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Abstract. For a positive integer d, a non-negative integer n and a non-negative integer

h ≤ n, we study the number C
(d)
n of principal ideals; and the number C

(d)
n,h of principal

ideals generated by an element of rank h, in the d-tonal partition monoid on n elements.
We compute closed forms for the first family, as partial cumulative sums of known se-
quences. The second gives an infinite family of new integral sequences. We discuss their
connections to certain integral lattices as well as to combinatorics of partitions.

1. Introduction and description of the results

Enumeration is often the starting point in understanding of a given mathematical struc-
ture. Twisted monoid algebras [GMS, GM] of d-tonal partition monoids appear in [Ta] as
right Schur-Weyl duals for generalized symmetric groups. These algebras are subalgebras
of the classical partition algebras from [Mar, Mar1] and [Jo]. The monoids underlying the
latter algebras have relatively simple principal ideal structure and well studied represen-
tation theory, see [Mar1, Mar2]. The d-tonal subalgebras of partition algebras are more
complicated. Some basics of their representation theory was developed in [Ko1, Ko2, Ko3]
and [Or1]. However in the monoid case, for example, these studies cover only a trivial
quotient.

The motivation for the present paper is to understand the combinatorics underlying the
poset of the principal 2-sided ideals in d-tonal partition algebras. The problem is naturally
translated to a similar problem for the finite d-tonal partition monoid. The main question
we answer in the present paper is what is the number of different principal 2-sided ideals in
such a monoid. This already depends on two parameters: the difference parameter d and
the parameter n which controls the size of our partitions. We denote the number of such

ideals by C
(d)
n . Algebraically, there is a natural third parameter which enters the picture:

the rank h ∈ {0, 1, . . . , n} of the generating partition. Using this parameter we write

C(d)
n = C

(d)
n,0 + C

(d)
n,1 + C

(d)
n,2 + · · ·+ C(d)

n,n,

where C
(d)
n,h denotes the number of ideals generated by an element of rank h. We seek a

closed formula for both C
(d)
n,h and for C

(d)
n . Cases d = 1 and d = 2 turn out to be easy.
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In Section 2 we give an alternative, purely combinatorial, definition for the numbers C
(d)
n as

enumerators of layers in certain graded posets. These are related to the original motivation
in Section 6. The main part of the paper is devoted to the study of the case d = 3 which
occupies Section 3. Extra motivation for this case comes from its intrinsic geometric-

physical interest. We give an explicit formula for C
(3)
n,h in case h is relatively big (i.e.

h ≥ bn
2
c), see Proposition 4, and in case h is relatively small (i.e. h ≤ dn

3
e, see Proposition 5.

The former gives a connection of our sequence to partitions with at most three parts while
the latter shows a connection to triangular numbers (in fact, to a special counting of

triangular numbers modulo 3). Our first main result is that the sequence C
(3)
n is given by

the “Cyvin sequence” (A028289 in [OEIS]) which enumerates the number of isomorphism
classes of hollow hexagons (representing polycyclic hydrocarbons), see [CBC, PR]. In
Theorem 18 of Section 4 we even give an explicit bijection between hollow hexagons and

the graded poset underlying the definition of C
(3)
n given in Section 2.

In Section 5 we relate our graded posets to combinatorics of partitions and in Section 6
we makes precise the connection between the combinatorially defined data discussed in
the paper and the algebraic structures which motivate our investigation. Combinatorics

which underlines the algebraic structure allows us to determine C
(d)
n for all d and n in

terms of partitions with at most d parts, see Theorem 28 in Section 7. As a corollary of
this uniform description for all d, we obtain an alternative, simpler, description of A028289
using partitions with at most 3 parts.
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2. Graded posets

2.1. Notation and general construction. We denote by R the set of all real numbers,
by R≥0 the set of all non-negative real numbers, by Z the set of all integers, by N the set
of all positive integers and by Z≥0 the set of all non-negative integers.

Consider the set Zd for some fixed d ∈ N. Elements of Zd are vectors v = (v1, v2, . . . , vd)
such that vi ∈ Z for all i = 1, 2, . . . , d. The number v1+v2+ · · ·+vd ∈ Z is called the height
of v and denoted ht(v). The set Zd has the natural structure of an abelian group given by
addition. The map ht : Zd → Z is a surjective group homomorphism. For i = 1, 2, . . . , d,
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we denote by e(i) the standard basis vector (0, 0, . . . , 0, 1, 0, 0, . . . , 0)t in Zd, in which the
only non-zero element 1 stands in position i. Note that each e(i) has height 1.

Denote by Λd the subset Zd
≥0 in Zd. For h ∈ Z≥0, we denote by Λ

(h)
d the set of all elements

in Λd of height h and note that the set Λ
(h)
d is finite. Define Zd

(h) = {v ∈ Zd : ht(v) = h}.
For a fixed subset

X ⊂ Zd
(−1)

define on Λd the structure of a poset using the transitive closure <X of the following
manifestly antisymmetric relation:

(2.1) v lX w if and only if there is x ∈ X such that v = w + x.

Note from the construction that lX is a covering relation. Directly from the definitions
we have that v lX w implies ht(v) = ht(w)− 1 for all v and w. In particular, the poset
(Λd, <X) is a graded poset with rank function ht : Λd → Z. Note that X 6= X ′ implies
lX 6= lX′ .

2.2. The poset Pd. Consider the set

Xd := {e(k)− e(i)− e(j) : (i, j, k) ∈ {1, 2, . . . , d}3 such that d divides k − i− j}.
This is the set {eij : all i, j}, so it contains X ′

d as an integrally spanning (but not generally
positive integrally spanning) subset. For example,

X1 = {(−1)}; X2 = {(−2, 1), (0,−1)};
X3 = {(1,−2, 0), (−2, 1, 0), (−1,−1, 1), (0, 0,−1)};

X4 = {(0, 0, 0,−1), (−1,−1, 1, 0), (−1, 0,−1, 1), (1,−1,−1, 0),

(−2, 1, 0, 0), (0,−2, 0, 1), (0, 1,−2, 0)}.
Note that <Xd

is defined. Denote by Pd the poset (Λd, <Xd
). Finite principal ideals of Pd

are the main objects of interest in this paper. For simplicity, we will denote the relation
<Xd

by ≺. For the record we note the following.

Lemma 1. We have |Xd| = d(d−1)
2

+ 1.

Proof. The pair {i, j} from the definition of Xd can be chosen in
(
d−1
2

)
different ways for

i 6= j and in d different ways for i = j. The d choices when {i, j} ∩ {d} 6= ∅ result in the
same vector −e(d). The claim follows. �

For v ∈ Pd, we denote by I(v) the principal ideal of Pd generated by v, that is

I(v) := {v}
⋃

{w ∈ Pd : w ≺ v}.

For n ∈ Z≥0, we set C
(d)
n := |I(ne(1))|. For h = 0, 1, 2, . . . , n, we also define

C
(d)
n,h := |I(ne(1)) ∩ Λ

(h)
d |.
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Then we have C
(d)
n = C

(d)
n,0 + C

(d)
n,1 + · · · + C

(d)
n,n. Our interest in I(ne(1)) will be explained

in Section 6 (see Theorem 27).

We observe the following structural property of Pd: for k = 1, 2, . . . , d consider the set
Λd,k which consists of all v ∈ Λd such that d divides v1 + 2v2 + 3v3 + · · · + dvd − k. Note
that Λd,k ∩ Λd,k′ = ∅ if k 6= k′. Denote by Pd,k the poset with the underlying set Λd,k

obtained by restricting the relation <Xd
to Λd,k. For h ∈ Z≥0, set Λ

(h)
d,k := Λd,k

⋂
Λ

(h)
d .

Proposition 2.

(i) The poset Pd is a disjoint union of subposets Λd,k for k = 1, 2, . . . , d.

(ii) Each Pd,k is an indecomposable poset.

Proof. Claim (i) follows from the definitions since d divides v1 + 2v2 + · · · + dvd for each
v ∈ Xd.

Note that e(k) ∈ Pd,k. Therefore, to prove claim (ii) it is enough to show that any e(k) ≺ v
for any v ∈ Pd,k of height at least 2. However, if v has height at least 2, then either v has
a coefficient which is greater than or equal to 2, or v has at least two non-zero coefficients.
Therefore there is x ∈ Xd such that v + x ∈ Λd. We have v + x ≺ v and from the
observation in the previous paragraph we see that v+x ∈ Λd,k. Therefore e(k) ≺ v follows
by induction on the height of v. This completes the proof. �

From the above proof it follows that for k 6= d the element e(k) is the minimum element
in Pd,k and that the minimum element in Pd,d is 0 := (0, 0, . . . , 0).

2.3. The case d = 1. In the case d = 1, the map

P1 → (Z≥0, <),
(i) 7→ i

is an isomorphism of posets. For n ∈ Z≥0, we have

I(ne(1)) = {(0), (1), (2), . . . , (n)}

and thus C
(1)
n = n+1. Note that in this case the poset P1 = P1,1 is indecomposable.

2.4. The case d = 2. Our first observation in this case is that the maps

P2,1 → P2,2,
v 7→ v − (1, 0)

and
P2,2 → P2,1,
v 7→ v + (1, 0)

are mutually inverse isomorphisms of posets. Consequently, we have C
(2)
n = C

(2)
n+1 for all

even n ∈ Z≥0. The lower part of the Hasse diagram for P2,2 is shown in Figure 1.

It follows immediately that, for k ∈ Z≥0, we have

C
(2)
2k =

(k + 1)(k + 2)

2
.
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Figure 1. Hasse diagram for P2,2

We also note that I(2ke(1)) ⊂ I(2(k + 1)e(1)) for all k ∈ Z≥0 and that⋃
k∈Z≥0

I(2ke(1)) = P2,2.

