L— and R—cross-sections in ZS,,

Olexandr Ganyushkin and Volodymyr Mazorchuk

Abstract

We classify cross-sections of the £ and R Green’s relations on the finite symmetric
inverse semigroup ZS,, determine which of them are isomorphic, and study their
disposition with respect to the #H—cross-sections of ZS,,.

1 Introduction

Let p be an equivalence relation on a semigroup S. A subsemigroup 7' C S is called
a cross-section with respect to p provided that 7' contains exactly 1 element from every
equivalence class. From an algebraic point of view, the most interesting cross-sections are
those that arise from equivalence relations associated with the structure of the semigroup
S in question. Foremost among these relations are Green’s relations on S.

The cross-sections with respect to the H— (L—, R—, D—, J—) Green’s relations will be
called H- (L—-, R—, D-, J-) cross-sections in the sequel. For the full inverse symmetric
semigroup ZS, of all (possibly, partial) injections of the set N = {1,2,...,n} into itself
the first example of an H—cross-section was constructed in [R] and later in [CR] a complete
description of all H—cross-sections for ZS,,, was obtained (the characterization provided in
[CR] is for n # 3, but clearly a complete description of all H—cross-section of ZS3 is an
easy calculation exercise).

In the present paper we describe all £L— and R—cross-sections of ZS,,. In contrast with
‘H—cross-sections, different £— (R—) cross-sections are not isomorphic in general. In the
paper we give an isomorphism criterion for two different £— (R-) cross-sections and count
both the number of different £— (R-) cross-sections of ZS,, and the number of those cross-
sections, which are pairwise non-isomorphic. In particular, the last number is equal to the
number p, of different partitions of the positive integer n into a sum of positive integers,
if the order of summands is not important. We also count the number of £- and R-
cross-sections, contained in a given H-cross-section, and the number of H-cross-sections,
containing a given £— (R—) cross-section.

We would like to finish this introduction with the following two open problems, the
solution of which would naturally complete the study, originated in [CR], and continued
in the present paper.

Problem 1. Describe all D— (=T ) cross-sections of the semigroup ZS,, and give for them
an isomorphism criterion.



Problem 2. Describe all D- (=J ) cross-sections of the semigroup ZS,, which consist of
tdempotents, and give for them an isomorphism criterion.

The paper is organized as follows. We collect all necessary preliminaries in Section 2.
Section 3 is dedicated to the construction and classification of all R— and L-—cross-sections
in ZS,,. In Section 4 we describe the disposition of the R— and L—cross-sections with respect
to the H—cross-sections. Finally, in Section 5 we determine, which R~ (£-) cross-sections
are isomorphic.

After the paper was submitted that authors were informed that an analogous description
of R—and L- cross-sections of ZS,, has been recently obtained by by H.Yang and X.Yang,
[YY], using quite different methods.

2 Preliminaries

For a € ZS,, we denote by dom(a) and im(a) the domain and the image of the element a
respectively. The number rank(a) = |dom(a)| = |im(a)| is called the rank of a, and the
number def(a) = n — rank(a) is called the defect of a. The identity map idy : N — N is
the unit element of ZS,, and will be denoted by e.

For an element, a € ZS,,, one can use the usual tableaux presentation

7:1 2.2 ik
a= S . ,
(]1 J2 - ]lc)

if dom(a) = {i1,%2,...,i} and a(i,) = j, r = 1,2,...,k. However, it is often more
convenient to use the so-called chain decomposition of a, which is an analogue of the cyclic
decomposition for the usual permutations. We refer to [GM, L] for details, and explain
this decomposition on the following example. The element

) € ISy

(12345 709
“\745110 26

has the following graph of the action on {1,2,...,10}:

1 —» 7
T 4 3—5—10 9—6 8,
4 + 2

and hence it is convenient to write it as a = (1,7, 2,4)(3, 5, 10][9, 6][8]. We call (1,7,2,4) a
cycle and [3,5,10] (as well as [9,6] and [8]) a chain of the element a. By the length of a
chain we will mean the number of elements in this chain. For example, the chain [3, 5, 10]
has length 3. We remark that chains of length 1 correspond to those elements x € N, which
do not belong to dom(a) Uim(a). It is obvious that def(a) equals the number of chains
in the chain decomposition of a. If 1 < p,q < k, then the chain [iy, s, ..., 7, is called a
beginning and the chain [ig, 9441, - - ., %] is called an ending of the chain [iy, iy, ..., 4|. For
example, [3,5] is a beginning and [5, 10, 7] is an ending of the chain [3, 5, 10, 7].
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We will multiply the elements in ZS,, from the left to the right, that is, (ab)(z) = b(a(x))
for all z € dom(ab). If M C ZS, is an arbitrary non-empty set, we denote by (M) the
semigroup, generated by M.

