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Abstract

We show how several famous combinatorial sequences appear in the context of
nilpotent elements of the full symmetric inverse semigroup ZS,,. These sequences
appear either as cardinalities of certain nilpotent subsemigroups or as the numbers
of special nilpotent elements and include the Lah numbers, the Bell numbers, the
Stirling numbers of the second kind, the binomial coefficients and the Catalan num-
bers.

1 Introduction

An element, a, of a semigroup, S, with the zero element 0 is called nilpotent provided
that a* = 0 for some positive integer k. If, for some positive integer k, a; - ag---a; = 0
for arbitrary elements aq,...,a; € S, then the semigroup S is also called nilpotent and
the minimal possible £ is called the nilpotency degree of the semigroup S. For a finite
semigroup its nilpotency is equivalent to the nilpotency of all elements, [Ar, p. 179].

Up to (anti)-isomorphism, there exist exactly 4 semigroups of cardinality 2, and only
one of them is nilpotent. However, the proportion of nilpotent semigroups among all
semigroups with a fixed cardinality increases very rapidly. In [SYT] it is shown that, up to
(anti)-isomorphism, 99% of almost 2-10° semigroups consisting of 8 elements are nilpotent.
This shows that, for finite semigroups, nilpotency seems to be a very common property
rather than an exceptional one. And hence the existence of a zero element should be
even more frequent. Therefore the study of properties of nilpotent subsemigroups in the
semigroups containing 0 is a natural and important problem. Many papers by different
authors dedicated to this study have already appeared, see for example [Gar, GK2, GK3,
GTS, GM1, GH, MS, Sh, Su| and references therein.

In the case of finite semigroups the study of nilpotent elements and subsemigroups
naturally leads to interesting combinatorial problems. The present paper is dedicated to the
solution of several problems of this kind, which appear during the study of the symmetric
inverse semigroup ZS,, consisting of all partial injections from the set N = {1,2,...,n}
into itself, i.e. injections a : A — B, where A, B C N. The zero element in ZS,, is the
totally undefined transformation 0, that is, the unique transformation whose domain is the
empty set. It happens that many classical combinatorial number sequences, in particular,
the Lah numbers, the Bell numbers, the Catalan numbers and the Stirling numbers of the



second kind arise in relation to ZS, as the cardinalities of certain subsets (for example,
subsemigroups) which contain only nilpotent elements.

The paper is organized as follows: in Section 2 we collect some elementary combinatorial
results about ZS,, including the formula for the number of nilpotent elements with a given
defect. In fact, the latter is given by the signless Lah numbers. In Section 3 we describe
the maximal nilpotent subsemigroups of ZS,, and calculate the number of several classes
of subsemigroups. In some cases the result is given by the Bell numbers, in some cases in
terms of the Stirling numbers of the second kind, and in some cases just by the binomial
coefficients. In Section 4 we find a formula for the cardinality of a maximal nilpotent
subsemigroup of ZS,, among the semigroups of nilpotency degree k. With every such
subsemigroup we associate a certain polynomial with integer coefficients and the main,
very amazing, result states that the desired cardinality is obtained if one substitutes z* by
the Bell number B; in the standard expression for this polynomial. We finish the paper
with showing in Section 5 how the Catalan numbers appear in the context of nilpotent
elements in ZS,,. The semigroup ZS,, contains the semigroup ZQ,, of all order-preserving
injective maps, which is in fact an H—cross-section of ZS,,. Then the Catalan numbers give
the maximal order for nilpotent subsemigroups in ZQ,,.

We will try to use the standard notation and the book [Ai] as the general reference.
For AC N we let A= N\ A denote the complement of 4 in N.

2 Preliminary combinatorics

From the definition of ZS,, it follows immediately that every element a € ZS, is uniquely
determined by its domain dom(a), its range im(a) and a bijection from dom(a) to im(a).
Hence (se also [Ho2, Exercise 5.11.3])
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The number rank(a) = | dom(a)| = |im(a)| is called the rank of a and the number def(a) =
n — rank(a) is called the defect of a.
For elements from ZS,, one can use their regular tableaux presentation

11 o ... 1k
a= o, . ,
(]1 J2 .- ]k)

where dom(a) = {i1,...,4} and im(a) = {ji,...,jx}- However, sometimes it is more
convenient to use the so-called chain (or chart) decomposition of a, which is analogous
to the cyclic decomposition for usual permutations. This notion probably began in [Mu]
(see also [Ho2, Exercise 5.11.7]) and we refer the reader to either these references or to
[GK1, Lil, Mu] for rigorous definitions. However, this decomposition is easy to explain
with the following example. The element
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has the following graph of its action on {1,2,...,10}:

1 = 7
T 4 3—-5—10 9—6 8,
4 + 2

and hence it is convenient to write it as a = (1,7, 2,4)[3, 5, 10][9, 6][8]. We call (1,7,2,4)
a cycle and [3,5,10] (as well as [9,6] and [8]) a chain of the element a. We remark that
chains of length 1 (here length means the number of elements in the chain) correspond to
those elements x € N, which do not belong to dom(a) Uim(a). It is obvious that def(a)
equals the number of chains in the chain decomposition of a.