It is also worth pointing out that, for each k ∈ Z≥0, the poset I(2ke(1)) is isomorphic
to the poset I(2ke(1))op (the latter is obtained from I(2ke(1)) by reversing the partial
order).

3. The case d = 3

The case d = 3 seems to be the most interesting case from the combinatorial point of view
and in relation to integral sequences. Our study of this case is the main part of the present
paper.

3.1. Isomorphism of P3,1 and P3,2. The symmetric group S2 acts on Λ3 as follows: for
v = (v1, v2, v3) and π ∈ S2 we have π · v = (vπ(1), vπ(2), v3). Note that the set X3 (which
can be found in Subsection 2.2) is invariant with respect to the action of S2. Therefore
this action induces an action on P3 by automorphisms. Using this action, we can swap
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e(1) and e(2) and hence P3,1 and P3,2 (cf. proof of Proposition 2). Therefore the posets
P3,1 and P3,2 are isomorphic.

3.2. An alternative description. In this subsection we observe that P3 can be defined
by restriction from Z3. This is a useful property for computations using computers.

We mimic the definition of P3 starting from Z3 instead of Λ3. Consider the set X3 as
defined in Subsection 2.2. Use (2.1) to define the covering relation on Z3 and let ≺′ denote
the partial order on Z3 induced by this covering relation. Our main observation here is the
following:

Proposition 3. The relation ≺ coincides with the restriction of the relation ≺′ to Λ3.

Proof. Let ≺′ denote the restriction of the relation ≺′ to Λ3. Clearly, ≺⊂ ≺′, so we only
need to show that ≺′ ⊂≺.

Let v,w ∈ Λ3 be such that v ≺′ w. We have to show that v ≺ w. Assume that this is
not the case and that the pair (v,w) satisfying v ≺′ w and v 6≺ w is chosen such that
ht(w − v) = k ∈ Z>0 is minimal possible. As v ≺′ w, there is a sequence of elements
x1,x2, . . . ,xk ∈ X3 such that

v = w + x1 + x2 + · · ·+ xk.

Consider vi = v−xi for i = 1, 2, . . . , k. We claim that all vi 6∈ Λ3. Indeed, if vi ∈ Λ3, then
we would have v ≺ vi and vi ≺′ w. This would imply vi 6≺ w which would contradict our
minimal choice of k. In particular, none of the xi’s equals (0, 0,−1) since v−(0, 0,−1) ∈ Λ3

because v ∈ Λ3.

The next step is to show that none of the xi’s equals (−1,−1, 1). Otherwise, without loss
of generality we may assume that xk = (−1,−1, 1). Then we have vk 6∈ Λ3 and hence
v = (∗, ∗, 0) and vk = (∗, ∗,−1). Furthermore, we have

vk = w + x1 + x2 + · · ·+ xk−1

and thus

vk ≺′ w + x1 + x2 + · · ·+ xk−2 ≺′ · · · ≺′ w + x1 + x2 ≺′ w + x1 ≺′ w.

Since w ∈ Λ3, the third coefficient in w is non-negative. This means that at least one of
the xi’s must have negative third coefficient. The only element in X3 with negative third
coefficient is (0, 0,−1). However, in the previous paragraph we already established that
none of the xi’s equals (0, 0,−1), a contradiction.

Therefore each xi is equal to either (−2, 1, 0) or (1,−2, 0). Assume that all xi are equal,
say to (−2, 1, 0) (the case of (1,−2, 0) is similar). Then v = w + k(−2, 1, 0). Since both
v and w are in Λ3, we have w + i(−2, 1, 0) ∈ Λ3 for all i such that 1 ≤ i ≤ k. Therefore
v ≺ w, a contradiction.
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The last paragraph establishes that at least one of the xi’s equals (−2, 1, 0) and at least
one equals (1,−2, 0). This implies v − (−2, 1, 0) − (1,−2, 0) = v + (1, 1, 0) ≺′ w. At the
same time, we have

v + (0, 0, 1),v + (1, 1, 0) ∈ Λ3

as v ∈ Λ3 and

v ≺ v + (0, 0, 1) ≺ v + (0, 0, 1) + (1, 1,−1) = v + (1, 1, 0).

This implies v+ (1, 1, 0) 6≺ w which again contradicts our minimal choice of k. The claim
follows. �

3.3. Small values. The table of C
(3)
n,h for small values of n is given in Figure 2 (computed

first by hands, up to n = 15, and then checked and extended using Proposition 3 and
MAPLE).

3.4. Values of C
(3)
n,h for large h. The sequence A001399(n) in [OEIS] lists the number of

partitions of n into at most 3 parts. Here are the first 25 elements in this sequence:

1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, . . .

Comparison with columns of Figure 2 suggests that the upper part of each column in Fig-
ure 2 is given by an initial segment of A001399. Indeed, we have the following claim:

Proposition 4. For h ≥ dn
2
e we have C

(3)
n,h = A001399(n− h).

Proof. Let (a, b, c) be a partition of n − h in at most three parts, that is a, b, c ∈ Z≥0,
a ≥ b ≥ c and a+ b+ c = n− h. Then we claim that

v(a,b,c) := (n, 0, 0) + a(−2, 1, 0) + b(−1,−1, 1) + c(0, 0,−1) ≺ (n, 0, 0).

By Proposition 3, it is enough to show that v(a,b,c) ∈ Λ3. The latter however follows from
2a+ b ≤ n (thanks to h ≥ dn

2
e) and b ≥ c (thanks to the fact that (a, b, c) is a partition).

The vectors (−2, 1, 0), (−1,−1, 1) and (0, 0,−1) are linearly independent, which implies

that v(a,b,c) 6= v(a′,b′,c′) provided that (a, b, c) 6= (a′, b′, c′). Therefore C
(3)
n,h ≥ A001399(n−h).

Assume now that for some a, b, c ∈ Z≥0 with a+ b+ c = n− h we have

(3.1) v(a,b,c) := (n, 0, 0) + a(−2, 1, 0) + b(−1,−1, 1) + c(0, 0,−1) ≺ (n, 0, 0).

Then from v(a,b,c) ∈ Λ3 it follows that b ≥ c (as the last coefficient must be non-negative)
and a ≥ b (as the second coefficient must be non-negative). Therefore (a, b, c) is a partition
of n− h with at most three parts.

It remains to show that each element v ∈ I(ne(1)) of height h has the form (3.1) for some
a, b, c ∈ Z≥0 with a + b + c = n − h. Assume that this is not the case and choose some
v ∈ I((n, 0, 0)) not of that form for a maximal possible h. Obviously, h < n.
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C3
n 1 1 2 4 5 7 11 13 17 23 27 33 42 48 57 69 78 90 106 118 134 154 170 190 215 235

25 1

24 1 1

23 1 1 2

22 1 1 2 3

21 1 1 2 3 4

20 1 1 2 3 4 5

19 1 1 2 3 4 5 7

18 1 1 2 3 4 5 7 8

17 1 1 2 3 4 5 7 8 10

16 1 1 2 3 4 5 7 8 10 12

15 1 1 2 3 4 5 7 8 10 12 14

14 1 1 2 3 4 5 7 8 10 12 14 16

13 1 1 2 3 4 5 7 8 10 12 14 16 19

12 1 1 2 3 4 5 7 8 10 12 14 16 19 20

11 1 1 2 3 4 5 7 8 10 12 14 16 18 19 21

10 1 1 2 3 4 5 7 8 10 12 14 15 17 18 19 20

9 1 1 2 3 4 5 7 8 10 12 13 14 16 16 17 18 18

8 1 1 2 3 4 5 7 8 10 11 12 13 14 14 15 15 15 15

7 1 1 2 3 4 5 7 8 9 10 11 11 12 12 12 12 12 12 12

6 1 1 2 3 4 5 7 7 8 9 9 9 10 9 9 10 9 9 10 9

5 1 1 2 3 4 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7

4 1 1 2 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

3 1 1 2 3 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3

2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1

k/n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 2. Values of C
(3)
n,h for n ≤ 25

Then there are a, b, c, d ∈ Z≥0 such that a+ b+ c+ d = n− h and

v = (n, 0, 0) + a(−2, 1, 0) + b(−1,−1, 1) + c(0, 0,−1) + d(1,−2, 0).

We may assume d = 1. Indeed, d > 0 and h ≥ dn
2
e imply that the first coefficient of v is

positive. Therefore v−(1,−2, 0) ∈ Λ3 and hence v−(1,−2, 0) ≺ (n, 0, 0) by Proposition 3.
By the maximality of our choice of h it follows that v − (1,−2, 0) can be written in the
form (3.1). Therefore we may choose d = 1.

We obviously have a > 0 for otherwise the second coefficient of v would be negative. But
then we may use

(−2, 1, 0) + (1,−2, 0) = (−1,−1, 1) + (0, 0,−1)
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to write v in the form (3.1), a contradiction. The claim of the proposition follows. �

Each column in Figure 2 contains a unique underlined element. This element corresponds

to the lower bound dn
2
e for the value of h for which C

(3)
n,h = A001399(n−h). In other words,

this element and all elements above it in the same column are given by an initial segment
of A001399.

3.5. Values of C
(3)
n,h for small h. We start this subsection with the following observa-

tion:

Proposition 5. For h ≤ dn
3
e we have |Λ(h)

3

⋂
I(ne(1))| = |Λ(h)

3 ∩Λ3,k|, where k ∈ {1, 2, 3}
is such that ne(1) ∈ Λ3,k.

Proof. As I(ne(1)) ⊂ Λ3,k for our choice of k, to prove the assertion of this proposition

we only need to show that (Λ
(h)
3 ∩ Λ3,k) ⊂ (Λ

(h)
3

⋂
I(ne(1))). It is enough to prove the

proposition for h = dn
3
e which we from now on assume. Set q := bn

3
c. We will have to

consider three different cases depending on k.

