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A method for the construction of infinite-dimensional Lie algebras of Virasoro-type
is discussed, which uses aperiodic point sets as basic building blocks. The corre-
sponding algebras have generators in a one-to-one correspondence with aperiodic
point sets that are obtained via a projection formalism from higher dimensional lat-
tices. They share structural similarities with the Virasoro algebra by construction,
but exhibit different properties.

1. Introduction

The Virasoro algebra plays a crucial role in many areas of mathematical
physics, and algebraic techniques for a deformation of this algebra are of
interest, because they lead to perturbations of these theories. We present
here a construction method for Virasoro-type algebras which is based on
aperiodic point sets that can be obtained via a projection from a higher
dimensional periodic lattice!. These aperiodic structures play an important
role in the study of quasicrystals, that is alloys with noncrystallographic
symmetries and long-range order?, but the algebras presented here are not
constructed for applications in this area but rather for potential applications
in the theory of integrable systems as we discuss in the concluding remarks.

The main idea of the construction is to substitute the index set of the
Virasoro algebra by a suitable aperiodic point set and to make modifications
in the structure constants to ensure that the algebras remain Lie algebras.
The construction leads to a family of infinite dimensional Lie algebras with
properties that depend crucially on geometric properties of the associated
aperiodic structures. The case of one-dimensional aperiodic point sets has
been studied in a series of papers %*5:6 and most recently, generalisations
to two-dimensional aperiodic point sets have been achieved”. In these ref-
erences, also the structure of highest weight modules and the irreducibility
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of Verma modules have been studied. Due to the fact that one-dimensional
point sets are obtained from two-dimensional lattices by projection, each
point is specified by two coordinates. Therefore the corresponding algebras
also have structural resemblances with higher-rank Virasoro algebras®?-10.

It is the purpose of this contribution to review the construction prin-
ciple with focus on recent developments and to direct the reader to the
corresponding literature for further details. In particular, section 2 in-
troduces the projection method for aperiodic point sets based on two ex-
plicit examples, and section 3 reviews the construction of the corresponding
Virasoro-type algebras with emphasis on the most recent developments. In
the concluding remarks, possible applications in the theory of integrable
systems are pointed out.

2. Aperiodic point sets via the projection method

The construction principle is applicable to all aperiodic point sets that
are model sets'. Here focus will be placed on two special cases, which
correspond to a family of one- and a family of two-dimensional aperiodic
point sets, respectively, because they will be used for the discussion of the
Virasoro-type algebras in section 3.

2.1. A one-dimensional example

Let 7 = 1(1 + +/5), and let Z[r] = {a + 7bla,b € Z} denote the ring
of integers in the algebraic extension Q[v/5] of the rational numbers by
V5. Consider the Galois automorphism ' : Q[v/5] — Q[v/5] defined via
(a 4+ v/5b)' = a — v/5b. Restricted to Z[r], this automorphism maps a + 7b
to a + 7'b and links the two solutions of the equation 2> = z + 1, namely
the first solution 7 and the second solution 7 = 1(1 — v/5). Examples of
one-dimensional aperiodic point sets are then defined as follows.
Let € be a bounded interval in R. Then

%(Q) :={z € Z[r]|z’ € Q} (1)

is a one-dimensional aperiodic point set.
The interval  is called acceptance window because it controls how
many points are admitted in the point set.

2.2. A two-dimensional example

In order to generalise this formalism to two dimensions, we consider a pro-
jection from the root lattice of A4 onto two hyperplanes, each containing a
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copy of the root system of type Ho!'!.

Let £ := exp(%). Then the root system Ay C C of type Hy contains
ten roots, which are given in terms of the simple roots a; := £° and ay := €2
as follows:

Ay = {:i:al,:l:az,:l:(al + T(Jéz), :i:(TOll + Oéz),:i:(TCkl +TO¢2)} .

Denote by Z[7]Az the Z[r]Hattice with basis {a1,az}. The assignment
&* = £? uniquely extends to a Z[r]-semilinear bijection * on Z[r]As. This
map is usually called the star map'! . Moreover, according to this reference,
this map uniquely extends to a Z[r]-semilinear bijection on Q[7]Az, which
we will also denote by *.

It is immediate that the star-map defined above acts like the original
Galois automorphism ’ : Q[v/5] = Q[v/5] when restricted to Z[7]. Indeed,
% =(=£2-€3)* = (=¢&*—£5) =7'. Obviously, the star map is a permutation
on Z[7]A (or Q[7]Asz) of order 4.

Let ©2 C C be a bounded set. Then

2(Q) = {z € Z[r]As]z* € Q} 2)

is a planar aperiodic point set.

For applications to the algebraic setting, we consider in particular the
case ) = QITJ :=TE° + Qp, where Qp denotes the regular unital pentagon
and QF is a translation of Qp by T¢°, T > 0.