Proposition 1. ([Hol, Lemma V.1.9]) The set E(ZS,) of idempotents in IS, is a semi-
group isomorphic to the semigroup B, = {A : A C N} with the intersection of sets as the
corresponding binary operation. In particular, |E(ZS,)| = 2".

Proof. a* = a if and only if a(a(z)) = a(zx) for each z € dom(a), which means a(z) = z for

each z € dom(a) since a is injective. At the same time for every A = {iy,4s,...,ix} C N
the element
o4 = 21 lg ... ’Lk
AT\ e e
is an idempotent in ZS,,. It is obvious that e4 - eg = eans. O

Proposition 2. The element a € ZS,, is nilpotent if and only if the chain decomposition
of a contains only chains. The number of nilpotent elements in IS, with the given defect
n!

k equals the signless Lah number L;l,k = F(z:i)

Proof. The first statement is obvious. To prove the second statement we observe that to
obtain the chain decomposition with defect &

(01,92, -« s By [Fmat1) Tmat2s - - s Bma) -+« Bmg_1+1> bmg_ 1425 - - - » by

from the permutation 41, 7o, ...,7, 0of 1,2, ..., n, it is enough to choose the ends i,,,, im,, - - -,
im,_, Of the first k—1 chains (as m) = n automatically). This can be done in (Zj) different
ways. Going through all permutations we will get the chain decompositions for all nilpotent
elements of defect k. Since the order of the chains is not important (because all chains
in a chain decomposition commute), every nilpotent will be counted k! times. Indeed, the
chains in each chain decomposition can be permuted in k! ways without changing the chain
decomposition (as a partial transformation of N) but each of these permutations of the
chains correspond to a different permutation of N, that is, k! permutations of NV give k!

repetitions of one chain decomposition. Hence the number of nilpotents of defect & equals

L;‘L,k = Z_:(Zj) O

Let a € ZS,,. Denote by [; the number of cycles of length 7 and by m; the number of
chains of length 7 in the chain decomposition of a. The vector (I1,...,l;my,...,my) is
called the chain type of a. Denote by s(n) the number of different cycle types for elements
in the symmetric group S, (which is equal to the number of conjugacy classes in S,,) and
put s(0) = 1.



Proposition 3. The number of different chain types for the elements in the semigroup
1S, equals Z s(k)s(n — k).

k=0
Proof. The term s(k)s(n — k) equals the number of those chain types, where the sum of
lengths of all chains is equal to k£, 0 < k£ < n. O

Proposition 4. The number of elements in S, of the chain type (l1,- .., lp;ma, ..., My),
n

where Z i(l; + m;) = n, equals
i=1
n!

n

Lt !
11« )

=1

Proof. All cycle and chain terms in a chain decomposition of ¢ commute. Hence, we can
choose a chain decomposition, which we call principal, constructed in the following way:
first we write down all cycles with respect to the increasing number of elements in these
cycles; and after this we write down the chains in the same way. We remark that a principal
chain decomposition for the element a is not uniquely defined, as the order of both, cycles
and chains, of a fixed length can be chosen in an arbitrary way and, moreover, the order
of elements (ay,...,ax) in a given cycle is unique only up to a cyclic permutation. We
say principal chain decompositions of a are different if they differ in one of these ways. In
particular, if (ly,...,0,,m1,...,my,) is the chain type of the element a € ZS,, then the

n

number of different principal chain decompositions of a equals ¢ = H(li! -

i=1
The construction above defines a natural bijection between the n! permutations of
1,2,...,n and the principal chain decompositions of the elements with a given chain type.
Dividing this number with ¢ we get the desired cardinality of the set of elements with a
fixed chain type. 0J

Corollary 1. The number of nilpotent elements in ZS,, of the nilpotency degree k equals

)3 .
’
.’L'l!.fg! cen .Tk_l!(xk + 1)'

(z1,22,..,xk) EA

where A = {(z1,72,...,7¢) € (NU{OPDF : 1 2, +2 29+ + k-2 =n — k}.

