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Abstract

We calculate the finitistic dimension of certain stratified algebras in terms of the
projective dimension of the characteristic tilting module. This includes, in particu-
lar, quasi-hereditary algebras, whose Koszul dual is again quasi-hereditary; stratified
algebras, which are quotients of quasi-hereditary algebras over complete local com-
mutative rings; and stratified algebras associated with Harish-Chandra bimodules for
complex semi-simple finite-dimensional Lie algebras.

1 Introduction and description of results

A fundamental invariant of any algebra and its module category is the global dimension,
the maximal degree in which cohomology can occur, or, if this happens to be infinite, the
finitistic dimension, the supremum of the finite projective dimensions occurring in this
category; the celebrated finitistic dimension conjecture predicts the finitistic dimension
to be always finite. Filtrations of the algebra and stratifications of its module category
often can be used to provide upper bounds for these dimensions, as is known for quasi-
hereditary or standardly stratified algebras; for example, in [AHLU] such an upper bound
is established for the finitistic dimension of a standardly stratified algebra in terms of
combinatorial properties of the partially ordered set of simple modules, generalizing the
well-known upper bound for the global dimension of quasi-hereditary algebras.

Such upper bounds are rarely sharp, and little is known on the precise values of global
or finitistic dimension of these classes of algebras. Therefore, in [MP] a more effective
upper bound has been proposed for the finitistic dimension of a stratified algebra with a
duality and it has been conjectured that this bound gives the ezact value.

This conjecture has already been verified in several cases; for quasi-hereditary algebras
with two simple modules in [Pal], for many Schur algebras in [Pal, Pa2], for the BGG-
category O of a semi-simple complex Lie algebra in [MP], and for various classes of quasi-
hereditary algebras in [EP]. The present paper contributes general criteria to verify the
conjecture as well as several new classes of examples, for which the conjecture holds true.
The subsequent paper [MO] proves the conjecture for all quasi-hereditary algebras with
a duality preserving isomorphism classes of simples, and even for all properly stratified



algebras with such a duality and for which the characteristic tilting and cotilting modules
coincide.

In the present paper we prove two general results on the finitistic dimension of stratified
algebras, involving the projective dimension of the characteristic tilting module, and we use
these results to compute the finitistic dimensions of various categories of Harish-Chandra
bimodules over simple complex finite-dimensional Lie algebras. Our first result, proved in
Section 3 is the following:

Theorem 1. Let A be a quasi-hereditary algebra and B = Ext%(L,L). Assume that B
is quasi-hereditary, modules AP) (i) = Ext%(A(i), L) are standard with the natural graded
filtration being a Loewy one, and the Loewy length of every costandard B-module equals the
Loewy length of the corresponding standard B-module. Then

gl. d.(A) = 2dim(s)(A) = 2p. d.(T(A)).

Assuming additionally that A has a simple preserving duality, we obtain a partial case
of the main result from [MO]. However, the methods we use are completely different from
those used in [MO]. Our methods are, roughly speaking, a manifestation of the standard
fact that B, being quasi-hereditary, has a tilting module.

Our second principal result, proved in Section 4, is the following:

Theorem 2. Let R be a basic complete local commutative algebra over some field k, and
m be the maximal ideal of R. Let further A be a quasi-hereditary algebra over R and I
be an ideal of R of finite k-codimension. Then the algebra A/AI is properly stratified, the
algebra AJAm is quasi-hereditary, and, moreover, we have

fin. dim.(A/ATI) = gl. d.(A/Am).
As an immediate corollary we obtain:

Corollary 1. Let A, R, m and I be as in Theorem 2. Assume that the global dimension
of the quasi-hereditary algebra AJ/Am equals twice the projective dimension of the charac-
teristic tilting module. Then the finitistic dimension of the properly stratified algebra AJAI
equals twice the projective dimension of the characteristic tilting module.

In Section 5 we apply Theorem 1 and Theorem 2 to calculate the finitistic dimension
of several categories of Harish-Chandra bimodules over simple complex finite-dimensional
Lie algebras. In particular, as one of the corollaries we obtain the following:

Corollary 2. The finitistic dimension of a regular block of a thick category O, [So], equals
twice the projective dimension of the characteristic tilting module in this block.

Finally, in Section 6 we calculate the finitistic dimension of some parabolic generaliza-
tions of the BGG category O using different methods.



2 General conventions

For a finite-dimensional algebra A over some field k and for a primitive idempotent e in
A we denote by L(e), P(e) and I(e) the corresponding simple, indecomposable projective
and indecomposable injective modules respectively. We denote by gl.d.(A) the global
dimension of A and by fin.dim.(A) the projectively defined finitistic dimension of A. For
an A-module M we denote by 1.1.(M) the Loewy length of M. Sometimes for an A-module
M we will write M) to emphasize the fact that M is a module over A. Mainly we will
use it if the algebra A is not clear from the context.

For two A-modules M and N we define the trace Trp,(N) as the sum of all images
f(M), where f: M — N is a homomorphism. We remark that, by definition, Try,(N) is
a submodule of N.

For a field k we denote by Dg(_) the functor Homy(_, k).

By a duality on a category we always mean a contravariant exact and involutive equiv-
alence, which preserves isoclasses of simple objects.

If M is a set of A-modules, we will say, abusing language, that an A-module M is
filtered by modules from M if there is a filtration of M, whose subquotients are isomorphic
to some modules in M.

