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Abstract
We study the structure of the semigroup ZO,, of all order-preserving partial bijec-
tions on an n-element set. For this semigroup we describe maximal subsemigroups,
maximal inverse subsemigroups, automorphisms and maximal nilpotent subsemi-
groups. We also calculate the maximal cardinality for the nilpotent subsemigroups
in ZO,, which happens to be given by the n-th Catalan number.

1 Introduction and setup

Let N denote the set {1,2,...,n}. The semigroup ZO,, of all, possibly partially defined
or partial injections a : N — N, which preserve the natural order on N (that is for every
xz < y from the domain of a we have za < ya), is a very interesting object. It is in fact
the intersection of the full symmetric inverse semigroup ZS,, of all partial injections from
N to N with the semigroup of all order preserving transformations of the interval, the
latter first being studied in [Ail, Ai2, Ai3]. In [R] it is proved that ZO,, contains exactly
1 element from every H-class of ZS,,. In other words, ZO,, is an H—cross-section of Z.5,,.
In [CR] it is proved that for n # 3 all H—cross-sections of ZS,, can be obtained from ZO,,
by conjugation, i.e. has the form 7 1ZO, 7 for some permutation 7 from the symmetric
group S,. In [Gar] the subsemigroup 7" C ZO,,, generated by all nilpotent elements, was
studied and its nilpotent rank was determined.

Some basic properties of ZO,,, in particular description of Green’s relations, congruences
and a presentation, were obtained in [F1, F2|. The main aim of this paper is to continue the
study of ZO,,. Additionally to the basic properties listed above we describe ideals, systems
of generators, maximal subsemigroups, maximal inverse subsemigroups and automorphisms
of ZO,,. We also study the nilpotent subsemigroups in ZO,,, in fact, we classify all maximal
nilpotent subsemigroups, give an isomorphism criterion for them and calculate the maximal
cardinality for the nilpotent subsemigroups in ZO,,. The latter happens to be given by the
n-th Catalan number.

We will try to keep the standard notation. For every partial transformationa : N — N
by dom(a) and im(a) we denote the domain and the range of a respectively. If a is
injective, the number rank(a) = |dom(a)| = |im(a)| is called the rank of a. Clearly,
rank(ab) < min(rank(a), rank(b)). In this paper we will multiply transformations from the
left to the right and use the corresponding notation for the left to right composition of
transformations: z ab = (z a) b.



From the condition of order preservation it follows that every element a € ZO,, is
uniquely determined by dom(a) and im(a) satisfying | dom(a)| = |im(a)|. Moreover, for
every A, B C N of the same cardinality there exists a € ZO,, such that dom(a) = A and

im(a) = B. Hence
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We will denote by 74 5 the unique element ¢ € ZO,, for which A = dom(a) and B = im(a).
Since ZO,, C ZS,, and the elements e4 = m4. 4, A C N, exhaust all idempotents in Z.5,,,
we have E(ZO,) = E(ZS,).

Z0,, is an inverse semigroup, moreover, (74 B) ' = 7p,4. Further, 7O, contains zero,
which is the transformation 0 with dom(0) = @. If dom(a) = {i1,...,i} and i;a = j,
l=1,...,k, it is convenient to use the following tableaux presentation of a:

il ig ik
a= S . .
(]1 J2 - ]k)

One can also assume that i1 < 49 < --- < 44 and then j; < jo < --- < ji, however, this is
not always convenient.

Sometimes, especially in Section 8, it will be convenient to use an analogue of the
cyclic form for permutations. For partial injections from ZS,, this is called the chain
decomposition or the chart decomposition and we refer the reader to [L1, L2, GK1, GM2]
for definitions. We explain this notion on one example. The element

1 2 3 45 8
“‘(5 721 4 6)6158
has the following graph of the action on N:

1 = 5
T 327 8 — 6,
4

and hence it is convenient to write it as a = (1,5,4)[3,2,7][8,6]. We will call (1,5,4) a
cycle and [3,2,7] (as well as [8,6]) a chain of the element a. The chain decomposition of
elements from ZO,, can contain only cycles of length 1 or chains. Moreover, for every chain
[a1,...,a;] of an element a € ZO,, the condition of order preservation implies that either
a; > ag > --- > ay (we will call such chains decreasing) or a1 < as < --- < ay, (we will call
such chains increasing).

We will also use the word chain for the sets with a fixed linear order and this will not
lead us to the ambiguity as the meaning will always be clear from the context. The notion
anti-chain will stand for the partially ordered sets on which the partial order coincides
with the equality relation.

Let us now briefly describe the structure of the paper. In Section 2 we recall the
structure of ideals and Green’s relations on ZO,,. After this, in Section 3, we describe
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all irreducible systems of generators in ZO,. In Section 4 we describe all maximal sub-
semigroups of ZO,. It happens that there are exactly 2" — 1 such semigroups. Moreover,
we also describe all maximal inverse subsemigroups of Z0O,, and it happens that there are
exactly 2”71 such semigroups. In Section 5 we prove that the semigroup ZO,, n > 1, has
only one non-trivial automorphism.

Sections 6-8 form the main part of the paper. In these sections we study the nilpotent
subsemigroups of ZO,,. An element a of a semigroup S with the zero 0 is called nilpotent
provided that a* = 0 for some positive integer k. The element a € ZQO,, is nilpotent if
and only if its chain decomposition does not contain any cycles. A semigroup S with the
zero 0 is called nilpotent provided that S* = 0 for some positive integer k. The minimal
k such that S* = 0 is called the nilpotency degree of S and will be denoted by n(S). It is
clear that all elements of a nilpotent semigroup are nilpotent. The converse is not true in
general, however, it is true for finite semigroups, see [Ar].

The study of nilpotent subsemigroups of a semigroup S containing the zero element 0
is a natural problem. Here one can study the general class off all nilpotent subsemigroups,
including those, whose zeros do not coincide with 0 and hence can be arbitrary idempotent
from E(S). One can also study a more restrictive problem — only those nilpotent sub-
semigroups, which contain 0. In the present paper we will consider only those nilpotent
subsemigroups of Z(O,,, which contain the zero element 0.

In Section 6 we construct the general machinery for the study of nilpotent subsemi-
groups of (finite) transformation semigroups and get, as a corollary, a description of all max-
imal nilpotent subsemigroups of ZO,, and a description of all nilpotent subsemigroups of
Z0O,, which are maximal among nilpotent subsemigroups of nilpotency degree k, 1 < k < n.
In particular, ZO,, contains exactly n! maximal nilpotent subsemigroups, each of which has
nilpotency degree n and naturally corresponds to some linear order on V.

In Section 7 we classify the maximal nilpotent subsemigroups in ZO,, up to isomor-
phism and, finally, we study their cardinalities in Section 8. Here we show that cardinality
of each maximal nilpotent subsemigroup of ZO,, does not exceed the n-th Catalan number
t, = %H(Qn"), moreover, that this bound is exact, i.e. there exists a maximal nilpotent
subsemigroup in |ZO,| of cardinality ¢,. We complete the paper with a discussion on car-
dinalities of maximal nilpotent subsemigroups with a fixed nilpotency degree. In a special
case we present a recursive formula for the computation of these cardinalities and compute
closed formulas for two classes of maximal nilpotent subsemigroup with a fixed nilpotency
degree. The general problem of computing cardinalities of the maximal nilpotent subsemi-
groups in ZO,, seems to be very complicated.

2 Ideals and Green’s relations

Green’s relations in ZO,, are described in [F1]. However, in this section we would like to
present a more detailed description of the structure of left and right ideals in ZO,,. As a
corollary we recover [F1, Proposition 2.3]. We start with the following observation.

Proposition 1. Let a € ZO,,. Then



1. the left principal ideal ZO,, - a equals {b : im(b) C im(a)},
2. the right principal ideal a - TO, equals {b : dom(b) C dom(a)},
3. the two-sided principal ideal ZO,, - a - ZO,, equals {b : rank(b) < rank(a)}.

Proof. We prove the last statement and the first two can be handled by analogous ar-
guments. It is clear that (a) C {b : rank(b) < rank(a)}. Now let rank(b) < rank(a)
and A = dom(b), B = im(b). We choose arbitrary C C dom(a), |C| = rank(b), and let
D =qa(C). Thenb=myp =7ac-a-mp g € (a), which gives the opposite inclusion. Hence
(a) = {b : rank(b) < rank(a)}. O

For every k, 0 < k < n, denote I, = {b € ZO,, : rank(b) < k}.