Case 1: k = 3. In this case q = bn
3
c = dn

3
e = h. Let (a, b, c) ∈ Λ

(h)
3 ∩ Λ3,k, that is

a, b, c ∈ Z≥0, a+ b+ c = q and 3 divides a+ 2b. In this case we have

(3.2) (n− 3c− 2b, b, c) = (n, 0, 0) + (b+ c)(−2, 1, 0) + c(−1,−1, 1) ≺ (n, 0, 0).

Now, n− 3c− 2b = 3a+ b. Since 3 divides both a+ 2b and 3a+ 3b, it also divides 2a+ b.
Therefore there is p ∈ Z≥0 such that 2a+ b = 3p. We have

(3.3) (a, b, c) = (n− 3c− 2b− 3p, b, c) =

= (n− 3c− 2b, b, c) + p(−2, 1, 0) + p(−1,−1, 1) + p(0, 0,−1) ≺ (n− 3c− 2b, b, c).

Combining (3.2) and (3.3) implies (a, b, c) ≺ (n, 0, 0) and hence (a, b, c) ∈ I(ne(1)).

Case 2: k = 2. In this case q = h − 1 and n = 3h − 1. Let (a, b, c) ∈ Λ
(h)
3 ∩ Λ3,k, that

is a, b, c ∈ Z≥0, a + b + c = h and 3 divides a + 2b − 2. From Formula (3.2) we have
(n− 3c− 2b, b, c) ≺ (n, 0, 0). Now, n− 3c− 2b = 3a+ b− 1. Since 3 divides both a+2b− 2
and 3a+3b, it also divides 2a+ b−1. Therefore there is p ∈ Z≥0 such that 2a+ b−1 = 3p.
Applying (3.3), we obtain (a, b, c) ≺ (n− 3c− 2b, b, c) and thus (a, b, c) ≺ (n, 0, 0), that is
(a, b, c) ∈ I(ne(1)).

Case 3: k = 1. In this case q = h − 1 and n = 3h − 2. Let (a, b, c) ∈ Λ
(h)
3 ∩ Λ3,k, that

is a, b, c ∈ Z≥0, a + b + c = h and 3 divides a + 2b − 1. From Formula (3.2) we have
(n− 3c− 2b, b, c) ≺ (n, 0, 0). Now, n− 3c− 2b = 3a+ b− 2. Since 3 divides both a+2b− 1
and 3a+3b, it also divides 2a+ b−2. Therefore there is p ∈ Z≥0 such that 2a+ b−2 = 3p.
Applying (3.3), we obtain (a, b, c) ≺ (n− 3c− 2b, b, c) and thus (a, b, c) ≺ (n, 0, 0), that is
(a, b, c) ∈ I(ne(1)). �
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...
...

...
...

...
...

...
...

...

. . .

...
...

...
...

...
...

... (0, 7, n − 7)

. . . . . .

...
...

...
...

... (1, 6, n − 7) (0, 6, n − 6)

. . . . . . . . .

...
...

... (2, 5, n − 7) (1, 5, n − 6) (0, 5, n − 5)

. . . . . . . . . . . .

... (3, 4, n − 7) (2, 4, n − 6) (1, 4, n − 5) (0, 4, n − 4)

. . . . . . . . . . . . (4, 3, n − 7) (3, 3, n − 6) (2, 3, n − 5) (1, 3, n − 4) (0, 3, n − 3)

. . . . . . . . . (5, 2, n − 7) (4, 2, n − 6) (3, 2, n − 5) (2, 2, n − 4) (1, 2, n − 3) (0, 2, n − 2)

. . . . . . (6, 1, n − 7) (5, 1, n − 6) (4, 1, n − 5) (3, 1, n − 4) (2, 1, n − 3) (1, 1, n − 2) (0, 1, n − 1)

. . . (7, 0, n − 7) (6, 0, n − 6) (5, 0, n − 5) (4, 0, n − 4) (3, 0, n − 3) (2, 0, n − 2) (1, 0, n − 1) (0, 0, n)

Figure 3. Triangular arrangement of Λ
(h)
3

For all h ∈ Z≥0, we have

(3.4) |Λ(h)
3 | = (h+ 1)(h+ 2)

2
.

Lemma 6.

(i) If 3 does not divide h, then |Λ(h)
3,1 | = |Λ(h)

3,2 | = |Λ(h)
3,3 |.

(ii) If 3 divides h, then |Λ(h)
3,1 | = |Λ(h)

3,2 | = |Λ(h)
3,3 | − 1.

Proof. We prove both statements at the same time by induction on h. Let us arrange

elements of Λ
(h)
3 in a triangular array as shown on Figure 3.

Writing down the residue modulo 3 of the expression a + 2b for each element (a, b, c) in
Figure 3 we get

. . .
...

...
...

...
...

...
...

...

. . .
. . .

...
...

...
...

...
... 2

. . . . . .
. . .

...
...

...
... 1 0

. . . . . . . . .
. . .

...
... 0 2 1

. . . . . . . . . . . .
. . . 2 1 0 2

. . . . . . . . . . . . 1 0 2 1 0

. . . . . . . . . 0 2 1 0 2 1

. . . . . . 2 1 0 2 1 0 2

. . . 1 0 2 1 0 2 1 0

For a fixed h the set Λ
(h)
3 corresponds the the first h+1 “bottom-left-to-top-right” diagonals

starting from the bottom right corner. The induction step h → h+1 corresponds to adding
the next diagonal.
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Note that the residues in each diagonal follow a cyclic order on 0, 1, 2 (as one step up along
the diagonal decreases the first coordinate by 1 and increases the second coordinate by 1,
thus changing a + 2b to (a− 1) + 2(b + 1)). In particular, if the number of elements on a
new diagonal is divisible by 3, it contains the same number of 0’s, 1’s and 2’s. This proves
the induction step in the case when 3 divides h− 1.

If 3 divides h− 2, then the new diagonal contains an extra zero compared to the common
number of 1’s and 2’s. If 3 divides h, then the new diagonal contains one zero less than the
common number of 1’s and 2’s. Put together this implies the induction step and completes
the proof of the proposition. �

For a set X, we denote by δX the indicator function of X, that is

δX(x) =

{
1, x ∈ X;

0, x 6∈ X.

Combining Proposition 5, Lemma 6 and Formula (3.4), we obtain:

Corollary 7. For h ≤ dn
3
e we have

C
(3)
n,h =

(h+ 1)(h+ 2) + (6δ3Z(n)− 2)δ3Z(h)

6
.

In the case when 3 does not divide n, the sequence (h+1)(h+2)−2δ3Z(h)
6

is A001840 from [OEIS].

In the case when 3 divides n, the sequence (h+1)(h+2)+4δ3Z(h)
6

is A007997(h+2) from [OEIS].
However, it seems that our interpretation of both these sequences does not appear on
[OEIS] at the moment. We note that the sequence A001840(h + 1) − A001840(h) is the
sequence

1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, . . . ,

while the sequence A007997(h+ 3)− A007997(h+ 2) is the sequence

1, 0, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 6, 5, 6, . . . .

The latter sequence should be compared with the fourth sequence which will is constructed
in Subsection 3.6 below.

Each column in Figure 2 contains a unique overlined element. This element corresponds

to the upper bound dn
3
e for the value of h for which C

(3)
n,h is given by Corollary 7. In other

words, this element and all elements below it in the same column are given by an initial
segment of A007997(h+ 2) or A001840, if 3 does or does not divide n, respectively.

Problem 8. Find a closed formula for C
(3)
n,h, where dn

3
e < h < dn

2
e.
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3.6. Sequence A028289. The sequence A028289 in [OEIS] lists coefficients in the expan-

sion of 1+t2+t3+t5

(1−t)(1−t3)(1−t4)(1−t6)
. Here are the first 25 elements in this sequence:

1, 1, 2, 4, 5, 7, 11, 13, 17, 23, 27, 33, 42, 48, 57, 69, 78, 90, 106, 118, 134, 154, 170, 190, 215, 235, . . .

This sequence appears in [CBC]. Comparison with the first row of Figure 2 suggests that

C
(3)
n = A028289(n) for all n. We will prove this in the next subsection. In this subsection

we propose two construction of A028289, alternative to its definition on [OEIS]. The first
construction consists of five combinatorial steps.

• Consider first the sequence 0, 1, 2, 3, 4, 5 . . . of all non-negative integers.

• Construct the second sequence 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, . . . by repeating all non-zero
terms in the previous sequence twice.

• Define the third sequence as the sequence of partial sums of the second sequence:
0, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, . . . .

• Construction of the fourth sequence is the most complicated one. The sequence is:

1, 0, 1, 2, 1, 2, 4, 2, 4, 6, 4, 6, 9, 6, 9, 12, 9, 12, 16, 12, 16, 20, 16, 20, . . .

and this is obtained by interlacing, in order, five-term frames of the form i, ∗, i, ∗, i,
where i an element of the third sequence, for example:

– start with . . . , 0, ∗, 0;

– adding (1, ∗, 1, ∗, 1) we obtain . . . , 0, 1, 0, 1, ∗, 1;

– adding (2, ∗, 2, ∗, 2) we obtain . . . , 0, 1, 0, 1, 2, 1, 2, ∗, 2;

– adding (4, ∗, 4, ∗, 4) we obtain . . . , 0, 1, 0, 1, 2, 1, 2, 4, 2, 4, ∗, 4;

– continue inductively;

– erase all zeros at the beginning.

• The final, fifth, sequence is the sequence of partial sums of the forth sequence:

1, 1, 2, 4, 5, 7, 11, 13, 17, 23, 27, 33, 42, 48, 57, 69, 78, 90, 106, 118, 134, 154, 170, 190, . . .

Proposition 9. The fifth sequence constructed above coincides with A028289.