Let A be an abelian category and M be a set of objects from A. Assume that for every
object M € A there exists a (possibly infinite) resolution

o> P> P> M—0, (1)

where P; € M for all i. For M € A we call the length of a minimal resolution of the

form (1) the M-filtration dimension of M and denote it by dima M. The M-filtration

dimension of A is defined as the supremum of the M-filtration dimensions of M € A.
Assume now that for every object M € A there exists a (possibly infinite) coresolution

0O—-M—=>PFP =P —..., (2)

where P; € M for all i. For M € A we call the length of the minimal coresolution of the
form (2) the M-filtration codimension of M and denote it by codimas M. The M-filtration
codimension of A is defined as the supremum of the M-filtration codimensions of M € A.
If A is an associative algebra and M is a set of A-modules, then the M-filtration
(co)dimension of A is defined as the M-filtration (co)dimension of the category A-mod.

3 Quasi-hereditary algebras and their global dimen-
sion

3.1 Quasi-hereditary algebras

Let A be a finite-dimensional algebra over some field k and e = (ey,...,e,) be a linear
order on a complete set of pairwise orthogonal primitive idempotents of A. Fori=1,...,n
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we set L(i) = L(e;), P(i) = P(e;) and I(i) = I(e;). Let P(> i) = ®;5,P(j) and define
A(i) = P(i)/ Trpsq(P(7)). Dually, we define V(i) as the intersection of kernels of all
morphisms from I(i) to I(> i) = @;5;1(j). The modules A(i) are called standard and
the modules V(i) are called costandard. A filtration, whose subquotients are standard
modules, is called a standard filtration and a filtration, whose subquotients are costandard
modules, is called a costandard filtration.

We recall (see [CPS1]) that A is called quasi-hereditary provided that foralli =1,...,n
the kernel of the canonical surjection P (i) — A(%) is filtered by A(j), i < j; and the kernel
of the canonical surjection A(z) — L(3) is filtered by L(j), j < i. Equivalently, A is quasi-
hereditary if the cokernel of the canonical injection V(i) — I(7) is filtered by V(j), i < j;
and the cokernel of the canonical injection L(i) < V(i) is filtered by L(j), j < i.

Denote by F(A) and F (V) the full subcategories of A-mod, which consist of all modules
having a standard or a costandard filtration respectively. The modules in F(A)NF(V) are
called tilting modules (see [Ri]). Every tilting module is a direct sum of indecomposable
tilting modules, the latter being in a natural bijection with simple modules. We denote by
T(¢) the indecomposable tilting module, whose standard filtration starts with A(7).

We set L = @ ;L(i) and T = & ,T(i). The module T is called the characteristic
tilting module for A. If there exists a duality on A-mod, then it sends standard modules
to costandard modules and preserves tilting modules.

3.2 Global dimensions

In this subsection we compute the global dimension of a quasi-hereditary algebra, whose
homological dual is again quasi-hereditary. We do not assume a priori that A has a simple
preserving duality, however, we impose a technical condition on the structure of standard
and costandard module over the homological dual to A (this can be simplified assuming
that A has a simple preserving duality). Our argument is a direct manifestation of the fact
that the homological dual to A has a tilting module.

Theorem 3. Let A be a quasi-hereditary algebra and B = Ext% (L, L). Assume that
(a) B is quasi-hereditary;

(b) modules AP) (i) = Ext%(A(i), L) are standard B-modules and the natural graded fil-
tration 1s a Loewy one;

(¢) the Loewy length of VB (i) and AP) (i) coincide.

Then
gl.d.(A) = 2dimg(a)(A) = 2p.d.(T'(A)).

Proof. The inequality gl. d.(A) < 2dimza)(A) = 2 p. d.(T) follows from [CZ, Corollary 2.9]
and [CZ, Corollary 2.11], so it suffices to show that gl. d.(4) > 2p.d.(T).

The algebra B is positively graded in a natural way and gl.d.(A) coincides with the
degree N of the maximal non-zero graded component of B. The zero component of this
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grading is semi-simple by Schur’s Lemma, which implies that the graded filtration on
B, considered as a left module over itself, has semi-simple subquotients. Hence N >
1.1.(3B) —1 (we have to subtract one as the grading starts in degree zero). Let T(®) denote
the characteristic tilting module for B. Since the module gB is a projective generator in
B-mod, it has the maximal possible Loewy length and we get 1.1.(zB) —1 > L 1.(T(®) —1.

Now, every indecomposable summand 7% (i) of T(?) has a submodule, isomorphic to
AP (3), and a quotient, isomorphic to V) (i). The simple module L) (5) is the simple
top of A®P)(5) and the simple socle of V(#)(4), moreover, the multiplicity of L®) (i) in
TB)(5) is 1. Hence LL(T®) (7)) > (LL(VP)(3)) + L1L(AP)(4))) — 1. Now (c) implies
LL(T®) —1 > 2max; (L1L(A®P) (i) —1).

Recall that AP (i) = Ext%(A(i), L) by assumption, and that the graded filtration of
AP)(4) is a Loewy filtration. Hence 1.1.(A®) (7)) —1 = p.d.(A(4)), which results 1. 1.(T(®)) —
1 > 2max;(p.d.(A(7))).