Corollary 1. ([F2, Proposition 2.3]) All two-sided ideals of ZO,, are principal and form
the following chain:
OZI()Cll C "'CIn,1 CIn:IOn

Proof. Let I be a two-sided ideal in ZO,,, kK = maxyc; rank(b), and a € I be an element of
rank k. Then Proposition 1 yields I = (a) = Ij. O

We denote by B(N) the boolean of the set N, that is the set of all subsets of N, which
is partially ordered by inclusions in the natural way.

Proposition 2. 1. Every anti-chain L from B(N) defines the right ideal
I, ={a : there exists A € L such that dom(a) C A}
of the semigroup TO,,.
2. Ly # Ly tmplies Iy, # Ir,.
3. For every right ideal I there ezists an anti-chain L from B(N) such that I = If,.

Proof. The first statement follows from dom(ab) C dom(a).

If L # L then at least one of these anti-chains, L; say, contains an element, A say,
such that for every B € L, either A and B are not comparable or A properly contains
B. This implies e4 € I, and e4 ¢ Ip, and hence I, # Ir,, which proves the second
statement.

To prove the last statement we note that the maximal (with respect to inclusions)
elements of the set {dom(a) : a € I} form an anti-chain, L say. Then for every a € I there
exists A € L such that dom(a) C A. This yields a € I}, and I C I,. From the other hand,
for every b € I, there exist A € L and a € I such that dom(b) C A and dom(a) = A.
Now from the second part of Proposition 1 it follows that b € a - ZO,, C I, which implies
I;, C I. Therefore I = I, and the proof is complete. O

Corollary 2. The map L — I, is a bijection between the set of all anti-chains in B(N)
and the set of all right ideals of the semigroup ZO,,.
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Using the anti-involution a — ¢~ we immediately get the following dual statements:

Proposition 3. 1. Every anti-chain L from B(N) defines the left ideal
I ={a : there exists A € L such that im(a) C A}
of the semigroup TO,,.
2. Ly # Ly tmplies 1,1 # ,1.
3. For every left ideal I there exists an anti-chain L from B(N) such that I = 1.

Corollary 3. The map L — I is a bijection between the set of all anti-chains in B(N)
and the set of all left ideals of the semigroup ZO,,.

With some small changes in the proof of Proposition 1 all arguments above remain
valid for the semigroup Z.S,, as well. This gives the following.

Proposition 4. Every left (right, two-sided, principal, left principal, right principal) ideal
I of the semigroup TO,, has the form I = JNZO, for some uniquely defined left (right,
two-sided, principal, left principal, right principal respectively) ideal J of the semigroup
A

From Proposition 4 we obtain the following description of the Green’s relations in ZO,,.

Proposition 5. ([F1, Proposition 2.3]) Every Green relation H, £, R, J, D on IO, is
the intersection of the corresponding Green relation on ZS,, with TO,, x ZO,,. Namely, for
a,b € ZO,, one has

1. aLb if and only if im(a) = im(b),

2. aRb if and only if dom(a) = dom(b),

3. aHb if and only if a = b,

4. aDb if and only if rank(a) = rank(b).
Moreover, D = J.

It is shown in [R] (see also [CR]) that ZO,, contains exactly one element from each #-
class of the semigroup Z.S,,. Then it is clear that every R-, £- and D-class of the semigroup
IS, has a non-trivial intersection with ZO,,. In particular, egg-box diagrams for Z5,, and
Z0,, have the same structure.

Corollary 4. ZO,, has exactly n + 1 D-classes Dy, D,..., D,, where Dy = {a € ITO,, :
rank(a) = k}. Moreover, |Dy| = (2)2



3 Systems of generators

The main result of [F2] gives a presentation for ZO,,, which is related to the following
system of generators: 1, go = [n,n —1,...,1], &1 = (1)(2)...(n — 2)[n — 1,n], go =
(1)(2)...(n—=3)[n—2,n—1](n),..., go—1 = [1,2](3)(4) ... (n). In this section we present a
description of all irreducible systems of generators in ZO,,. It is obvious that ZO,, contains
the unique element of rank n. This is the identity ey, which should be contained in every
system of generators for ZO,,.

Lemma 1. ([F2, Lemma 2.7]) (D,—1 U {en}) =Z0,.
Lemma 2. If S generates TO,, then SN (D,_1 U{en}) generates ZO,, as well.

Proof. The elements from D,, ;U{ey} can be generated only by elements from SN(D,, ;U
{en}). Hence (SN(D,,_1U{en})) contains D,, 1U{ex}. The rest follows from Lemma 1. [

To D,,_; we can associate a full oriented graph, Ky, with N being the set of vertices,
in the following way: the vertex ¢ € N is identified with the corresponding complement
1 C N, and the element 7, is considered as the arrow from A to B. In this way we can
interpret every subset S C D,_; as a subgraph, I's, of K. We recall that an oriented
graph, [', is called strongly connected provided that for every two vertices a,b € I' there is
an oriented path from a to b.

Theorem 1. 1. A set S C IO,, generates ZO,, if and only if ey € S and U'snp,_, is
strongly connected.

2. A system S of generators of ZO,, is irreducible if and only if S = {e,} U (SN D,_4)
and U'snp,_, 5 a minimal strongly connected oriented graph with n vertices.

3. Every irreducible system of generators in the semigroup ZO,, contains at least n + 1
elements. Moreover, there exist exactly (n — 1)! irreducible systems of generators
containing exactly n 4+ 1 elements each.

Proof. By Lemma 2 a set S C ZO,, is a system of generators if and only if ey € S and

SN Dy_; generates D,_;. For arbitrary w4, B,, Tas,B5: - -, Ta,,B, from D,,_; their product
T AL, B\T Ag,By - - - TA,,B, Delongs to &l_l_ifﬁd_only if& =_A2, By = As,..., Bp_1 = Ay, or,
in other words, when the arrows Ay By, Ay Bs, ..., Ay By form an oriented path from A;

to Bj. Moreover, in this case TA1,BiTAs,By - - - T A, By = TA,,B,- Hence SN D, ; generates
D, if and only if for every two vertices a,b € Ky the oriented graph I'snp,_, contains an
oriented path from a to b, or, in other words, if and only if I'snp, _, is a strongly connected
graph with n vertices. This proves the first statement.

The first part of the second statement follows immediately from Lemma 2. From the
above proof it follows that for the irreducibility of S it is necessary and sufficient that,
erasing arbitrary arrow from I'gnp, ,, one breaks the property of I'snp,_, to be strongly
connected. The latter is equivalent to the requirement that I'snp,_, is a minimal strongly
connected oriented graph with n vertices. This proves the second statement.

n—1
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To prove the last statement we remark that to ensure the fact that I'snp, , is strongly
connected, there should exist, for each vertex, an arrow, starting from this vertex, and
an arrow, terminating in this vertex. Hence, the total number of arrows is at least n and
hence SN D,_; can not contain less than n elements. Therefore |S| > n + 1. The equality
|S| = n+1 is possible if and only if for each vertex there is exactly one arrow starting in it
and exactly one arrow terminating in it. The latter is equivalent to the fact that I'snp,_,
is a union of disjoint oriented cycles. As I'snp,_, is connected, we get that there exists
the unique connected component and hence I'snp, , must be an oriented cycle of length
n. Clearly, the number of such cycles is (n — 1)!. O

4 Maximal (inverse) subsemigroups

Lemma 3. Every mazimal (mazimal inverse) subsemigroups in ZO,, contains the ideal
I, .

Proof. Let S be a maximal (maximal inverse) subsemigroup of ZO,,. If D,y C S, then,
according to Lemma 1, I, o C I, 1 =(D,, 1) CS. If D, 1 ¢ S, then SU I, 5 is a proper
(proper inverse) subsemigroup in ZO,,, and hence SU I,, 5 = S by maximality of S. This
implies I,_o C S. O

Let N = N;UNyU---U N, be a decomposition of N into k£ non-empty blocks and <
be a non-strict (i.e. reflexive) partial order on {1,2,...,k}. Denote

S(Ny,..., N, <) = {a € D, : dom(a) € N; and im(a) € N; = ¢ < j}.