Proof. Let us compute the generating function of all sequences constructed above. For the
first sequence the generating function is

f(t) :=
t

(1− t)2
.

For the second sequence we get

f(t2) +
1

t
f(t2) =

t+ t2

(1− t2)2
.
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Convolution with 1, 1, 1, . . . , that is the sequence with generating function 1
1−t

, implies that
the generating function for the third sequence is

g(t) =
t+ t2

(1− t)(1− t2)2
.

The generating function for the fourth sequence is

g(t3)

t3
+

t2g(t3)

t3
+

t4g(t3)

t3
=

(1 + t3)(1 + t2 + t4)

(1− t6)2(1− t3)
=

1 + t2 + t4

(1− t6)(1− t3)2
.

Finally, yet another convolution with 1, 1, 1, . . . gives the generating function

1 + t2 + t4

(1− t)(1− t6)(1− t3)2

for the fifth sequence. The latter generating function coincides with the generating function

1 + t2 + t3 + t5

(1− t)(1− t3)(1− t4)(1− t6)

of A028289 since

(1 + t2 + t4)(1− t4) = 1 + t2 − t6 − t8 = (1 + t2 + t3 + t5)(1− t3).

The claim follows. �

Our second construction of A028289 (which is relevant for Theorem 11 in the following
subsection) uses the following observation:

Lemma 10. We have

1 + t2 + t3 + t5

(1− t)(1− t3)(1− t4)(1− t6)
=

1

1− t
· 1

1− t3
· (1 + t2 + t3 + t4 + t5 + t7) · 1

(1− t6)2
.

Proof. We have to check that

1 + t2 + t3 + t5

1− t4
=

1 + t2 + t3 + t4 + t5 + t7

1− t6
.

This is a straightforward computation. �

Lemma 10 implies that A028289 can be constructed in the following four combinatorial
steps.

• Consider first the sequence 1, 2, 3, 4, 5 . . . of all positive integers.

• Construct the second sequence 1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, . . . by repeating the
pattern i, ∗, i, i, i, i, ∗, i of the terms in the previous sequence using shift in six
positions.

• Construct the third sequence 1, 0, 1, 2, 1, 2, 4, 2, 4, . . . by convolution of the second
sequence with 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, . . . .
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• The final, fourth, sequence is the sequence of partial sums of the third sequence:

1, 1, 2, 4, 5, 7, 11, 13, 17, 23, 27, 33, 42, 48, 57, 69, 78, 90, 106, 118, 134, 154, 170, 190, . . .

3.7. Computation of C
(3)
n . Here we prove our first main result.

Theorem 11. We have C
(3)
n = A028289(n) for all n ∈ Z≥0.

Proof. Taking Lemma 10 into account, to prove the assertion of our theorem, it is enough
to show that∑

n≥0

C(3)
n tn =

1

1− t
· 1

1− t3
· (1 + t2 + t3 + t4 + t5 + t7) · 1

(1− t6)2
.

For a variable n, consider the sets

D̃n := (n, 0, 0) + Z(−2, 1, 0) + Z(−1,−1, 1) + Z(0, 0,−1),

Dn := (n, 0, 0) + Z(−2, 1, 0) + Z(−3, 0, 1)

and let Φ : D̃n → Dn denote the projection along the vector

(−3, 0, 0) = (−2, 1, 0) + (−1,−1, 1) + (0, 0,−1).

Note that this is well-defined as (−3, 0, 1) = (−3, 0, 0)− (0, 0,−1).

Our first observation is the following:

Lemma 12. For any v ∈ I(ne(1)) we have

Φ(v) ∈ (n, 0, 0) + Z≥0(−2, 1, 0) + Z≥0(0, 0,−1).

Proof. We have

v = (n, 0, 0) + a(−2, 1, 0) + b(1,−2, 0) + c(−1,−1, 1) + d(0, 0,−1),

for a, b, c, d,∈ Z≥0, by definition. Clearly, a ≥ 2b + c and c ≥ d. Since Φ((−3, 0, 0)) = 0,
(−3, 0, 0) = 2(−2, 1, 0) + (1,−2, 0), and (−3, 0, 0) = (−2, 1, 0) + (−1,−1, 1) + (0, 0,−1), it
follows that

Φ(v) = Φ((n, 0, 0) + (a− 2b− c)(−2, 1, 0) + (c− d)(0, 0,−1)),

which implies the claim. �

For i ∈ Z≥0 set fi := |Ti|, where
Ti := {v ∈ (n, 0, 0) + Z≥0(−2, 1, 0) + Z≥0(−3, 0, 1) : v = (n− i, ∗, ∗)}.

Lemma 13. We have ∑
i≥0

fit
i =

1 + t2 + t3 + t4 + t5 + t7

(1− t6)2
.
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• • • •

• • •

• •

•

ifigiC
(3)
i

0111

1001

2112

3124

4115

5127

62411

71213

82417

...
...

...
...

(n, 0, 0)

(n − 5, 1, 1)

(n − 7, 2, 1)(n − 8, 1, 2)

(n − 9, 3, 1)(n − 10, 2, 2)(n − 11, 1, 3)

(n − 2, 1, 0)(n − 3, 0, 1)

(n − 4, 2, 0)

(n − 6, 3, 0)

(n − 8, 4, 0)

(n − 6, 0, 2)

(n − 9, 0, 3)

(n − 12, 0, 4)

(−2, 1, 0)(−3, 0, 1)

Figure 4. Geometric illustration of the proof of Theorem 11

Proof. A direct calculation give the following values for small i:

i 0 1 2 3 4 5 6 7
fi 1 0 1 1 1 1 2 1

For i = 6 we for the first time have fi = 2 > 1. From the linearity of the definition, we
thus get fi+6 = fi+1 for all i ≥ 0 (see the illustration in Figure 4). The claim follows. �

For each i ∈ Z≥0, mapping v 7→ v + (1, 0, 0) defines an injection from I((i − 1)e(1)) to

I(ie(1)). Set gi := C
(3)
i − C

(3)
i−1 ≥ 0 (under the convention C

(3)
−1 = 0). Then we have

C
(3)
i = gi + gi−1 + · · ·+ g0

by construction. This reduces the claim of the theorem to the following crucial observation:

Lemma 14. We have gi = fi + fi−3 + fi−6 + . . . for all i, where we assume fi = 0 for
i < 0.
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Proof. First of all, we claim that the map

I((i− 1)e(1)) → I(ie(1))
v 7→ v + (1, 0, 0)

induces a bijection between I((i− 1)e(1)) and the set

{v = (v1, v2, v3) ∈ I(ie(1)) : v1 6= 0}.

Indeed, the inverse map is easily seen to be given by w 7→ w − (1, 0, 0).

Therefore we need to show that gi enumerates the set

R := {v = (v1, v2, v3) ∈ I(ie(1)) : v1 = 0}.

Note that the restriction of Φ to R is injective since the linear span of R does not contain
the generator (−3, 0, 0) of the kernel of Φ. Therefore it is enough to enumerate |Φ(R)|. We
claim that

Φ(R) = Ti ∪ Ti−3 ∪ Ti−6 ∪ . . .

(note that this union is automatically disjoint), which is a reformulation of the assertion
of the lemma due to the rule of sum.

Consider the equation

(3.5) (x, 0, 0) = a(−2, 1, 0) + b(1,−2, 0) + c(−1,−1, 1) + d(0, 0,−1)

where x ∈ Z and a, b, c, d,∈ Z≥0, Comparing the last coordinate, gives c = d. Comparing
the second coordinate, gives a = 2b − c. Plugging this information back into equation,
gives (x, 0, 0) = (−3b, 0, 0). This and our definition of ≺ implies that

Φ(R) ⊂ Tn ∪ Tn−3 ∪ Tn−6 ∪ . . . .

The inverse inclusion follows easily from the definition of ≺ and construction of the Tj’s
using induction on i. This completes the proof. �

The claim of the theorem follows by combining Lemmata 10, 12, 13 and 14. The intuitive
picture behind this proof is given in Figure 4. �

As a direct consequence of Theorem 11 and [CBC], we get:

Corollary 15. For i ∈ N we have:

C
(3)
3(i−1) = 1

8

(
(i+ 1)(2i2 + i+ 1)− 1

2
(1 + (−1)i)

)
,

C
(3)
3(i−1)+1 = 1

8

(
(i+ 1)(2i2 + 3i− 1) + 1

2
(1 + (−1)i)

)
,

C
(3)
3(i−1)+2 = 1

8

(
(i+ 1)(2i2 + 5i+ 1)− 1

2
(1 + (−1)i)

)
.
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∗
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∗

∗

∗

∗

∗

∗

∗
∗

Figure 5. Triangular tiling, vertices, and tiling lines; triangles marked with
∗ form a tiling strip of type 2

4. C
(3)
n and hollow hexagons

4.1. Triangular tilings. Consider a regular triangular tiling of an Euclidean plane as
shown in Figure 5. We assume that the side of the basic equilateral triangle (the funda-
mental region) of this tiling has length 1. Each intersection point if called a vertex of the
tiling. Each straight line of the tilting is called a tiling line. A horizontal tiling line will be
called a line of type 1. A tiling line of type 2 is a tiling line obtained from a tiling line of
type 1 by a clockwise rotation by π

3
. A tiling line of type 3 is a tiling line obtained from a

tiling line of type 1 by a clockwise rotation by 2π
3
.

4.2. T-hexagons and their h-envelopes. For i = 1, 2, 3, a tiling strip of type i is the
area between two tiling lines of type i (see Figure 5 for an example of a tiling strip of type
2). In particular, if these two lines coincide, then the corresponding tiling strip coincides
with each of these tiling lines. A t-hexagon is, by definition, the intersection of three tiling
strips, one for each type. Note that a t-hexagon can be:

• empty;

• equal to a vertex of the tilting;

• equal to a bounded line segment of a tilting line;

• a polygon with three, four, five or six vertices.