It is well-known (see for example [GM]) that Green’s relations on ZS,, can be described
as follows:

e aRb if and only if dom(a) = dom(b);

e aLb if and only if im(a) = im(b);

e aHb if and only if dom(a) = dom(b) and im(a) = im(b);
e aDb if and only if aJb if and only if rank(a) = rank(b).

Fori =0,1,...,n we denote by D; the set of all elements x € ZS,, satisfying rank(z) = i.
The decomposition ZS,, = Dy U - -- U D,, is the decomposition of ZS,, into D—classes.
From [R] it follows that the semigroup

IO, ={a €18, : x < yimplies a(z) < a(y) for all z,y € dom(a)}

is an ‘H—cross-section in ZS,,. It is shown in [CR] that for n # 3 a subsemigroup, H C ZS,,
is an H-cross-section of ZS,, if and only if H is S,-conjugated with ZO,,. This can be
stated as follows.

Theorem 1. For every linear order < on the set N the semigroup
H(<)={a €IS, : <y implies a(x) < a(y) for all x,y € dom(a)}

s an H-cross-section in LS,,. Moreover, if n # 3 then every H—cross-section in S, has
the form H(<) for some linear order < on N.

3 Description of £L— and R—cross-sections in ZS,,

Since for a,b € ZS, the condition aRb is equivalent to the condition dom(a) = dom(b),
then the equalities a = b and dom(a) = dom(b) are equivalent for elements a,b from an
arbitrary R—cross-sections 1" of ZS,,. We will frequently use this fact in the paper.

Lemma 1. Let T be an R—cross-section of ZS,,. Then ¢ ¢ (T'\{c}) for every c € TND,_;.

Proof. We show that if c € TN D,,_1, a,b € T, and ¢ = ab then ¢ = a or ¢ = b, from
which the lemma follows. This is clear if a = e or b = e, and hence we can assume that
a # e and b # e. Since def(c) = 1, def(a) > 0 and def(b) > 0, the equality ¢ = ab implies
def(a) = def(b) = 1. But this means that dom(a) = dom(ab) and hence a = ab implying
¢ = a. Hence the equality ¢ = ab always means that at least one of the elements a and b
is equal to c. O



The statement of Lemma 1 means that every system of generators of the R-—cross-
section T" must contain T'N D,,_;. It is now natural to ask what this intersection can look
like.

Lemma 2. Let T be an R—cross-sections of ZS,, and a € TN D,_1. Then the chain de-
composition of a contains exactly one chain, say of length k. Moreover, this decomposition
also contains n — k cycles of length 1.

Proof. The first statement follows from the equality def(a) = 1, and the second one from
the equality dom(a*) = dom(a**?). O

Fork=1,...,nlet ap =[1,2,...,k](k+1)...(n).
Lemma 3. a;- ay = ax_1 - a; for every l and k with k <.

Proof. A direct calculation shows that for £ = 0(mod 2) one has
ap-ap = Qg—1 * Q] = [1,3,5,...,k—1][2,4,6,...,/€,k+1,k+2,...,l](l+1)...(n),
and that for ¥ = 1(mod 2) one has

al-ak:ak,l-al:[1,3,5,...,k,k+1,k+2,...,l][2,4,6,...,k—1](l+1)...(n).

U
Corollary 1. Every element a of the semigroup {(ai, as, - .., a,) can be written in the form
a=aay®...a%, where oy, g, ..., 0, > 0.

Corollary 2. One has af = a1 - ag’l for allaa > 1 and k > 1.

Proof. The elements a1 and ay, act in the same way on elements from the set N\{k—1, k}.

If @ > 1 one has k — 1,k & dom(a$) and k — 1,k & dom(ay_1 - af™"). O
Corollary 3. Every element a of the semigroup (a1, as, - .., a,) can be written in the form
a=afay?...a%, where oy € {0,1} for alli=1,2,...,n.

Proof. Follows from Corollary 1, Corollary 2 and the equality a? = a;. O

Lemma 4. Let 1 <11 < iy <--- <1 <n. Then

0 a o — 1 2 11— 1 n+1 ... 19 — 1
ne O\ 14k 24k ... =14k ii+k ... 2—2+k
19+ 1 cee =1 4 +1 .00n
(here in the upper line the elements iy, is,...,ix are omilted and in the lower line the
elements 1+ k,2+ k,...,n are just written in a natural order).