3 Maximal nilpotent subsemigroups

We start with the remark that for a semigroup, S, with the zero element 0 one can consider
two different types of nilpotent subsemigroups. The subsemigroups of the first type are
nilpotent subsemigroups of S containing 0, and thus, if 7" is such a subsemigroup, one has



Tk = 0 for some k > 1. The subsemigroups of the second type are subsemigroups of S
which are nilpotent as semigroups, but whose zero element can differ from 0. For such a
subsemigroup, T, one will have T% = {e} for some k > 1, where e is an idempotent in
S. Moreover, we always assume that e is not invertible, i.e. does not coincide with the
identity permutation. In what follows we will speak about the nilpotent subsemigroups of
the second type if the opposite is not explicitly stated (as for example in the second part
of Corollary 4, where we consider the nilpotent subsemigroups of ZS,, of the first type).

A nilpotent subsemigroup, 7' C ZS8,, is called mazimal if it is not contained in any
other nilpotent subsemigroup 77 C ZS,,, T' # T;. A nilpotent subsemigroup, T' C ZS,, is
called mazimal for degree k if the nilpotency degree of T equals k£ and T is not contained
in any other nilpotent subsemigroup 77 C ZS,,, T # T1, of nilpotency degree k. The next
statement is a natural generalization of the main result from [GK2].

Theorem 1. For every idempotent e € E(ZS,,) such that def(e) = k > 1, the semigroup
S, contains exactly k! maximal nilpotent subsemigroups containing e (and thus in which e
is the zero element). If dom(e) = {a1,...,ax}, then every such subsemigroup corresponds
to a permutation, by, ..., by, of ai,...,ar and has the following form:

Ty,,..p, = {m €IS, : dom(e) C dom(n);n(z) = z for all z € dom(e);
7(b;) = bj implies ¢ < j for all b;,b; € dom(7) \ dom(e)} .

All these mazximal nilpotent subsemigroups are isomorphic, their nilpotency degree equals
k, and their cardinality equals the k-th Bell number By.

Proof. 1t is obvious that nilpotent elements can contain cycles only of length 1, which
implies that if T is a maximal nilpotent subsemigroup of ZS,, containing e, then a(z) = x
for every a € T and every z € dom(e). In particular, a can be viewed as an element from
ZS(dom(e)). Now the description of such subsemigroups follows from the general theory of
nilpotent subsemigroups of transformation semigroups, see [GM2, Theorem 6] and [GM2,
Corollary 8.1].

Let T be a maximal nilpotent subsemigroup of ZS,, containing e. The chain decom-
position of an element, a € T, defines a partition of dom(e). It is obvious that this
correspondence between elements in 7" and partitions of dom(e) is bijective and hence
|T| = Byg. O

Corollary 2. The nilpotency degree of a nilpotent subsemigroup in ZS,, does not exceed n
and, for every k, 1 < k <n, IS, contains exactly (2)/‘&' mazimal nilpotent subsemigroup
whose nilpotency degree equals k.

Proof. This follows from Theorem 1 and the fact that ZS,, contains exactly (:) idempotents
of defect £. 0

As usual, we denote by S, ,,, the Stirling numbers of the second kind.



Corollary 3. Let T' be a mazimal nilpotent subsemigroup in IS, having nilpotency degree
k>1anda€T. Thenn—k <rank(a) < n and, for everym, n—k <m <n, T contains
exactly Sgn—m elements of rank m.

Proof. Let e be the idempotent of T. According to Theorem 1, we have T' = Ty, .,
where {by,...,bx} = dom(e). We define the linear order < on the set dom(e) as follows:
by <by <+ < by.

Since a € T, we know a(z) = z for all z € dom(e), hence rank(a) = m > n — k, and
since a* = e for some k > 1 and e is not invertible, we get that a can not be surjective,
so rank(a) < m. As we have already ssen, a containes n — k cycles of length 1, and, by
Theorem 1, these are the only cycles contained in a. Now ima contains n — m elements,
each of which forms a chain of length 1 (that is, lies in dom(e)) or is a start of a chain with
length at least 2. Thus, the chain decomposition of a contains n — m chains formed by
elements of dom(e), and a is completely determined by these chains. From the definition
of Ty, ...», We see that these chains are determined by unordered partitions of dom(e) into
n —m non-empty blocks. The number of such partitions certainly equals Sk ,_r,. Since the
linear order by < by < - -- < by on dom(e) is fixed, the elements in one block must increase
with respect to this order and thus can form only one chain. This completes the proof. [

Proposition 5. Let T' be a mazimal nilpotent subsemigroup in IS, of nilpotency degree
k < n. Then for any m, 1 < m < k, the cardinality |T™| of the subsemigroup T™ =
{a1...am : a1,...,a, € T} equals By_p41-

Proof. Let e € T be an idempotent. Since e is an idempotent and 7" is nilpotent, it follows
that for any @ € T we have ea = ae = e and a* = e for some k. It follows that for any
xz € dom(e) one has a(z) = z, and for any y ¢ dom(e) one has either y ¢ dom(a) or
a(y) # y. Hence, during the proof we will indicate only the action of a € T" on dom(e).