If < coincides with the equality relation =, we will write simply S(Ny, ..., Ni) instead of
S(Nl, ey Nk, :)

Lemma 4. 1. For every decomposition N = Ny U Ny U ---U Ny and every order < as
above the set {ex} U S(Ny, ..., Ng, <) U I,_o is a subsemigroup in ZO,.

2. The subsemigroups {ex} US (N, ..., Ng, <) UL, o is inverse if and only if the order
< coincides with the equality relation.

3. {en}US(N1, ..., Ng, <) U IL,_o # IO, if and only if k > 1.

Proof. To prove the first statement it is enough to show that if the product ab of two
elements a,b € S(Ni,..., Ng, <) is contained in D, 4, then it is contained in the set
S(Ny,...,Ng,<). Let ab € D,, ;. Then im(a) = dom(b). Assume dom(a) € N;, im(a) €
N; and im(b) € N;. Then dom(ab) = dom(a), im(ab) = im(b) and from ¢ < j and j < [ it
follows that ¢ < [. Hence ab € S(IVy,..., Ni,<). The first statement is proved.

The sufficiency of the condition in the second statement is obvious. To prove the
necessity we first remark that the sets {ey} and I, 5 are closed with respect to the op-
eration of taking the inverse element in ZO,. Therefore, to ensure that the semigroup




{en}US(Ny, ..., Ng, <) U I, is inverse it is sufficient and necessary to demand that the
set S(Ny, ..., Ng, <) is closed under the operation of taking the inverse element in ZO,, as
well. o

Let a € S(Ny, ..., Ni, <), dom(a) € N;, im(a) € N;. Then i < j. But then dom(a™') =
im(a) and im(a™') = dom(a) and from a™* € S(Ny,..., Ni, <) it must follow j < i and
hence 7 = j. As a is arbitrary, < coincides with the equality relation, proving the necessity
in the second statement.

The last statement is obvious. O

Theorem 2. The subsemigroup S C ZO,, is maximal in ZO,, if and only if S = I, 1 or
S ={en} US(Ny, Ny, <) U I,_o, where Ny U Ny = N is a decomposition of N into two
non-empty blocks and < is a linear order on {1,2}. In particular, ZO,, has exactly 2™ — 1
mazximal subsemigroups.

Proof. 1t is clear that I,,_; is a maximal subsemigroup (even maximal inverse) and that
each other maximal subsemigroup must contain ey.

Let now S be a maximal subsemigroup such that S # I,_;. Consider the oriented
graph Isap, ,. If Dgnp, , contains arrows from A to B and from B to C, then S contains
the elements 74 g and mp . Thus S contains the element 74 5 - 7 ¢ = ma,c and hence
Isnp,_, contains the arrow from A to C. This means that the oriented graph T'sqp,_,
is transitive (i.e. the corresponding binary relation is transitive) and thus it defines an
equivalence relation ~ on NV in the following way: [ ~ m if and only if I'snp,_, contains
arrows from [ to m and from m to [. Let Ni,..., N, be the equivalence classes. We have
k > 1 as otherwise I'snp, , = Ky and, according to Lemma 1, S D I, ;. For arbitrary
i,j €{1,2,...,k} we set i < j if and only if I'snp,_, contains at least one arrow from N;
to N; (transitivity of I'snp, , then guarantees that there is an arrow from every element
in NV; to every element in N;). The relation < is a non-strict partial order on {1,2,...,k}.

From Lemmas 3 and 4 we get that S = {ex}US(Ny,..., Ng, <)UI,_o. It is well-known
(see e.g. [CK]) that every partial order can be extended to a linear order. If < is not linear,
we extend it to some linear order <;. Then we have proper inclusions:

S:{eN}US(NI"",Nk:<)UIn72 C {eN}US(Nla-"aNka<1)UIan CIOTL’

which contradicts the maximality of S.

Hence, the order < has to be linear. If £ > 2, we decompose the linearly ordered set
({1,...,k},<) into 2 non-empty intervals {1,...,k} = J; U Jy. Denote N, = U;c;, N;,
t = 1,2. Then for the decomposition N = Nj U N; and the corresponding order <5 on
{1,2} we again have strict inclusions

S = {GN} U S(Nl, A '<) Ul, »C {6]\/‘} U S(N{,Né, -<2) Ul, o CZO,,

contradicting the choice of S.
Hence £ = 2 and every maximal subsemigroup in Z0O,,, different from I, ;, has the
form

S = {GN}US(Nl,NQ,'<)UIn_2, (1)
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where < is a linear order on {1, 2}. It is now left to show that all subsemigroups of this form
are maximal. For this we take arbitrary subsemigroup S; in ZO,, strictly containing S.
Then S; contains elements from D,,_;\S. But then the oriented graph I's,np,_, is a proper
transitive (in the same sense as above) extension of I'snp,_, and hence coincides with Ky .
Thus S; D D, _1, which implies S; = ZO,,. The latter means that every subsemigroup of
the form (1) is maximal.

To compute the number of subsemigroups of the form (1) we can assume 1 < 2 without
loss of generality. Then the semigroups of the form (1) bijectively correspond to proper
subsets N; C N, which can be chosen in 2" — 2 different ways. Taking I,, ; into account,
we get 2" — 1 maximal subsemigroups. This completes the proof. O

Theorem 3. The subsemigroup S C ZO,, is maximal inverse in ZO,, if and only if S = I,
or S ={en} US(Ny, No) UL, o, where Ny U Ny = N is a decomposition of N into two
non-empty blocks. In particular, TO,, has exactly 2"~1 mazimal inverse subsemigroups.

Proof. Taking into account the second statement of Lemma 4, the proof is analogous to
that of Theorem 2. We only remark that S(Ny, No) = S(N2, N;). Hence the number

of maximal inverse subsemigroups, which differ from I,_;, equals 3(2" — 2) = 27! — 1.

Together with I,, we get 2"~! subsemigroups. 0J

We remark that the last statement can also be derived from [Y, Proposition 3.4].

5 Automorphisms

Let a = ( ;1 ;_2 ;k ), where 4; < --+ < 1 and j; < --- < jg, be arbitrary element
1 J2 oo Jk

from ZO,,. Then the element a* = ( ZI i :;i Z::__i :;z Z_—:: i :;’; ) belongs

to ZO,, as well.

Lemma 5. The map * : a — a* is an automorphisms of ZO,,.

Proof. Direct calculation. O

Theorem 4. Aut(10,) = {id, *}.

Proof. Since the ideals in ZO,, form a chain, each ideal I} has to be mapped to itself under
every automorphism. This means that the automorphisms must also preserve D-classes
Dy = Iy \ Ix—;. In particular, all automorphisms preserve the ranks of elements.

Let ¢ € Aut(/O,). Then ¢ preserves idempotents and an easy induction shows that
it also preserves the ranks of idempotents. Therefore for any x € N there exists a unique
y € N such that e,y ¢ = eqyy. Define a permutation p of N such that zp = y if
ez} ¢ = eqyy. Take a € (IO,), then for z,y € N we have that za = y if and only if

ef} @ = €y}, OF (e(z} ©)(ap) = eqyy @, that is (z p) (ap) =y p.



If there exists a pair ¢ < j such that ¢ 4 < j u, and if there exists a pair £ < [ such that
I < k p, then for the element a = < ]Zf ‘Z ) € 710, we get ap = ( ;’Z ?5 ) ¢ ZO,.
Hence either ¢ < 7 i holds for all 4 < j or j 4 < 7 holds for all + < j. In the first case
i is the identity permutation and the corresponding automorphism is the identity map.
1 2 .. n
n n—1 ... 1
This completes the proof. O

In the second case y = ) and the corresponding automorphism is x*.

6 Nilpotent subsemigroups of transformation semi-
groups

Before we go to the study of nilpotent subsemigroups in ZO,,, we describe a general tech-
nique, which first appeared in [GK2] and later was used in [GK3, GK4, GM1, Sh1l, Sh2]
for the detailed study of nilpotent semigroups in different semigroups of transformations.
However, in the general form this technique has never been written down in a regular way.

Let PT (M) denote the semigroup of all partial transformations of a (possibly infinite)
set M and T denote arbitrary subsemigroup of PT (M) containing the totally undefined
transformation 0. For every positive integer k£ we denote by Nil,(7") the set of all nilpotent
subsemigroups of 7" of nilpotency degree less or equal k, which contain 0. The set Nilg(7")
is partially ordered with respect to inclusions in a natural way. Denote by Ordg(M) the
ordered set of all strict partial orders on M in which the cardinalities of chains are bounded
by k. If K < m, we have natural inclusions Nilg(7") < Nil,,(7) and Ord (M) < Ord,,(M),
which preserves the partial order. Hence we can consider the ordered (with respect to
inclusions) sets

Nil(T) = | JNily(T) and  Ord(M) = | JOrd,(M).