3. Virasoro-type algebras

In this section we introduce Lie algebras with generators in a one-to-one
correspondence with the aperiodic point sets in (1) and (2).

3.1. The one-dimensional case

Witt-type algebras related to the point sets in (1) are given by the following
Lemma?:

Lemma 3.1. Let %(Q) be a one-dimensional quasicrystal with acceptance
window [a,b], (a,b], [a,b), or (a,b), where a # b € R and 0 < ab < oo.
Then the algebra Q(QY), defined as a linear span of

B(Q() ={L, |n€X(N)} 3)
with commutation relations

(m—=n)Lpyrm if n+meX(Q)

s L] = 0 if ntmg(Q)’ )
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is a Lie algebra.

Note that the Jacobi identity holds only provided that ab > 0 which
implies a restriction on the aperiodic point sets that may be used as building
blocks in the construction. Observe furthermore that in contrast to the
Witt algebra (which is simple), many commutators in Q(€2) vanish because
m,n € X(Q) does not imply m+n € X(Q) in general. As a consequence, the
algebras are locally finite, that is the closure of any finite set of generators
from B(Q(2)) under the Lie operation gives a finite dimensional subalgebra
of Q(Q).

Structure and existence of a central extension for these algebras depend
on the choice of 2 and on the choice of the structure constants. It has
been shown® that there exists a unique central extension for the algebras in
Lemma 3.1 for Q = [0, 1] if the structure constants are given in terms of the
second component of points m = m; + 7msy € (), that is if one chooses
the structure constants (ms — ms) instead of (m — n). The corresponding
algebra has been called the Aperiodic Virasoro algebra AV (). Highest
weight representations for this algebra have been discussed in this reference
and a conjecture for an analog to the Kac-determinant formula'? has been
suggested. The latter has later been proved®.

3.2. The two-dimensional case

In this section we discuss a generalisation of the results in section 3.1 to
the aperiodic point sets in (2)7. In order to introduce the algebras, we need
the following terminology.

Definition 3.1. An acceptance window, 2, is called admissible if for each
triple n, m, k € ¥(Q) one has the condition

n*+m*+k*eQandn*+m* € Q=>m"+k* € Qand n*+k* € Q. (5)

The concept of admissibility is necessary to ensure that the aperiodic
point sets are such that the corresponding algebras fulfill the Jacobi identity.

In particular, one obtains the following planar generalisation of Lemma,
3.17.

Lemma 3.2. Let F be any number field such that F D Q[7] and let T be
such that QL is admissible. Let furthermore ¢ : %(QL) — F be a Z-linear
map. Then for each such T the F-span of {L,|n € (%)} with the Lie
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bracket defined by

[Ln, L] = {go(m —n)Lpym if n+me E(Qg)
ns Lim] = 0 if n+m ¢ S(QL) (6)
= Xoz (n* +m*)p(m —n)Lnim -

is a Lie algebra.

As in the one-dimensional case, the structural properties of these alge-
bras depend on the geometry of the acceptance window QL7. Moreover, as
has been shown in this reference, these Lie algebras allow for a central ex-
tension. For a natural triangular decomposition the corresponding Verma
modules have been studied.

In particular, if we denote by V(QL)t the subalgebras generated by
elements L,, where X(Q%) 5 n = n1£° + n2¢? and n)y < 0, and by V(QF)~
the subalgebras generated by elements L,,, where £(Q%) 5 n = n €0 +nyg?
and n), > 0, and call h7 the subalgebra, generated by L,,, where X(Q%) >
n = n1£°, and by all central terms é,, with vy € Z[7]N[2T —7,T + 1], then
there is a triangular decomposition given by’

V(QF) =V(QE) " @ hr e V(QE)*T.
Let furthermore A € b} and consider Fy = F as an hy-module with

hz=Xh)z Yhebhr,z€eT, )
VOQE)*F, =0

Then Fy can be viewed as a b = hr & V(QF)T-module. Consider the
induced module M (X) = U(V(QF)) ®u(p) Fx and denote the unique simple
quotient of M (A) by L()). Then one has”:

Theorem 3.1.

(1) M () is always reducible.

(2) The module L()\) is one dimensional if and only if X is zero on
h3® == (Cua, Lot [va € Z[T]N[2T — 7,T + 1]). Otherwise, L(X) is
infinite-dimensional.

4. Concluding remarks

The Virasoro algebra plays an important role in the framework of Calogero-
Sutherland models!®14:15, In particular, the structure of its highest weight
representations and especially its singular vectors allows one to construct

explicit solutions'®'7. It has been shown that a similar approach, based
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on the Aperiodic Virasoro algebra'®, that is for the Virasoro-type algebras
related to one-dimensional aperiodic point sets, is possible. We expect that,
along the same lines, the algebras related to two-dimensional aperiodic
point sets that have been pointed out here should have applications in the
framework of Calogero-Sutherland models.
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