Since T' € F(A) we have max;(p.d.(A(¢))) > p.d.(T). Combining all the inequalities
above we obtain

gl.d.(4) >1L1L(gB) —1>1L1L(TH) -1 >
> 2mzax (l.l.(A(B)(i)) -1) > Qm?X(p.d.(A(i))) >2p.d.(T),

completing the proof. O

Following the proof of Theorem 3 one also obtains the following lower bound for the
global dimension of a quasi-hereditary algebra:

Corollary 3. Let A be a quasi-hereditary algebra and B = Ext% (L, L). Assume that
(a) B is quasi-hereditary;

(b) modules AP) (i) = Ext%(A(i), L) are standard B-modules and the natural graded fil-
tration 1s a Loewy one;

(c) modules VB (i) = Homy, (Ext® (Homy (V(i),k), L), k) = Ext%(L, V(i) are costandard
B-modules and the natural graded filtration is a Loewy one;

Then
gl.d.(A) > max (p-d.(A(2) +1.d.(V(d))).

3.3 Applications

Corollary 4. Assume that A is a Koszul quasi-hereditary algebra having a simple pre-
serving duality with modules AP) (i) = Ext%(A(i), L) being Koszul and costandard for B.
Then gl.d.(A) = 2dimza)(A) = 2p.d.(T(4)).



Proof. Since A is Koszul, so is B. The modules A®)(;) have simple heads and are graded as
Koszul modules. Hence, by [BGS, Proposition 2.4.1], the graded filtration of this module
is the radical filtration and thus a Loewy filtration. Now the statement follows from
Theorem 3. O

Recall from [ADL] that a Koszul quasi-hereditary algebra is called standard Koszul
provided that both left and right standard modules are Koszul.

Corollary 5. Assume that A is a standard Koszul quasi-hereditary algebra with duality.
Then gl.d.(A) = 2dimza)(A) = 2p.d.(T).

Proof. Since A is standard Koszul, we get from [ADL, Theorem 2] that B is quasi-
hereditary, Koszul with standard modules having the necessary form. The result now
follows from Corollary 4. O

Corollary 6. (/MP, Theorem 2]) Let A be the quasi-hereditary algebra of an indecompos-
able block of the BGG category O, [BGG], or the parabolic category Og of Rocha-Caridi,
[Ro]. Then gl.d.(A) = 2dimga)(A) = 2p.d.(T).

Proof. By [BGS| and [Ba] the algebra A is standard Koszul and the result follows from
Corollary 5. O

4 Properly stratified algebras and their finitistic di-
mension

4.1 Properly stratified algebras

Let A be an algebra over some field k and let e = (ey,...,e,) be a linear order on a
complete set of pairwise orthogonal primitive idempotents of A. We keep all the notation
from Subsection 3.1. For s = 1,...,n we also define A(i) to be the maximal quotient
of A(i) such that [A(i) : L(i)] = 1, and V(i) to be the maximal submodule of V(i)
such that [V(i) : L(i)] = 1. The modules A(i) are called proper standard modules and
the modules V(i) are called proper costandard modules. A filtration, whose subquotients
are proper standard modules, is called a proper standard filtration and a filtration, whose
subquotients are proper costandard modules is called a proper costandard filtration.

Following [CPS3] we call A standardly stratified with respect to e provided that the
kernel of the canonical surjection P(i) — A(37) is filtered by A(j), ¢ < j. Note that the
original definition from [CPS3] is more general as it uses not a linear order on e but rather
a pre-order.

Following [DI1] we call A properly stratified with respect to e provided that A is stan-
dardly stratified and A(i) has a proper standard filtration for all ¢ = 1,...,n. Moreover,
it is easy to see that any proper standard filtration of A(i) contains only A(i) (with the
same 7). The following lemma gives several equivalent conditions, which guarantee that an

algebra is properly stratified, see [D]].



Lemma 1. The following conditions are equivalent:
1. A is properly stratified.
2. Both A and A°PP are standardly stratified.

3. V(i) is filtered by V(i) for alli = 1,...,n and, moreover, the cokernel of the canonical
injection V(1) — I(i) is filtered by V(j), i < j.

Denote by F(A), and F(V) the full subcategories of A-mod, which consist of all
modules, having a proper standard, or a proper costandard, filtration respectively. The
modules in F(A) N F(V) are called tilting modules and the modules in F(A) N F(V) are
called cotilting modules, see [AHLU]. Every tilting (resp. cotilting) module is a direct sum
of indecomposable tilting (cotilting) modules, the latter being in a natural bijection with
simple modules. We denote by 7'(i) the indecomposable tilting module, whose standard
filtration starts with a submodule, isomorphic to A(7); and by C(i) the indecomposable
cotilting module, whose costandard filtration ends with a quotient, isomorphic to V(7).

We set T = @' |T(i) and C = @} ,C(i). The module T is called the characteristic
tilting module for A and the module C(A) is called the characteristic cotilting module
for A. A properly stratified algebra is quasi-hereditary if and only if gl.d.(4A) < oco. If
A is quasi-hereditary then 7'(i) ~ C(i) for all 5. If there exists a duality on A-mod,
which preserves isomorphism classes of simple modules, then it sends standard modules to
costandard modules, proper standard modules to proper costandard modules and tilting
modules to cotilting modules.

4.2 Properly stratified algebras over complete local commutative
rings

Let R be a complete local commutative ring with maximal ideal m and let A be an algebra
over R, by which we mean that R is contained in the center of A and A is a free left (and
hence right) R-module of finite rank. In particular, this ensures that the algebra A/Am is
a finite-dimensional algebra over R/m. We will say that the algebra A is quasi-hereditary
over R provided that the algebra A/Am is quasi-hereditary over R/m. By [CPS2, Section 3]
in our setup the fact that A is quasi-hereditary over R is equivalent to the fact that A is
quasi-hereditary over R in the more general sense of [CPS2, Definition 3.2]. We remark
that, by [CPS2, Corollary 3.4], the algebra A is quasi-hereditary over R if and only if the
algebra A°PP is quasi-hereditary over R°PP = R.

