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Abstract. Motivated by recent appearance of multivalued structures in categorification,
tropical geometry and other areas, we study basic properties of abstract multisemigroups.
We give many new and old examples and general constructions for multisemigroups. Spe-
cial attention is paid to simple and nilpotent multisemigroups. We also show that “almost
all” randomly chosen multivalued binary operations define multisemigroups.

1. Introduction and motivation

A multisemigroup is a “semigroup in which multiplication is multivalued”. More precisely,
a multisemigroup is a pair (S, ∗), where S is a non-empty set and ∗ is a map (a so-called
multivalued operation or multioperation) from S × S to 2S, the power set of S, such that
the following associativity axiom is satisfied: for every a, b, c ∈ S we have

(1.1)
⋃
t∈b∗c

a ∗ t =
⋃

s∈a∗b

s ∗ c.

Every semigroup is a multisemigroup in an obvious way, however, there are many natural
examples of multisemigroups which are not semigroups.

Our motivation for the present paper comes from the fact observed in [MM2] that mul-
tisemigroups appear naturally in higher representation theory and categorification, see
Subsection 3.8 of this paper and also [MM2] for more details.

Definition of multistructures in general goes back at least to the 1934 paper [Mar] by
Marty. Various aspects and properties of multistructures, in particular, multisemigroups
(usually under different names which will be reviewed in the next section), were studied
by several authors, see for example [Ca, DO, Ea, Ha, Ko, Wa]. We also refer the reader to
the recent survey paper [Vi] by Viro, which mostly deals with multigroups and multirings,
for more historical information. The paper [Vi] shows that some multistructures (mainly
multifields) are relevant to the study of tropical geometry.

In the present paper we make an attempt to establish basic properties of abstract mul-
tisemigroups in analogy with those of semigroups. We give many examples and coun-
terexamples illustrating the scopes of the theory we are developing. We will see that in
many respects semigroups and multisemigroups are similar but in many other respects they
are very different. Section 2 fixes notation and vocabulary for multivalued analogues of
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binary operations and corresponding structures, including multisemigroups, hypergroups
and multigroups. In Section 3 we propose many different examples and constructions
of multisemigroups. These include both concrete examples of multisemigroups of small
cardinality (Subsections 3.1, 3.2 and 3.15), the multisemigroup of cosets of a group mod-
ulo a subgroup (Subsection 3.3) and various constructions associated to different kinds of
ideals, variants, subwords etc. (Subsections 3.4, 3.5, 3.6, 3.11, 3.12 and 3.14). We also
mention several multisemigroups related to our motivation: the multisemigroup associ-
ated to a fully additive bicategory (Subsection 3.8) and its disguise via a positive basis
in an associative algebra (Subsection 3.7). We also show that the underlying set of every
Weyl group can be equipped with two very different multisemigroups structures: the first
one coming from the Kazhdan-Lusztig combinatorics (Subsection 3.9) and the other one
coming from the standard basis of the corresponding Hecke algebra for the values of the
parameter which guarantee that this standard basis has necessary positivity properties
(Subsection 3.10).

In Section 4 we collect basic notions and properties: Green’s relations, various types of
elements, ideals, homomorphisms, congruences, quotients, representations by binary rela-
tions and connections to dioids, quantales and Boolean algebras. In Section 5 we study
simple multisemigroups (that is multisemigroups with a unique two-sided ideal) and a
special class of simple multisemigroups which we call strongly simple. A simple multi-
semigroup is strongly simple provided that it is a union of its minimal left ideals and it
is a union of its minimal right ideals. Strongly simple multisemigroups can be viewed as
analogues of completely 0-simple or 0-bisimple semigroups. For strongly simple multisemi-
groups we establish a structure theory similar to the classical structure theory of 0-bisimple
semigroups. However, there are significant differences: The role of idempotent H-classes
is now played by hypergroups (and the latter do not need to have any idempotents or
quasi-idempotents, see an example in Subsection 3.15). There is only a partial analogue
of Green’s lemma, namely minimal right (left) ideals are no longer connected by bijective
translations but by surjective multivalued translations. We give explicit examples showing
that the general case behaves much more complicated than the case of classical semigroups
(see Subsections 5.3, 5.4, 5.5, 5.6 and 5.7).

In Section 6 we establish another essential difference between semigroups and multisemi-
groups. Given a set with n elements, one can randomly choose a binary operation on it
and ask what is the probability that it is associative (hence defining a semigroup). The
answer is that this probability is “small” in the sense that it tends to 0 when n tends to
infinity. For multisemigroups the picture turns out to be exactly the opposite: when n
tends to infinity, then the probability that a randomly chosen multivalued operation on an
n-element set defines a multisemigroups approaches 1.

Finally, in Section 7 we look closer at nilpotent multisemigroups, characterize them in
terms of the action graphs, extend to finite multisemigroups two classical characterizations
of finite nilpotent semigroups, define and characterize the radical of a multisemigroup and
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study maximal (with respect to inclusions) nilpotent submultisemigroups of strongly simple
multisemigroups.
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2. Multistructures and their aliases

2.1. Multisemigroups. Multisemigroups, as defined above, have appeared in the litera-
ture under many different names. In particular, we have seen the following names: hy-
persemigroups, polysemigroups, semihypergroups and associative multiplicative systems
(the list disregards different hyphenations of the names). Following [MM2], we use the
name “multisemigroups” as we think that, compared to all other aliases, it describes the
essence of the structure best. Note that the operation ∗ of a multisemigroup (S, ∗) can
also be understood as a binary relation from S × S to S (satisfying the usual associativity
axiom).

An element 1 of a multisemigroup (S, ∗) is called an identity or unity element provided
that 1 ∗ a = a ∗ 1 = a for all a ∈ S. A standard argument shows that the identity element
is unique, if exists. For any multisemigroup (S, ∗) and any element e 6∈ S, the set S ∪ {e}
has the natural structure (S ∪ {e}, ◦) of a multisemigroup defined, for a, b ∈ S ∪ {e}, as
follows:

a ◦ b :=


a ∗ b, a, b ∈ S;

a, b = e;

b, a = e.

The element e is the identity of (S∪{e}, ◦). As usual, we denote by S1 the multisemigroup
S if the latter has an identity and S ∪{e} defined as above if S does not have any identity
(and we denote this identity by 1 and the operation on S1 by ∗).

An element e of a multisemigroup (S, ∗) is called an idempotent provided that e ∗ e = e
and a quasi-idempotent provided that e ∈ e ∗ e.

Multisemigroups are closely connected to some other different algebraic structures. Here
we describe two of such connections. A map ∗ : S×S → 2S, (a, b) 7→ a∗b, can be extended
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to a binary operation ∗ : 2S × 2S → 2S by setting, for A,B ∈ 2S,

(2.1) A ∗B :=
⋃

a∈A, b∈B

a ∗ b.

The equality (1.1) can now be written as a ∗ (b ∗ c) = (a ∗ b) ∗ c. In this way, for a
multisemigroup (S, ∗), the power set 2S inherits a natural structure of a semigroup, where
the associativity follows directly from (1.1). Thus, a multisemigroup can be seen as a
non-empty set S along with an associative binary operation ∗ on 2S satisfying (2.1) for
any A,B ⊂ S. Notice that to show that such a binary operation ∗ on 2S defines a
multisemigroup on S it is enough to show that a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ S.
From (2.1) it follows that for any A,Bi ∈ 2S, i ∈ I, we have the following property:

(2.2) A ∗ (∪iBi) = ∪i(A ∗Bi) and (∪iBi) ∗ A = ∪i(Bi ∗ A).

Recall, see e. g. [Gu, 2.2], that a semiring is a tuple (R,+, ∗, 0, 1) where R is a non-empty
set, + and ∗ are binary operations on R and 0 and 1 are two distinguished elements of R
such that the following conditions are satisfied:

• (R,+, 0) is a commutative monoid with identity 0;

• (R, ∗, 1) is a monoid with identity 1;

• r ∗ 0 = 0 ∗ r = 0 for all r ∈ R (i.e. 0 is absorbing with respect to ∗);

• r ∗ (s+ t) = r ∗ s+ r ∗ t and (s+ t) ∗ r = s ∗ r + t ∗ r for all r, s, t ∈ R.

A semiring (R,+, ∗, 0, 1) for which r + r = r for all r ∈ R is called an idempotent semir-
ing or dioid. The previous paragraph implies that any multisemigroup (S, ∗) induces a

natural dioid structure (2S
1
,∪, ∗,∅, {1}) on 2S

1
. If Q is finite, then every dioid structure

(2Q,∪, ∗,∅, 1), where 1 is a singleton, gives, by restriction to elements of Q, a multisemi-
group (Q, ∗) possessing a unit element.

A notable difference between multisemigroups and dioids is revealed comparing the arbi-
trary distributivity property for multisemigroup given by (2.2) with the finite distributivity
property for dioids. This discrepancy motivates connection of multisemigroups with quan-
tales.

Recall, see [Re], that a sup-lattice is a partially ordered set in which every subset has a
supremum, or a join. A quantale is a sup-lattice equipped with an associative product
(a, b) 7→ a ∗ b such that the multiplication distributes over arbitrary suprema, that is for
any X ⊂ Q and a ∈ Q we have

a ∗ (supx∈Xx) = supx∈X(a ∗ x) and (supx∈Xx) ∗ a = supx∈X(x ∗ a).
A unital quantale is a quantale possessing a unit element with respect to the product oper-
ation. Unital quantales form a special class of dioids, the so-called complete dioids.

The discussion above shows that any multisemigroup (S, ∗) induces a natural quantale
structure on 2S. Being defined on a power set, this quantale is a complete atomic Boolean
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algebra where atomic means that every nonzero element lies above an atom, a minimal
nonzero element. Conversely, every quantale structure on a complete atomic Boolean
algebra Q induces a natural structure of a multisemigroup on the set S = S(Q) of atoms
of Q. This can be used to identify multisemigroups and quantale structures on complete
atomic Boolean algebras.

2.2. Multigroups and hypergroups. Unlike multisemigroups, whose definition is more
or less uncontroversial despite of many different aliases, there exist many different mul-
tistructures considered in the literature as multivalued analogues of groups. The present
paper is not about these structures, so to fix terminology for the present paper we will
just define those of them which we will use later. We refer the reader to [DO, Vi, Wa] and
references therein for further details.