By the perimeter of a t-hexagon we mean its perimeter as a polygon. Clearly, each t-
hexagon has finite perimeter. The perimeter of a vertex is zero, while the perimeter of a
bounded line segment is twice the length of this line segment.

The group of symmetries of the triangular tiling is the triangle group

∆(3, 3, 3) = 〈a, b, c : a2 = b2 = c2 = (ab)3 = (bc)3 = (ca)3 = 1〉
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....................................................... .....

Figure 6. A t-hexagon and its hexagonal envelope

generated by reflections with respect to the sides of the the fundamental region of the tiling.
Two t-hexagons which can be obtained from each other applying some element in ∆(3, 3, 3)
will be called isomorphic. For n ∈ Z≥0, we denote by Tn the number of isomorphism classes
of t-hexagons with perimeter 2n.

Centroids of tiling triangles form a dual hexagonal tiling of our plane. Given a t-hexagon
H, its hexagonal envelope E(H) is the union of all hexagons in the hexagonal tiling which
intersect H, see Figure 6 for an example of a t-hexagon (bold lines) and its hexagonal
envelope (dotted lines).

Lemma 16. Let H be a t-hexagon of perimeter i for some i ∈ Z≥0. Then the hexagonal
envelope of H has 6 + 2i vertices.

Proof. For i = 0, 1, 2, 3, 4, 5 the statement of the lemma follows by inspecting all t-hexagons
of perimeter i. These t-hexagons are given in the following list:

•
i = 0

• •
i = 2

• •
•

i = 3

• • • • •
••

i = 4

• • •
• •

i = 5

..............
. ... ...........

. ... ............
... ........

. ... ..
. ...
...... ............

...........
. ... ... ............

... ......
... ............ ..............

. ... ..
. ... ... ... ......

........
. ... ..
. ... ... ... ..................

We claim that the rest follows by induction on i. Indeed, assume that H is the intersection
of three tiling strips (one for each type). We can, in turn, pull the lines defining these
strips closer to each other, one step at a time. Eventually by one such step we will get a
smaller t-hexagon H ′. There are four possible cases.

Case 1. The t-hexagon H ′ is obtained from H by collapsing a line segment to a vertex as
illustrated here:
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•
•

•
→.....

...
..
...
..
.....
.....

...
..
.....
...
.. ..... ...

.......

In this case we see that the perimeter of H decreases by 2 and the number of vertices of
the hexagonal envelope decreases by 4.

Case 2. The t-hexagon H ′ is obtained from H by collapsing a trapezoid segment onto its
basis as illustrated here (the length of the segment can be arbitrary):

• •
• • •

• • • •
→

...
..... ...
..
..... ..... ..... ..... ..... .....

...

..

........ ...
..... ..... ..... ..... ..... ..... ..... ..... ...

In this case we see that the perimeter of H decreases by 1 and the number of vertices of
the hexagonal envelope by 2.

Case 3. The t-hexagon H ′ is obtained from H by collapsing a trapezoid segment onto its
basis as illustrated here (the length of the segment can be arbitrary):

• •
• • •

• • •
→

...
..... ...
..
..... ..... ..... ..... ..... .....

...

..

........ ...
..... ..... ..... ..... ..... ..... ...

In this case we see that the perimeter of H decreases by 2 and the number of vertices of
the hexagonal envelope by 4.

Case 4. The t-hexagon H ′ is obtained from H by collapsing a trapezoid segment to its
basis as illustrated here:

• •
• • •

• •
→

...
........
..
..... ..... ..... ..... ..... .....

...

..

........ ...
..... ..... ..... ..... ...

In this case we see that the perimeter of H decreases by 3 and the number of vertices of
the hexagonal envelope by 6.

Since all the above changes agree, by linearity, with the desired formula, the claim of the
lemma follows by induction. �
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Figure 7. Basic vectors and lines

Hexagonal envelopes of t-hexagons seem to be exactly the hollow hexagons considered in
[CBCBB, CBC] (the latter papers do not really have any mathematically precise definition
of hollow hexagons).

4.3. Characters of t-hexagons. We would like to encode t-hexagons using vectors with
non-negative integral coefficients. For this we will need some notation. Denote by v1,
v2 and v3 the vectors in the Euclidean plane as shown in Figure 7. Note that all these
vectors have length one and that v1 + v2 + v3 = 0. In Figure 7 we also see a ∗-marked
t-hexagon which is the intersection of the tiling strips formed by thick lines. The tilting
lines which bound the tiling strips are marked by numbers 1, 2, 3, 4, 5, 6 which correspond
to going along the perimeter of the hexagon starting from the bottom side and going into
the clockwise direction.

Let now H be a t-hexagon given as the intersection of three tiling strips, one for each type.
Without loss of generality we may assume that each tiling line which bounds each of these
tiling strips has a non-empty intersection with H. We number the tilting lines forming the
boundaries of the tilting strips in the same way as in Figure 7. Note that, if two tiling lines
coincide, we still count them as two different lines in our numbering. This corresponds to
walking along the boundary of H, starting with the bottom side, first along v1, then along
−v3, then along v2, then along −v1, then along v3 and, finally, along −v2.

The intersection of the boundary tiling line of a tiling strip with H is then either a vertex or
a side of H. We denote by χ(H) the vector (a1, a2, a3, a4, a5, a6) where for i = 1, 2, 3, 4, 5, 6
the number ai is the length of the intersection of the line i with H. For example, for
the ∗-marked t-hexagon in Figure 7 we have χ(H) = (1, 1, 1, 1, 1, 1), while for the thick
t-hexagon in Figure 6 we have χ(H) = (3, 0, 2, 2, 1, 1). The vector χ(H) will be called the
character of H.

An alternative description of χ(H) is as follows: Start with the rightmost vertex on the
bottom edge of H. Walk along v1 until the next vertex (which might coincide with the
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starting one). The number a1 is the length of this walk. Continue along −v3 to record a2,
then along v2 to record a3 and so on in the order described above.

The action of ∆(3, 3, 3) induced on the set of characters of t-hexagons the action which is
generated by the cyclic permutations of components of the character and the flip

(a1, a2, a3, a4, a5, a6) 7→ (a6, a5, a4, a3, a2, a1).

Using this action, we can change H to an isomorphic t-hexagon H ′ such that we have
χ(H ′) = (a1, a2, a3, a4, a5, a6) where the following conditions are satisfied:

(4.1) a1 + a3 + a5 ≤ a2 + a4 + a6 and a1 ≥ a3 ≥ a5.

Such H ′ as well as its character will be called distinguished. Clearly, a distinguished
representative in the isomorphism class of H is unique up to shift of tiling. As an example,
the regular hexagon in Figure 7 is distinguished, while the t-hexagon in Figure 7 is not
distinguished since the first inequality in (4.1) fails.

Note that our walk along the perimeter of H always returns to the original point. From
this it follows that (a1, a2, a3, a4, a5, a6) ∈ Z≥0 is the character of some t-hexagon if and
only if

(4.2) (a1 − a4)v1 + (a5 − a2)v3 + (a3 − a6)v2 = 0.

Taking into account v3 = −v1 − v2 and linear independence of v1 and v2, Equation (4.2) is
equivalent to

(4.3) a1 + a2 − a4 − a5 = 0 and a2 + a3 − a5 − a6 = 0.

Lemma 17. Let H be a distinguished t-hexagon and χ(H) = (a1, a2, a3, a4, a5, a6). Then
we have

a1 ≤ a4, a2 ≤ a5 and a3 ≤ a6.

Proof. From Equation (4.3) we have a1 − a4 = a5 − a2 = a3 − a6. Plugging this in into the
first inequality in (4.1) in the three different obvious ways yields the statement. �

4.4. Elementary operations on distinguished t-hexagons. Let H be a distinguished
t-hexagon and χ(H) = (a1, a2, a3, a4, a5, a6). We consider four elementary operations on
hexagons.

Operation Φ. Assume a1 − a3 ≥ 2. Then, using Lemma 17, it is easy to check that the
vector

(a1 − 1, a2, a3 + 1, a4 − 1, a5, a6 + 1)

satisfies all conditions in (4.1) and (4.3) and hence is the character of a unique distinguished
t-hexagon which we denote by Φ(H).

Operation Ψ. Assume a1 > a3 > a5. Then, using Lemma 17, it is easy to check that the
vector

(a1 − 1, a2 + 1, a3, a4 − 1, a5 + 1, a6)
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satisfies all conditions in (4.1) and (4.3) and hence is the character of a unique distinguished
t-hexagon which we denote by Ψ(H).

Operation Θ. Assume a5 > 0. Then, using Lemma 17, it is easy to check that the
vector

(a1 − 1, a2 + 1, a3 − 1, a4 + 1, a5 − 1, a6 + 1)

satisfies all conditions in (4.1) and (4.3) and hence is the character of a unique distinguished
t-hexagon which we denote by Θ(H).

Operation Λ. Assume a3 − a5 ≥ 2. Then, using Lemma 17, it is easy to check that the
vector

(a1 − 1, a2 + 2, a3 − 2, a4 + 1, a5, a6)

satisfies all conditions in (4.1) and (4.3) and hence is the character of a unique distinguished
t-hexagon which we denote by Λ(H).

Directly from the definitions it is easy to see that all maps Φ, Ψ, Θ and Λ do not change the
perimeter. All these maps have rather transparent geometric interpretation which could be
obtained by moving the boundary tiling lines of the tiling strips which define the original
t-hexagon.

