (A5 )"

8

O N

Corollary 2. A representation m of A" is irreducible if and only if the family
{z,U,U} |z € Rpyi=1,...,n}

18 1rreducible.
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Now we will make the following assumption. Let R be the set of equivalence classes of
irreducible representations of R. As before, the set {0;}icn, define the maps o; on R. We
will assume that there exist a Borel set I and an injective map ¢ : I' — R such that o(T)
is invariant with respect to oy, i = 1,...,n and any representation of %" restricted
to R can be decomposed into a direct integral of primary representations of R which are
multiples of irreducible representations from (I"). Namely, given a separable Hilbert space
H and a *-representation 7 of A3 ** with a domain D(r), there exist a standard measure
won I' | p-measurable fields &€ — H (&), £ — K (&) of Hilbert spaces on I', a y-measurable
field ¢ — 7'(£) of non-trivial irreducible representations on D(7'(§)) € H (&) such that
7' (&) € p(£) and an isomorphism U of H onto fﬁa H(¢) ® K(&)du(§) that transforms the
representation 7 into 7’ such that

MM=Z Mﬂm®K@w@
and o
f@=[iﬂ@@®4@@,

where I¢ is the identity operator on K (§).

Lemma 3. Under the above assumptions we have

3

TE=A:ﬂQW®QWK)

The operator U transforms the center Z of R, into the algebra of diagonalizable operators
with respect to the decomposition. Moreover, if

Re:=U 'R U—/@R (&) ® Id
= Y = gl 3 N(f)
r

then Ry (§) = Rau(e) almost everywhere with respect to pu.

Proof. 1t follows from general properties of decomposable operators (see, for example, [S1,
section 12]). O

In a natural way we can define maps o; : I' = I', ¢« = 1,... ,n. We will assume that
these maps are Borel. Next theorem is an unbounded analogue of Theorem 2.

Theorem 5. Let R = fﬁa R (€) ® Iedu(€) be a direct integral of von-Neumann algebras
on frea H(€)du(), H(E) = H(€) ® K(&) from lemma 8 and U; be the phase of the operator

7;’}(5(1') (i=1,...,n). Let Aj ={{ €T | n'(§)(t;) # 0}, AF = { €T | 7'(§)(0u(ts)) # 0}

(@f)(©) = 2()(©), = € R,
(mﬁ@):{lﬂmﬁﬁ ) (04(6)) £ (0:(6)), € € A (16)

, otherwise
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almost everywhere with respect to y. Here the measure x a1 (&)do;(p) (&) is absolutely con-

tinuous with respect to du(§), & — U;(§) is a measurable field of operators on H(&) into
H(o;(&)) which are unitary p-almost everywhere on A} and

Ui(§)z()U; (€) = ai(z)(07 " (€));
Ui (o7 ())Uil€) = Uo7 (£)U;(8) (17)

almost everywhere on A} U A} with respect to p. Here o;(x) is defined by o;(x) = UszU7,
T €R,.

Proof. Is similar to that of Theorem 2. O

To describe the structure of unbounded representations of 2% *", we use the following
two models which coordinate with the ones given in the previous section and have some
corrections connected with unboundedness of representations.

Let A\ € R be an equivalence class of a closed irreducible representation w(A) of R
defined on a dense domain D()\) € H(A) such that 7(A\)(r), r € R, and D(\) satisfy the
conditions 1,2, 3. We retain the notations K*, K*, Py from the previous section.

(94™): Assume that K* is trivial and Py # 0. Put H = @ .5 H(g)), where H(g)) =

H()) for any g € Py, and D = ®,ep, D(g)), where D(gA) = D()). We define

(rf)(gX) = 7(A)(o7" ... 0% (r)f(g), feD
for g = (i1,... ,ip) €EZ", r = r|—D and partial isometries U;, 1 = 1,... ,n as follows:

' [0, if m(gA)(0i(t;)) =0,

(if)(gA) = { f(gig)\), otherwise,

The operators X; are defined by X; = U;(gt;)/2. ) )
(M™): Assume that K* is non-trivial, Py # 0. Put H = @, H(g)\), where H(g\) =

H(g)\) ® K(g)) and H(g)), K(g)) are separable Hilbert spaces such that K(g\) = K(}),

H(g)\) = H(}) for any g € K*. We define D = @,.5 D(g\) ® I,5, where D(g)\) = D())

and I, is the identity operator in K (g)). The closed operators r are defined by requiring

(r(f ® h)(gA) = 7(A) (07" ... 0k (1)) f(9A) ® h(g)), f@heD

for g = (i1, ... ,ip) € Z", and r = r|p.
Partial isometries U;, i = 1, ... ,n are defined by imposing the following conditions:

U;H(g)\) C H(g; *g\), Uf H(g\) C H(gig))

and
U U royexo) =0

19



if there exists 1 < s < k such that either w(g°A)(¢;) = 0 and é; = 1, or 7(g;9°\)(¢;) = 0
*63—1

f(/\)@?h(/\), . g¢ K
W(g, ™ 95" ) f(N) ®S(g;,% - 95" )h(N), g€ K

and §, = —1, where ¢°* = ¢ .gi:‘sl (by Uf" where ¢; = —1 we mean U}), otherwise

U ... UR(f © ) (gh) = {

Here W(g[}f’“ . .gi_l‘sl) is a unitary operator such that W(g)D(\) C D()) and

W(g)r (N (M)W (g)p = 7\ (07 ... 0k (r))p, 7 € R, € D() (18)
S(-) is a unitary irreducible projective representation of K* on the space K (\) with a multi-
ple C(lﬁl, k'g) = W(kl)W(kQ)W_l(kle), i.e. S(k‘lkg) = C(kl, kQ)S(kl)S(kg) for any kl, k2 €
K.

Theorem 6. Assume that there exists a Borel set N C I' such that N s invariant with
respect to o;, 1 = 1,... ,n, the dynamical system (N, (0;)"_,) is simple and for any represen-
tation of AR " the corresponding measure p is based essentially on N (i.e. suppp C N).
Then any trreducible representation is unitarily equivalent to one given in the models ",
1=1,2.

Proof. Let 7 be an irreducible representation of A% *". Then by corollary 2, the family
{z,U;,U} | v € Ry,i =1,...,n} is irreducible. As in the proof of Theorem 3 it follows
that any irreducible family {z, U;, U} | x € R,,i=1,...,n} is unitarily equivalent to one
given in the models 9" with R, and R, (A) instead of 7(R) and 7(A)(R) respectively. The
statement of the theorem now follows from the fact that R, (A\) = Rx(») for any irreducible
(). O
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