For every partial order p € Ord(M) consider the set
Mon(p,T)={a €T : z # za and (z,za) € p for all z € dom(a)}, (2)

and for every subsemigroup S € Nil(7T") the relation
ps = {(z,y) : there exists a € S, such that z € dom(a) and xa =y} C M x M. (3)

Proposition 6. 1. For every positive integer k, the map p — Mon(p,T) is a homo-
morphism from the poset Ordg(M) to the poset Nilg(T).

2. For every positive integer k, the map S — ps is a homomorphism from the poset
Nil,(T) to the poset Ordg(M).
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Proof. Tt is clear that the set Mon(p,T) is a semigroup for every partial order p. If p €
Ordg(M) and ajas...ar # 0 for some aq,as,...,ar € Mon(p,T), then the sequence 1,
Ty = T1Q1, T3 = Todo,..., Tky1 = Tpag forms a chain with & + 1 elements for every
2, € dom(ayas - - - ag). This contradicts the choice of p. Hence (Mon(p, T))* = 0 for every
p € Ordy (M) and Mon(p, T') is a nilpotent semigroup of nilpotency degree n(Mon(p,T)) <
k. That p; C py implies Mon(p;,T) C Mon(pe,T) is obvious. This proves the first
statement.

If xa = y and yb = 2z then xab = z. Hence the relation pg is transitive. That pg
is anti-symmetric follows from the nilpotency of S. Indeed, if xa = y and yb = x then
z (ab)® = z for all positive integer k and hence (ab)* # 0 for all positive integer k as well.

Let now S € Nil,(7). Assume that ps contains a chain z1, s, ..., 21 of cardinality
k 4+ 1. Then there exist elements a,...,a; in S such that x;a; = z;41, ¢ = 1,2,...,k.
But the latter means that x; a; ...a; = zxy1 and thus a; ...ax # 0, which contradicts the
choice of S. That S} C Sy implies ps, C pg, is obvious. This completes the proof. O

Proposition 7. Assume that n(S) = k. Then ps € Ordg(M) \ Ordg_1(M).

Proof. From the first part of the previous proposition it follows that it is enough to prove
the existence of a chain of length k for pg. But if n(S) = k, we have S¥~! # 0 and there exist
ai,as...,ax—1 € S such that ayas...ax—1 # 0. Take arbitrary z; € dom(ajas...ax—1) and
we get that the elements z1, 9 = 21 ay,..., T = Tx_1 ax_1 form the necessary chain. [

Corollary 5. Assume that M is finite. Then the nilpotency degree n(S) of arbitrary
nilpotent subsemigroup S C PT (M) with zero 0 does not exceed |M|.

Proposition 8. Let S € Nil(T') and p € Ord(M) be arbitrary. Then
1. Mon(ps,T) D S, pymon(p,r) C P;
2. Mon(pnon(p,r), T) = Mon(p, T);

3. PMon(ps,T) = PS-

Proof. The first statement is obvious.

As pron(pry C p, we can apply the first statement of Proposition 6 and get that
Mon (puion(p,r), I) € Mon(p,T). Now let a € Mon(p,T'). Then, by (3), we have (z,za) €
PMon(p.r) for all z € dom(a). Further, a € Mon(pyon(,,1), T') follows from (2), giving the
opposite inclusion Mon(p,T") C Mon(pyion(p,1), T’) and completing the proof of the second
statement.

Since Mon(ps,T) O S, we can apply the second statement of Proposition 6 and get
PMon(ps,T) 2 Ps- At the same time for p = ps we get pyon(ps,7) C ps by the first statement,
which completes the proof. O

Recall that, according to [Col, a pair of maps ¢ : P — @ and ¢ : Q@ — P defines a
Galois correspondence between the posets P and @) if it satisfies the following conditions:
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1. ¢ and 1 are antihomomorphisms of the partially ordered sets, that is p; < ps implies
p1y = p2p and 1 < go implies g1 ¢ > ga ;5

2. ppyp > pand gpp > qforallp € P and g € Q;

3. pyYoy =py and g =qo for all p € P and g € Q.

Denote by Ord(M)* the set Ord(M) with the order, which is opposite to the inclusion
order.

Theorem 5. The pair of maps S +— ps and p — Mon(p, T) defines a Galois correspondence
between the posets Nil(T') and Ord(M)*.

Proof. 1t follows from Proposition 6 that the maps S +— pg and p — Mon(p, T) are anti-
homomorphisms between the posets Nil(7") and Ord(M)*. The rest follows from Proposi-
tion 8. H

In the arguments that follow a very important role is played by the minimal ideal
I ={a € PT(M) : |dom(a)| < 1} of the semigroup PT(M). We remark that this ideal
can be identified with the Brandt semigroup B(E, M), where E is the identity group, in a
natural way.

Proposition 9. Let I, C T C PT(M). Then for maps ¢ : Nil(T') — Ord(M), S ¢ = pg,
and v : Ord(M) — Nil(T'), pv» = Mon(p,T), we have v - ¢ = idoracm). In particular, ¢ is
surjective and 1 is injective.

Proof. From the first statement of Proposition 8 we get paon(p,r) C p. Hence it is enough to
prove only the opposite inclusion. Let (z,y) € p. Then, for the element a = [z,y] € I, it
follows from (2) that a € Mon(p, T") and further from (3) that (x,y) € puon(p,r). Therefore
p Yo = pron(pr) = p for all p € Ord(M) implying 9 - ¢ = idoracm). The second part of
the statement is obvious. O

Lemma 6. Assume that T = I,. Then the map ¢ from Proposition 9 is injective.

Proof. If ¢ is not injective, we can find two subsemigroups Sy, Sy € Nil(T') such that pg, =
ps,- Without loss of generality we can assume S;\ Sy # &. Let a € 51\ Sz, dom(a) = {z},
za =1y. Then (x,y) € ps,, but (z,y) & ps,, which contradicts ps, = ps,- O

Corollary 6. There exists a one-to-one correspondence between the nilpotent subsemi-
groups in the semigroup I, and those strict partial orders on M in which the cardinalities
of chains are uniformly bounded by some positive integer.

If T contains Iy, the map ¢ : Nil(T') — Ord(M), S — pg, is only surjective in gen-
eral and one can hardly hope for a nice description of all nilpotent subsemigroups of 7'
Nevertheless, the problem to describe all mazimal nilpotent subsemigroups among all sub-
semigroups with a fixed nilpotency degree remains full in content. In other words this is
the problem to describe the maximal elements in Nil,(7) for every k. Since the maximal
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elements from Nily(7") are mapped by ¢ to the maximal elements of Ordy(M) we start
with description of the last ones.

By an ordered partition of M in k blocks we will mean the partition M = M;U--- UMy
into £ non-empty blocks in which the order of blocks is also taken into account. Each usual
partition of M into k blocks gives, obviously, k! ordered partitions. With every ordered
partition M = M; U ---U Mj we associate the set

ord(My,...,My)= | J M;xM;CMxM.

1<i<j<k

Lemma 7. Fiz a positive integer k < |M|. Then for every ordered partition M = M; U
- U My the set ord(My, ..., My) is a mazimal element in Ordg(M). Different ordered
partitions of M correspond to different elements in Ordg(M), and each mazimal element
in Ordg (M) has the form ord(M, ..., M) for some ordered partition M = My U- - -U M.

Proof. 1t is obvious that ord(Mj, ..., My) is a transitive and anti-symmetric relation on
M and that different elements from arbitrary chain z,..., z,, of this order must belong
to different blocks of the ordered decomposition. Hence m < k and ord(M;, ..., My) €

If ord(My,..., My) is not maximal, then there exists an order p € Ordy(M) which
strictly contains ord(Mj,..., My). This means that there exists (z,y) € p such that
x € M;, y € Mj and @ > j. First we assume ¢ = j and choose an element z; in each
block M;, | # i. The sequence 2y, 2o9,..., % 1, &, Y, Zi+1,---, 2k 1S then an increasing
chain and has cardinality k& + 1, which contradicts to p € Ordy(M). Next, if 7 > j, then p
contains (y, z) as well, which contradicts to the fact that p is anti-symmetric. Altogether
we get that ord(Mj, ..., M) is a maximal element in Ord(M). This proves the first part
of the lemma.