4.5. Signature and defect. Let H be a distinguished t-hexagon. Assume that χ(H) =
(a1, a2, a3, a4, a5, a6). Then the vector sign(H) := (a1 − a3, a3 − a5, a5) ∈ Z3

≥0 will be called
the signature of H. For example, the regular hexagon in Figure 7 has signature (0, 0, 1)
while a distinguished t-hexagon isomorphic to the t-hexagon in Figure 6 has signature
(1, 1, 0). Directly from the definitions one computes that for any distinguished t-hexagon
H we have:

(4.4)

sign(Φ(H)) = sign(H) + (−2, 1, 0),
sign(Ψ(H)) = sign(H) + (−1,−1, 1),
sign(Θ(H)) = sign(H) + (0, 0,−1),
sign(Λ(H)) = sign(H) + (1,−2, 0),

provided that the t-hexagons Φ(H), Ψ(H), Θ(H) or, respectively, Λ(H), are defined.

We define the defect of H as

def(H) := a2 + a4 + a6 − a1 − a3 − a5

and note that the defect of a distinguished t-hexagon is always non-negative.

4.6. The number of t-hexagons. Our main result in this section is the following state-
ment which gives a direct connection between the present paper and [CBCBB, CBC].

Theorem 18. For all n ∈ Z≥0, mapping H to sign(H) induces a bijection between the set
of isomorphism classes of distinguished t-hexagons of perimeter 2n and the set I(ne(1)).
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Proof. Consider a distinguished t-hexagon Q having the character (n, 0, 0, n, 0, 0). The
signature of this t-hexagon is (n, 0, 0) = ne(1). Applying, whenever possible, a sequence
of operations Φ, Ψ, Θ and Λ to Q, produces a set of t-hexagons of perimeter 2n. From
(4.4) it follows that the set of signatures for all t-hexagons which can be obtained in this
way coincides with I(ne(1)).

Our next step is to show that each distinguished t-hexagon of perimeter 2n can be obtained
from H using a sequence of operations of the form Φ, Ψ, Θ and Λ (in fact, the first three
would suffice). Let K be a distinguished t-hexagon with character (a1, a2, a3, a4, a5, a6).
Assume a5 > 0. Then, using Lemma 17, it is easy to check that the vector

(a1 + 1, a2 − 1, a3, a4 + 1, a5 − 1, a6)

satisfies all conditions in (4.1) and (4.3) and hence is the character of a unique distinguished
t-hexagon. Therefore K = Ψ(K ′) for some distinguished t-hexagon K ′ and the character
of K ′ has a smaller fifth coordinate. In particular, K is obtained, using a sequence of Ψ’s,
from some distinguished t-hexagon K ′ the character of which has zero fifth coordinate.

Let K be a distinguished t-hexagon with character (a1, a2, a3, a4, a5, a6). Assume a3 > 0.
Then, using Lemma 17, it is easy to check that the vector

(a1 + 1, a2, a3 − 1, a4 + 1, a5, a6 − 1)

satisfies all conditions in (4.1) and (4.3) and hence is the character of a unique distinguished
t-hexagon. Therefore K = Φ(K ′) for some distinguished t-hexagon K ′ and the character
of K ′ has a smaller third coordinate. In particular, K is obtained, using a sequence of Φ’s
and Ψ’s, from some distinguished t-hexagon K ′ the character of which has zero third and
fifth coordinates.

Let K be a distinguished t-hexagon with character (a1, a2, 0, a4, 0, a6). Then a4 ≥ a1 by
Lemma 17. If a4 = a1, then from Equation 4.3 it follows that a2 = a6 = 0 and K = Q.
If a4 > a1, then from Equation 4.3 it follows that a2 = a6 = a4 − a1 > 0. Now, using
Lemma 17, it is easy to check that the vector

(b1, b2, b3, b4, b5, b6) := (a1 + 1, a2 − 1, a3 + 1, a4 − 1, a5 + 1, a6 − 1)

satisfies all conditions in (4.1) and (4.3) and hence is the character of a unique distinguished
t-hexagon, say K ′. Note that, by construction, def(K ′) < def(K) and that K = Θ(K ′).

Using induction on defect and the above steps it follows that any distinguished t-hexagon
of perimeter 2n is obtained using Φ, Ψ and Θ from a distinguished t-hexagon of perimeter
2n with character (a1, 0, 0, a4, 0, 0). But from Equation 4.3 it thus follows that a1 = a4 = n
and hence the latter t-hexagon must be isomorphic to Q.

As a consequence of the above argument, we have that the image of the signature map is
contained in I(ne(1)). So, it remains to show that the signature map is injective.

Let K be a distinguished t-hexagon with signature (x, y, z) and of perimeter 2n. Then the
character of K equals (x+ y + z, a2, y + z, a4, z, a6) for some a2, a4, a6 ∈ Z≥0. From (4.3),
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we have
x+ y + z − a4 = z − a2 = y + z − a6.

Since the perimeter of K is 2n, we also have

x+ y + z + a2 + y + z + a4 + z + a6 = 2n

and hence a2, a4 and a6 are uniquely determined. This means that the character of K is
uniquely determined and thusK is uniquely determined up to isomorphism. This completes
the proof. �

As an immediate corollary from Theorem 18 we have:

Corollary 19. For all n ∈ Z≥0 we have C
(3)
n = Tn.

Our proof of Theorem 18 provides another connection to the sequence A001399(n) giving
the number of partitions of n in at most three parts which was already mentioned in
Subsection 3.4. Let Pn denote the set of all partitions of n in at most three parts. If n < 0,
we set Pn = ∅.

Corollary 20. Let n ∈ Z≥0. Mapping H with χ(H) = (a1, a2, a3, a4, a5, a6) to (a1, a3, a5)
induces a bijection between the set of isomorphism classes of distinguished t-hexagons of
perimeter 2n and the set Pn ∪ Pn−3 ∪ Pn−6 ∪ . . . . In particular, we have

C(3)
n = A001399(n) + A001399(n− 3) + A001399(n− 6) + . . . .

Proof. Restricting the bijection constructed in the proof of Theorem 18 to the set of distin-
guished t-hexagons of defect 2i and thereafter mapping sign(H) = (x, y, z) to the partition
(x + y + z, y + z, z) of x + 2y + 3z, provides a bijection from the set of distinguished
t-hexagons of defect 2i to Pn−i. �

5. Partitions modulo d

5.1. Partitions and refinement. For n ∈ Z≥0 denote by Πn the set of all partitions
of n, that is the set of all tuples λ = (λ1, λ2, . . . , λk) such that λ1, λ2, . . . , λk ∈ Z>0,
n = λ1+λ2+ · · ·+λk and λ1 ≥ λ2 ≥ · · · ≥ λk. As usual, we write λ ` n for λ ∈ Πn.

For λ = (λ1, λ2, . . . , λk) ` n and µ = (µ1, µ2, . . . , µl) ` n we say that λ refines µ and
write µ < λ provided that l < k and there is a partition J1

⋃
J2

⋃
· · ·

⋃
Jl of {1, 2, . . . , k}

into a disjoint union of non-empty subsets such that

µi =
∑
j∈Ji

λj for all i = 1, 2, . . . , l.

The partially ordered set (Πn, <) was studied in [Bi, Bj, Zi]. In particular, in [Zi] it was
shown that it has some nasty properties. We refer the reader to [Zi] for more details on
this poset.

The poset (Πn, <) is graded with respect to the rank function (λ1, λ2, . . . , λk) 7→ k.
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5.2. Partitions modulo d. For d ∈ Z>0, define an equivalence relation ∼d on Πn as
follows: Given λ = (λ1, λ2, . . . , λk) ` n and µ = (µ1, µ2, . . . , µl) ` n set λ ∼d µ provided
that k = l and there is π ∈ Sk such that d divides λi − µπ(i) for all i. In other words,
λ ∼d µ if and only if the multisets of residues modulo d for parts of λ and µ coincide. For

λ ` n we denote the ∼d-class of λ by λ
(d)
.

Since ∼d-equivalent partitions have the same number of parts, the refinement order <
induces a partial order on the set Πn,d := Πn/ ∼d in the obvious way. We will denote this
partial order by <d. The poset Πn,d inherits from Πn the structure of a graded poset.

Define the poset Π∗
n,d as follows: if d does not divide n, set Π∗

n,d := Πn,d with the order
<d; if d divides n, define Π∗

n,d as a poset obtained from (Πn,d, <d) by adding a minimum
element, denoted ∅ (for simplicity, we will keep the notation <d for the partial order on
Π∗

n,d). The structure of a graded poset on Πn induces the structure of a graded poset

on Π∗
n,d by defining the degree of ∅ to be zero. The class (1, 1, . . . , 1)

(d)
of the partition

(1, 1, . . . , 1) is the maximum element in Π∗
n,d.

5.3. Π∗
n,d versus Pd. Our main result in this section is the following:

Theorem 21. The (graded) posets (Π∗
n,d, <d) and (I(ne(1)),≺) are isomorphic.

Proof. To each λ ` n we associate the vector (vλ1 , v
λ
2 , . . . , v

λ
d ), where, for i = 1, 2, . . . , d, we

have

vλi := |{j : 3 divides λj − i}|.
This map is constant on the ∼d-equivalence classes and hence induces a map from Πn,d to
Pd. We extend this map to Π∗

n,d by sending the ∅ element to the zero vector in case d
divides n. Denote the resulting map by Φ. Note that Φ preserves the degree of an element,
namely, it maps a partition with k parts to a vector of height k.

First of all, we claim that Φ is a homomorphism of posets. Indeed, any refinement of
partitions can be written as a composition of elementary refinements which simply refine
one part of a smaller partition into two parts of a bigger partition. Such elementary
refinement corresponds to the covering relation µ l λ where λ has k parts while µ has
k − 1 parts. Assume that this refines the part µi into parts λs and λt. This means that
µi = λs + λt and hence

µi mod d = (λs mod d) + (λt mod d).

Let a, b, c ∈ {1, 2, . . . , d} be such that d divides a−µi, b−λs and c−λt. Then the element
e(a) − e(b) − e(c) belong to Xd. This implies that Φ(µ) ≺ Φ(λ). It follows that Φ is a
homomorphism of posets.