From Theorem 1 it follows that it is enough to consider the case, when dom(e) =
{1,2,...,k}, and T corresponds to the trivial permutation of 1,2, ... k.

Lemma 1. For b € T we have b € T™ if and only if the inequality b(z) > x + m holds for

all x € dom(b) N dom(e).

Proof. The necessity follows from the fact that ¢(z) > z + 1 for all ¢ € T and z €
dom(c) N dom(e).

Assume now that b = ( ;.1 ;.2 o ;.l > € T satisfies the condition of the lemma for
1 J2 .- i
some m. Then all the elements
oo B T e
Ul g+ o g+ )0 g +2 s g2 )
mt T\ ii4+m—-1 ... g4+m-—-1)""" 1 i
belong to T" and b,by...b,, =b. Hence b € T™. O
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Consider now the maximal nilpotent subsemigroup R C ZS&, of nilpotency degree
k —m + 1, which contains the idempotent ef; 3 . r—m+1} and corresponds to the trivial
permutation of 1,2,...,k —m + 1. By Theorem 1, we have that |R| = By_p,11. At the
same time, Lemma 1 guarantees that the maps

11l ... U 1 Io u
:R—>T™, S e . .
4 (]1 J2 .- ]l) <31+m—1 J2+m—1 ... ]H‘m—l)
and
Pt p2 --- Dr Y4 P2 Pr
ITm—)R, —>
¥ <q1 q ... qr) (ql—m—i-l @p—m+1 ... ql—m—i-l)
are both injective. Hence |T™| = |R| = By_m+1- O

Remark 1. The semigroups 7™ and R are not isomorphicif £ >4 and 1 <m < k — 1,
since they have different nilpotency degrees. Indeed, the nilpotency degree of T equals
[k/m] and the one of R equals £ —m + 1. For m = k and m = k — 1 the semigroups 7™
and R are obviously isomorphic.

Theorem 2. [GTS, Theorem 3] The group Aut(T) of automorphisms of the mazimal
nilpotent subsemigroup T' C IS,,, having nilpotency degree k > 2, is the elementary abelian
2-group of cardinality | Aut(T)| = 2B+-2.

For some k, 1 < k < n, let My,..., M, be an ordered collection of k arbitrary non-
empty disjoint subsets of N (i.e. M; < My < .-+ < M for some linear order <), and
M=M U---UMy. Set

T(Mi,...,My) ={m €IS, : M C dom(m);n(z) =z for all x € M;
x € M; and 7(z) € M; implies ¢ < j for all z € dom(7m) N M} .

We remark that for k =1 we get Ty, = {eg7 }-

Theorem 3. [GK3, Theorem 1],[GK4, Theorem 1] The semigroup T(Mj,..., My) is a
mazimal nilpotent subsemigroup of ZS,, for degree k. If the ordered collections My, ..., My
and Mj, ..., M; are different then T(My,..., M) # T(Mj,...,M};). Moreover, every
mazximal nilpotent subsemigroup T of IS, for degree k has the form T = T(M, ..., My)
for some ordered collection My, ..., My of non-empty disjoint subsets from N.

Corollary 4. Let ny denote the number of maximal nilpotent subsemigroups in IS, for
degree k. Then

=3 %(-1)1‘ (:1) (’;) (k=i =3 (Z) S K. (1)

m=k 1=0 m=k

k-1

(kK

In particular, S, contains g (—1)* ( ) (k —4)" = Spx - k! mazimal nilpotent subsemi-

i
=0

groups for degree k, whose zero element is 0.
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Proof. To prove the equality (1) we first choose an m-element subset, M = M; U- - - U M.
Then we can consider surjections ¢ : M — {1,2,...,k} and identify M; with ¢ 1(7),
which, summing over all m, gives the double summation in (1). Note that T'(Mj, ..., My)
is defined in terms of an ordered partition of M, not an unordered one. Hence, for every
unordered partition of M into k blocks, we can order these blocks in k! ways and this, after
summation, gives us the right hand side of (1).