That different ordered partitions give rise to different elements in Ordy (M) is obvious.

Let now p be an arbitrary order from Ordy(M). Denote by M; the set of all minimal
elements with respect to p. Note that M; is not empty since p satisfies the decreasing
chain condition. Further, for every increasing chain z,. .., x,, of elements in M \ M; there
exists o € M; such that xg, x1,..., T, is an increasing chain in M. Hence the cardinality
of every chain in M \ M; is bounded by k& —1. Now we denote by M the set of all minimal
elements in M \ M, consider M \ (M; U M,), and continue this procedure. In & steps we get
the decomposition M = M; U ---U My. Obviously p C ord(Mj, ..., M) by construction.
From the maximality of p we get p = ord(M;, ..., M}) completing the proof. O

For every subsemigroup 7" C PT (M) and an ordered partition M = M; U ---U My, we
denote

T(My,...,My)={a€T : z€ M;and za € M; imply i < j for all z € dom(a)}.
Lemma 8. T'(M,..., M) = Mon(ord(M, ..., M), T).

Proof. Clear from the definitions. O
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Theorem 6. Assume that Iy C T C PT(M). Then for every ordered partition M =
My U .- U My, the semigroup T(Mj, ..., M) is mazimal in Nilg(T). Different ordered
partitions define different mazimal elements in Nilg(T) and every mazimal element from

Nily(T) has the form T(My, ..., My) for some ordered partition M = M; U ---U M.

Proof. According to Lemma 8, the set T'(My,..., M) is an element in Nil,(7). From
Proposition 9 it follows that pr,,..a) = ord(My,..., My). Let now S € Nili(T') be
such that S D T(Mj,..., My). Since ord(Mj, ..., My) is a maximal element in Ordy(M)
by Lemma 7, the second statement of Proposition 6 implies that ps = ord(Mj, ..., My).
Using the first statement of Proposition 8, previous equality, and Lemma 8, we get

S C Mon(ps,T) = Mon(ord(Mj, ..., M), T) =T (M, ..., My).

This implies the maximality of T'(Mj, ..., My).
The second part of the theorem is obvious and the third one follows from Proposition 6
and Lemmas 7 and 8. O

Corollary 7. If |[M| = oo and I C T C PT(M), then there are no mazimal nilpotent
subsemigroups in T containing 0.

Proof. If |[M| = oo, then for every ordered partition M = M;U- - -U M, there exists at least
one block containing more than 1 element (even infinitely many elements). If M; is one of
such blocks and M; = M]UM]/ is an ordered partition, we have that T'(Mj, ..., M;, ..., M;)
is a proper subsemigroup of T'(My,..., M, M!, ..., My). O

Corollary 8. Let I, C T C PT(M) and | M| =n < co. Then

1. There exist exactly n! mazimal nilpotent subsemigroups of T containing 0 and the
nilpotency degree of each of them equals n.

k—1
(k
2. For every k, 1 < k < n, there exists ezxactly Z(—l)’( ) (k — )™ mazimal nilpotent
l
=0
subsemigroups of T of nilpotency degree < k containing 0. Moreover, the nilpotency
degree of each of these subsemigroups equals k.

Proof. From Corollary 5 it follows that all nilpotent subsemigroups from 7" belong to
Nil, (7). By Theorem 6 and the arguments, analogous to that of Corollary 7, the maximal
nilpotent subsemigroups bijectively correspond to the ordered decompositions of M into
1-element blocks, that is to the linear orders on M. Obviously there exists n! different
linear orders. As all maximal nilpotent subsemigroups belong to Nil, (7) \ Nil,_1(7’), their
nilpotency degree is n. This proves the first statement.

The proof of the second statement differs from the proof of the first one only in the
place where one counts the number of subsemigroups. To count the number of ordered
partitions of M into k£ non-empty blocks we note that there is an obvious bijection between
such partitions and surjections form M to {1,2,...,k}. The last can be easily computed
using the inclusion-exclusion formula. 0J
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Proposition 10. Let 1 C T C PT(M) and M = M{U---UM, = M{ U---U M) be
two ordered partitions of M. The semigroup Ty = T(Mj,..., M) is contained in T =
T(M{,...,M!) if and only if m > k, every block M} of the first partition is a union of
several neighbor blocks of the second partition, and the linear order on the blocks of the
first partition is induced from the linear order on the blocks of the second partition.

Proof. The sufficiency is obvious, so we prove the necessity. Let 7} C T5. Then the
inequality m > k is obvious. First we prove that every block of the second partition
belongs to some block of the first partition. Indeed, if there would exist 7 < j and [/ such
that M)" N M; # @ and M;' N M; # &, we would get

T\ D {[z,yl €, : x€ M’ N M and y € M}’ N M} # &,

which contradicts our assumptions.

Now we show that every block of the first partition is the union of some neighbor
blocks of the second partition. Indeed, assume that there exist ¢ < [ < 7 and r such that
M C M], Mj C M; and M]' ¢ M;. Then M}’ C M, for some p # r. If r < p, the set
Ty \ T contains the non-empty set {[z,y] € I, : ¥ € M],y € M;'}, which is impossible.
The case p < r is analogs.

Finally, we show that M;" C M, Mj C M, and i < j imply p < ¢. Indeed, if p > q we
have

TGO {[z,yleh : v € M,y e M} # &,

which is impossible. Hence the linear order of the blocks of the first partition is induced
from the linear order of the blocks of the second partition. O

Corollary 9. Let Iy C T C PT(M) and |M| =n < oco. Then every nilpotent semigroup
T (M, ..., My) is contained in |Mi|!|Ma|!...|M|! different mazimal nilpotent subsemi-
groups in T'.

We finish this section with application of the above theory to the semigroup ZO,,. As

I, C TO,, C PT(N), the statements of Theorem 6, Proposition 10 and Corollaries 8 and
9 hold for ZO,,. This can be formulated as follows:

Theorem 7. For nilpotent subsemigroups from ZO,, containing 0 one has the following:
1. There are exactly n! maximal nilpotent subsemigroups in ZO,,, each of which corre-
sponds to some linear order on N and has the nilpotency degree n.

k—1
Ak
2. There are exactly Z(—1)1<>(k —1)" nilpotent subsemigroups of ZO,, which are
i
i=0
mazimal among all subsemigroups of nilpotency degree < k, 1 < k < n. Fach of
these semigroups has the form

S(My,...,My) ={a€I0, : x € M;,xa € M; imply i < j for all x € dom(a)},

where N = My U ---U My is an ordered partition of N into k non-empty blocks.
The semigroup S(Mj, ..., My) has nilpotency degree k and is contained in eractly
| My |1 M| . .. | My|! mazimal nilpotent subsemigroups (of nilpotency degree n).
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7 Maximal nilpotent subsemigroups

Let T} and T, be two maximal nilpotent subsemigroups in ZO,, corresponding to the linear
orders i; < iy < -+ < i, and j; <’ ju <" --- <" j, respectively. We remark that nilpotent
elements in ZO,, do not contain cycles. To simplify our notations we are not going not
write chains of length 1 in nilpotent element, understanding that all elements from NV,
which are not mentioned in the presentation of some nilpotent element a € ZO,,, are not
contained in dom(a).

Lemma 9. Suppose there exists an isomorphisms ¢ : Ty — Ty. Then [ix, 1] ¢ = [jk, ji] for
every element [ix, 1] of rank 1 from Tj.