Clearly, Φ((1, 1, . . . , 1)
(d)
) = ne(1). Since (1, 1, . . . , 1)

(d)
is the maximum element in Π∗

n,d,
it follows that Φ maps Π∗

n,d to I(ne(1)).
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That Φ : Π∗
n,d → I(ne(1)) is injective follows directly from the definition. It remains to

show that this map is surjective. We prove this by downward induction on the degree h.
If h = d, the claim is clear as ne(1) is the only element of I(ne(1)) of height h.

For the induction step h → h − 1 let v and w be two elements in I(ne(1)) of heights
h − 1 and h, respectively, and assume v ≺ w. Then v = w + x for some x ∈ Xd. Let
x = e(k)−e(i)−e(j) for some i, j, k ∈ {1, 2, . . . , d}. From the inductive assumption, there
is λ ` n such that Φ(λ) = w. Let λs and λt be two different parts of λ with residues i and
j modulo d, respectively. Define µ as the partition obtained from λ by uniting λs and λt.
Then Φ(µ) = v. Therefore Φ is a bijection.

From the arguments above it follows that the covering relations in Π∗
n,d to I(ne(1)) match

precisely under Φ. This implies that Φ is an isomorphism of posets, completing the proof
of the theorem. �

As an immediate corollary, we have:

Corollary 22. For n ∈ Z≥0 and d ∈ Z>0, we have |Π∗
n,d| = C

(d)
n .

6. Connection to d-tonal partition monoid

6.1. Partition monoids. For n ∈ Z≥0 consider the sets n = {1, 2, . . . , n} and n′ =
{1′, 2′, . . . , n′} (these two sets are automatically disjoint). Set n := n

⋃
n′ and consider the

set P(n) of all partitions of n into a disjoint union of non-empty subsets. The cardinality
of P(n) is the 2n-th Bell number, see A000110 in [OEIS].

The set P(n) has the natural structure of a monoid, see [Jo, Mar1, Maz1, Maz2]. The com-
position σ ◦π of two partitions σ, π ∈ P(n) is defined as follows (here n′′ = {1′′, 2′′, . . . , n′′}
is disjoint from n):

• First consider the partition σ′ of n′ ∪ n′′ which is induced from σ via the bijection
n ∪ n′ → n′ ∪ n′′ which sends i 7→ i′ for i ∈ n and j′ → j′′ for j′ ∈ n′.

• Let π̃ be the equivalence relation on n∪n′∪n′′ whose parts are those of π combined
with singletons of n′′.

• Let σ̃ be the equivalence relation on n∪n′∪n′′ whose parts are those of σ′ combined
with singletons of n.

• Let τ̃ denote the minimal (with respect to inclusions) equivalence relation on the
set n ∪ n′ ∪ n′′ which contains both π̃ and σ̃.

• Let τ̃ ′ be the restriction of τ̃ to n ∪ n′′.

• Define τ = σ ◦ π as the partition of n ∪ n′ induced from the partition τ̃ ′ by the
bijection n ∪ n′′ → n ∪ n′ which sends i 7→ i for i ∈ n and j′′ → j′ for j′′ ∈ n′′.
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Figure 8. Partitions and their composition

The identity element in the monoid (P(n), ◦) is the identity partition

{{1, 1′}, {2, 2′}, . . . , {k, k′}} ∈ P(k).

Both elements of P(n) and the composition ◦ admit a diagrammatic description as shown
in Figure 8. We refer the reader to [Jo, Mar1, Maz2] for further details.

6.2. d-tonal partition monoids. For d ∈ Z>0 the d-tonal partition monoid Pd(n), as
introduced in [Ta], is a submonoid of P(n) which consists of all partitions σ of n such that
every part σi of σ satisfies the condition that

d divides |σi

⋂
n| − |σi

⋂
n′|.

Thus, for d = 1 we have P1(n) = P(n). For d = 2 the above condition is equivalent to
the requirement that all parts of σ have even cardinality. Therefore |P2(n)| is given by the
sequence A005046 in [OEIS] (see also [Or2]).

The twisted monoid algebra of the d-tonal partition monoid was studied (under various
names) in [Ta, Or1, Ko1, Ko2, Ko3]. We record the following open problem:

Problem 23. Compute |Pd(n)| in a closed form as a function of d and n.

As the twisted semigroup algebra of Pd(n) is generically semi-simple, see [Ta], and forms,
for all n, a sequence of embedded algebras with multiplicity-free restrictions, see [Ko1],
there is a natural analogue of the Robinson-Schensted correspondence for Pd(n) and hence
Problem 23 admits a combinatorial reformulation in terms of walks on a certain Bratelli
diagram.

6.3. Rank and d-signature. For σ ∈ Pd(n) the rank rank(σ) is the number of parts σi

in σ such that both |σi

⋂
n| 6= 0 and |σi

⋂
n′| 6= 0. Such parts are called propagating.

Note that for σ ∈ Pd(n) the cardinality of any part of σ which is entirely contained in n
or in n′ is divisible by d.



28 CHWAS AHMED, PAUL MARTIN AND VOLODYMYR MAZORCHUK

= =

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

......

......

......

......

......

......

......

......

Figure 9. Illustration of the proof of Lemma 24

Define the function Ψ : Pd(n) → Zd
≥0, called the d-signature function as follows: for

σ ∈ Pd(n) define Ψ(σ) = (v1, v2, . . . , vd), where for i = 1, 2, . . . , d the number vi is the
number of parts σj in σ satisfying the conditions

|σj

⋂
n| 6= 0, |σj

⋂
n′| 6= 0, d divides |σj

⋂
n| − i.

Note that v1 + v2 + · · ·+ vd = rank(σ).

6.4. J -classes of d-tonal partition monoids. Two elements σ, π ∈ Pd(n) are called
J -equivalent, written σJ π, provided that Pd(n)σPd(n) = Pd(n)πPd(n), see [GM, Sec-
tion 4.4]. For σ ∈ Pd(n) we denote by σJ the J -equivalence class containing σ.

There is a natural partial order on the set Pd(n)/J given by inclusions: we write σJ  πJ

if and only if Pd(n)σPd(n) ⊂ Pd(n)πPd(n).

6.5. Canonical elements. An element σ ∈ Pd(n) will be called canonical provided that
the following conditions are satisfied:

• Each part σi of σ satisfies |σi

⋂
n| ≤ d and |σi

⋂
n′| ≤ d.

• The intersections σi

⋂
n and σi

⋂
n′ are connected segments of n and n′ respectively

ordered by cardinalities of the intersections for those parts σi which intersects both
n and n′ and then followed by those parts of σ which intersect only n or n′.

For example, the identity element in Pd(n) is canonical.

Lemma 24. For each σ ∈ Pd(n) there is a canonical π ∈ Pd(n) such that σJ π.

Proof. If some part σi of σ satisfies |σi

⋂
n| > d or |σi

⋂
n′| > d, then there is σ′ ∈ Pd(n)

which has exactly the same parts as σ except for σi which is split into two parts: a part
with d elements which is a subset of n (respectively n′) and its complement. Existence of σ′

follows using the construction shown in Figure 9 (in case d = 3). Proceeding inductively,
we find element τ ∈ Pd(n) which is in the same J -class as σ and which satisfies the
condition that |τi

⋂
n| ≤ d and |τi

⋂
n′| ≤ d for each part τi of τ . Permuting, if necessary,

the elements of n and, independently, of n′ one rearranges, τ into a canonical element π in
the same J -class as σ. The claim follows. �
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Proposition 25. We have Ψ(Pd(n)) = I(ne(1)).

Proof. We prove, by downward induction, that for each k = n, n− 1, n− 2, . . . , 0 the map
Ψ induces a bijection between the set of all canonical elements of rank k in Pd(n) and the
set of all elements of height k in I(ne(1)). The statement of the corollary then will follow
from Lemma 24.

The basis of the induction is k = n. In this case on the left hand side we have only one
canonical element, the identity element, while on the right hand side we have ne(1) which
is the image of the identity element under Ψ.

Let v ∈ I(ne(1)) be an element of height k and let σ be a canonical element such that
Ψ(σ) = v. Let e(k)−e(i)−e(j) ∈ Xd. Then σ has a part σs such that d divides |σs∩n|− i
and a different part σt such that d divides |σt ∩ n| − j. Consider the element σ′ obtained
from σ by uniting σs with σt and keeping all other parts. Then σ′σ = σ′ and hence
Pd(n)σ

′Pd(n) ⊂ Pd(n)σPd(n). Moreover, Ψ(σ′) = v + e(k) − e(i) − e(j). This implies
surjectivity of the induction step.

At the same time, the form of the canonical element immediately implies that it is ob-
tained from the identity element using the unification procedure described in the previous
paragraph, followed by splitting of d-element parts contained in n or n′. This implies that
Ψ takes values inside I(ne(1)) and completes the proof. �

Corollary 26. For each σ ∈ Pd(n) there is a unique canonical π ∈ Pd(n) such that σJ π.

Proof. Taking into account Proposition 25, the claim follows from the observation that
different canonical elements are sent by Ψ to different elements in I(ne(1)). �

6.6. A combinatorial description of the J -order. Our second main result, which

explains our interest in C
(d)
n , is the following:

Theorem 27. The map Ψ : (Pd(n)/J , ) → (I(ne(1)),≺) is an isomorphism of posets.

Proof. From Proposition 25, we have a map Ψ : Pd(n)/J → I(ne(1)). This map is bijective
by the combination of Proposition 25 and Corollary 26. From the third paragraph of the
proof of Proposition 25 it follows that for each pair of elements v,w ∈ I(ne(1)) such that
v ≺ w there are σ, π ∈ Pd(n) such that Pd(n)σPd(n) ⊂ Pd(n)πPd(n), Ψ(σ) = v and
Ψ(π) = w.