If a nilpotent subsemigroup, T, of ZS,, contains 0, then M = dom(0) = N and hence
the number of such maximal nilpotent subsemigroups for degree £ is obtained in termes of
partitions of N. The latter corresponds to the m = n case above. O

Theorem 4. [GK4, Lemma 10] Let k > 2. The mazimal nilpotent subsemigroups Ty =
T(My,...,My) and Ty = (M, ..., M}) are isomorphic if and only if |M;| = |M]| for all i,
1< <k.

Corollary 5. The semigroup IS,, contains (Z) pairwise non-isomorphic mazimal nilpotent
subsemigroups for a fized degree k, 2 < k < n.

Proof. According to Theorem 4, the isomorphism classes of the maximal nilpotent sub-
semigroups for a fixed degree k, 2 < k < n, bijectively correspond to the solutions of
the inequality m; + ms + - -+ + my < n, where all m;’s are positive integers. The map
(my,...,mg) — {my, m; +ma,...,m;+ms+---+my} then gives a bijection between the
set of solutions to this inequality and the set of all k-element subsets in V. O

We remark that the number of pairwise non-isomorphic maximal nilpotent subsemi-
groups containing 0 for a fixed degree k, 2 < k < n, equals (Zj) ([GK4, Corollary 3]).

The nilpotency degree 2 corresponds to the nilpotent semigroups with zero multipli-
cation. The inner structure of such semigroups is quite poor and two such semigroups
are isomorphic if and only if they have the same cardinalities. Hence the statement of
Theorem 4 does not hold for maximal nilpotent subsemigroups of ZS,, having nilpotency

degree 2. Although it is quite easy to see that

ronami=" 3 () (™) @)

i=0
where m; = |M;|, i = 1,2, it is not very easy to determine how many of these semigroups
will be pairwise non-isomorphic. However, for a fixed zero element this can be done.

Proposition 6. [GK2, Theorem 5] IS, contains exactly [%] pairwise non-isomorphic

mazimal nilpotent subsemigroups for degree 2, whose zero element is an idempotent of
defect k.

4 Cardinalities of the maximal nilpotent subsemigro-
ups

From Theorem 4 and the equality (2) it follows that the cardinality of the maximal nilpotent
subsemigroup T'(My, ..., My) for degree k depends only on cardinalities m; = |M;| of the
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blocks M;, i = 1, ..., k. The nilpotent semigroups of nilpotency degree 1 satisfy T'=T"' =
e, where e is an idempotent, and hence contain only one element. This corresponds to the
fact that |T'(M;)| = 1 in the case k = 1. Let now |M;| = m;, i = 1,...,k. The vector
(my, ..., my) will be called the type of the semigroup T'(M, ..., My). If T (M, ..., My) has
type (my, ..., mg) we denote t(mq,...,mg) = |T(M, ..., Mg)|. In particular, t(m) = 1 for
all m > 1.

Lemma 2.

t(ml,...,mi_l +1,mi+1,...,mk) =

= t(mla ceey M1, ]-ami+1’ .. -:mk) —Mmj1- t(mla ceey M1, Mg, - -amk)-

Proof. We decompose the semigroup T = T(My,..., M; 1,{z}, M;;1,..., M) into two
sets: Ty ={reT :x¢n(M_1)}and o ={mr €T : v € n(M;_1)}. The set T} coincides
with T(Ml, ey Mi—l U {:E}, Mi—f—l; ceey Mk) MOI‘GOVQI‘, if Mi—l = {bl, ceey bmi—l}? the set T2
further decomposes into the disjoint union 75 = 73 U --- U Ty"!, where TJ = {1 € Ty :
m(b;) =z}, 1 < j < m,_;. For afixed j, with every m € T3 we can associate the element 7’
of the semigroup T3 = T'(M, ..., M;_1, M1, ..., My) in the following way: 7'(z) = 7 ()
for z # b; and 7'(b;) = (). Then the map 7 +— 7' from T3 to T3 is bijective. Hence, for
every j we get |TJ| = |Ts| = t(my, ..., mi_1,Mis1, ..., my). This gives

t(ml, 7 1,mi+1, . ,mk) = |T| = |T1| + |T2| =

= t(mla ceey, Mg + 1)mi—}—17 s amk) +miq - t(mla s My 1, My 1, - - - mk)
and completes the proof. O

For a polynomial, f(z) = ant™ + @pm_12™ 1 + -+ - 4+ a12 + ag, with integer coefficients
we set f(B) = @By + am1Bm-1 + - -+ + a1 By + ag, where By is the k-th Bell number.
Set [z]y = z(x — 1)(x — 2)...(z — k 4+ 1). The following lemma is obvious.