We will use quasi-hereditary algebras over complete local commutative rings to con-
struct new quasi-hereditary and properly stratified algebras over fields (in particular, this
explains why we have chosen a more restrictive setup, for which, however, the definition is
much easier). Until the end of this section we fix an algebra A, which is quasi-hereditary
over a complete local commutative ring R. Let e = (ey, ..., e,) be a complete list of pair-
wise orthogonal primitive idempotents in A/Am. By the definition of a quasi-hereditary
algebra, there exists a linear order on e, which we assume to be given by the natural order

7



on the set of indexes, such that the algebra A/Am is quasi-hereditary over R/m with respect
to this order. Completeness of R allows us to lift all idempotents e; to idempotents ¢; € A.
For:=1,...,n we define P(’L) = Ae;, P(> Z) = ®j>iAéj; Q(Z) = ¢;A, Q(> ’L) = ®j>iéjAa
and set
A(i) = P(i)/ Trpesay P(9), A®(i) = Qi) / Tro(i Q(3).

Starting from a quasi-hereditary algebra over a complete local commutative ring, one
can construct new quasi-hereditary and properly stratified algebras over fields in the fol-
lowing way:

Proposition 1. Assume that R is a complete local commutative algebra over a field k, m
s the maximal ideal of R, and A is a quasi-hereditary algebra over R, as above. Let I be
an ideal in R of finite codimension over k. Then

(a) the algebra B = AJ/AI is finite-dimensional and properly stratified over k;
(b) the standard B modules are ezactly
AB(G) = A>G)/AGT ~ AG)@r R/I,  i=1,...,n;

(c) the costandard B modules are exactly

VB (i) = Dy (A°(i)/IA°(5)) ~ De(R/I @ A°(i)),  i=1,...,n;

(d) the algebra B is quasi-hereditary if and only if I = m;

(e) the proper standard B modules are exactly
APy = AG)/AGm =~ AG) @rk, i=1,...,n;

(f) the proper costandard B modules are ezactly

VP (i) = De(A°() /mA° () ~ Dy (k®r A°()),  i=1,...,n.

Proof. We are going to prove all the assertions by induction on n, the number of isomor-
phism classes of simple A-modules. Since A is free over R of finite rank and R is central,
the algebra A/AI is free over R/I of finite rank and R/I is central in A/AI. In particular,
since R/I is finite dimensional over k and A/AI is free over R/I of finite rank, we get that
A/AI is finite dimensional over k.

If n = 1, the algebra A/AI is automatically local and hence properly stratified with
simple proper standard and proper costandard modules, projective standard modules and
injective costandard modules. All the assertions of the proposition are obvious in this case.

Let us now prove the induction step. As A is free of finite rank over R, we have that
P(n) is free over R of finite rank as well. In particular, A(n) ®g R/I is free over R/I of
finite rank.

To proceed we will need the following lemma, which we will also use later in this section:
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Lemma 2. Let I C J be proper ideals in R of finite codimension and
F}:AJAT-mod — A/AJ—mod

denote the functor F1(M) = M/J(M). Let further M, N be A/AI-modules, projective over
R/I, and f: M — N be such that F1(f): F;(M) — F}(N) is a monomorphism. Then f
s a monomorphism.

This will follow from the following standard statement.

Lemma 3. Let A be a local finite-dimensional algebra over some field, P and @) be two
free A-modules of finite rank, and f : P — @) be a homomorphism. Then the following
statements are equivalent:

(i) f is injective.
(i) f(P) is a direct summand of Q.
(iii) f induces a monomorphism f : P/Rad(P) — Q/Rad(Q).

Proof. (iii) says that P/Rad(P) is a direct summand and thus the lift f of f is a split
monomorphism, implying both (i) and (ii). Given (i) and assuming that (iii) is wrong we
find a generating element z in the top of P, such that f(z) € Rad(Q). This means that
the free submodule X C P, generated by x is mapped to the radical of (). Comparing
Loewy lengths implies that the highest non-vanishing power of the radical of X must be
in the kernel, contradicting (i). O

Proof of Lemma 2. For an R/J-module M set G(M) = M/mM. From Lemma 3 it follows
that the monomorphism F(f) induces the monomorphism G (FI(f)) : G (Fj(M)) —
G (FI(N)). Again by Lemma 3, the map f, which is a lift of G (FJ(f)), must be a
monomorphism as well. O

We are going to apply Lemma 2 to the situation J = m. Recall that the algebra
A/Am is quasi-hereditary by the definition. This implies that the trace of A/4™)(n) in
each PA/4m) () is isomorphic to AA/4™) (n)ki for some non-negative integer k;. Fix some
monomorphism g : AA/A™) (p)ki y PA/Am)(5) - Composing g with the canonical projection
i)+ AUAD (ki 5 AA/A) (n)ki we obtain a map from AM/AD(n)ki which lifts, because
of the projectivity of AMA/AD(p)ki to a map g : AA/AD(p)k — PA/AD(G)  making the
following diagram commutative:

AW/AD (pyki 2 p(a/AD) ()

u |i

A(A/Am) (n)k,cL p(A/Am) (1),

where iy : PA/AD(5) — PA/A™ () is the canonical projection. From Lemma 2 we obtain
that g is injective, which implies that the trace of AX/4D(n) in PM/AD(5) is isomorphic
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to AM/AD (n)ki Because of the left-right symmetry of the definition, analogous results are
also true for right modules.
Factoring out Ae,A we now have by induction that A4/4D(4) is a standard module

over A/AI and that the module Dy ((A°)(A/ Al) (z)) is a costandard module over A/AI,

and, moreover, that A/AI is properly stratified (with respect to the same order on e). This
proves the first three statements of the proposition.