Following [Vo], a multisemigroup (S, ∗) will be called a hypergroup provided that it satisfies
the following reproduction axiom: S ∗ a = a ∗ S = S for any a ∈ S.

Following [Vi], a multisemigroup (S, ∗) with identity 1 will be called a multigroup provided
that the following two conditions are satisfied:

• for each a ∈ S there are unique b, c ∈ S such that 1 ∈ a ∗ b and 1 ∈ c ∗ a, moreover,
b = c (this unique element will be denoted by a−1);

• for any a, b, c ∈ S we have c ∈ a ∗ b if and only if c−1 ∈ b−1 ∗ a−1.

It is clear that 1−1 = 1 and (a−1)−1 = a for any element a of a multigroup S (cf. [Vi,
3.2]).

2.3. Involution. If (S, ∗) is a multisemigroup, then an involution on S is a transformation
? : S → S, written s 7→ s?, which is involutive, that is (s?)? = s for all s ∈ S, and satisfies,
for all a, b ∈ S, the following equality:

b? ∗ a? = {s? | s ∈ a ∗ b}.

For example, if (S, ∗) is a multigroup, then a 7→ a−1 is an involution.

3. Some examples of multisemigroups

In this section we collect many examples of multisemigroups, for further examples of multi-
groups we refer the reader to [Vi] and references therein.

3.1. The trivial multisemigroups. For any non-empty set S and a subsetX ⊂ S setting
s ∗X t := X for all s, t ∈ S defines on S the structure of a multisemigroup. In particular,
we have two trivial multisemigroup structures on S, namely, � := ∗∅ and • := ∗S. We note
that (S, •) is always a hypergroup, but it is not a multigroup if |S| > 1.
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3.2. A two-element multisemigroup. Define the operation ∗ on S := {a, b} using the
following Cayley table:

∗ a b

a a {a, b}
b a b

It is straightforward to verify that this is a multisemigroup. We note that x ∗ S = S
for any x ∈ S while S ∗ a = a 6= S (in particular, this is a right hypergroup but not a
hypergroup).

3.3. The coset multisemigroup. Let (G, ·) be a group and H a (not necessarily normal)
subgroup of G. Define a multivalued operation ∗ on G as follows: for every a, b ∈ G we set
a ∗ b := HaHb. It is straightforward to verify that (a ∗ b) ∗ c = a ∗ (b ∗ c) = HaHbHc for
all a, b, c ∈ G and hence (G, ∗) is a multisemigroup.

We can also consider the set H\G of left H-cosets in G. Then for any a, b ∈ G the set
HaHb is a union of cosets and hence we may define

Ha ∗Hb := {Hc | c ∈ G and Hc ⊂ HaHb}.

This turns (H\G, ∗) into a multisemigroup and even a hypergroup (but not a multigroup
if H is not normal since an identity would be necessarily H, and H is normal if and only
if, for all a, b ∈ G, H ⊂ HaHb implies Hb = Ha−1). If H is a normal subgroup of G, then
the operation ∗ on H\G is, in fact, single-valued and hence (H\G, ∗) is a group.

3.4. Inflations of multisemigroups. Let (S, ∗) be a multisemigroup, X an arbitrary set,
and f : X → S a surjective map. For x, y ∈ X define

x ∗f y := {z ∈ X | f(z) ∈ f(x) ∗ f(y)}.

Then it is straightforward to verify that (X, ∗f ) is a multisemigroup called the inflation of
S with respect to f . Note that the trivial multisemigroup (S, •) defined in Subsection 3.1
can be viewed as an inflation of a singleton group.

3.5. Multisemigroups of ideals. Let (S, ·) be a semigroup. Define multioperations ∗L
and ∗̂L on S as follows: for a, b ∈ S set

a ∗L b := S1aS1b and a∗̂Lb := S1a ∩ S1b.

Then it is straightforward to verify that both (S, ∗L) and (S, ∗̂L) are multisemigroups.
Similarly one defines multisemigroups (S, ∗R) and (S, ∗̂R) using right ideals and multisemi-
groups (S, ∗J) and (S, ∗̂J) using two-sided ideals. The multisemigroups (S, ∗̂L), (S, ∗̂R) and
(S, ∗̂J) are commutative.
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3.6. Monogenic associated multisemigroups. Let (S, ·) be a semigroup. For a ∈ S
let 〈a〉 denote the subsemigroup of S consisting of all elements of the form ai, i > 0 (the
so-called “monogenic subsemigroup” generated by a). Define the multioperation ∗ on S as
follows: for a, b ∈ S set

a ∗ b := 〈a〉 ∩ 〈b〉.
Then it is straightforward to verify that (S, ∗) is a commutative multisemigroup.

3.7. Multisemigroups of positive bases in associative algebras. Let A be an as-
sociative algebra over some subring k of real numbers. Assume that A has a basis
a := {ai | i ∈ S} with non-negative structure constants, that is

aiaj =
∑
k∈S

cki,jak and cki,j ≥ 0 for all i, j, k ∈ S.

Define the multioperation ∗ on S as follows: for i, j ∈ S set

i ∗ j := {k | cki,j > 0}.

Then the associativity of A implies that (S, ∗) is a multisemigroup.

A similar construction works if instead of a subring of real numbers one considers, for
example, the Boolean algebra B := {0, 1} (with respect to the usual meet and join opera-
tions).

3.8. Multisemigroups of fully additive bicategories. This example is taken from
[MM2, Subsection 3.3]. Let C be a small additive bicategory with skeletally small, fully
additive and Krull-Schmidt categories of morphisms. Let S[C ] be the set of isomorphism
classes of indecomposable 1-morphisms in C . For an indecomposable 1-morphism F we
denote by [F] its class in S[C ]. For [F], [G] ∈ S[C ] set

[F] ∗ [G] := {[H] ∈ S[C ] : H is isomorphic to a direct summand of F ◦G}.
Then the associativity axiom for C implies that (S[C ], ∗) is a multisemigroup. Via decate-
gorification (i.e. taking the split Grothendieck group of C) this example can be considered
as a special case of the previous example.

As a more concrete example of this construction, consider C to be a bicategory with one
object • and such that C(•, •) is the category of all finite dimensional representations of
a semi-simple complex finite dimensional Lie algebra g, with horizontal composition given
by the usual tensor product of g-modules. It is easy to see that in this case the obtained
multisemigroup is, in fact, a multigroup. In the case of the algebra sl2, isomorphism classes
of simple finite dimensional modules are in a natural bijection with the set N0 of non-
negative integers (this bijection is given by taking the highest weight of a module, see [Maz2,
Theorem 1.22]). From the classical Clebsch-Gordan rule (see e.g. [Maz2, Theorem 1.39])
it follows that for k, l ∈ N0 the multisemigroup operation is given by the following:

k ∗ l = {m : |k − l| ≤ m ≤ k + l,m ≡ k + l mod 2}.
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Remark 1. The concrete example above can be generalized. For g as above consider the
BGG category O and let O be the tensor category which O generates (see e.g. [Kaa]).
The category O is no longer semi-simple but all objects in O have well-defined composition
multiplicities (see e.g. [Kaa]). There is a natural multisemigroup structure on the set of
isomorphism classes of simple objects in O defined as follows: For two simple objects L
and L′ define [L]∗ [L′] to be the set of isomorphism classes of all simple subquotients which
appear in the tensor product of L and L′.

3.9. The Kazhdan-Lusztig multisemigroup of a Weyl group. Let ∆ be a finite root
system and W the corresponding Weyl group. Let {Hw : w ∈ W} be the Kazhdan-Lusztig
basis of Z[W ], see [KL] or [Maz1, Section 7]. By [KL], this basis has positive structure
constants and hence the construction of Subsection 3.7 gives a multisemigroup structure
(W, ∗). Remark that this multisemigroup can be also obtained by the construction of Sub-
section 3.8 considering the bicategory of Soergel bimodules acting on the principal block of
category O for the Lie algebra g associated with ∆, see [Maz1, Section 8] and [MM1, MM2]
for details. Mapping w 7→ w−1 defines an involution on this multisemigroup (it corresponds
to “taking the adjoint functor” in the categorical picture of Soergel bimodules).

To give an explicit example, let ∆ be of type A2, that is W ' S3 = {e, s, t, st, ts, sts},
where s2 = t2 = e and sts = tst. Then we have

He = e, Hs = e+ s, H t = e+ t, Hst = e+ s+ t+ st,

H ts = e+ s+ t+ ts, Hsts = e+ s+ t+ st+ ts+ sts;

and one easily obtains the following Cayley table for (S3, ∗):
∗ e s t st ts sts

e e s t st ts sts
s s s st st {sts, s} sts
t t ts t {sts, t} ts sts
st st {sts, s} st {sts, st} {sts, s} sts
ts ts ts {sts, t} {sts, t} {sts, ts} sts
sts sts sts sts sts sts sts

3.10. The Boolean Hecke multigroup of a Weyl group. This example is taken from
[Tr] where it is given in different terms. Let ∆ be a finite root system and W the corre-
sponding Weyl group. Choose some basis π in ∆ and let S ⊂ W be the corresponding
system of simple reflections. Then (W,S) is a Coxeter system. Let l : W → N0 be the
corresponding length function. Fix some q ∈ R such that q > 1 and let Hq be the corre-
sponding Hecke algebra (over R), that is the associative algebra with generators Hs, s ∈ S,
satisfying the braid relations for (W,S) together with the relations

(3.1) H2
s = (q − 1)Hs + qHe, s ∈ S.

Note that under our choice of q the latter relation has positive coefficients.
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For each w ∈ W fix some reduced expression w = s1s2 · · · sk and set Hw := Hs1Hs2 · · ·Hsk .
Since the Hs’s satisfy braid relations, the element Hw does not depend on the choice of a
reduced expression for w. Then {Hw |w ∈ W} is the standard basis of Hq.

Lemma 2. All structure constants for the standard basis are non-negative.