Lemma 3. Let f(z),g(z) € Zlz] and r € Z. Then (f + g)(B) = f(B) + ¢g(B) and
(rf)(B) =rf(B).

The following quite amazing result was first proved in [GP], however, we would like to
reprove it here because of the very poor availability of [GP] to the general audience.

Theorem 5. The cardinality t(my,...,my) of the mazimal nilpotent subsemigroup T =
T(My, ..., My) for degree k and of type (my, ..., mg) in IS, equals fm,...m,(B), where the
polynomial fr, . m, () is defined as follows: fom,, . mi(2) = []my [X]my - - - [X]my -

Proof. We prove the statement using induction in the sum m' of all m; # 1. If m' = 0,
then m; = 1 for all ¢ and the semigroup 7 has type (1,1,...,1). According to Theo-
rem 1, T is a maximal nilpotent subsemigroup and |T'| = By = f11,..1(B) for fi1,..1(z) =
[z]1[]: ... [x]; = z*. Thus the statement is true in the case m' = 0.



Since m’ can not be equal to 1, let us now assume that m’ > 2 and choose 7 such
that m; > 2. By replacing m;_; + 1 in Lemma 2 by (m; — 1) + 1 and using the inductive
assumption we get

t(ml,...,mi,miﬂ,...,mk) = t(ml,...,mi — 1,1,m,~+1,...,mk)—
- (ml - 1) : t(m17 ceey My — 1a mit1y---, mk) = fml;---;mi_lalymi+17---ymk (B)_
- (mz - ]‘) : fml;--'ymi_lami+la“'amk (B)'

The equality [z],, = (x — (m — 1))[z]m-1 = [Z]m_1[z]1 — (m — 1)[2];m_1 implies
fml,...,mi,mi+1,...,mk(x) - fml,...,mifl,l,m¢+1,...,mk (‘/I’l) - (mZ - 1) . fml,...,mifl,mi_*_l,...,mk (.Z')

Now the equality

t(mla ceey My, M1, -0 0, mk) = fml,...,mi,mi_,_l,...,mk (B)'
follows from Lemma 3. [

Corollary 6. Let iq,...,1 be a permutation of 1,...,k. Then
t(mil, Miyy oo vy mzk) = t(ml,mz, ceey mk)
Proof. This follows from Theorem 5 and the equality

[l']mil [x]m¢2 .- [x]mlk = [@]m [Zlms - - - [y

O

5 H—cross-sections, order-preserving nilpotents and
Catalan numbers

Let p be an equivalence relation on the semigroup S. A subsemigroup, 7', of S is said
to be a cross-section with respect to p provided that 7' contains exactly 1 element from
every equivalence class. Certainly, the most important are cross-sections with respect to
the equivalence relations, which are somehow related to the semigroup structure on S.
And here the primary candidates are the Green relations. Among the Green relations the
smallest one is the relation H. We recall that the elements a,b € S are contained in the
same H-class if and only if they generate the same right and the same left principal ideals,
that is, if {a}UaS = {b} UbS and SaU{a} = SbU{b}. In the semigroup ZS, the study of
‘H-—cross-sections naturally leads to the study of the subsemigroup ZO,, of those elements,
which preserve the natural order on NV, that is,

IO, ={m €IS, : z,y € dom(n) and z < y imply 7(x) < 7(y)}-

We remark that the zero element 0 belongs to ZO,,.
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Theorem 6. [Re, Section 2/,/CR, Theorem 3.2] ZO,, is an H—cross-section of ZS,,. More-
over, forn # 3 a subsemigroup, T', of IS, is an H—cross-section of ZS,, if and only if there
exists s € S, such that T =s '-ZO, -s.

From the definition of ZQO,, it follows immediately that every element in ZO,, is uniquely
determined by its domain and its range, and that for arbitrary subsets A, B C N such that
|A| = | B| there exists an element, 7 € ZO,, such that dom(7) = A and im(7) = B. Hence

wol-2 () - (7)

According to Corollary 2, the nilpotency degree of arbitrary nilpotent subsemigroups in
T0,, does not exceed n.

Theorem 7. [GM2, Theorem 7] TO,, contains exactly n! mazimal nilpotent subsemigroups
whose zero element is 0. Each of these subsemigroups has nilpotency degree n, corresponds
to a permutation, i1, ...,i,, of 1,2,...,n, and has the following form:

={r € 2O, : w(ix) = iy, tmplies m > k for all iy, € dom(m)}.