Choosing a Jordan-Hélder series, 0 =V, C V; C --- C V, = R/I, of R/I as an R-
module and applying A (7)®_ we obtain a filtration of A (j)® z R/I with subquotients
isomorphic to A (5)®gk. This implies that the modules A (j)®gk are proper standard
modules for A/AI, proving the fifth statement. The sixth statement follows by the left-right
symmetry.

Finally, the algebra A/AI is quasi-hereditary if and only if the proper standard and the
standard modules for A/AI coincide. Comparing proper standard and standard modules,
which we have already described above, we conclude that this is the case if and only if
I =m. This completes the proof. O

4.3 Comparing finitistic dimensions

Let k be an algebraically closed field, R a local commutative algebra over k and A a quasi-
hereditary algebra over R. Let further m be the maximal ideal of R and I C m be a proper
ideal of R of finite codimension over k. The ultimate goal of this subsection is to prove
the following theorem

Theorem 4.
fin. dim.(A/AI) = gl. d.(A/Am).

Our main tool for the proof of this theorem will be the functor F} : A/AI-mod —
AJ/AJ-mod (see Lemma 2 above), defined by

Fi(M)=M/JM = M ®g/rr R/RJ,
where J C m is a proper ideal of R containing /.

Lemma 4. (a) F; is left adjoint to the natural inclusion AJAJ-mod C A/AI-mod. In
particular, F' is right eract.

(b) F} sends indecomposable projectives to indecomposable projectives.

(¢c) Let P,P'" € AJ/AI-mod be two indecomposable projectives and let f : P — P’ be a
morphism, which is not an isomorphism. Then F(f) is not an isomorphism either.

Proof. If M € A/AI-mod and N € A/AJ-mod then every f: M — N must annihilate
M .J and the first statement follows.

Let now P € A/AI-mod be an indecomposable projective module. Then the top of this
module belongs already to A/Am-mod and hence is not annihilated by Ff. This implies
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that FI(P) = P/(PJ) # 0 has simple top and hence is indecomposable. Moreover, by the
adjointness from the first statement we have

Hom 4 a1-moa (P, N) = Homu 47 -moa (F7 (P), N)

for all N € A/AJ-mod. In particular, the functor Hom /4 .moa (F1(P),-) is exact and
hence FI(P) is projective in A/AI -mod. This proves the second statement.

To prove the third statement we note that the right exactness of F} implies exactness
of

FipP) "N FI(P) - FI(Coker(f)) — 0.

The obvious inequality F’ (Coker( f )) # 0 now implies the third statement and completes
the proof. 0

For a proper ideal J C R of finite codimension we denote by M(J) the full sub-
category of the category of A/AJ-modules, whose objects are all modules M, which are
projective over R/J. We also denote by P<°°(J) the full subcategory in the category of
all A/AJ-modules, whose objects are all modules M of finite projective dimension. For
m € {0,1,2,...} we let P{™(J) denote the full subcategory in P<>(.J), whose objects are
all modules M such that p.d.(M) = m. For m € {0,1,2,...} we let P(<™)(J) denote the
full subcategory in P<*°(J), whose objects are all modules M such that p.d.(M) < m.

Lemma 5. (a) F} sends M(I) to M(J).
(b) F! is exact on bounded exact complexes of modules from M(I).

Proof. The first statement is obvious. If C* is a bounded exact complex of modules from
M(I), then the fact that R is local implies that C*, viewed as a complex of R-modules, is
a direct sum of trivial complexes of the form

0o M-S M0 (3)

The lemma now follows from the fact that the application of _ ® g/rr R/RJ to (3) produces
an exact complex. O

Lemma 6. (a) F! sends P™(I) to P™(J), moreover, for any non-zero M € P (I)
the module FY(M) is non-zero as well.

(b) FI sends P(<®)(I) to P(<>)(]).
Proof. Let M be an A/AI-module of projective dimension m and
0—->P,—..PP>FP—>M=0

be a minimal projective resolution of M. From Proposition 1 it follows that all projective
A/AI-modules are projective over R/RI. In particular, M is R/RI-projective as well.

11



But _ ®g/rr R/RJ sends non-zero projective R/RI-modules to non-zero projective R/RJ-
modules. In particular, Ff(M) # 0 as soon as M is non-zero. Using the second statement
of Lemma 5 we obtain that the sequence

0= Fj(P) —...F}(P) = F;(Py) = Fi(M) =0 (4)

is again exact. From Lemma 4 it follows that (4) is a minimal projective resolution of the
A/AJ-module M Qg g R/J. In particular, the projective dimension of F[(M) equals m.
This proves the first statement and the second statement follows from the first one. O

We let iy, : M — FI(M) denote the canonical projection, which is a natural trans-
formation from the identity functor to the composition of F! with the natural inclusion
A/AJ-mod C A/AI-mod.

Proposition 2. Let m be a non-negative integer.
(a) The restriction of F1 to P<™(I) is full.
(b) The image of the restriction of FL to P (I) is dense in P™(J).

Proof. We prove both statements together by induction in m.