Proof. As Hw := Hs1Hs2 · · ·Hsk , it is enough to show that for any s ∈ S and x ∈ W the
element HsHx is a linear combination of basis elements with non-negative coefficients. If
l(sx) > l(x), then we have HsHx = Hsx. In the other case we have x = sy for some y ∈ W
such that l(y) < l(x). Then, using (3.1), we have

HsHx = HsHsHy =
(
(q − 1)Hs + qHe

)
Hy = (q − 1)Hx + qHy

and the claim follows. �

From Lemma 2 it follows that the construction of Subsection 3.7 gives a multisemigroup
structure (W, ∗). This multisemigroup is called the Boolean Hecke hypermonoid in [Tr].
If ∆ is of type A2, then for W ' S3 = {e, s, t, st, ts, sts} we get the following Cayley
table:

∗ e s t st ts sts

e e s t st ts sts
s s {e, s} st {t, st} sts {ts, sts}
t t ts {e, t} sts {s, ts} {st, sts}
st st sts {s, st} {ts, sts} {e, s, sts} {t, st, ts, sts}
ts ts {t, ts} sts {e, t, sts} {st, sts} {s, st, ts, sts}
sts sts {st, sts} {ts, sts} {s, st, ts, sts} {t, st, ts, sts} {e, s, t, st, ts, sts}

Proposition 3. The multisemigroup (W, ∗) is, in fact, a multigroup.

Proof. We have to check that both additional conditions from Subsection 2.2 are satisfied.
Let x ∈ W . First we show, by induction on l(x), that e ∈ x∗x−1. This is clear if x = e, so to
prove the induction step assume that the claim is true for some x and that s ∈ S is such that
l(sx) > l(x). Then, using associativity and definitions, we have (sx)∗(sx)−1 = s∗x∗x−1∗s.
The latter set contains s ∗ e ∗ s = {e, s} as e ∈ x ∗ x−1 by the inductive assumption.

Now let x, y ∈ W be such that x 6= y−1. Consider the case l(x) ≤ l(y), in particular, y 6= e
(the other case is dealt with by similar arguments). Let us prove, by induction on l(x), the
following three claims:

(i) any w ∈ x ∗ y satisfies l(w) ≥ l(y)− l(x);

(ii) x ∗ y contains some w satisfying l(w) = l(y)− l(x) if and only if y = x−1w;

(iii) e 6∈ x ∗ y.

Note that the last claim obviously follows from the first two. The basis x = e of the
induction is obvious. To prove the induction step let s ∈ S be a simple reflection such
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that l(x) < l(sx) ≤ l(y). Then we have sx = s ∗ x and hence (sx) ∗ y = s ∗ (x ∗ y) by
associativity. By the inductive assumption, any w ∈ x ∗ y satisfies l(w) ≥ l(y) − l(x).
We have s ∗ w = sw if l(sw) > l(w) and s ∗ w = {w, sw} otherwise. In the second case
l(sw) ≥ l(y) − l(x) − 1 = l(y) − l(sx) which proves claim (i). This argument also shows
that if k is maximal such that x ∗ y contains some w of length l(y)− k, then every element
in s ∗ (x ∗ y) has length at least l(y)− k− 1. Therefore, for s ∗ (x ∗ y) to contain an element
of length l(y) − l(sx), the set x ∗ y must contain an element of length l(y) − l(x). By (ii)
of the inductive assumption, the only element of x ∗ y with this property is xy and this
is possible if and only if l(xy) = l(y) − l(x). In the latter case s ∗ xy contains an element
of length l(y) − l(x) − 1 if and only if l(sxy) = l(y) − l(x) − 1 and this is the case if and
only if l(sxy) = l(y)− l(sx) which implies claim (ii). This proves the first condition from
Subsection 2.2.

Mapping Hs 7→ Hs extends to an anti-involution on Hq (as the ideal generated by the
defining relations is invariant under this map). This anti-involution maps Hw to Hw−1 for
any w ∈ W and hence mapping w 7→ w−1 is an involution on (W, ∗). This proves the
second condition from Subsection 2.2. �

3.11. Double variants of multisemigroups. Let (S, ·) and (S, ◦) be two multisemi-
groups with the same underlying set S. Assume further that for any a, b, c ∈ S we have
the following equalities in 2S:

(3.2) (a · b) ◦ c = a · (b ◦ c) and (a ◦ b) · c = a ◦ (b · c).
For a, b ∈ S set a ∗ b := (a · b) ∪ (a ◦ b).

Proposition 4. (S, ∗) is a multisemigroup.

Proof. For a, b, c ∈ S we have the following:

(a ∗ b) ∗ c =
(
(a · b) ∪ (a ◦ b)

)
∗ c

=
(
(a · b) ∗ c

)
∪
(
(a ◦ b) ∗ c

)
=

(
(a · b) · c

)
∪
(
(a · b) ◦ c

)
∪
(
(a ◦ b) · c

)
∪
(
(a ◦ b) ◦ c

)
(3.2)
=

(
a · (b · c)

)
∪
(
a · (b ◦ c)

)
∪
(
a ◦ (b · c)

)
∪
(
a ◦ (b ◦ c)

)
=

(
a · (b · c)

)
∪
(
a ◦ (b · c)

)
∪
(
a · (b ◦ c)

)
∪
(
a ◦ (b ◦ c)

)
=

(
a ∗ (b · c)

)
∪
(
a ∗ (b ◦ c)

)
= a ∗

(
(b · c) ∪ (b ◦ c)

)
= a ∗ (b ∗ c).

The claim follows. �

A typical situation in which this construction applies is the following multisemigroup ver-
sion of the variant (or sandwich) construction for semigroups: Let (S, ./) be a multisemi-
group and X,Y ⊂ S. Then for a, b ∈ S set

a · b := a ./ X ./ b, and a ◦ b := a ./ Y ./ b.
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Then both (S, ·) and (S, ◦) are variant multisemigroups of (S, ./), moreover, condition
(3.2) is obviously satisfied. Thus (S, ∗) is a new multisemigroup which is natural to call a
double variant of (S, ./). It is easy to see that a ∗ b = a ./ (X ∪ Y ) ./ b. In the case when
(S, ./) is a semigroup and |X| = |Y | = 1 we have that (S, ∗) is a multisemigroup such that
1 ≤ |a ∗ b| ≤ 2 for all a, b ∈ S.

3.12. Multisemigroup of subwords. Let A be an alphabet and A∗ the monoid of all
finite words over A. For u, v ∈ A∗ define u ~ v to be the set of all scattered (that is,
not necessarily connected) subwords of uv. It is straightforward to verify that for any
u, v, w ∈ A∗ both (u ~ v) ~ w and u ~ (v ~ w) coincide with the set of all scattered
subwords of uvw and hence (A∗,~) is a multisemigroup.

3.13. Disconnected unions of multisemigroups. Let (S, ·) and (T, •) be multisemi-
groups and assume that S ∩ T = ∅. Define a multivalued operation ∗ on S ∪ T as follows:
for a, b ∈ S ∪ T set

a ∗ b :=


a · b, a, b ∈ S;

a • b, a, b ∈ T ;

∅, otherwise.

It is straightforward to verify that this turns (S ∪ T, ∗) into a multisemigroup, which we
call the disconnected union of S and T .

3.14. Reproductive construction. The following general approach to construction of
multisemigroups is inspired by [Vo]. Let (S, ·) be a semigroup and f : S → 2S a map. For
A ⊂ S set f(A) := ∪a∈Af(a). For a, b ∈ S define a ∗ b := f(a)f(b).

Lemma 5. Assume that for any a, b ∈ S we have f(f(a)f(b)) = f(a)f(b). Then (S, ∗) is
a multisemigroup.

The condition f(f(a)f(b)) = f(a)f(b) resembles the reproductive condition in [Vo].

Proof. Using our assumption, for a, b, c ∈ S we have:

(a∗b)∗c =
⋃

s∈f(a)f(b)

(
f(s)f(c)

)
=

 ⋃
s∈f(a)f(b)

f(s)

 f(c) = f
(
f(a)f(b)

)
f(c) = f(a)f(b)f(c).

Similarly one checks that a ∗ (b ∗ c) = f(a)f(b)f(c). �

Some of the previous examples can be obtained using the reproductive construction. For
instance, the example in Subsection 3.12 is obtained if we define f to be the map which
sends a word w to the set of all scattered subwords of w; the first example in Subsection 3.3
is obtained if we define f to be the map which sends a to Ha; and the first example in
Subsection 3.5 is obtained if we define f to be the map which sends a to S1a.
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3.15. A hypergroup without quasi-idempotents. Let S be a set satisfying |S| ≥ 3.
For a, b ∈ S we define

a ∗ b :=

{
S, a 6= b;

S \ {a}, a = b.

Then |a ∗ b| > 1 for any a, b ∈ S, which implies (a ∗ b) ∗ c = a ∗ (b ∗ c) = S for all a, b, c ∈ S.
Thus (S, ∗) is a multisemigroup. Obviously, S is a hypergroup and it does not contain any
quasi-idempotent.

4. Elementary properties of multisemigroups

In this section we provide multisemigroup analogues of some basic notions from semigroup
theory as well as record some basic properties of multisemigroups.

4.1. Ideals and Green’s relations. Let (S, ∗) be a multisemigroup. A subset I ⊂ S is
called a left ideal (resp. right ideal, two-sided ideal) provided that for any a ∈ I and s ∈ S
we have s ∗ a ⊂ I (resp. a ∗ s ⊂ I; a ∗ s, s ∗ a ⊂ I). For example, for every a ∈ S the set
S1 ∗ a is the smallest left ideal containing a, called the principal left ideal generated by a.
Similarly one has the principal right ideal a∗S1 and the principal two-sided ideal S1∗a∗S1.
We define the left pre-order ≤L, the right pre-order ≤R and the two-sided pre-order ≤J on
S as follows: for a, b ∈ S set b ≤L a if and only if S1 ∗ b ⊂ S1 ∗ a, b ≤R a if and only if
b ∗ S1 ⊂ a ∗ S1, and b ≤J a if and only if S1 ∗ b ∗ S1 ⊂ S1 ∗ a ∗ S1.

Following [Gr], we define an equivalence relation L on S as the equivalence relation induced
by ≤L, i.e. aL b if and only if a ≤L b and b ≤L a. Similarly we define relations R and
J (see also [Ha, MM2]). We set H := L ∩ R and denote by D the minimal equivalence
relation containing both L and R. The relations L, R, J , H and D are called Green’s
relations. Obviously, D ⊂ J . Note that the equality L ◦ R = R ◦ L (where ◦ denotes the
usual product of binary relations) which holds for any semigroup fails for multisemigroups
in general, see Subsection 5.5. For an element a ∈ S we denote by La the L-class of S
containing a. We define Ra, Ha, Ja and Da similarly.