Proof. Direct calculation. O

Corollary 4. For 1 < 4; < iy < -+ < i < n one has that dom(a;,a;, ...a;,) = N\
{1,149, ..., ik} and im(a, a;, ... ;) = N\ {1,2,...,k}.

Corollary 5. The semigroup S1 = {a;, 1 < i < n) has the following presentation: {(a;,1 <
i<n:al=a1;6; =ap_1 -, k=2,... 050 a = ag—1 -, 1 <k <l <n).

Proof. Set So = (%, 1 <i<n: 22 =x1;22 = Tp—1 - Tp, k= 2,..., 0T Ty = Tp—1 - Ty, 1 <
k <1 < mn). Then the natural map ¢ : So — Si, ¢(x;) = a; is a homomorphism according
to Lemma 3 and Corollary 2. But it follows from Corollary 4 that |S;| = 2" — 1 and by
the same arguments as in the previous lemmas one computes |Ss| = 2™ — 1. This implies
Sl ~ SQ. O

Corollary 6. The semigroup K, = {a1,as,...,a,) U{e} is an R—cross-section of IS,

Proof. 1t follows from Corollaries 3 and 4 that for every subset A C N the semigroup K,
contains exactly one element a such that dom(a) = A. Hence K, contains exactly one
element from every R—class of ZS,,. O

Lemma 5. In the semigroup K, the inequality "' # z™ has the unique solution a,,.

Proof. Tt follows from Lemma 2 that the inequality "' # ™ is equivalent to the existence
of a chain of length > n in the chain decomposition of the element z. An element of K,
satisfies the last condition if and only if it has defect 1 and does not have any fixed point.
From Corollary 3 and Lemma 4 it follows that a, is the only element of K, satisfying these
conditions. O

Lemma 6. Let T be an R—cross-section of IS,. Assume that T contains the element
a=ar=1[1,2,...,kl(k+1)...(n). Let b € TN D,_1 be such that b(l) = | for some I,
1<1i<k. Thenb(z)==x forallz, | <z <k.

Proof. Without loss of generality we can assume that [ is the minimal number such that
b(l) = I. Consider the set {z : | <z < k and b(x) # =} and assume that it is not empty.
Let p be the maximal element in this set. We consider the following two cases:

Case 1. p € dom(b). Then dom(b) = N\ {p}, and hence dom(ba*~?) = dom(a*—P*!) =
N\{p,p+1,...,k}. Thus ba*=? = a*P*'. But ba*P(l) =l+k—p #l+k—p+1 =a*P+1(]).
Therefore this case is not possible.

Case 2. p € dom(b). Set b(p) = g # p and assume that the length of the chain
in the chain decomposition of b equals m. Since b(p) # p, we get that p belongs to the
chain of b, according to Lemma 2. This implies that for the element ™, which is in fact
an idempotent, we have p,q ¢ dom(b™). Set A = dom(a*), B = dom(b™), C = AN B
and A, = A\ C. All the elements of the set A; belong to the chain of the element b
and hence im(b™) N A; = @. Moreover, all elements from {1,2,...,1 — 1} belong to the
chain of the element b as well. Thus im(b™) C {l,{ + 1,...,k} UC. This implies that
im(b™ - a?') C {p,p+1,...,k} UC C dom(b). From this inclusion and the obvious
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statement that im(z) C dom(y) implies dom(z) = dom(zy) one immediately gets that
dom(b™ - a? ') = dom(b™ - a?* - b) and hence b™ - a? ' = b™ - aP ' - b. But

(B™ - a”)(1) = a7 (1) = a” (D) =p # g =b(p) = (" - a”" - b)(1).

Hence this case is not possible either.
It follows that {z : | <z < k and b(z) # x} = @ and the statement is proved. O

Lemma 7. Let T be an R—-cross-section of IS,, and a,b € T N D,,_,. Assume that the
chains of a and b have at least one common element. Then one of these chains is a
beginning of the other one.