11,0 min

In particular, one can easily see that ilzn =T, i,NZ0O,. Hence, using Theorems 1
and 7, one gets the following:

Corollary 7. The map T — T NZQO,, from the set of all mazximal nilpotent subsemigroups
of ZS,, containing 0 to the set of all mazimal nilpotent subsemigroup of ZO,, containing 0
1S a bijection.

Lemma 4. For every nilpotent subsemigroup T C ZQO,, there exists a maximal nilpotent
subsemigroup T' C TO,, containing 0, such that |T| < |T"|.

Proof. Let e be the idempotent of 7. The set N forms a linearly ordered poset under
the natural order on N and the elements of dom(e) may appear anywhere in this poset.
Thus, under this order, dom(e) is partitioned into subsets Iy, ..., I, of N which in effect
are intervals of N and are separated by at least one element of dom(e). For 1 < ¢ < p we
denote Fy; = {m € ZO,, : dom(7r) Uim(m) C I,}. Clearly, F, is isomorphic to ZO;| in a
natural way.

Since every m € T' is order-preserving, and the intervals Ii,..., I, are separated by
elements of dom(e) which are fixed by 7, we know that each of Iy, ..., I, is invariant under
7. Hence the natural projection ¢, : 7 — 7|, is a homomorphism from 7" to F;. Moreover,
since all 7 € T act trivially on dom(e), the map

T — Fi X+ x F, T (p1(7), ..., pp(m))

is a monomorphism. Further, every projection ¢,(T) is a nilpotent subsemigroup in F, and
hence ¢,(T') is contained in some maximal nilpotent subsemigroup 7, C F,. According
to Theorem 7, T, corresponds to a permutation, 7, of the elements from I,. Consider the
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permutation 41, ..., i, of the elements from N, in which all elements from dom(e) remain
on their places and such that on each interval I, this permutation coincides with 7,. The
embedding 7" < F; x --- x F, induces an embedding T" < T} x --- x T}, and this direct
product can be embedded in 7" = T}, _; resulting |T'| < |T”| and completing the proof. [

1yeeey

Lemma 5. [GM2, Proposition 11] The semigroup Tln has the mazimal cardinality among
all mazximal nilpotent subsemigroups in ZQO,,.

Theorem 8. [GM2, Theorem 9] The mazimal cardinality for nilpotent subsemigroups of

T0,, equals the n-th Catalan number C,, = n%rl(?n")

In [GM2] this statement is proved using the recursion for the cardinalities of certain
subsets in Tl,_,_,n. In the present paper we give a more direct combinatorial proof, construct-
ing a bijection between the elements from Tln and the set Bin,, of all rooted binary trees
with n vertices. It is well known, see for example [Do] or [St], that |Bin,| = C,.

Proof. According to Lemmas 4 and 5, this maximal cardinality is |T1n| Let us now
construct a bijection between TI,...,’n and the set Bin,. For this we first choose a special
enumeration of the vertices for every binary tree I' € Bin,,, using the following algorithm.
To number the vertices of I" we make a list of binary trees, where initially the list contains
only I'. Now let us assume the first k& vertices of I' are already numbered. We take the
first tree I'; from the present list (I'y,...,T',) and assign the number k£ + 1 to its root.
After this we add the left subtree I';; of I'; (if it is non-empty) to the end of the list and
substitute I'y with the right subtree I'; , of I'; (if it is non-empty). If the tree I'; , is empty,
we delete I'y. In this way we get a new list (I';,,I's, ..., I'p,, I'1 ), where the trees I'y, Ty
are omitted in the case when they are empty. After this we go to assigning the number
k + 2. For example, at the satrt, 0 vertices are numbered and I" is the only tree in the list,
so 1 is assigned to the root of I'; and the list (I') is substituted by (I'y,,I'1;), where the
trees I'; , I'y; are omitted in the case when they are empty.

From now on we will use vertexr x instead of vertex with number x. Moreover, we will
consider a binary tree as an oriented graph, in which from every vertex we have a “left” and
a “right” arrow to the root of the respective left or right subtree correspondingly, provided
that this subtree is not empty.

To every I' € Bin, we can associate a partial map, nr : N — N, where np(z) = y if
and only if I' contains a “left” arrow from z to y.

For every m € Tl,...,n we construct the oriented graph I'; in the following way: the set
of vertices is N; there is a “left” arrow from z to y provided that 7(z) = y; and there is a
“right” arrow from z to x + 1 provided that z + 1 ¢ im(7).

The statement of the theorem now follows from the following two lemmas and the fact
that the sets Tln and Bin,, are finite.