Example 6. Let (S, ·) be a semigroup and (S, ∗L) be the corresponding multisemigroup
of left ideals defined in Subsection 3.5. For a ∈ S we have S1a = S1 ∗L a and hence the
L-classes in (S, ·) and in (S, ∗L) coincide. Any two-sided ideal of (S, ·) is, in particular, a
left ideal, which implies that the J -classes in (S, ·) and in (S, ∗L) coincide as well. On the
other hand, for any a ∈ S we have a ∗L S1 = S1(aS1) = S1 ∗L a ∗L S1, which implies that
the relations R and J for (S, ∗L) coincide with J in (S, ·). Hence we also have D = J
and L = H for the multisemigroup (S, ∗L).

4.2. Rees quotients. Let (S, ∗) be a multisemigroup and I ⊂ S a two-sided ideal different
from S (possibly empty). Consider the set T := S\I and for a, b ∈ T set a•b := (a∗b)\I. It
is straightforward to verify that this turns (T, •) into a multisemigroup. Making a parallel
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with the classical semigroup theory, we will call the multisemigroup (T, •) the Rees quotient
of S modulo the ideal I.

4.3. Zero elements. Let (S, ∗) be a multisemigroup. An element z ∈ S is called a zero
element provided that for every a ∈ S we have a ∗ z = z ∗ a = z. A zero element is
necessarily unique, if exists, and therefore it is natural to denote this unique zero element
by 0.

Let (S, ∗) be a multisemigroup with the zero 0 and suppose that S 6= {0}. Then we claim
that for any a, b ∈ S we have a ∗ b 6= ∅. Indeed, assume that a ∗ b = ∅, then, on the one
hand, (a ∗ b) ∗ 0 = ∅, but, on the other hand, a ∗ (b ∗ 0) = a ∗ 0 = 0, a contradiction.
Consider the set T := S \{0} and for a, b ∈ T set a• b := (a∗ b)\{0}. It is straightforward
to verify that (T, •) is a multisemigroup (see also Subsection 4.2).

Conversely, let (S, ∗) be a multisemigroup without a zero element. Consider the set S0 :=
S ∪ {0}, where we assume 0 6∈ S, and for a, b ∈ S0 define

a • b :=

{
(a ∗ b) ∪ {0}, a, b ∈ S;

{0}, otherwise.

Isomorphism of multisemigroups is defined in the obvious way, that is, two multisemigroups
(X1, ◦1) and (X2, ◦2) are called isomorphic, denoted X1

∼= X2, provided that there is a
bijection ϕ : X1 → X2 such that for any x, y ∈ X1 we have

{ϕ(s) : s ∈ x ◦1 y} = ϕ(x) ◦2 ϕ(y).

Lemma 7. (a) The construct (S0, •) is a multisemigroup with the zero 0.

(b) The set {0} is an ideal of (S0, •).

(c) We have (S0, •) \ {0} ∼= (S, ∗).

Proof. Let a, b, c ∈ S0. If one of these elements equals 0, then both sides of (1.1), with •
in place of ∗, are equal to 0. If a, b, c ∈ S, then both sides of (1.1), with • in place of ∗,
are equal to (a ∗ b ∗ c) ∪ {0}. This proves claim (a). Claims (b) and (c) follow from the
definition of •. �

By the above one can consider multisemigroups without zero elements and understand
that the role of the zero element is played by the “undefined” multiplication, that is
the case a ∗ b = ∅. This, in particular, unifies the notions of “simple” and “0-simple”
multisemigroups and semigroups.

A multisemigroup (S, ∗) will be called a quasi-semigroup provided that for any a, b ∈ S
the product a ∗ b is either empty or an element of S. Quasi-semigroups can be identified
with semigroups with zero elements: Given a semigroup with a zero element we can take
this zero element away and redefine the product to be empty whenever it was zero to
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obtain a quasi-semigroup. Conversely, let (S, ∗) be a quasi-semigroup. Consider the set
S0 := S ∪ {0}, where we assume 0 6∈ S, and for a, b ∈ S0 define

a� b :=

{
a ∗ b; a, b ∈ S, a ∗ b 6= ∅;

{0}, otherwise.

Then (S0,�) becomes a semigroup with a zero element. Note that the previous construc-
tion (S0, •) produces in this case a multisemigroup, not a semigroup.

4.4. Homomorphisms. Let (S, ∗) and (T, •) be multisemigroups. A strong homomor-
phism from S to T is a map ϕ : S → T such that for any a, b ∈ S we have

{ϕ(s) : s ∈ a ∗ b} = ϕ(a) • ϕ(b).
Comparing this with the notion of isomorphism defined in the previous subsection, we
see that an isomorphism is just a bijective strong homomorphism. If ϕ : S → T is a
strong homomorphism, it extends uniquely to a quantale homomorphism ϕ : 2S → 2T by
setting ϕ(A) := ∪a∈A{ϕ(a)} for A ⊂ S. By definition, ϕ maps atoms of 2S to atoms of
2T . A homomorphism of atomic quantales which maps atoms to atoms is called atomic.
Conversely, any atomic homomorphism from 2S to 2T gives, via restriction to atoms, a
strong homomorphism from S to T .

Let MSemi denote the category of multisemigroups with strong homomorphisms. By
the above, this category is equivalent to the category QCABA′ of quantale structures on
complete atomic Boolean algebras with atomic homomorphisms.

As multisemigroups are defined in a multi-setting anyway, it is natural to extend the above
as follows: Let (S, ∗) and (T, •) be multisemigroups. A weak homomorphism from S to T
is a map ϕ : S → 2T such that for any a, b ∈ S we have⋃

s∈a∗b

ϕ(s) = ϕ(a) • ϕ(b).

If ϕ : S → 2T is a weak homomorphism, it extends uniquely to a quantale homomorphism
ϕ : 2S → 2T by setting ϕ(A) := ∪a∈Aϕ(a) for A ⊂ S. Conversely, any quantale homomor-
phism from 2S to 2T gives, via restriction to atoms of S, a weak homomorphism from S to
T .

Let MSemi denote the category multisemigroups with weak homomorphisms. By the
above, this category is equivalent to the category QCABA of quantale structures on
complete atomic Boolean algebras with usual homomorphisms.

4.5. Submultisemigroups. A non-empty subset T of a multisemigroup (S, ∗) is called a
submultisemigroup provided that a ∗ b ⊂ T for all a, b ∈ T . Any submultisemigroup T is a
multisemigroup with respect to the restriction of ∗ to T .

Let (S, ∗) be a multisemigroup and X ⊂ S a non-empty subset. Then the submultisemi-
group 〈X〉 of S generated by X is the minimal (with respect to inclusion) submultisemigroup
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of S containing X. Alternatively, 〈X〉 is the intersection of all submultisemigroups of S
containing X.

Let (S, ∗) be a multisemigroup and J a J -class of S. Set T = 〈J〉. As J is a J -class, T \J
is an ideal of T and hence we can consider the corresponding Rees quotient T \(T \J) = J .
Note that J might not be a semigroup even if S is a semigroup. This construction is a
natural multisemigroup analogue of the standard construction of the “semigroup associated
with a J -class”.

4.6. Congruences and quotients. Let (S, ∗) be a multisemigroup. An equivalence re-
lation ∼ on S is called a left congruence provided that the following condition is satisfied:
for any a, b, c ∈ S such that a ∼ b and for any s ∈ c ∗ a and t ∈ c ∗ b there are s′ ∈ c ∗ b
and t′ ∈ c ∗ a such that s ∼ s′ and t ∼ t′. A right congruence is defined similarly (using
a ∗ c and b ∗ c at appropriate places) and a congruence is an equivalence relation which is
both a left and a right congruence (confer [Da]).

Let ∼ be a congruence on (S, ∗). Then the usual argument shows that the quotient set S/∼
has the natural structure of a multisemigroup with respect to the induced multioperation
◦ defined for A,B ∈ S/∼ as follows:

A ◦B = {C ∈ S/∼ | there exist a ∈ A, b ∈ B, c ∈ C such that c ∈ a ∗ b}.
Mapping s ∈ S to its ∼-class s is obviously a strong homomorphism from the multi-
semigroup (S, ∗) to the multisemigroup (S/∼, ◦). We have A ◦ B = {s | s ∈ A ∗ B} for
A,B ∈ S/∼, furthermore, for any a, b ∈ S we have a ◦ b = {s | s ∈ a ∗ b}.

Let (T, ·) be another multisemigroup and ϕ : S → T a strong homomorphism. Then
the equivalence relation Ker(ϕ) on S is easily seen to be a congruence. Hence, as usual,
congruences on multisemigroups are exactly kernels of strong homomorphisms.

Let ∼ be a congruence on a multisemigroup (S, ∗). Then the map j which sends a ∈ S to its
∼-class extends to the map j : 2S → 2S, by j(A) = ∪a∈Aj(a). It is straightforward to verify
that this map is monotone, extensive, idempotent and satisfies j(A) ∗ j(B) ≤ j(A ∗B). It
follows that j is a quantic nucleus, see [Ro, Chapter 3]. The quotient quantale defined by j is
a complete atomic Boolean algebra with the atoms j(a), a ∈ S. Setting T = S/∼, it is easy
to see that this quotient quantale is just the quantale 2T associated to the multisemigroup
T . Conversely, assume that we are given a complete atomic Boolean algebra 2X with a
quantale structure on it and assume that j : 2X → 2X is a nucleus such that the quotient
quantale is a complete atomic Boolean algebra 2Y . On the multisemigroup X we define a
relation ∼ as follows: x ∼ y if and only if j({x}) = j({y}). This relation is a congruence
and the quotient multisemigroup is Y , the multisemigroup of atoms of 2Y . It follows that
congruences on multisemigroups are in a bijective correspondence with congruences on
quantale structures on complete atomic Boolean algebras.

4.7. Representations of multisemigroups by binary relations. Regular representa-
tions of multisemigroups by binary relations were constructed in [Ea] in the following way:
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Let (S, ∗) be a multisemigroup. Then ∗ can be viewed as a binary relation S × S → S, in
particular, every a ∈ S defines a binary relation τa on S via y τa x if and only if y ∈ a ∗ x
(this corresponds to the usual convention that maps operate from the right to the left).
Our convention for multiplication ◦ of binary relations is as follows: for two binary rela-
tions τ and σ we have y (τ ◦ σ)x if and only if there is z such that y τ z and z σ x. This
allows us to identify binary relations on S with square matrices over B, whose rows and
columns are indexed by elements of S (i.e. a τ b if and only if the intersection of row a
and column b of the matrix of τ contains 1). Then for the usual sum + and product ◦ of
binary relations (i.e. sum and product of Boolean matrices) we have

τa ◦ τb =
∑
s∈a∗b

τs.