Proof. Without loss of generality we can assume that a = [1,2,...,k](k+1)...(n). Let
A={1,2,...,k}, B be the set of all numbers from the chain of the element b and C = ANB.
From Lemma 6 it follows that C = {1,2,...,m}, where m < k. Moreover, if some
x € N\ A takes the position in the chain of b before some element, say y € C, then from
a(xz) = z and Lemma 6 one gets that a(y) = y, which contradicts the choice of y. Hence
b=1T[i1,%2, - yim,J1,---,J1)(f)--.(g), where iy,49, ..., 14, is a permutation of 1,2,... m.
Let us assume that (i1,49,...,%,) # (1,2,...,m). Then there exist elements u,v,p, q €
{1,2,...,m} such that i, = u, i, = v, u < v, p > ¢. This implies " *(u) = v, ¥ I(v) = u
and (a*"% - b*"9)(u) = u. For the element ¢ = @’ % - b”~7 there exists ¢ such that ¢’ is
an idempotent. Clearly, v € dom(c') and ¢'(u) = u. Moreover, dom(c!) C dom(c) C
dom(a). Now c¢* = ¢! implies that dom(c?) = im(c!). Hence dom(c!) = dom(c - a) and
thus ¢! = ¢! - a. But the last equality is impossible for c¢!(u) =u #u+1= (' - a)(u).
Therefore (i1,49,...,%m) = (1,2,...,m) and b = [1,2,...,m,j1,...,5|(f)---(g9)- To
complete the proof it is now enough to show that either £k = m or [ = 0. Assume that this
is not the case, that is, £ > m and [ > 0. We remark that {m—+1,...,k}n{j,...,n} =9,
that a acts as the identity on all elements from B\ C = {ji,..., 7}, and that b acts as the
identity on all elements from A\C = {m+1,...,k}. This implies that k, j; ¢ dom(ab) and
k,j; ¢ dom(ba). Since def(ab) < 2 and def(ba) < 2, we have that dom(ab) = dom(ba) =
N\{k, ji} and ab = ba. But (ab)(m) = m+1 # j; = (ba)(m). This contradiction completes
the proof of the lemma. O

Let now N = M;UM,U- - -UM,, be an arbitrary decomposition of N into a disjoint union
of non-empty blocks, where the order of blocks is not important. Assume that a linear
order, mi, mb, .. m"M » is fixed on the elements of the block M; for alli = 1,2,..., k. The
decomposition N M1 UMQU ‘UM, together Wlth a ﬁxed hnear order on every block will

be denoted by {Ml, Mg, .. Mk} The notation {Ml, MQ, .. Mk} * {Pl, P2, . Pl} then
means that either the decomp051t10ns N=MUMU---U Mk and N =P U P2 -U Py
are different or there exists a block on which the fixed linear orders are different.

For every pair ¢,j, 1 < ¢ < k, 1 < j < |M,|, we denote by a;; the element in
D, 1, containing the chain [m}, ms,.. .,m},], which acts as the identity on the set N\

— —
{mi,mi, ... ,mj}. We denote by R(Ml,Mg, ..., M}) the semigroup (a;; : 1 <i<k,1<
J < |Mif) U{e}.



Theorem 2. For an arbitrary decomposition N = My U MsU---U M and arbitmry linear
orders on the elements of every block of thzs decomposztzon the sengroup R(Ml, MQ, cee ]\_jk)
is an R Ccross- sectzon ofIS If {Ml,MQ,.. Mk} # {Pl,PQ, . Pl} then one has that
R(Ml,MQ, .. Mk) + R(Pl, P2, .. Pl) Moreover, every R-cross-section of TS, has the

form R(Ml, Mz, .. Mk) for some decomposition N = MiUM,yU---U M, and some linear
orders on the elements of every block.

Proof. Every block M;, i =1,2,...,k, is invariant with respect to the action of the semi-
- = =
group R(My, My, ..., My). Moreover, the only generators, which act identically on N \ M;

are the elements a;;, 1 < j < [M;[. Hence R(]\Zf)l,]\%,...,]\z;k) = Ry X --- X Ry, where
Ri={a;; : 1<j<|M;|yu{e},i=1,...,k. The map a; — a;;, 1 < j < |M;|, induces
a natural isomorphism of the semigroup Ky, from Corollary 6 and the semigroup R;.
This isomorphism is coordinated with the actions of Ky and R; on {1,2,...,|M;|} and
M; respectively. This allows one to identify Ry x --- x Ry with Ky X --- X Kpy| as
the semigroups of partial transformations of the set V. As Ky, is an R-cross-section of
IS, we get that |K|ay, | = 2™ and

- = —
\R(M1,M2,---,Mk)| — |K|M1|\ X eee X |K|Mk\| — 2\M1\+...+\Mk| —9n

- = —
If f=1(f,.--,fx) and g = (g1,---,9x) are different elements from R(M;, My, ..., My),
then f; # g; for some i. Hence dom(f;) # dom(g;), according to Corollary 6. But
dom(f;) = dom(f) N M; and dom(gz) = dom(g) N M;. This implies dom(f) # dom(g).