On the other hand, from the last paragraph of the proof of Proposition 25 it follows that
the poset (Pd(n)/J , ) is a graded poset. Now, applying the argument from the third
paragraph of the proof of Proposition 25 once more and counting modulo d, one checks
that the covering relation in (Pd(n)/J , ) and (I(ne(1)),≺) match precisely via Ψ. The
claim follows. �
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7. Enumeration of J -classes for arbitrary d

7.1. Enumeration via d-part partitions. The proof of Proposition 25 gives a way to

write a formula for C
(d)
n in the general case. Recall that a partition of n ∈ N is a vector λ :=

(λ1, λ2, . . . , λk), where k, λ1, λ2, . . . , λk ∈ N, λ1 ≥ λ2 ≥ · · · ≥ λk and λ1+λ2+ · · ·+λk = n.
Each λi is called a part of λ.

Let d ∈ N and n ∈ Z≥0. Denote by P
(d)
n the number of partitions of n with at most d

parts. By taking the dual partition, we get the usual fact that P
(d)
n also equals the number

of partitions of n in which each part does not exceed d. For simplicity, we set P
(d)
n = 0

when n < 0.

Theorem 28. We have C
(d)
n = P

(d)
n + P

(d)
n−d + P

(d)
n−2d + P

(d)
n−3d + . . . .

Proof. To prove this claim we analyze the proof of Proposition 25. According to the latter

proof, C
(d)
n enumerates canonical elements in Pd(n). Let σ be a canonical element. Let

σ1, σ2, . . . , σk be the list of all parts of σ contained in n (note hat k might be zero). Then
each of these parts has cardinality d and we may consider the set

nσ := n \ (σ1 ∪ σ2 ∪ · · · ∪ σk)

which thus has cardinality n− kd.

Cardinalities of intersections of all propagating parts of σ with nσ determine a partition
of n − kd in which each part does not exceed d. It is straightforward that this gives a
bijection between the set of all canonical elements in Pd(n) with 2k non-propagating parts
and all partitions of n− kd for which each part does not exceed d. The claim follows. �

Corollary 29. For d ≥ 1, we have∑
n≥1

C(d)
n tn =

1

(1− td) · (1− t)(1− t2)(1− t3) . . . (1− td)
.

Proof. This follows by combining the usual equality∑
n≥1

P (d)
n tn =

1

(1− t)(1− t2)(1− t3) . . . (1− td)

with the statement of Theorem 28. �

Remark 30. It is easy to check that for d = 3 we indeed have the equality

1 + t2 + t3 + t5

(1− t)(1− t2)(1− t4)(1− t6)
=

1

(1− t)(1− t2)(1− t3)2
.

Here the left hand side is the original generating function for A028289.
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Remark 31. The poset Π(d) of partitions with at most d parts can be defined using
the same approach as we used to define Λd. The assertion of Theorem 28 can then be
interpreted as a bijection between certain (co)ideals in Π(d) and Λd. Such a bijection
admits a direct combinatorial construction.

7.2. Examples for d = 4 and d = 5. The sequence C
(4)
n starts as follows:

1, 1, 2, 3, 6, 7, 11, 14, 21, 25, . . . .

The sequence C
(5)
n starts as follows:

1, 1, 2, 3, 5, 8, 11, 15, 21, . . . .

We note that none of the sequences C
(d)
n for d ≥ 4 appeared on [OEIS] before. However,

as noted, they are simple cumulative sums of classical sequences.

7.3. Relation to partition function. Recall the classical partition function P (n) which
gives, for n ∈ Z≥0, the number of partitions of n, see the sequence A000041 in [OEIS]. One

general observation for the numbers C
(d)
n,h is the following:

Proposition 32. If n− h < d and 2(n− h) < n, then C
(d)
n,h = P (n− h).

Proof. To prove the assertion we construct a bijective map between I(ne(1)) ∩ Λ
(h)
d and

the set of all partitions of n− h.

For v ∈ Λd, set α(v) = v2 + 2v3 + 3v4 + . . . . For i, j ∈ {1, 2, . . . , d} such that i+ j < d, we
have (i + j − 1) − (i − 1) − (j − 1) = 1. Therefore for such values of i and j and for any
v,w ∈ Λd we have α(v) = α(w) + 1 provided that

v = w + e(i+ j)− e(i)− e(j).

Note that e(i+ j)− e(i)− e(j) ∈ Xd.

Assume now that n−h < d and v ∈ I(ne(1)) is of height h. Then v is obtained from ne(1)
by adding h vectors from Xd of the form e(i+ j)− e(i)− e(j) for some i and j as above.
Therefore (v2, v3, . . . ) is a partition of n−h. Since n−h is fixed, the map v 7→ (v2, v3, . . . )

from I(ne(1)) ∩ Λ
(h)
d to the set of all partitions of n− h is injective.

To prove surjectivity of the map assume that n− h = x2 + 2x3 + 3x4 + . . . for some non-
negative x2, x3, . . . . We proceed by induction on n − h. If n − h = 0, surjectivity of our
map is obvious. To prove the induction step, we write k = i+ j for some 1 ≤ i, j ≤ k − 1
and consider the partition of n− h− 1 given by decreasing xk by 1, increasing xi by 1 and
increasing xj by 1 (if i = j, the outcome is that xi is increased by 2). From the combination
of the inductive assumption and the condition 2(n − h) < n, it follows that the resulting
partition of n − h − 1 is in the image of our map. Applying the definition of ≺ it follows
that the original partition of n − h is also in the image of our map. This completes the
proof. �
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Problem 33. Find a closed formula for C
(d)
n,h for all d, n, h.

References

[Bi] G. Birkhoff. Lattice Theory. American Mathematical Society Colloquium Publications 25,
revised edition. American Mathematical Society, New York, N. Y., 1948.

[Bj] A. Björner. Shellable and Cohen-Macaulay partially ordered sets. Trans. Amer. Math. Soc.
260 (1980), no. 1, 159–183.

[CBC] B. N. Cyvin, L. J. Brunvoll and S. J. Cyvin. Enumeration of Conjugated Hydrocarbons: Hollow
Hexagons Revisited. Structural Chemistry 6 (1995), No. 2, 85–88.

[CBCBB] S. Cyvin, J. Brunvoll, B. Cyvin, J. Bergan, and E. Brendsdal. The Simplest Coronoids: Hollow
Hexagons. Structural Chemistry 2 (1991), No. 6, 555–566.

[DeL] J. A. De Loera, The many aspects of counting lattice points in polytopes
[GM] O. Ganyushkin, V. Mazorchuk. Classical finite transformation semigroups. An introduction.

Algebra and Applications, 9. Springer-Verlag London, Ltd., London, 2009.
[GMS] O. Ganyushkin, V. Mazorchuk and B. Steinberg. On the irreducible representations of a finite

semigroup, Proc. Amer. Math. Soc. 137 (2009), 3585-3592.
[Jo] V. Jones. The Potts model and the symmetric group. In: Subfactors: Proceedings of the

Taniguchi Symposium on Operator Algebras (Kyuzeso, 1993), River Edge, NJ, World Sci.
Publishing, 1994, pp. 259–267.

[Ko1] M. Kosuda. Characterization for the party algebra, Ryukyu Math. J. 13 (2000), 7–22.
[Ko2] M. Kosuda. Irreducible representations of the party algebra. Osaka J. Math. 43 (2006), no. 2,

431–474.
[Ko3] M. Kosuda. Party algebra of type B and construction of its irreducible representations. Man-

uscript available via google.
[Mar] P. P. Martin. Potts models and related problems in statistical mechanics. World Scientific,

Singapore, 1991.
[Mar1] P. P. Martin. Temperley-Lieb algebras for non-planar statistical mechanics — the partition

algebra construction. Journal of Knot Theory and its Ramifications 3 (1994), no. 1, 51–82.
[Mar2] P. P. Martin. The structure of the partition algebras. J. Algebra 183 (1996), no. 2, 319–358.
[Maz1] V. Mazorchuk. On the structure of Brauer semigroup and its partial analogue. Problems in

Algebra 13 (1998), Gomel: University Press, 29–45.
[Maz2] V. Mazorchuk. Endomorphisms of Bn, PBn and Cn. Comm. Algebra 30 (2002), no. 7, 3489–

3513.
[Or1] R. Orellana. On partition algebras for complex reflection groups. J. Algebra 313 (2007), no. 2,

590–616.
[Or2] R. Orellana. On the algebraic decomposition of a centralizer algebra of the hyperoctahedral

group. Algebraic structures and their representations, 345–357, Contemp. Math., 376, Amer.
Math. Soc., Providence, RI, 2005.

[OEIS] N. Sloane. The On-Line Encyclopedia of Integer Sequences. https://oeis.org/
[PR] G. Polya and R. Read. Combinatorial enumeration of groups, graphs and chemical compounds.

Springer, 1987.
[Ta] K. Tanabe. On the centralizer algebra of the unitary reflection group G(m, p, n). Nagoya Math.

J. 148 (1997), 113–126.
[Zi] G. Ziegler. On the poset of partitions of an integer. J. Combin. Theory Ser. A 42 (1986), no.

2, 215–222.



PRINCIPAL IDEALS IN d-TONAL PARTITION MONOID 33

Ch. A.: Department of Pure Mathematics, University of Leeds, Leeds, LS2 9JT, UK,
e-mail: mmcaa@maths.leeds.ac.uk

P. M.: Department of Pure Mathematics, University of Leeds, Leeds, LS2 9JT, UK, e-mail:
ppmartin@maths.leeds.ac.uk

V. M: Department of Mathematics, Uppsala University, Box. 480, SE-75106, Uppsala,
SWEDEN, email: mazor@math.uu.se