This is the left regular representation of (S, ∗). The right regular representation is defined
similarly.

This representation extends to a homomorphism from the quantale 2S to the quantaleB(S)
of binary relations on S. Therefore it is natural to generalize this and call a representation
of (S, ∗) (by binary relations) any quantale homomorphism from 2S to any quantale of
binary relations.

Similarly, given an L-class L in S, for a ∈ S we define the binary relation λa on L via
y λa x if and only if y ∈ a ∗ x. This extends, using addition of binary relations, to a
homomorphism from the quantale 2S to the quantale B(L) of binary relations on L. This
is the representation of S associated to L (confer [GM2, Section 10]).

5. Strongly simple multisemigroups

5.1. Simple and strongly simple multisemigroups. A multisemigroup (S, ∗) is called
simple if for any a ∈ S we have S1 ∗ a ∗ S1 = S, that is S has a unique J -class (confer
[JSM]). From now on, unless stated otherwise, we assume that S does not contain a zero
element (see Subsection 4.3). This excludes one special case: when (S, ∗) is a singleton
group. In the latter case (S, ∗) contains both the identity and the zero elements and they
coincide. This case is usually excluded in the classical ring theory as well.

Recall the example of a two-element multisemigroup, (S, ∗), from Subsection 3.2. This
multisemigroup is finite simple with a unique R-class but two different L-classes which
are, moreover, comparable with respect to ≤L. This shows a significant difference between
multisemigroups and semigroups as no analogous situation is possible for semigroups.

From now on, if the converse is not explicitly stated, by a minimal left ideal of S we mean
a minimal non-empty left ideal, that is a non-empty left ideal I of S such that for any left
ideal J of S the inclusion J ⊆ I implies that J = I or J = ∅. In a similar way we will
also use the notions of a minimal right ideal and a minimal (two-sided) ideal.
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If (S, ∗) is a multisemigroup, an element s ∈ S will be called a quark provided that S1 ∗ s
is a minimal left ideal and s ∗ S1 is a minimal right ideal. For any quark s we thus have
Ls = S1 ∗ s and Rs = s ∗ S1. We denote by Q(S) the set of all quarks in (S, ∗). The set
Q(S) will be called the support of S. A simple multisemigroup (S, ∗) will be called strongly
simple if S = Q(S). For instance, any completely simple semigroup is a strongly simple
multisemigroup. Furthermore, the quasi-semigroup associated to a completely 0-simple
semigroup as described at the end of Subsection 4.3 is a strongly simple multisemigroup.
A special case of the last example is the singleton multisemigroup 0 := ({0}, ∗), where
0 ∗ 0 = ∅. Moreover, the multisemigroup 0 is very special because of the following:

Proposition 8. Let (S, ∗) be a multisemigroup. If (S, ∗) contains only one H-class, then
either S ∼= 0 or S is a hypergroup.

Proof. Assume that S = Ha for every a ∈ S. If |S| = 1 then S ∼= 0 (note that S cannot be
isomorphic to the trivial semigroup as the trivial semigroup contains a zero element) and
hence is a hypergroup. Suppose that |S| > 1. Let a ∈ S. We have a ∗ S1 = b ∗ S1 3 b,
for any b ∈ S, which implies that a ∗ S ⊃ S \ {a}. Assume that a ∗ S = S \ {a}. Then
S \ {a} is a proper right ideal of S and hence for any b ∈ S \ {a} we have b ∗S1 ⊂ S \ {a},
a contradiction. Hence a ∗ S = S. Similarly one shows that S ∗ a = S and the claim
follows. �

For Q(S) we have the following elementary property:

Proposition 9. Let (S, ∗) be a multisemigroup with non-empty support. Then we have:

(a) Q(S) and every non-empty intersection of Q(S) with a J -class of S is a submultisemi-
group.

(b) The multisemigroup Q(S) is a disconnected union (as defined in Subsection 3.13) of
its non-empty intersections with J -classes of S.

Proof. Let a, b ∈ Q(S). Every element s ∈ a ∗ b belongs to S1 ∗ b ∩ a ∗ S1 and hence to
Q(S). This shows that Q(S) is a submultisemigroup and claim (a) follows.

Let a, b ∈ Q(S) be such that a and b belong to different J -classes of S. If s ∈ a ∗ b, then
s ∈ S1 ∗ b and hence sL b by the minimality of S1 ∗ b. At the same time s ∈ a ∗ S1 and
hence sR a by the minimality of a ∗ S1. This implies sJ b and sJ a which means that
aJ b contradicting our assumptions. This implies that a ∗ b = ∅ and hence Q(S) is the
disconnected union of its intersections with J -classes of S. �

Lemma 10. Let (S, ∗) be a simple multisemigroup, I a non-empty left ideal of S and J a
non-empty right ideal of S. Then I ∩ J 6= ∅ and J ∗ I 6= ∅.

Proof. The claim is obvious in the case |S| = 1, so we assume that |S| > 1. Since I ∩ J ⊃
J ∗ I, it is enough to show that J ∗ I 6= ∅. Assume that this is not the case, that is
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J ∗ I = ∅. Since S1 ∗ J is a non-empty ideal of S, we have S = S1 ∗ J since S is simple.
Similarly S = I ∗ S1. But then

S ∗ S = S1 ∗ J ∗ I ∗ S1 = ∅.

This is, however, not possible if S is simple and |S| > 1. This completes the proof. �

We say that a multisemigroup (S, ∗) is of finite type provided that every (non-empty) left
ideal of S contains a minimal left ideal and every (non-empty) right ideal of S contains a
minimal right ideal. Clearly, every finite multisemigroup is of finite type.

Corollary 11. Let (S, ∗) be a simple multisemigroup of finite type. Then Q(S) 6= ∅.

Lemma 12. Let (S, ∗) be a multisemigroup and a, b ∈ S. Then the following statements
are equivalent:

(a) a ∗ b = ∅.

(b) (S1 ∗ a) ∗ (b ∗ S1) = ∅.

(c) La ∗ Rb = ∅.

(d) There is s ∈ La and t ∈ Rb such that s ∗ t = ∅.

Proof. That (b) implies (c) is obvious. That (c) implies (d) is obvious. That (a) implies
(b) follows from the following computation, which uses associativity: (S1 ∗ a) ∗ (b ∗ S1) =
S1 ∗ (a ∗ b) ∗ S1 = ∅. The same argument shows that (d) implies (S1 ∗ s) ∗ (t ∗ S1) = ∅
and, as a ∈ S1 ∗ s and b ∈ t ∗ S1, we get that (d) implies (a). �
Corollary 13. Let (S, ∗) be a multisemigroup and H an H-class in S. Then the following
conditions are equivalent:

(i) H ∗H 6= ∅.

(ii) There exist s, t ∈ H such that s ∗ t 6= ∅.

(iii) For all s, t ∈ H we have s ∗ t 6= ∅.

Proof. Obviously, condition (iii) implies condition (i) and condition (i) implies condition
(ii). For a ∈ H we have H = La ∩ Ra and the fact that condition (ii) implies condition
(iii) follows from Lemma 12. �
Proposition 14. Let (S, ∗) be a multisemigroup and a, b ∈ Q(S). Then a ∗ b ⊂ Lb ∩ Ra.
Moreover, if S is simple and H := La ∩Rb, then a ∗ b 6= ∅ if and only if H ∗H 6= ∅.

Proof. The first claim is obvious, so we prove the second one. Suppose a ∗ b 6= ∅. Since
a, b ∈ Q(S) it follows that La, Lb are minimal left ideals and Ra, Rb are minimal right
ideals. By Lemma 10 we have H 6= ∅ and hence there exists y ∈ H. We have y ∗ y 6= ∅ by
Lemma 12 and thus H∗H 6= ∅. Conversely, if H∗H 6= ∅, then a∗b 6= ∅ by Lemma 12. �
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Proposition 15. Let (S, ∗) be a multisemigroup such that Q(S) 6= ∅. Then Q(S) is a
union of H-classes of S, the restriction ∼ of the relation H to Q(S) is a congruence on
Q(S) and Q(S)/∼ is a quasi-semigroup with singleton H-classes.

Proof. If a ∈ Q(S) and bH a, then clearly b ∈ Q(S), so Q(S) is a union of H-classes. Let
a, b ∈ Q(S) be such that a ∼ b. Then there exist a minimal left ideal I and a minimal
right ideal J of S such that a, b ∈ I ∩J . Let further c ∈ Q(S). Then there exist a minimal
left ideal I ′ and a minimal right ideal J ′ of S such that c ∈ I ′ ∩ J ′. But then we have both
a ∗ c ⊂ I ′ ∩ J and b ∗ c ⊂ I ′ ∩ J , which implies that ∼ is a right congruence on Q(S). That
∼ is a left congruence is proved similarly. Hence ∼ is a congruence on Q(S). The elements
of Q(S)/∼ can be identified with pairs (I, J), where I is a minimal left ideal in S and J is
a minimal right ideal in S such that I ∩ J 6= ∅ (the pair (I, J) corresponds to I ∩ J). The
above also shows that the multiplication in Q(S)/∼ is given by

(I, J) · (I ′, J ′) =

{
(I ′, J), (I ∩ J) ∗ (I ′ ∩ J ′) 6= ∅;

∅, otherwise.

This is obviously a quasi-semigroup with singleton H-classes. �

5.2. Structure of strongly simple multisemigroups. Let (S, ∗) be a strongly simple
multisemigroup. Then S is both, the (disjoint) union of its minimal left ideals and the
(disjoint) union of its minimal right ideals. At the same time, if S is simple and every
element of S generates a minimal left and a minimal right ideal, then S is strongly simple.
Furthermore, S1 ∗ a = La and a ∗ S1 = Ra for any a ∈ S. In this subsection we show
how the results of the previous subsection can be strengthened in the case of strongly
simple multisemigroups. It turns out that hypergroups arise naturally and play a very
important role in this case (similar to the role of group H-classes for completely 0-simple
semigroups).

Theorem 16 (Structure of strongly simple multisemigroups). Let (S, ∗) be a strongly
simple multisemigroup.

(a) For any a, b ∈ S we have La ∩Rb 6= ∅.

(b) If H is an H-class in S, then either H ∗H = ∅ or H is a hypergroup.