ﬁ.
Therefore different elements from R(Ml, Mg, ..., My) have different domains and thus be-
long to different R-classes. Since the number of different R-classes in ZS,, is exactly
- — - = —
" = |R(Miy, Ms, ..., M)|, we get that the semigroup R(M;, My, ..., M) is an R—cross-
section of ZS,,. This completes the proof of the first part of our theorem.
To prove the second statement we consider for every element x € N its orbit orb(x) =

- = —

{a(z) : a € R(My,Ms,...,M;) and z € dom(a)}. Then the blocks Ml,...,M;c are
%

maximal orbits with respect to inclusions. Hence the equality R(Ml,MQ, o My) =

- = —
R(Py, P, ..., P) implies that the decompositions N = M;U---UMy and N = P,U---UP,
coincide (as unordered decompositions). Further, the semigroup R; is exactly the set of all

— —

those elements from R(M, ]\7}2, ..., My), which act identically on N\ M;. Since R; = K ),
we can apply Lemma 5 and get that the inequality z!™il=1 % /™l has the unique solution
a=[mi,..., mei‘] in R;. This uniquely defines the linear order on the elements of M; and
proves the second statement of the theorem.

Let now R be an R-cross-section of ZS,,. By Lemma 7 the chains of two arbitrarily
chosen elements from RN D,, ; either are disjoint or one of these chains is a beginning of the
other one. Then the chains of the elements from RN D,, ;, which are not proper beginnings
of any other element from R N D,, ; define a disjoint family M, ..., Mj of subsets of V.
Moreover, each such chain defines a natural linear order on the corresponding M; in the

7



following way: the chain [z1, ..., x| defines {z1,..., 2} with the order z1,..., z,. For
every x € N there exists a« € RN D,_; such that dom(a) = N \ {z}. This means that x
belongs to the chain of @ and hence x belongs to some M;. Hence R defines a decomposition
N = MiU- - -UMj of N. From the construction of this decomposition it follows immediately

- = —
that RN D,y = R(M;, M>, ..., M) N D,_; and hence

- = — - = —
R D (R(My, My, ..., My) N Dy_1) U{e} = R(My, My, ..., My).

Since all R—cross-sections of ZS,, have the same cardinality 2" we finally get the equality
- = —
R = R(M;, M, ..., M) completing the proof. O

The involution a — a~! interchanges R— and L—classes in every inverse semigroup.

Clearly, this involution also maps L-cross-sections to R—cross-sections and vice-versa.

Hence, dualizing Theorem 2, one immediately gets the description of the L£-cross-sections

in ZS,,. To formulate this theorem it is convenient to introduce the following notation.
For a subset, M; C N, with the fixed linear order m}, mj, .. m‘iMi‘ on its elements we

denote by b; ; the element from D,,_;, which has the chain [m mﬁl, ... ,mei‘] and acts as
the identity on the set N\ {m},m},,,..., mei‘}. For a decomposition, N = M, U---U M,
and fixed linear orders on all blocks we define the following semigroup:

—

e

—

- =
We remark that the involution a — o' sends R(M;, M, .. .,M ) to L(Ml, Mz, ooy M),
where M denotes the order on M;, which is opposite to the order M

Theorem 3. For an arbitrary decomposition N = My U MsU---U My and arbitmry linear
orders on the elements of every block of thzs decomposztwn the sengroup L(Ml, Mg, een, ﬁk)
i8 an [, —CT0SS- sectwn ofIS If {Ml,Mg,.. Mk} + {Pl,Pg,.. Pl} then one has that
L(Ml,Mi, .. Mk) ;é L(Pl,Pg, .. Pl) Moreover, every L—cross-section of IS, has the

form L(Mj, Mg, .. Mk) for some decomposition N = My U MyU---U M, and some linear
orders on the elements of every block.

“n!(n—1
Corollary 7. The semigroup ZS,, contains exactly Z % (Z 1) different R— (L—) cross-
k=1~ N
section.