Proof. First we remark that 77"t = {0, [i1,4,]} and T3* = {0, [j1,5,]}. This implies
[i1,9n] ¢ = [j1,Jn]- From the decomposition [i1,i,] = [i1,%2]" [ia,43] - [in_1,%n] We get
(71, 4n) = ([i1,92] @)+ ([i2,43] @) - -+ “([En_1,%a] ). The last equality means that for all k,
1 < k < n, the element jj belongs to dom([ig, ix+1] ©) and ji ([ik, k1] ©) = Jrs1-
Assume that rank([ix,ix+1] @) > 1 for some k. Then there exists [ # k such that
g1 € dom([ik, ik+1] QD) and
(L1, @] @) ([ik, Te1] @) # 0, (4)

since j; 1 € dom(([¢;_1, %] ©)([ik, tk+1] ¢)) by the arguments above. But [i; 1, i][ig, ix41] = 0
provided that [ # k and this contradicts the inequality (4). Thus rank([ix, ix+1] ¢) = 1 and

liks k+1] © = [Jks Jr+1] for all k.
Now for arbitrary k£ < [ we get that

ik, i1] @ = [ig, ikga] - - - [i—1, 0] 0 = ([iks teg1] @) - - ([-1, 0] ) =
ks k1] - - - [Ji=1, 31) = [Tk J1)-

0

Setsz(’.l 2 ’.")esn.
Jr o J2 - In

Lemma 10. Let ¢ : Ti — Ty be an isomorphisms. Then ap = s tas for all a € Ty. In
particular, there exists only one isomorphism ¢ : 11 — 1.

Proof. Let i, € dom(a) and iya = i,. If p # 1 and q # n, then [, iplalig, in] = [i1, in]
and, using Lemma 9, we get [j1, j,|(a ©)[jg, Jn] = [J1,Jn], and hence j, € dom(a ) and
Jp (@) = Jog-

If p =1, ¢ # n, then aliy,i,| = [i1,4,] and hence (a)[jg, jn] = [J1,Jn]- This implies
J1 € dom(ap) and j; (@) = j,. The case p # 1, ¢ = n can be treated in an analogous
way.

Consider now those a € T for which i; € dom(a) and i;a = i,. To prove that
j1 € dom(a ) and j; (ap) = j, it is enough to show that rank(a) = rank(a¢). We use
induction in rank(a). For elements of rank 1 the statement follows from Lemma 9. Let now

16



rank(a) = k and assume that we know that for all elements of smaller rang the statement
is true. If rank(a ¢) < k, we can use the inductive assumption to a ¢ and the isomorphism
¢ 1: Ty — T and get rank(a) < k. Hence we have rank(a ) > k.

If rank(a ) > k, there exists at least £ different elements m for which [j1, jm|(a @) # 0.
But there exists only k£ — 1 different m for which [i, 4,,]a # 0. This contradiction implies
rank(a ¢) = k = rank(a) and completes the proof. O

We recall that transformation semigroups (S, M;) and (Ss, Ms) are called similar pro-
vided that there exists an isomorphism ¢ : S; — S5 and a bijection f : M; — M, such
that (ms) f = (m f) (s¢p) for all s € S; and m € M;.

Corollary 10. The maximal nilpotent subsemigroup T and Ty from ZO,, are isomorphic
iof and only if they are similar as transformation semigroups on N.

Proof. Necessity follows from Lemma 10 and sufficiency is trivial. O
With the linear order 7; < 45 < --- < 4, on the set N we associate the vector v; =
(o, @0, .., ain_1), where « is the number of elements among iy, i3,. . ., in_1, smaller than
11 with respect to the usual order on N; and oy, £ = 2,3,...,n — 1, is the number of
elements among 4x1, tkio,. - -, in, Smaller than 4. We set
=Mn—-2—a;,n—2—ay,n—3—qQz,...,n —k — Qp,...,2—Qy 2,1 —p 1)

Obviously v; = v;.

Theorem 8. The mazimal nilpotent semigroups Ty and Ty from TO,,, associated with the
linear orders i1 < iy < -+ < i, and j; <" jo <" --- <’ j, respectively, are isomorphic if and
only if v; = v; or v; = ;.

Lemma 11. Let T} and T be isomorphic and 1 < k <l <p <n. Then
1. 9, > 1 > 1 tmplies Jx, > J1 > Jp o7 Jr < Ji < Jp;
2. 1 > i < ip implies ji > 5 < jp or Jr < Ji > Jp;
3. ik < 1y > 1y 1mplies Ji < J1 > Jp o Jr > Ji < Jps
4. 1 < 1 <1y implies jp < Ji < Jp OT Jr > J1 > Jp-

Proof. 1f 1, > 1; > 1, then ( Zk Z.'l ) € T and ( jjk ;l ) € T, by Lemma 10. Since the
1 1p l D

last transformation must preserve the order, we get ji, > ji > j, or jr < 71 < jp. This
proves the first statement and the last one is analogous.

If 7, > 4 < ip then ( Zlk ;l ¢ T} and hence ( ‘;k ;l ) ¢ T,. Therefore either
1 1p l P
Je > 01 < Jp or jr < ji > 7jp holds, which implies the second statement. The third

statement can be treated by the same arguments. O
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Proof of Theorem 8. We start with the necessity. Assume that there exist k < I, kK # 1 or
[ # n, such that the inequalities in each pair ix,%; and ji, 5; are directed in the same way
(i.e. ix < 4 and ji < ji;, or i > 4; and jr > j;). If k£ # 1, Lemma 11 guarantees that
the inequalities in the pairs ix_1,%; and jx_1, jr are directed in the same way as well. By
analogous arguments, if [ # n, then the inequalities in the pairs 4;, ;.1 and j;, ji+1 are also
directed in the same way. Using Lemma 11 several times we get that the inequalities in
arbitrary two pairs i,,, ;41 and jm,, jme1 are directed in the same way. Again by Lemma 11
we get that the inequalities in arbitrary two pairs 4,, %, and j,, j4; p < ¢, p # 1 or ¢ # n, are
directed in the same way. Hence, under the above assumption we get v; = v;. Obviously
v; = U; in the opposite case.

Now we prove the sufficiency. With each permutation (i, is,...,4,) of (1,2,...,n) we
can associate the vector (51, o, - - ., 3,) of inversions, where (3 is the number of 7; such that
iy < ix and [ > k. This correspondence from S, to the set of all vectors (z1,...,z,) € Z",
0<zr<n-—k, k=1,2,...,n, is bijective by [K]. The vector v; can be obtained from
(81, B2, - - -, Bn) by deleting the last component (3, = 0 and substituting f; with 5, — 1 if
11 > ip.

Now we have to determine for which 4; < 4y < --- < 4, and j; < jo <" -~ <" j,
one gets v; = v;. If the vectors of inversions for 41,...,¢, and ji,...,j, would coincide,
the permutations themselves and thus the corresponding linear order should coincide as
well. Hence, we can assume that the vectors of inversions for 41, ...,%, and j,...,J, are
different. In particular, we can assume 7; < 7, and 71 > J,.

For permutations s, i3, . . ., %, and Jo, j3, - - ., jn 0f n— 1 elements the corresponding vec-
tors of inversions coincide. Hence, if we write both permutations in the natural increasing
orders

UprsTpss s tpn_1>  ANA Jpis Tpas - - s Jpnois (5)
the corresponding permutation py, ..., p, 1 of indices will be the same. Let us assume that
v; = (k,ag,...,a, o). If we add the elements i; and j; to (5) on the corresponding places,
we get the sequences

Upys by v o5 Tppy W5 Tppyy + w5 pp_y>  ANA Jpis Tpos v o T Jpigas J1s =+ 0 Jpn—1

each of which coincides with 1,2,...,n. Hence 41 = jp, .., 1 = fp,,, = 41 + 1, and
im = jm for m # {1,pgy1}. The pair i, = j, and j; = i; + 1 of equalities contradicts the
assumption that ¢; < ¢, and j; > j,. Hence pxy1 = n, %, = 41 + 1 and the linear order
j1 <" jo <" +-+ <" 4, is obtained from i; < iy < -+ < 4, by the transposition of 7; and 7,.
Now let v; = v; and a = < Zpl ng zpm € Ty, where iy, < iy, < --- <1, and
q1 q2 " qm
by < dgy < -+ < ig,. Since n & {p1,...,Pm}, 1 & {q1,---,qmn}, and the partial orders
i1 < iy < -+ <1, and j; <’ jo <" --- <’ j, differ only by the transposition of the minimal
and the maximal elements (which in this case are neighbor positive integers), we get that

oo < Gy < o+ < G and g < Jay < -+ < jg, implying <-7.P1 Tor e e ) oo

Jan Jez --- Jgm
i1ty ... 1 c . _
™ | defines an injection ¢ : a — s tas from

Hence the permutation s = ( s
Ju J2 .- Un
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1) to 1. 1t is easy to check that ¢ is a homomorphism. By analogous arguments the map
b — sbs ! is a monomorphism from 75 to 1. Hence T} ~ Tb.