(c) For a, b ∈ S we have a ∗ b 6= ∅ if and only if La ∩Rb is a hypergroup.

(d) Assume S 6∼= 0. Then every L-class and every R-class in S contains at least one
hypergroup H-class.

(e) Let a, b ∈ S be such that aR b and let s ∈ S1 be such that b ∈ a∗s. Then the multivalued
map x 7→ x ∗ s is surjective from La to Lb and preserves both R- and H-classes, that
is, for any H-class H ⊂ La we have H ∗ s is an H-class in Lb and the two H-classes
H and H ∗ s are contained in the same R-class.
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(f) Assume S 6∼= 0. Let I be a minimal left ideal of S and J a minimal right ideal of S.
Then I ∩ J = J ∗ I.

(g) H is a congruence on S and the quasi-semigroup S/H is bisimple (i.e. contains a
unique D-class) with singleton H-classes.

Proof. Claim (a) is a special case of Lemma 10.

Let us prove claim (b). Let H be an H-class in S and assume that H ∗ H 6= ∅. Let L
and R be the L-class and the R-class whose intersection is H. We have that L ∗ R is an
ideal of S and is non-empty (since H ∗ H 6= ∅). Hence L ∗ R = S. We first show that
H ∗ H = H. Let a ∈ H. Since L ∗ R = S ⊇ H, it follows that a ∈ b ∗ c for some b ∈ L
and c ∈ R. But b ∗ c ⊆ b ∗ S1 ∩ S1 ∗ c. Since the latter is an H-class and b ∗ c ∩ H 6= ∅
then H = b ∗ S1 ∩ S1 ∗ c. Since also H = S1 ∗ b ∩ c ∗ S1 it follows that b ∈ H and c ∈ H.
Therefore H = H ∗ H, as required. Let a ∈ H. Show that H ∗ a = H. Let c ∈ H. As
H = H ∗H, there are some x, y ∈ H such that c ∈ x ∗ y. Now aRx implies x ∈ a ∗ t for
some t ∈ S1. We then have c ∈ x ∗ y ⊆ a ∗ t ∗ y. So c ∈ a ∗ L (because t ∗ y ⊆ L). We
have shown that H ⊆ a ∗L. So H = a ∗L since clearly a ∗L ⊆ H. Observe that L ∗ a is a
non-empty left ideal and so L ∗ a = L. Hence we have

H ∗ a = (a ∗ L) ∗ a = a ∗ (L ∗ a) = a ∗ L = H.

Similarly we verify that a ∗H = H and claim (b) follows.

Claim (c) follows from claim (b) and Proposition 14.

We prove claim (d) for L-classes (for R-classes the proof is similar). The case |S| = 1
cannot occur by our assumptions that S has no zero element and S 6∼= 0. Consider the
case |S| > 1. Then for any different a, b ∈ S we have S1 ∗ a ∗ S1 = S1 ∗ b ∗ S1 3 b, which
implies S ∗S 6= ∅, in particular, there exist s, t ∈ S such that s ∗ t 6= ∅. Set H := Ls∩Rt.
Claim (c) implies that H is a hypergroup H-class in Ls. Let L be an L-class different from
Ls, x ∈ L ∩ Rt and y ∈ H. Then y 6= x and yRx and hence there is u ∈ S such that
y ∈ x ∗u. Consider H ′ = S1 ∗x∩u ∗S1, which is an H-class by Lemma 10. Proposition 14
along with claim (b) imply that H ′ is a hypergroup. Claim (d) follows.

In the setup of claim (e) we have La ∗ s 6= ∅ and hence La ∗ s is a left ideal of S contained
in Ls = Lb. Then La ∗ s = Lb by minimality of Lb. If c ∈ Lb is such that c ∈ x ∗ s, then
cRx and hence the map preserves R-classes and, consequently, H-classes. This proves
claim (e).

To prove claim (f) we note that J ∗ I 6= ∅ by Lemma 10 and J ∗ I ⊂ I ∩ J . Let a ∈ J and
b ∈ I be such that a ∗ b 6= ∅. Then claim (e) implies that Ha ∗ b = I ∩ J . This proves
claim (f).

Finally, claim (g) follows from Proposition 15 and claims (c) and (d). �
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5.3. Example: a finite simple multisemigroup with nontrivial inclusions of prin-
cipal one-sided ideals. Let (X,≤) be a partially ordered set possessing a unique minimal
element y. Consider the rectangular band T = X×X. For a ∈ X let a↓ = {x ∈ X : x ≤ a}
be the downward closure of a. We define the function f : T → 2T by setting

(5.1) f(a, b) = a↓ × b↓.

It is easy to check that the function f satisfies the equality f(f(x)f(y)) = f(x)f(y) and
therefore S = (T, ∗) with (a, b) ∗ (c, d) = f(a, b)f(c, d) is a multisemigroup (see Subsec-
tion 3.14). Moreover, one checks that S is a simple multisemigroup and Q(S) = {(y, y)}.
Clearly Q(S) is a strongly simple multisemigroup. Note that (a, b) ∗ S1 is a minimal right
ideal if and only if a = y; S1 ∗ (a, b) is a minimal left ideal if and only if b = y. Let
a1 < · · · < am be a chain in X and c ∈ X be any element. Then we have a chain of
principal left ideals

(5.2) S1 ∗ (c, a1) ( S1 ∗ (c, a2) ( · · · ( S1 ∗ (c, am).

The above example can be generalized as follows. Let I be a set and let (Xi,≤i), i ∈ I,
be partially ordered sets each possessing a unique minimal element yi, i ∈ I. We assume
that the sets Xi are pairwise disjoint. Let Y = {yi : i ∈ I}. Let X = ∪i∈IXi. We define
on X the partial order ≤ by setting x ≤ y provided that there is i such that x, y ∈ Xi

and x ≤i y. Consider the rectangular band T = X ×X and define f : T → 2T as given in
(5.1).

The map f gives a simple multisemigroup S = (T, ∗) according to Subsection 3.14. The
submultisemigroup Q(S) of S is equal to Y × Y and is a rectangular band, hence is a
strongly simple multisemigroup (in fact, a semigroup); (a, b)∗S1 is a minimal right ideal if
and only if a ∈ Y ; S1 ∗ (a, b) is a minimal left ideal if and only if b ∈ Y . Let a1 < · · · < am
be a chain in X. Let c ∈ Z be any element. Then (5.2) gives a chain of left ideals.

5.4. Example: a finite simple multisemigroup whose support is not simple. Let
X = {1, 2} with the order given by 1 < 2. Let S = X × X. Let (S, ∗) = S(X) be the
multisemigroup constructed in Subsection 5.3. That is, the multiplication ∗ on S is given
by the map ∗ : S × S → 2S:

(i, j) ∗ (k, l) = i↓ × l↓.

Let T = S ∪ (1′, 1′) (here 1′ is an element different from both 1 and 2). Define the map
π : T → S by setting π(a) = a, if a ∈ S, and π((1′, 1′)) = (1, 1). Let ◦ : T × T → 2T be
defined as follows:

x ◦ y =

{
π(x) ∗ π(y), x ∈ {(1, 1), (1′, 1′), (1, 2)} and y ∈ {(1, 1), (1′, 1′), (2, 1)};
(π(x) ∗ π(y)) ∪ (1′, 1′), otherwise .

Lemma 17. (T, ◦) is a multisemigroup.
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Proof. Observe that we have (1, 1)◦x = (1′, 1′)◦x and x◦ (1, 1) = x◦ (1′, 1′) for any x ∈ T .

Let x, y, z ∈ T . We have to verify that (x◦y)◦z = x◦(y◦z). Note that (1, 1) ∈ s◦t for any
s, t ∈ T . It follows that (x◦y)◦z = (π(x)∗π(y))◦z and, similarly, x◦(y◦z) = x◦(π(y)∗π(z)).

By the definition, (π(x)∗π(y))◦z equals either (π(x)∗π(y))∗π(z) or ((π(x)∗π(y))∗π(z))∪
{(1′, 1′)}. Let us establish when it equals (π(x) ∗ π(y)) ∗ π(z). From the definition we have
that this happens if and only if z ∈ {(1, 1), (1′, 1′), (2, 1)} and π(x) ∗ π(y) ⊆ {(1, 1), (1, 2)}.
The latter inclusion holds if and only if x ∈ {(1, 1), (1′, 1′), (1, 2)}.

Similarly, x ◦ (π(y) ∗ π(z)) equals either π(x) ∗ (π(y) ∗ π(z)) or (π(x) ∗ (π(y) ∗ π(z))) ∪
{(1′, 1′)} and one shows that x ◦ (π(y) ∗ π(z)) = π(x) ∗ (π(y) ∗ π(z)) if and only if x ∈
{(1, 1), (1′, 1′), (1, 2)} and z ∈ {(1, 1), (1′, 1′), (2, 1)}. The equality (x ◦ y) ◦ z = x ◦ (y ◦ z)
follows. �

It is easy to check that T is a simple multisemigroup. For x ∈ T we have x ◦ T 1 =
(π(x)∗S1)∪{(1′, 1′)}, T 1◦x = (S1∗π(x))∪{(1′, 1′)}. Furthermore, Q(T ) = {(1, 1), (1′, 1′)},
(1, 1)◦T 1∩T 1 ◦ (1, 1) = {(1, 1), (1′, 1′)}. Both (1, 1) and (1′, 1′) belong to the same H-class
of T . At the same, Q(T ) ◦Q(T ) = {(1, 1)} and hence Q(T ) is not a hypergroup. Clearly,
(1, 1) and (1′, 1′) are not in the same J -class of Q(T ) and so Q(T ) is not simple.

5.5. Example: a finite simple multisemigroup for which R ◦ L 6= L ◦ R. Let
X = {1, 2} and S = X × X. Let (S, ∗) = S(X) be the multisemigroup from Subsection
5.4. We have (i, j) ∗ (k, l) ∗ (p, q) = i↓ × q↓.

Let T = S \ {(2, 2)}. We define a map T × T → 2T , (x, y) 7→ x • y, by
(i, j) • (k, l) = ((i, j) ∗ (k, l)) \ {(2, 2)}.

Lemma 18. (T, •) is a multisemigroup.