Proof. 1t is enough to prove the statement for R-—cross-section. Partition the set of all

R—cross-sections R(]\_jl, ]\7.;2, el ]\_jk) into n disjoint classes with respect to the number &
of the blocks in the corresponding decomposition N = M; U My U ---U M, of N. For a
fixed k consider an arbitrary permutation, iy,...,%, of 1,2,...,n, and a (k — 1)-element
subset, {j1,...,jk-1}, of {1,2,...,m —1}. We can assume that j; < jo < --- < jg_1. This
defines a decomposition of N into k blocks My = {i1,...,%;,}, Mo = {441,585}y -5
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My = {ij,_,41,...,in} together with linear orders on these blocks. Since the order of

- = —
the blocks is not important for R(My, My, ..., My), we get that each R-cross-section is
counted k! times. Therefore we have exactly ”'(Zj)% different R—cross-sections for a
fixed k. Summing this over all £ we get the necessary statement. 0J

Corollary 8. The only subsemigroup of IS,,, which is an R— and an L-cross-section at
the same time is the semigroup E(IS,) of all idempotents of IS,

Proof. Let R = R(]\Z;lj\z;g, ceey ﬁn) be an R-cross-section. It follows from Lemma 4 that
for a fixed linear order, m!, ..., m‘iMi‘, on the elements of the block M;, the conditions a € R
and | dom(a) N M;| = 1 imply im(a) N M; = m‘iMi‘. Hence, the necessary condition for R to
be an L-cross-section as well is that all blocks M; contain not more than 1 element. From
the other hand one can easily check that

R{IH2},..., {n}) = L{IH2}, ... {n}) = B(TS,).
This completes the proof. O

The referee has remarked that the statement of Corollary 8 also follows from the easy
observation that if |M;| > 2 then a;; # a;2 € M; are L-related, since they have the same
image.

Corollary 9. The semigroup E(R), consisting of all idempotents of the R—cross-section
— —

_).
R = R(My, My, ..., My), is a lattice with respect to the natural partial order on IS,.
This lattice decomposes into a direct product of k chains of lengths |M|, |Ms|,..., | M|
respectively.

Proof. That E(R) is a semigroup follows from the fact that ZS,, is inverse.

For a set, M, a linear order, my, ..., my, on the elements of M, and a number r,
0 < r < |M]|, we denote by M" the set {mnr—rt1, M|pt|—r+2,---,Mp}- In particular,
M° = @. From Lemma 4 and Corollary 4 it follows that the element a € R is an idempotent
if and only if dom(a) = M{' U---U M;* for some vector (ry,...,r;), where 0 < r; < |M;]
for all 1 < i < k. It is easy to check that the map a — (r1,...,7%) is an isomorphism of
the poset E(R) onto the poset P = {(ry,...,rg) : 0 < r; < |M;| forall 1 < i < k} with
the partial order, defined as follows:

(riy ... ) < (rf,...,rp) ifand only if 7, < 7} foralli=1,...,k.

It is obvious that P is a lattice and that P is a direct product of k& chains of lengths | M|,
|Ms,..., |Mj| respectively. O



4 Relation between R— (L—-) cross-sections and H—
cross-sections

To proceed we need a more detailed result about the structure of H—cross-sections in ZS,,.

Lemma 8. Let H(<1) and H(<3) be two H-cross-sections of the semigroup IS,,. The
semigroups H(=<1) and H(<3) coincide if and only if the linear orders <; and <o are
either equal or opposite.

Proof. The sufficiency of this condition is obvious. To prove the necessity we assume that
the linear orders <; and < are neither equal nor opposite. Then there exist the elements
z,y,z € N such that x <1 y <; z and either x <5 y and z <5 y or ¥y <o z and y <5 2. In

both cases the element ( z Z > belongs to H(=<1) and does not belong to H(<3). Hence
H(<1) # H(<2). O

- = —
Lemma 9. Assume that the R—cross-section R = R(My, My, ..., My) is contained in the
‘H-cross-section H = H(<). Then the following statements hold:

1. The elements from every block M; form an interval of the linearly ordered set (N, <).

2. If the linear order on M; (coming from R) has the form mi,m}, ... ,mei‘ then either
my <My < - <My 0T My <My g < <My

Proof. Let the element mJ from the block M; be placed between the elements m} and
miy, from the block M;. Assume that m; < mj, < mj,. (the case m{,, < mj < my is
analogous). It follows from Theorem 2 and Lemma 4 that the semigroup R contains the
mt omJ mi  mi,, .
elements < il it ) and i’ Mil ) Since R € H(<), we have My, =
| sz g \ Mg |
mej| for the first element and mej| < m"'Mi| for the second one. This contradiction proves
the first statement of the lemma.
From Lemma 4 it follows that for arbitrary p and ¢, 1 < p < g < |M;]|, the semigroup
) m? m!
R contains the element ( i P P
i ] IMil-1 g ) ) , )
m,, < my, for .all p < q. Analogously, the inequality mTM” < 77’L|1Mi|_1 implies my < m; for
all p < g. This completes the proof. O