For m = 0 the second statement follows from the second statement of Lemma 4.
Further, if P and Q are projective over A/AI and f : F1(P) — F}(Q), then the map
foip: P — FI(Q) lifts to a map f: P — Q by projectivity of P. This implies that Flis
full on projective modules.

Let us now prove the induction step. Let M € P (J). Then there exist a projective
A/AJ-module P, Q € P™-1Y(J), and a monomorphism f : @ — P such that M =
Coker(f). By 1nduct10n there exist a projective A/Al-module P, amodule Q € P™1(.J),
and a morphism f : Q — P such that P & FI(P), Q FI(Q) and f = FI(f). By
Lemma 2, the morphism f in injective. Hence we can consider the following commutative
diagram:

0 Q L p Coker(f) —0

liCOker( H

0— Q@ —L> P—— FI(Coker(f)) —=0.

Since f in injective, both Q and P are R/I-projective and R is local, we get that Coker(f)
is R/I-projective as well. Hence, using the second statement of Lemma 5, we obtain that
the bottom row of the diagram is exact. In particular, M = F](Coker( f )), which proves
the second statement.

Let now M’ € P(<™(J) be some other module and g : M — M’ be a morphism. Again
let P’ be a projective cover of M’ and @' € P(<™~Y(J) be the corresponding kernel. Using
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standard homological arguments, there exist ¢’ : P — P’ and ¢" : Q@ — @', making the
following diagram with exact rows commutative:

0 Q-Tl-p M 0

Ll

0 Q' P’ M’ 0.

Now we can use the inductive assumptions to obtain the following commutative diagram
with exact rows:

0 ) —L——p X 0
'Q p ix
g" ; g K
0 Q P FI(X) 0
v E g" X g’ V g
0 Q' P X' 0
ié’ i ixr
v P v v
0 Q' P Fi(X) 0,

where X = Coker(f), X’ = Coker(f'). Identifying M with F(X) and M’ with F}(X") as
in the previous part of the proof, we get F7(§) = § = g. The remark that X, X' € P(<™)(I)
completes the proof. O

Proof of Theorem 4. Let J = m. Then the first statement of Lemma 6 implies the inequal-
ity fin.dim.(A/AI) < gl.d.(A/Am) and the second statement of Proposition 2 gives the
converse inequality. O

Corollary 7. (a) F! sends modules with standard filtrations to modules with standard
filtrations and is full and dense on these modules.

(b) FI sends tilting modules to tilting modules and is full and dense on these modules.

Proof. That FI sends standard modules to standard modules was shown in Proposition 1.
Recall that all standard modules have finite projective dimension by [AHLU, Proposi-
tion 2.2]. Since the category of modules with standard filtrations is closed under taking
kernels of epimorphisms, and all projective modules have standard filtrations, the argu-
ments of Proposition 2 work for this category as well. This proves the first statement.
Because of the first statement, to complete the proof it is enough to show that FJ sends
tilting modules to tilting modules, moreover, it is enough to show that for the characteristic
tilting A/AI-module T we have Exty, ,; (AX/A7), F[(T)) = 0. If this would be wrong,
there would exist a non-split extension, say M, of F/(T) by A/47) Using statement (a),
the module M lifts to an extension of T by AM/AD The latter must split as 7 is a tilting
module, a contradiction. This completes the proof. O
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One more immediate corollary of Theorem 4 and the second statement of Corollary 7
is the following:

Corollary 8. Let A, R, m and I be as in Theorem 2. Assume that the global dimension
of the quasi-hereditary algebra AJ/Am equals twice the projective dimension of the charac-
teristic tilting module. Then the finitistic dimension of the properly stratified algebra AJAI
equals twice the projective dimension of the characteristic tilting module.

In the setup of this Section one can also obtain some additional information about
homomorphisms between projective and tilting modules, which can be compared with [So,
Theorem 5|. For projective modules, the statement is trivial: if A, R, m and I are as in
Theorem 2, and M is any A/AI-module, free over R/I, then Hom 4/ 4;(A/AI, M) = M is
obviously free over R/I, and hence Homy,4;(P, M) is R/I-free for any projective A/AI-
module P. Homomorphism between tilting modules in this case are also R/I-free, as
follows from the following statement.

Proposition 3. Let A, R, m and I be as in Theorem 2. Let T be an A/AI-module having
a standard filtration, and @ be an AJAI-module having a proper costandard filtration.
Assume that Q) is R/I-free. Then Homy ; (T, Q) is a free R/I-module

Proof. We prove the statement by induction in p. d.(T") < oo (see [AHLU, Proposition 2.2]).
If T is projective, the statement follows from the remark above. Let now 0 - M — P —
T — 0 be an exact sequence with projective P. From [D], Theorem 5(v)] it follows that
M has a standard filtration. The same statement also implies that the induced sequence

0— HOInA/AI(T, Q) — HOInA/AI(P, Q) — HOInA/AI(M, Q) —+0

is exact. Since both Hom4,/4; (P, Q) and Hom 44, (M, Q) are R/I-free by induction, we get
that Hom 4 ar (T, Q) is R/I-free as well since the algebra R/I is local and finite-dimensional
over k. O

5 Application to the category of Harish-Chandra bi-
modules

5.1 Setup for Lie algebras

For a Lie algebra a we denote by U(a) the universal enveloping algebra of a and by Z(a)
the center of U(a).