Proof. Let (i, j), (k, l), (p, q) ∈ T . Observe that if (i, j) ∗ (k, l) 3 (2, 2), then (i, j) ∗ (k, l) 3
(2, 1) and hence ((i, j) ∗ (k, l)) ∗ (p, q) = (((i, j) ∗ (k, l)) \ {(2, 2)}) ∗ (p, q). Using this we
calculate

((i, j) • (k, l)) • (p, q) = ((((i, j) ∗ (k, l)) \ {(2, 2)}) ∗ (p, q)) \ {(2, 2)} =

= (((i, j) ∗ (k, l)) ∗ (p, q)) \ {(2, 2)}.
Similarly we show that

(i, j) • ((k, l) • (p, q)) = ((i, j) ∗ ((k, l) ∗ (p, q))) \ {(2, 2)}.
Associativity of • follows. �

It is easy to see that T is simple and Q(T ) = {(1, 1)}. Further, it is easy to calculate
Green’s relations on T . We have R(1,1) = {(1, 1), (1, 2)} and R(2,1) = {(2, 1)}. Also
L(1,1) = {(1, 1), (2, 1)} and L(1,2) = {(1, 2)}. We see that (1, 2) R (1, 1) L (2, 1) so that
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((1, 2), (2, 1)) ∈ R ◦ L. But since L(1,2) ∩ R(2,1) = ∅, we have ((1, 2), (2, 1)) 6∈ L ◦ R. In
particular, L ◦R 6= R◦L. Note that we always have L ◦R = R◦L for semigroups.

5.6. Simple multisemigroups with identity. A simple finite semigroup with identity
is a group. For multisemigroups the situation is much more complicated.

Lemma 19. Let (S, ∗) be a strongly simple multisemigroup with identity. Then S is a
hypergroup.

Proof. Since S is strongly simple, S = S ∗ 1 is a minimal left ideal and S = 1 ∗ S is a
minimal right ideal. Hence S ∗ a = S and a ∗ S = S for any a ∈ S and thus S is a
hypergroup. �

One could expect that even a simple finite multisemigroup with identity should be a hy-
pergroup. Unfortunately, this is not the case. Indeed, consider S = {1, a, b, t} with the
multioperation ∗ defined by the following Cayley table:

∗ 1 a b t

1 1 a b t
a a a S {a, t}
b b t b t
t t t {b, t} t

It is straightforward to verify that (S, ∗) is a multisemigroup. This multisemigroup is
simple; it contains an identity element; it consists of idempotents; it has a unique minimal
left ideal, namely {a, t}; it has a unique minimal right ideal, namely {b, t}; we have Q(S) =
{t} and S is not a hypergroup.

Below we collect some properties of simple multisemigroups of finite type with iden-
tity:

Proposition 20. Let (S, ∗) be a simple multisemigroup of finite type with identity.

(a) If I is a non-empty left ideal of S and J is a non-empty right ideal of S, then I∩R1 6= ∅
and J ∩ L1 6= ∅.

(b) If I and I ′ are two non-empty left ideals of S, then I ∗ I ′ 6= ∅.

(c) If J and J ′ are two non-empty right ideals of S, then J ∗ J ′ 6= ∅.

Proof. Since S contains the identity, it contains a unique (possibly empty) maximal proper
right ideal (the union of all right ideals of S which do not contain the identity), call it K.
Clearly, R1 = S \ K.

Let I be a non-empty left ideal of S. Then X := I ∗ S is a non-empty two-sided ideal of
S since S contains the identity and hence X = S since S is simple. If I ⊂ K, then X ⊂ K
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and hence X cannot be equal to S, a contradiction. Therefore I intersects S \K = R1 non-
trivially. Similarly one shows that every non-empty right ideal intersects L1 non-trivially,
which proves claim (a).

Let I and I ′ be two non-empty left ideals in of S. Then from the previous paragraph we
have: (I ∗ I ′) ∗ S = I ∗ (I ′ ∗ S) = I ∗ S = S, thus I ∗ I ′ 6= ∅. This proves claim (b). Claim
(c) is proved similarly to claim (b). �

5.7. A Kazhdan-Lusztig example in type B. In Subsection 5.2 we established many
elementary properties of strongly simple multisemigroups that are similar to properties
of 0-bisimple semigroups. One could observe that the multisemigroup version of Green’s
lemma does not assert that c 7→ c ∗ x is a bijection from H to H ∗ x. This turns out to be
false for multisemigroups in general. Here we give an explicit example.

Let W = {e, s, t, st, ts, sts, tst, stst} be a Weyl group of type B2 (the generators s and t
satisfy s2 = t2 = e and stst = tsts) and (W, ∗) be the corresponding Kazhdan-Lusztig
multisemigroup as explained in Subsection 3.9. Denote by T the Rees quotient of the
submultisemigroup W \ {e} by the zero element {stst}. Then a direct computation shows
that T is a strongly simple multisemigroup with the following Cayley table:

∗ s t st ts sts tst

s s st st {s, sts} sts st
t ts t {t, tst} ts ts tst
st {s, sts} st st {s, sts} {s, sts} st
ts ts {t, tst} {t, tst} ts ts {t, tst}
sts sts st st {s, sts} s st
tst ts tst {t, tst} ts ts t

It follows that T has the following egg-box diagram (in which all H-classes are hyper-
groups):

Ls Lt

Rs {s, sts} {st}
Rt {ts} {t, tst}.

6. The number of multisemigroups

In this section we compare asymptotic properties of associativity for ordinary binary op-
erations and for multivalued binary operations.

6.1. The number of semigroups. Let n be a positive integer and Nn := {1, 2, . . . , n}. A
binary operation on Nn corresponds to the choice of a square n×n matrix with coefficients
in Nn. Let Matn×n(Nn) be the set of all such matrices. Clearly, |Matn×n(Nn)| = nn2

.
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Let X denote the subset of Matn×n(Nn) which consists of all matrices corresponding to
associative binary operation. By [KRS, Equation (3.6)], we have

|X| =
(

n

(2e+ o(1)) lnn

)n2

and hence, dividing by nn2
, we obtain the following corollary, which says that “almost all”

binary operations are not associative:

Corollary 21. We have |X|
nn2 → 0 when n → ∞.

6.2. The number of multisemigroups. A multivalued binary operation on Nn corre-
sponds to the choice of a square n × n matrix with coefficients in 2Nn . Let Matn×n(2

Nn)

be the set of all such matrices. Clearly, |Matn×n(2
Nn)| = 2n

3
. Let Y denote the subset

of Matn×n(2
Nn) which consists of all matrices corresponding to associative multivalued bi-

nary operation (i.e. those satisfying (1.1)). Let Y ′ denote the subset of Matn×n(2
Nn) which

consists of all matrices corresponding to multivalued binary operation defining a hyper-
group. The following claim, which says that “almost all” multivalued binary operations
are associative, is in striking contrast with Corollary 21:

Theorem 22. We have both |Y |
2n

3 → 1 and |Y ′|
2n

3 → 1 when n → ∞.

Proof. Denote by Z the subset of Matn×n(2
Nn) which consists of all matrices such that the

corresponding multivalued binary operation ∗ for every a, b, c ∈ Nn satisfies⋃
s∈a∗b

s ∗ c =
⋃
t∈b∗c

a ∗ t = Nn.

Then Z ⊂ Y ′ ⊂ Y and hence it is enough to show that |Z|
2n3 → 1 when n → ∞.

It is enough to show that for the subset U of Matn×n(2
Nn) which consists of all matrices

such that the corresponding multivalued binary operation ∗ for every a, b, c ∈ Nn satisfies

(6.1)
⋃
t∈b∗c

a ∗ t = Nn,

we have |U |
2n

3 → 1 when n → ∞. Indeed, the latter, by symmetry, also implies that |U ′|
2n

3 → 1

for n → ∞, where U ′ denotes the subset of Matn×n(2
Nn) corresponding to all operations ∗

satisfying ⋃
s∈a∗b

s ∗ c = Nn

for all a, b, c ∈ Nn, so that we have |U∩U ′|
2n

3 → 1 for n → ∞.

Given a multivalued binary operation ∗ on Nn, with each a ∈ Nn we can associate, similarly
to Subsection 4.7, a binary relation τa on Nn defined as follows: i τa j if and only if i ∈ a∗j.
Let f denote the full relation on Nn. Then (6.1) is equivalent to the fact that τaτb = f for
all a, b ∈ Nn.
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To prove the latter claim we can adopt the classical argument from [KR, Theorem 4]. Our
choice of an element M = (Mi,j) of Matn×n(2

Nn) corresponds to a random choice of n
binary relations σa, a ∈ Nn, on Nn (here i σa j if and only if i ∈ Ma,j). We claim that the
probability of the random event that the product of any two of these n relations equals
the full relation tends to 1 when n tends to infinity ([KR, Theorem 4] claims this just for
two instead of n random binary relations). Indeed, the probability that the product of two
random elements of the two-element Boolean algebra is zero equals 3

4
. This implies that

the probability that the element in a fixed entry in a product of two random Boolean n×n
matrices is zero is at most

(
3
4

)n
. We have n random elements σa, a ∈ Nn. We can form n2

pairs (σa, σb), a, b ∈ Nn, from these elements. The Boolean n× n matrix corresponding to
the product σaσb has n

2 entries, each of which is zero with probability at most
(
3
4

)n
. Hence

the probability that at least one of these entries in at least one of the products of the form
σaσb is zero is at most n4

(
3
4

)n
. Since n4

(
3
4

)n → 0 for n → ∞, the claim follows. �

7. Nilpotent multisemigroups

In this section we establish some basic fact about nilpotent multisemigroups (see e.g.
[GM1, GM2] for more advanced semigroup analogues).

7.1. Nilpotent multisemigroups and their characterization. Let (S, ∗) be a multi-
semigroup. As usual, for an element s ∈ S and k ∈ N we write sk for the product s∗s∗· · ·∗s
of length k. Similarly, for X ⊂ S we write Xk for the union of all x1 ∗ x2 ∗ · · · ∗ xk, where
xi ∈ X for all i. An element s ∈ S is said to be nilpotent provided that sk = ∅ for
some k. The multisemigroup S is called nilpotent provided that Sk = ∅ for some k. The
minimal such k is called the nilpotency degree of S. Similarly, a subset X ⊂ S is called
nilpotent provided that Xk = ∅ for some k (in particular, the empty set is nilpotent). The
notion of nilpotent multisemigroups generalizes that of nilpotent semigroups. Nilpotent
semigroups correspond, via the construction given at the end of Subsection 4.3, to nilpotent
quasi-semigroups.