). Hence the inequality me”_l < mei| implies

Proposition 1. Assume that n > 3 and that the decomposition N = M;U- - -UMjy, contains
exactly m blocks containing more than 1 element. Then for arbitrary linear orders on the

- = —
blocks My, ..., My, the R—cross-section R = R(My, My, ..., My) is contained in exactly
k!-2m=L different H—cross-sections.

10



Proof. Let us fix some ordering, M;,, M,, ..., M, , of the blocks M, My, ..., My and write
down the elements in the following way: we start with elements of M;,, then elements of
M;, and so on. Moreover, the elements of every block are written either with respect to the
linear order fixed on this block (this order comes from R) or with respect to the opposite
order. In this way we get some linear order on /N, which we denote by <. From Theorem 2
and Lemma 4 we get that R C H(<). Moreover, from Theorem 1 and Lemma 9 it follows
that for n > 3 every H-cross-section, containing R, has the form H(<), where the order
< is constructed exactly by the procedure, described above. Changing the order of blocks
or the orders of writing down the elements for the blocks, containing more than 1 element,
we get k! - 2™ different linear orders.

It is obvious, that if some order < can be constructed by this procedure, then the
opposite order can be constructed by this procedure as well. Taking into account Lemma 8,
we get (k!-2™)/2 = k!-2™~1 different H—cross-sections, containing R. This completes the
proof. O

1

We remark that, using the involution @ — a™', one gets the same statement for the

L—cross-sections as well.

Proposition 2. Let n > 3. Then every H-cross-section of the semigroup IS, contains

ezactly
[n/2] n—21
! m+l\[(n—m-1-1
1+Z<2-Z( l )( "

=1 m=0
different R— (L) cross-section.

Proof. Clearly, it is enough to prove the statement for, say R-cross-sections. For every
n > 3 each H-cross-section from 7S, has the form H (<), according to Theorem 1. By
%

Lemma 9, to define an R—cross-sections, R = R(J\Zf)h ﬁg, ..., My), which is contained in
H(<), one has to define a decomposition of the poset (IV, <) into a disjoint union of
intervals, and then on every interval, consisting of more than 1 element, to fix a linear
order, which either is inherited from < or is the opposite one. According to Theorem 2,
all R—cross-section, obtained in this way, will be different.

Let us now calculate in how many different ways one can decompose (N, <) into in-
tervals, among which there will be exactly [ intervals, containing more than 1 element,
and exactly m intervals, containing 1 element (clearly, 0 < I < [n/2] and for [ > 0 one
has 0 < m < n — 2[). Since the linear order < induces a linear order on the collection
of disjoint intervals, we first choose in the sequence of [ + m intervals [ places for those
intervals, which contain more than 1 element. This can be done in (ltm) different ways.
Fix now these places for intervals containing more than 1 element and take away one el-
ement from every interval. Then in all intervals, which originally contained more than 1
element, we will have ¢, %o, ..., t; elements respectively and we reduce our problem to the
problem of decomposition of the number n—!—m into a sum of [ non-zero positive integers:
n—Il—m=1t;+ty+---+1t;, where the order of summands is important. It is well-known,
see for example [Gr], that the number of such decompositions equals ("*Tln:llfl)

11



If we fix the number of intervals and the places for intervals, containing more than 1
element, then the constructed correspondence between the decompositions of (N, <) into
intervals and the solutions to n — 1 —m = t; + to + - - - + t; is bijective. Moreover, every
decomposition of this kind gives exactly 2! different R—cross-section, contained in H(<).
Hence, summing over all possible values of [ and m we get exactly

[n/2]

EEECC)

m=0

different R—cross-section, contained in H(<). O

5 Classification of R— (£-) cross-sections up to iso-
morphism

- — —

Let R = R(My, My, ..., M) be an R—cross-section of ZS,,. The vector (u1, ..., u,), where
Um = |{i : |M;| = m}|, 1 < m < n, will be called the type of R. Analogously one defines
the type of an L—cross-section.