Lemma 6. The map ¢ : ' — np from Bin, to Tln 1S injective.

Proof. Obviously, nr € ZS,,. From the algorithm of the vertex numbering it follows im-
mediately that 7r(z) > x and thus np € T14,. . If £ < y, then, during the numeration
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of the vertices in I', the left subtree of the subtree with the root x appears in the list of
trees earlier than the left subtree of the subtree with the root y. Hence 7 (z) < 7r(y) and
hence m € ZO,,. Therefore mp € ZO, NT1 5., = Tln

For the vertex z of the tree I we set I(x) = 1 provided that the subtree with the root x
has a non-empty left subtree and I(z) = 0 otherwise. We define the “right” function r(z)
analogously.

Assume now that the trees I' and I” are different. Choose the minimal & for which
(l(k),r(k)) # (I'(k),r"(k)). Assume that [(k) # I'(k). Without loss of generality we can
assume that [(k) = 1 and I'(k) = 0. Then k£ € dom(nr) and £ ¢ dom(7r), which implies
r 7é .

Now assume that r(k) # r'(k). Without loss of generality we can assume that r(k) = 1
and 7/(k) = 0. Then the tree I contains a “right” arrow from & to k+1 and k+1 ¢ im(7r),
since it is not possible that a vertex is terminal for a “right” and a “left” arrow at the
same time.

In the list of subtrees, which is formed during our process of numbering the vertices
in a binary tree, all subtrees, except, possibly, the very first one, are left subtrees of the
corresponding subtrees. Hence in the case r'(k) = 0 the number k£ + 1 is assigned in I to
the root of some left subtree and k£ + 1 € im(7r/). Hence 7r # 7 is this case either.

This proves that the map ¢ is injection and completes the proof of the lemma. O

Lemma 7. The map ¢ : 7 — I from Tl,_,_,n to Bin,, s injective.

Proof. From the definition of I';; it follows immediately that it is not possible that at the
same time a vertex is terminal for both a “right” and a “left” arrow. Moreover, if x # 1,
then there is at least one arrow from a vertex with a smaller number, terminating in z.
Hence, there is an oriented path from 1 to arbitrary vertex and thus I', € Bin,. From the
definition of ¢ and v it now follows that 7 = 7 and hence 1 - ¢ (composition from the
left to the right) is the identity on Tln Therefore 1) is injective. O

0

Remark 2. Catalan numbers as cardinalities of some transformation semigroups appeared
in [Hi]. In [Hi, Theorem 3.1] it is shown that C,, is equal to the cardinality of the semigroup
Cn of all order-preserving, decreasing, and everywhere defined transformations on N (that
ismaps f : N — N satisfying f(i) < f(j) foralli,j € N, i< j,and f(i) <iforalli € N).
Although the semigroups Tl,...,n and C, are not isomorphic (the first one is nilpotent and
the second one contains 2"~! idempotents), one can construct a bijection between these
two sets in the following way (this also gives an alternative proof of Theorem 8). The
1 2 ... n—1 n
n n—1 ... 2 1

C,, onto the semigroup C, of all order-preserving increasing transformations of N. With

permutation o = ( ) defines an isomorphism a — o ‘ac of

a = ( ! 2 M) e C, we associate a partially defined map ¥(a) : N — N, such

that x ¢ dom.({ﬁl(a))n if and only if a(x) = z or a(z) = a(x — 1), and ¥(a)(z) = a(x)
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otherwise. By a (quite long) direct computation one can check that 1 : C, — Tln is a
bijection.

Proposition 7. The mazimal semigroups among subsemigroups from ZO,, containing 0
and having zero multiplication (i.e. of nilpotency degree 2) have cardinality (Z), where 0 <
k < n. The number of mazrimal subsemigroups with the zero multiplication of cardinality

(%) equals 2(3) if n # 2k and (}) if n = 2k.

Proof. From [GM2, Theorem 7] it follows that every maximal subsemigroup with zero
multiplication in ZO,, has the form

Ty = {m € IO, : dom(r) C M,im(r) C M},

where M C N and M # &, N. Every element 7w € ZO,, is uniquely determined by dom()
and im(7), and hence there is a natural bijection between the elements from 73, and pairs
(A, B) of subsets such that A C M and B C M, for which |A| = |B|. Let now |M| = k.
Then for every k-element subset K C N we have |M \ K| = |K N M| and for every pair
A C M, B C M such that |A| = |B|, the set (M \ A) U B contains exactly k elements.
Therefore we get |Ty| = (}) in the case |M| = k.

To prove the rest it is enough to observe that |Th| = | T/ O
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