Let g be a semi-simple finite-dimensional complex Lie algebra with a fixed triangular
decomposition g = n_ @& h @& n,. Denote by W the Weyl group of g. Let p be one half
of the sum of all positive roots. We denote by - the dot-action of W on b*, defined by
w-A=wA+p)—p. For xeph* weset Wy ={weW|w- A=A}

We recall that the Harish-Chandra isomorphism with respect to the triangular decom-
position above (see [Di, Section 7.4]) induces a bijection between the maximal ideals in Z(g)
and dominant weights A € h*. For a dominant A € h* we denote by m, the corresponding
maximal ideal in Z(g).

14



5.2 Harish-Chandra bimodules

For a g — g-bimodule M we define the adjoint action of g on M via g - m = gm — mg,
g € g, m € M, and denote by M?d the resulting g-module.

Denote by H the full subcategory of the category of g — g-bimodules, whose objects are
the finitely generated g— g-bimodules M for which M9 is a direct sum of finite dimensional
g-modules. The objects of H are called Harish-Chandra bimodules. Let A, u be dominant
and m,n € NU {oo}. Denote by WM, the full subcategory of H, which consists of all
g — g-bimodules M € #H, satistying the following condition: myM = Mmj’ =0 (where
my’M = 0 and Mm7® = 0 means that the left action of m, and, respectively, the right
action of m, on M is locally nilpotent). We refer the reader to [Ja] and [BG] for all
undefined notions, notation, and more details on Harish-Chandra bimodules.

5.3 Harish-Chandra bimodules via quasi-hereditary algebras
over local rings

From [BG, Section 5| it follows that the category SH; has enough projective modules
for every m € N. Let A,, denote the corresponding basic associative algebra, that is the
unique (up to an isomorphism) basic finite-dimensional associative algebra, whose module
category is equivalent to "HJ'. For M € SHT the bimodule M/MmZ‘_1 belongs to KO’HIT_l,
which defines a full and dense functor Fj* | : SSH? — H" via F (M) = M/Mm?>—
This functor induces an algebra epimorphism A,, - A,, ; and thus we can define the
inverse limit algebra A = 1<i£1 A, (see [So, Section 5]).

The right action of Z(g) on SH* induces a homomorphism Z(g) — A, whose image
we denote by R,,. The functors F , induce surjections R,, - R,,_; and one obtains that
the inverse limit algebra R = lim R,, is a subalgebra of A. It follows from the definition

(_

that R is commutative. Let R’ denote the completion of Z(g) with respect to m,. By the
definition of M}, R is even a homomorphic image of R’ and, considering the action of
Z(g) on the bimodule U(g)/U(g)m]}, we obtain that the epimorphism R’ — R is in fact
an isomorphism. The ring R is thus local and complete with the image m of m, being the
maximal ideal of R.

Proposition 4. Assume that p is reqular. Then:

(a) A is a quasi-hereditary algebra over R.
(b) For any m € N we have A/Am™ ~ A,,.

Proof. The second statement follows from the definition of A, so we prove the first one.
By [BG, Section 5], the bimodule U(g)/U(g)m]} is projective in 3] and all other projec-
tive bimodules in H are direct summands in some (left) translations of U(g)/U(g)m7".
Kostant’s Theorem (that U(g) is a free Z(g)-module) implies that U(g)/U(g)m] is free

"
over R/mj'. Since any left translation of a bimodule commutes with the right action of the
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center on a bimodule, we obtain that all projective bimodules in §"H}* are free over R/mZ‘.
Taking the inverse limit we obtain that A is free as an R-module.

That the algebra A; is quasi-hereditary (if p is regular) is well-known. For example,
this follows from [BG, Section 5] and [BGG]|. This completes the proof. O

5.4 Finitistic dimension of "H}

In this subsection we work under the assumptions of Proposition 4, that is, we assume that
1 is regular.

Corollary 9. (a) For any m € N the algebra A,, is properly stratified.

(b) The algebra A, is quasi-hereditary if and only if m = 1.

(c) For any ideal I in R of finite codimension the algebra A/AI is properly stratified.
Proof. Follows from Proposition 4 and Proposition 1. O

Corollary 10. For any ideal I of finite codimension in R the finitistic dimension of AJAT
equals the global dimension of A1. In particular, the finitistic dimension of SHJ' equals the
global dimension of 307-[;

Proof. Follows from Proposition 4 and Theorem 4. O

Corollary 11. For any ideal I of finite codimension in R the finitistic dimension of AJAI
equals twice the projective dimension of the characteristic tilting module in AJAI.

Proof. Let x denote the finitistic dimension of A,,, y denote the global dimension of Ay, z
denote twice the projective dimension of the characteristic tilting module in A,,, ¢t denote
twice the projective dimension of the characteristic tilting module in A;. We have z = y
by Corollary 10, z = ¢ by Proposition 2 and Corollary 7, and y = ¢ by [BG, theorem 5.9]
and Corollary 6. Hence x = z completing the proof. O

6 Finitistic dimension of some other categories of Ha-
rish-Chandra bimodules via translation functors

The aim of this section is to prove the following result:

Theorem 5. Let \ € h* be dominant and integral. Then the following numbers are equal:
(i) The global dimension of SHS.
(ii) The finitistic dimension of SH,.

(iii) Twice the projective dimension of the characteristic tilting module in H,.
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(iv) The finitistic dimension of SH;,.

(v) Tuwice the projective dimension of the characteristic tilting module in SHS.
(vi) The finitistic dimension of H.
(vii) Twice the projective dimension of the characteristic tilting module in §H}.