If jp =n+1—1, forall k =1,2,...,n, then we have v; = v;. Hence, since v; = v;,
we get that j; <’ jp <’ -+- <’ j, is obtained from 4; < iy < --- < 4, by the transformation
Jg =n+1—ig, k=1,2,...,n,and, if 7; and 7,, are neighbor positive integers, possibly by the
transposition of the minimal and the maximal elements following the first transformation.

Hence, for v; = v; the equalities i,, < --- < 4y, and 44 < --- < ig,, where n ¢
{p1,---,pm} and 1 & {q1,-..,qm}, yield j,, > --- > j,. and j, > --- > j,.. Hence
( O I ) € T, anyway implies ( Tpr Jps e Jpm ) € T5. An isomorphism

g gy - g Jo Joo - Jam

from T; to Ty follows in the same way as above. This completes the proof.
Corollary 11. 1. All mazimal nilpotent subsemigroups in ZOs are isomorphic.

2. Let n > 2. Then IO, contains ezactly 1(n! — (n — 1)!) pairwise non-isomorphic
mazimal nilpotent subsemigroups.

Proof. The first statement is obvious, so we prove the second one. Decompose the linear
orders on N into equivalence classes with respect to the isomorphism between the corre-
sponding maximal nilpotent subsemigroups. From the proof of Theorem 8 it follows that
those linear orders in which the minimal and the maximal elements are neighbor posi-
tive integers form equivalence classes with 4 elements and all other orders form equivalence
classes with 2 elements. The number of linear orders of the first type is 2-(n—1)-(n—2)! =
2-(n—1)!. Hence the number of pairwise non-isomorphic maximal nilpotent subsemigroup
in ZO,, equals
2-(n—=1)! nl=2-(n-1)! nl—(n-1)
4 * 2 B 2 '

8 On the cardinality of nilpotent subsemigroups

Proposition 11. The mazximal nilpotent subsemigroup T associated with the natural linear
order has the mazimal cardinality among all nilpotent subsemigroups in ZO,,.

Proof. Since every nilpotent subsemigroup is contained in a maximal nilpotent subsemi-
group, it is enough to show that 7" has the maximal cardinality among all maximal nilpotent
subsemigroups in ZO,,.

Let 77 be arbitrary maximal nilpotent subsemigroup of ZO,,, a € Ty and u = [a4, . . ., ax]
be a chain in a. The intervals [a, ax] and [ag, a:] of N for increasing and decreasing u
respectively will be called the interval of the chain v and denoted I,.

Now we prove that the intervals I,, and I, do not intersect provided that the element a €
T1 has an increasing chain u = [ay, as, . .., ax] and a decreasing chain, v = [by, by, ..., by].
Indeed, assume I, N I, # &. Then either a; € I,, or a,, € I,, or I, C I, and b; € I,.
In the first case there exists j such that b; < a; < bj_;. Since a preserves the order,
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as = a1a < bj_1a = b; and hence ay < b; < ai, which contradicts the increasing of
u. In the second case there exists j such that b; < a; < b;j_;. Then the inequality
ag—1 < ar < bj_; and the fact that a preserves the order yield ay = ay_1a < bj_1a = bj,
which contradicts to b; < a. The impossibility of the third case can be proved analogously.

Therefore, for a fixed a € T}, the set N decomposes into a disjoint union N = I'UI?U
--- U I™ of intervals in N such that every chain of a is defined on one of these intervals
only. Moreover, all chains defined on a given interval I' either increase or decrease. Thus,
substituting every decreasing chain v = [by, ..., b,] of a by the corresponding increasing
chain T = [by,,...,b;] we get the element @ € T. It is now clear that the map a — @ is
injective and hence |T3| < |T|. O

Theorem 9. The mazimal cardinality of a nilpotent subsemigroup in ZO,, equals the n-th

Catalan number t,, = #1(2:)

Proof. According to Proposition 11, this maximal cardinality is the cardinality of 7" asso-
ciated with the natural order on N. Each element a € T defines a decomposition of N into
chains and all these chains will be increasing since a € T'.

Assume that we are given a decomposition N = M;U---U M} of N into k blocks, where
M; ={adl,a},..., aZm} and my +ms + - -+ my = n. We will assume that the elements in
each block are ordered: a{ < ag << aﬁ'nj. Then the element

a=laj,...,a,]...[df,... a5 ]
is a nilpotent element in ZS,, having k increasing chains. However, it is possible that a
does not belong to T'. Clearly, a € T if and only if a preserves the natural order on N, if
and only if a € ZO,,. This means that a &€ T if and only if there exist x,y € N such that
x < y and xa > ya. The latter means that two elements y, y a of one chain are contained
between the neighbor elements z, z a of another chain.

Therefore the decomposition N = M; U - U M}, defines an element from 7" if and only
if no pair of elements of one block lies between the neighbor elements of another block
(here everything is taken with respect to the usual order on N). Further, |T| equals the
number p,, of the decompositions satisfying this condition.

For arbitrary positive integers n,m, 1 < m < n, we denote by T,,,, the set of all
decompositions of N into blocks (as described above) in which the last m elements n—m+1,
n—m++2,...,n—1, n belong to different blocks. Denote ¢, ,, = |T},m| and put ¢, =t 1.
Obviously p, = tp1 and ¢, , = 1.

For every decomposition p € T}, 1, we denote by k, the maximal element from the set
{1,2,...,n — m + 1}, which belongs to the same block as n + 1, if such element exists.
Otherwise (i.e in the case when {n+1} forms a separate block) we say that k, is undefined.
Moreover,

|{p € Tn+1,m : kp = Z}| = tn,n—l—l—i-

Now, if we decompose T, 11 ,,, into subsets with respect to the value of k, (this one is either
undefined or an element from {1,2,...,n —m+1}), we get the equality t, 11, = thm 1+
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tnm+ tnm1+ ... +tn . This implies ¢ 11 m = thm—1 +tnrime1 forall 0 <m < n+1. Set
ank = tnn—k. For the numbers a, ; we have

0<k<n,an,=ann-1,0n0 =1, and apy1 % = g + app14-1 for 0 <k <n+1. (6)

From relations (6) it follows that a,, can be interpreted as the number of paths from the
point (n, k), n > k, in Z? to the point (0, 0) if it is allowed to go along the vectors (—1,0)
or (—1,—1) on every step and it is not allowed to go above the diagonal {(z,z)}. It is
well known, see for example [Gr, Section 1.6], that the number a,,, of such paths from the

i 2
point (n,n) equals the n-th Catalan number ¢, = n—il(:) Hence
1 2n
pn:tn,lztn,ozan,n:n+1 n .
This completes the proof. O

The problem about the cardinalities of all nilpotent subsemigroups in ZO,, seems to be
very complicated. The main reason for this is the appearance of two interacting orders on
N, namely the natural one, and the second one coming from ord(Mj,..., My). Even in
the case, when all blocks of the second order are 1-element, that is, in the case when the
semigroup in question is maximal nilpotent, Theorem 8 gives only an upper bound for the
cardinality.

As a comparison we remind that, for the semigroup ZS,,, where the description of the
maximal nilpotent subsemigroups of the fixed nilpotency degree is the same as in the case of
Z0O, (see [GK3]), the cardinality of the maximal nilpotent subsemigroup Tz, (M, ..., M)
of nilpotency degree k, which corresponds to the ordered decomposition N = M;U- - -U M,
can be calculated (see [GM2, Section 15]). In particular, one has that this cardinality
depends only on the cardinalities m; = |M;|, i =1, ..., k, and does not depend on the order
of m;’s. This is no longer true for ZO,, even in the “best” case, when the decomposition
into blocks is coordinated with the natural order on N, that is, when the blocks are
intervals My = {1,2,...,m1}, My = {m; +1,m1 + 2,...,mo} and so on. For instance,
T({1,2}, {3}, {4})] = 9 and [T({1}, {2,3}, {4})| = 10.

However, several partial results in this direction still can be obtained. Now we are
going to discuss some of them. Until the end of the paper we will consider only those
ordered decompositions N = M; U ---U My of N for which M; = {1,2,...,m}, My =
{mi+ 1,m1 + 2,...,ms} and so on. We denote m; = |M;|, i = 1,2,...,k, and set
F(my,...,mg) =|T (M, ..., My)|.