For a multisemigroup (S, ∗) define the action digraph Γ = ΓS as follows: the set of vertices
of Γ is S and for s, t ∈ S (not necessarily different) we have an oriented edge s → t if and
only if there exists a ∈ S such that t ∈ a ∗ s.
Proposition 23. Let (S, ∗) be a multisemigroup.

(a) The multisemigroup (S, ∗) is nilpotent if and only if there is m ∈ N such that the length
of any directed path in Γ is smaller than m.

(b) If (S, ∗) is nilpotent, then the nilpotency degree of S is exactly the length of the longest
directed path in Γ minus two.

Proof. Let (S, ∗) be nilpotent of nilpotency degree k and s0 → s1 → · · · → sm be an
oriented path in Γ of length m. Then there exist ai such that si ∈ ai ∗ si−1, i = 1, 2, . . . ,m.
This means that am ∗ am−1 ∗ · · · ∗ a1 ∗ s0 6= ∅ and hence m+ 1 < k.
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On the other hand, if the length of any oriented path in Γ is at most m, then for any m+2
elements s1, . . . , sm+2 ∈ S we have sm+2 ∗ sm+1 ∗ · · · ∗ s1 = ∅ and hence S is nilpotent of
nilpotency degree at most m+ 2. This implies both claims of the proposition. �

Corollary 24. Let (S, ∗) be a nilpotent multisemigroup. Then all Green’s relations on S
coincide with the equality relation.

Proof. This follows directly from the fact that Γ does not have any oriented cycles. The
latter is a direct consequence of Proposition 23. �

7.2. Finite nilpotent multisemigroups. Similarly to the case of finite nilpotent semi-
groups (see [Ar, Chapter 7, Fact 2.30]), for finite nilpotent multisemigroups we have:

Proposition 25. A finite multisemigroup (S, ∗) is nilpotent if and only if every element
of S is nilpotent.

Proof. The “only if” part is obvious, so we prove the “if” part. Assume that every element
of S is nilpotent. We claim that the digraph Γ does not have oriented cycles (in particular,
loops). Indeed, assume that this is not the case and let s1 → s2 → · · · → sk → sk+1 = s1
be an oriented cycle in Γ. For i = 1, 2, . . . , k let ai ∈ S be such that si+1 ∈ ai ∗ si. Then
there exists t ∈ ak ∗ ak−1 ∗ · · · ∗ a1 such that s1 ∈ t ∗ s1. This implies that s1 ∈ tn ∗ s1 for
any n ∈ N and hence t is not nilpotent, a contradiction.

As S is finite and Γ does not have oriented cycles, then the length of any oriented path in
Γ is strictly smaller than |S|. This means that S is nilpotent by Proposition 23. �

Finite nilpotent semigroups can be characterized as finite semigroups with unique idempo-
tent which, moreover, is the zero element. Equivalently, a finite semigroup (S, ·) is nilpotent
if and only if for any non-singleton subsemigroup T of S we have |T ·T | < |T |. The following
gives an analogue of the latter characterization of nilpotency for multisemigroups.

Theorem 26. A finite multisemigroup (S, ∗) is nilpotent if and only if for any (non-empty)
submultisemigroup T of S we have |T ∗ T | < |T | (or, equivalently, T ∗ T 6= T ).

Proof. If S is nilpotent and T is a submultisemigroup of S, then T is nilpotent as well.
However, T ∗ T = T implies T k = T for all k which contradicts nilpotency of T . Therefore
T ∗ T 6= T .

If S is not nilpotent, we can use the fact that S is finite and choose some non-nilpotent
submultisemigroup T of S which is minimal with respect to inclusion. We claim that
T ∗ T = T . If this were not the case, then U := T ∗ T 6= ∅ would be a submultisemigroup
of S properly contained in T . Hence U must be nilpotent by minimality of T . Therefore
Uk = ∅ for some k, which implies that (T ∗ T )k = T 2k = ∅, a contradiction. �
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7.3. The radical. Let (S, ∗) be a multisemigroup. Following [GM1], by the radical R(S)
of S we will mean the set

R(S) := {s ∈ S |S1 ∗ s ∗ S1 is nilpotent}.
Then R(S), which might be empty, is a union of two-sided ideals of S and hence is a
two-sided ideal of S.

Lemma 27. Let S be a finite multisemigroup.

(a) The set R(S) is the maximal (with respect to inclusion) nilpotent two-sided ideal of S.

(b) The multisemigroup S is nilpotent if and only if S = R(S).

Proof. For s ∈ R(S) we have that S1 ∗ s ∗ S1 is nilpotent, in particular, s is nilpotent.
Hence every element of R(S) is nilpotent and thus the fact that R(S) is nilpotent follows
from Proposition 25 and the fact that R(S) is finite (since S is finite).

On the other hand, if I is a nilpotent two-sided ideal of S and s ∈ I, then S1 ∗ s ∗ S1 ⊂ I
is nilpotent and hence s ∈ R(S). Claim (a) follows. Claim (b) follows from claim (a). �

Our next observation is the following:

Proposition 28. Let S be a finite multisemigroup and T a nilpotent submultisemigroup
of S.

(a) The set T ∪R(S) is a nilpotent submultisemigroup of S.

(b) If T is maximal with respect to inclusion, then R(S) ⊂ T .

Proof. That T ∪ R(S) is submultisemigroup follows directly from the facts that T is a
submultisemigroup and R(S) is a two-sided ideal of S. That T ∪R(S) is nilpotent follows
from Proposition 25. This proves claim (a). Claim (b) follows from claim (a). �
Corollary 29. Let S be a finite multisemigroup.

(a) If R(S) is a maximal nilpotent submultisemigroup of S, in particular, if S = R(S),
then R(S) is the unique maximal nilpotent submultisemigroup of S.

(b) If R(S) is not a maximal nilpotent submultisemigroup of S, then the map X 7→ X\R(S)
is a bijection from the set of all maximal nilpotent submultisemigroups of S to the set
of all maximal nilpotent submultisemigroups of the Rees quotient S\R(S).

Proof. Claim (a) follows directly from Proposition 28(b).

To prove claim (b), let X be a maximal nilpotent submultisemigroup of S. Then X 6= R(S)
and X \R(S) is a nilpotent submultisemigroup of S \R(S). Assume Y is a nilpotent
submultisemigroup of S\R(S) containing X\R(S). Then from Lemma 27 it follows that
Y ∪ R(S) is a nilpotent submultisemigroup of S. Therefore Y = X \R(S) by maximality
of X, that is X\R(S) is maximal.
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Conversely, let Y be a maximal nilpotent submultisemigroup of S\R(S). Then, similarly
to the above, Y ∪R(S) is a nilpotent submultisemigroup of S. If X is a nilpotent submul-
tisemigroup of S containing Y ∪R(S), then X \R(S) is a nilpotent submultisemigroup of
S\R(S) containing Y . Hence X = Y ∪R(S) by maximality of Y . This proves claim (b). �

7.4. Maximal nilpotent submultisemigroups of strongly simple multisemi-
groups. Let (S, ∗) be a strongly simple multisemigroup which is not isomorphic to the
singleton multisemigroup 0. Recall that H is a congruence on S and that S/H is a quasi-
semigroup.

Proposition 30. The canonical strong surjective homomorphism ϕ : S � S/H induces
a bijection between the set of maximal (with respect to inclusion) nilpotent submultisemi-
groups of S and maximal nilpotent sub-quasi-semigroups of S/H. This bijection preserves
nilpotency degree.

Proof. From Lemma 12 it follows that for a, b ∈ S we have a ∗ b 6= ∅ if and only if
Ha ∗ Hb 6= ∅. Furthermore, from Proposition 14 it also follows that Ha ∗ Hb, when non-
empty, is contained in a single H-class of S, namely Ra ∩ Lb. Hence, by induction, for
a1, a2, . . . , ak ∈ S we have a1 ∗ a2 ∗ · · · ∗ ak 6= ∅ if and only if Ha1 ∗ Ha2 ∗ · · · ∗ Hak 6= ∅,
moreover, Ha1 ∗ Ha2 ∗ · · · ∗ Hak , when non-empty, is contained in a single H-class of S.

Consequently, if T is a nilpotent submultisemigroup of S, then T ′ :=
⋃
t∈T

Ht is a nilpotent

submultisemigroup of S of the same nilpotency degree, moreover, T ⊂ T ′. Hence any
maximal nilpotent submultisemigroup of S is a union of H-classes of S.

If T is a nilpotent submultisemigroup of S, then ϕ(T ) is a nilpotent sub-quasi-semigroup
of S/H (since ϕ is a homomorphism), moreover, the above implies that ϕ(T ) has the
same nilpotency degree as T . Conversely, if K is a nilpotent sub-quasi-semigroup of S/H,
then the above observations imply that ϕ−1(K) is a nilpotent submultisemigroup of S
of the same nilpotency degree as K. Note also that ϕ−1(K) is a union of H-classes of
S by construction. We have ϕ−1(ϕ(T )) = T ′ in the above notation and also we have
ϕ(ϕ−1(K)) = K, in particular, ϕ−1 maps maximal nilpotent sub-quasi-semigroups of S/H
to maximal nilpotent submultisemigroups of S. The above also implies that if T is a
maximal nilpotent submultisemigroup of S, then ϕ(T ) is a maximal nilpotent sub-quasi-
semigroup of S/H. Thus the first claim of the proposition follows. The second claim
follows from the above observations that both ϕ and ϕ−1 preserve nilpotency degree. �

Let (S, ∗) be a finite strongly simple multisemigroup, I1, . . . , Im — the list of all L-classes,
and J1, . . . , Jn — the list of all R-classes in S. Let I(S) denote the Boolean matrix (aij),
i = 1, . . . ,m, j = 1, . . . , n, defined as follows:

aij =

{
1, Ii ∩ Jj is a hypergroup;
0, otherwise.
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The matrix I(S) is called the incidence matrix of S. Recall that S 6∼= 0. Then, by Theorem
16, all rows and columns of S are non-zero. Assume that I(S) has the form(

Ek B
A A ·B

)
for some positive integer k, where Ek is the identity matrix and A and B are Boolean
matrices such that each row of A is not zero and each column of B is not zero, and A · B
is the Boolean matrix which is the product of A and B. In this case a classification of
maximal nilpotent sub-quasi-semigroups of S/H can be found in [GM1, Subsection 6.10]. In
particular, there are exactly k! such sub-quasi-semigroups and each of them has nilpotency
degree k.
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