Note that [BG, Theorem 5.9] asserts that the category M} from (i), (ii) and (iii) is
equivalent to an integral block of the BGG category O, [BGG]; the category §H) from
(vi) and (vii) is equivalent to a regular block of a parabolic generalization of O from
[FKM2]; and the category $°H) from (iv) and (v) is equivalent to a singular block of this
parabolic generalization of O from [FKM2]. In particular, all these categories are equivalent
to module categories of quasi-hereditary or properly stratified algebras. Moreover, [BG,
Theorem 5.9] also gives a full and faithful embedding i of $°H) into $°Hj, which sends
projective modules to projective modules and tilting modules to titling modules.

We will prove this theorem using (left) translation functors T¥' : SH, — 0°H,, and
we refer the reader to [Ja, 4.12] for the precise definition and properties of these functors.
We will only need that translation functors are exact, send projective modules to projec-
tive modules, and tilting modules to tilting modules. In particular, if M = T{(N), we
automatically get p.d.(M) < p.d.(N). To prove Theorem 5 we will need several lemmas.

Lemma 7. Let A be a finite-dimensional algebra over some field and I be an injec-
tive cogenerator of A—mod. Assume that p.d.(I) < oo and fin.dim.(A) < oco. Then
fin.dim.(A) = p.d.(1).

Proof. Let M be an A-module such that p.d.(M) = fin.dim.(A) < oo, and 0 > M — Q —
N — 0 be an exact sequence with injective (). Now p.d.(Q) < oo implies p.d.(N) < oo
and hence p.d.(N) < p.d.(M) by the choice of M. Applying Hom,(_, L) we hence obtain
a surjection from Ext%“™)(Q, L) to Ext%“™) (M, L) # 0 in the long exact sequence. This
implies p.d.(Q) > p.d.(M) and proves our statement. O

Lemma 8. Let C be one of the categories H5, H5, or SHg. Then the finitistic dimension
of C equals the projective dimension of the dominant costandard module in C.

Proof. First we note that fin.dim.(C) is finite as C is equivalent to the module category of
a properly stratified algebra.

Further, the tilting modules in C are produced by translating the standard tilting
module. The last one is self-dual and hence cotilting, implying that all tilting modules
in C are cotilting. Further, all tilting modules have finite projective dimension, hence all
cotilting modules have finite projective dimension. All cotilting modules have a costandard
filtration and thus, by induction, all costandard modules have finite projective dimension.
But all injective modules have a costandard filtration, implying that all injective modules
have finite projective dimension. From Lemma 7 it now follows that the finitistic dimension
of C equals the projective dimension of an injective cogenerator of C.
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Translating the dominant costandard module produces new modules with costandard
filtrations, which surject onto the original one. Since translation does not increase the pro-
jective dimension, we get that the kernels of all these surjections have projective dimensions
less than or equal to the projective dimension of the dominant costandard module. Since all
costandard modules can appear via an iteration of this process, an induction implies that
the projective dimension of the dominant costandard module is the maximal one among
all projective dimensions of all costandard modules.

Finally, since injective modules have costandard filtrations, their projective dimensions
cannot be bigger than the maximum of the projective dimensions of all costandard modules.
This, together with Lemma 7, implies our statement. O

Corollary 12. The projective dimension of an injective cogenerator of any of the categories

SHs, M5, and HG is finite.
Lemma 9. The numbers in (ii), (iv) and (vi) of Theorem 5 are equal.

Proof. The categories i (°H}) and "M} share the same dominant costandard module and
hence Lemma 8 implies (ii)=(iv).

Finally, there is a translation functor, which sends the dominant costandard module
from §°H} to the dominant costandard module in $°H;. Analogously, there is a translation
functor, which sends the dominant costandard module from §°H} to a direct sum of several
copies of the dominant costandard module in °H}. This implies that these two modules

must have the same projective dimension and hence (iv)=(vi). This completes the proof.
U

Proof of Theorem 5. First we remark that (i)=(ii) since °Hj is equivalent to the module
category of a quasi-hereditary algebra. Further, the equality (ii)=(iii) is the statement of
Corollary 6 (see also [MP, Theorem 2]). Using i we also have (v)<(iii).

Now, Corollary 6 implies (iii)=(ii), Lemma 9 implies (ii)=(iv), and [MP, Theorem 1]
gives (iv)<(v). Hence (v)=(iii).

Finally, let us prove (v)=(vii). Since translations from {°H; to °H} produce all tilting
modules we obtain (v)<(vii).

Let now p be integral with stabilizer woWywg, where wy is the longest element in the
Weyl group. Since conjugation with the longest element sends simple reflections to simple
reflections, it defines an involutive automorphism of the Dynkin diagram of g, which gives
rise to an automorphism ¢ of g, which preserves the Borel subalgebra. This automorphism
induces an equivalence between the categories $"Hj and ZO’Hé In particular, it follows that
these categories have the same global dimension. Since the simple tilting module in both
categories is unique by [Di, Proposition 7.6.3], it follows that simple tilting modules in
M, and 5°H; have the same projective dimension. Translating the simple tilting module
from 5H; to §Hy produces a tilting module in Mg, which, in fact, is the standard tilting
module in $°H}. This implies (vii)<(v) and thus (v)=(vii). This completes the proof. [

Various formulae for the global dimension of $°H; can be found in [MP]. Moreover,
[MP, Theorem 1] immediately implies the following:
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Corollary 13. For an integral A we have:

fin. dim. (°H}) = 2dimga) (3PH,)-
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