Proposition 12. The numbers F(my, ..., my) satisfy the following recursion:

1. F(1,1,...,1) =ty (here 1 appears ezactly k times as the argument of F).

21



F(mla"'ami—lam’i+17mi—|—15"'amk) =
= F(ml,...,mi_l,mi,l,miﬂ,...,mk)—
m;
— F(ml, . .,mi_l,mi) . ZF(], mi4+1, .. .,mk).
7j=1

Proof. The first statement is Theorem 9, so we prove the second one. We consider the
ordered decomposition My U---UM; 1 UM; U{z}UM;,;U---UM,; and the corresponding
subsemigroup T = T(M,, ..., M;,{z}, Mi,1,..., My). Define T as the set of all those
elements a from T such that ya # x for all y € M;. Set T = T\ T™. The condition
on elements in 7 allows one to consider them as elements from T(My,...,M; 1, M; U
{x}, Mi,1, ..., M) and it is easy to see that this correspondence is bijective. Hence [T(M)| =
|T(M1, ey Mi—l; Mz U {ZE}, Mz'_|_1, ey Mk)l == F(ml, ey, MMy_q, My + 1, Myit1s -0y mk)

Let M; = {I,14+1,...,l+m;—1}. For j = 1,...m; define T(>%) as the set of all elements
a from T® such that [4+j—1a = z. Clearly T® is the disjoint union of 737 j =1,...m;.
Now let us calculate |[T37)|. If a € T?%) and y <[ (that isy € M; U---U M;_;), we have
ya < la <l4+j—1a = z by the definition of ZO,,. Hence the element a' € ZS(M;U- - -UM,;),
defined as follows: dom(a’) = dom(a)NM;U---UM,;_; and ya’' = ya, y € dom(a’), belongs
to ZO(M;U- - -UM;) and, moreover, can be considered as an element from T'(M;U- - -UM;).

Further, with each element a € T(37) we can associate another element, a” € T({l +
j—1,...,m}, Miq,..., M), in the following way:

dom(a")yN({l+7,...,m} UM U---UM) =
=dom(a) N ({l+j,...,mi} UMy U---UM;);
I+ j—1 € dom(a") if and only if 2 € dom(a);
ya'=ya, yedom(a")N (M1 U---UMy);
{t+7-1,....omi}d" ={l+7,...,mi,z}a.
The last condition uniquely defines the action of a” on {{+j—1,...,m;} since |dom(a”)N
{l+j—-1,...,m;}| = |dom(a) N {l+,...,m;, z}| and thus we get that ¢" € ZO({l+ j —
Looo,mg}, Miyq, ..., My).
It is easy to see that the map a — (a',a") from T3 into T(M; U --- U M;) x
THl+j5—1,...,m}, Mj,..., M) is bijective. Hence |T39)| = F(my,...,mi_1,m;) -
F(j,miy1, ..., myg). This completes the proof. O

Using reduction, given by Proposition 12, one can express F(my,...,my) as a polyno-
mial in ¢;, ¢ = 1,...,n. However, it is possible that the final expression will depend on
the reduction process. We formulate our belief that the answer does not depend on the
reduction in the following conjecture, which we have checked for many small values of m;:

Conjecture. The expression of F(my,...,mg) in terms of F(1,...,1) = t;, i =
1,...,n, which can be obtained using Proposition 12, does not depend on the choice of the
reduction procedure even as a non-commutative polynomial.
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Problem. Give a closed formula for F'(my, ..., mg).

We finish our paper with two general formulas for F(my, ..., my) in the case of special
(m1,...,mg). The first case is when my = m3 = --- = my = 1 and m; = p. In this case
we denote F'(myq,...,my) by G(p, k — 1) for simplicity.

Proposition 13. Forp € N and k € Z we have
(- 7
61 = XV ("7 Yty
>0
Lemma 12. For i € Z, and j € N the numbers b;; = (—1)'(’>") satisfy the recursion
bogp =1, b+ b1+ -+ bij =b;j—1 (every undefined number is supposed to be zero).

Proof. The first part is obvious and for the second part we can use induction in ¢. By these
arguments we get

[ —1
D baj=bij+ Y by =bij+bi1;a
s=0 s=0

which reduces the problem to the identity b; ; + b;_1 j—2 = b; j_i. The latter follows by a
straightforward verification. 0J

Proof of Proposition 13. We start with the remark that in our case it is obvious that
the expression for G(p, k) does not depend on the reduction, because the reduction is
unique. However, the formula we are going to prove does not necessarily coincide with the
result of our reduction. We prove it by showing that it satisfies the recursion, given by
Proposition 12. From Proposition 12 we get the following recursion for G(p, k):

1. G(].,k) = tk+1;

2. G(p+1,k) = G(p,k + 1) — G(p,0) (Zp: G, k)) .

Taking into account G(p,0) = 1 the last expression reads G(p + 1,k) + G(p, k) + --- +
G(1,k) =G(p,k+1). Set G(p,k) =D ;50 Op,iktntk—i- Then for the numbers a,;x, p € N,
i,k € Z_, we derive the following recursion: 1ok = 15 Qpr1ikt Qpivipe + 0+ QLitpr =
apik+1- But from Lemma 12 it follows immediately that the numbers b; , = a,;; satisfy
this recursion. This completes the proof. 0J

For £ = 0 we have G(p, k) = 1 and hence we obtain the following combinatorial identity
for Catalan numbers.

Corollary 12. For all p € N we have

> (1) (p B Z) tp—i =

i>0
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The last case we are going to treat here is the case when |m;| < 2 for all i. In this case
among all decompositions 7 of N into a union of intervals (with respect to the usual order
on N) satisfying the following condition: the intersection of every block of 7 with each M;
contains at most one element, there exists the unique decompositions, p say, containing the
minimal number of blocks. For a decomposition 7 of N into a union of intervals we write
p F 7 provided that each block of p is contained is some block of 7. Clearly, the number of
those 7 for which p F 7 equals 2/71=!, where |p| denotes the number of blocks in p. Let 7
be a decomposition of N into a union of intervals. Denote by f(7) the following number:

fo= 11 s

B— block in 7

where the product is taken over all blocks of 7. For A C N we write A x 7 if A is contained
in a block of 7.

Proposition 14. Assume that |m;| < 2 for all i and let p be as above. Then

Flmu, . m) = 3 (1)1 (7). 7)

pET

where the sum is taken over the set of all decomposition T of N into a union of intervals
satisfying p - 7.

Proof. Tt is easy to see that under the condition |m;| < 2 for all ¢ the expression for
F(mq,...,myg), obtained by reduction from Proposition 12, does not depend on the re-
duction process. Still the expression (7) will not coincide with this one in general. If all
|m;| = 1 then the validity of the formula (7) is obvious. So, we can use induction in the
number of 2-element blocks and assume that |m;| = 2. Then the recursion formula from
Proposition 12 gives the following:

F(mla sy M1, My Myt 1, - - - amk) =

=F(my,...,mi—1, 1,1, mipq1,...,mg) — F(my,...,mi—1,1) - F(1,miiq,...,mg).

Let M; = {l,1 4+ 1}, A be the block of p containing [ and B be the block of p containing
I+ 1. The ordered decomposition p’, which corresponds to M; U---U M;_ 1 U {l} U {l+
1} U M; 1 U---U My is obtained from p by gluing A and B. Hence, by induction,

F(my,...,mi—1, 1,1, miqq, .. my) = Z(—l)'THlf(T) = Z (=)l £ (7).

p'ET! pET,AUBXT

Denote by p; and ps the restrictions of p to {1,2,...,l} and {{ + 1,1+ 2,...,n} re-
spectively. Every 7, such that A and B are contained in different blocks, induces a pair of
decompositions: a decomposition 7' of {1,2,...,1} into intervals and a decomposition 7"
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of {{+1,1+2,...,n} into intervals. Moreover, p; F 7/, po = 7". Then, by induction,

F(ml,...,mi_l,l) F(l mMi41,...,MK) =

— (Z |7-H—1 ) ( |T”H‘1f(7_ )) —
prtT! p2t1"

= X 0.

pET,AUBYT
this completes the proof. 0

Corollary 13. Assume that |M)| = 2 and |M;| =1 fori # 1. Then F(1,...,1,2,1,...,1) =
t—tt .

We remark once more that the expressions, obtained in Propositions 13 and 14 do
not coincide with the result of the reduction provided by Proposition 12 in general. For
example, one sees that we often used the identity £; = 1 and hence have possibly lost a lot
of “trivial” factors in the formulae.
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