Theorem 4. Two R— (L-) cross-section in IS, are isomorphic if and only if they have
the same type.

Proof Clearly, 1t is enough to prove | the statement for, say R-cross-sections. Let Ry =

R(Ml, M2, . Mk) and Ry, = R(Pl, P2, .. Pl) be two arbitrary R—cross-sections of types
(U1, ..y Uy) and (v1,...,v,) respectively.

Assume first that Ry ~ R, and let p = max,,,«om, ¢ = max,,,zom. As it was done
in the proof of Theorem 2, we can identify R; with Ky, X --- X K and Ry with
Kp X --+ x K|p). Using this identification and Lemmas 4 and 5 we get that in the
semigroup R; the inequality 2™ # ™! does not have solutions for all m > p and has
exactly 2" — 1 solutions for m = p. Since the same is true for R, as well, we get p = ¢
and u, = ug.

The fact that the types of the R—cross-sections R; and R, coincide can now be easily
proved by induction. Indeed, assume that u,, = v, is already proved for all m > t. The
inequality z'~! # z' should have in both R; and R, the same number of solutions. Using
the inductive assumption and Lemma 5, we derive u; = v;.

Now let us assume that the types of R; and R, are the same, that is, (uq,...,u,) =
(v1,..-,v,). Then we have, in particular, ¥ = [. Let us order the blocks of the decompo-
sition N = M; U - --U M}, with respect to the growth of their cardinalities (in general this
is not uniquely defined). Now write down the elements of N in the following way: start
with the elements from the block M, taking into account the linear order on M;, coming
from R;, proceed with M5 and so on. We get a permutation, y1, 4o, . . ., Y, of the elements
1,2,...,n. Analogously, from the decomposition N = P, U---U P, we can construct a

12



Y Y2 ... Un
Z1 k9 ... Zp
the map = — 7 'z7 is an isomorphism from R; to Rs. O

permutation, say zi,...,2,. Set T = < ) Direct calculation shows that

Corollary 10. Two R— (L-) cross-sections Ty and Ty are isomorphic if and only if they
are conjugated with respect to the natural action of the group S,, that is, if and only if
there exists m € Sy, such that Ty = 71T 7.

Proof. The sufficiency is obvious and the necessity follows from the proof of Theorem 4. [

Denote by p, the number of decompositions of the positive integer n into the sum of
positive integers, where the order of summands is not important.

Corollary 11. The number of pairwise non-isomorphic R— (L) cross-sections in the
semigroup IS,, equals py,.

Proof. This follows from Theorem 4 and easy counting of the number of different types for
R— (L-) cross-sections. O

Acknowledgements

This paper was written during the visit of the first author to Uppsala University, which
was supported by The Royal Swedish Academy of Sciences. The financial support of The
Academy and the hospitality of Uppsala University are gratefully acknowledged. For the
second author the research was partially supported by The Swedish Research Council. We
are also thankful to the referee for many helpful suggestions that led to the improvements
in the paper.

References

[CR] D.F.Cowan, N.R.Reilly, Partial cross-sections of symmetric inverse semigroups. In-
ternat. J. Algebra Comput. 5 (1995), no. 3, 259-287.

[GM] O.Ganyushkin, V.Mazorchuk, The full finite Inverse symmetric semigroup ZS,,
Preprint 2001:37, Chalmers University of Technology and Goteborg University,
Goteborg, 2001.

[Gr] R.P.Grimaldi, Discrete and Combinatorial Mathematics, an applied introduction, Ad-
dison Wesley Longman Inc. 1999.

[L] S.Lipscomb, Symmetric inverse semigroups. Mathematical Surveys and Monographs,
46. American Mathematical Society, Providence, RI, 1996.

[R] L.E.Renner, Analogue of the Bruhat decomposition for algebraic monoids. II. The
length function and the trichotomy. J. Algebra 175 (1995), no. 2, 697-714.

13



[YY] H.Yang, X.Yang, £ (or R)—cross sections of finite symmetric inverse semigroups,
Preprint 2002.

O.G.: Department of Mechanics and Mathematics, Kyiv Taras Shevchenko University, 64,
Volodymyrska st., 01033, Kyiv, UKRAINE, e-mail: ganyushk@mechmat.univ.kiev.ua

V.M.: Department of Mathematics, Uppsala University, Box 480, SE 751 06, Uppsala,
SWEDEN, e-mail: mazor@math.uu.se, web: “http://www.math.uu.se/ mazor”

14



