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Abstract We compare properties of (the parabolic version of) the BGG category O
for semi-simple Lie algebras with those for classical (not necessarily simple) Lie
superalgebras.

1 Introduction

Category O for semi-simple complex finite dimensional Lie algebras, introduced
in [BGG], is a central object of study in the modern representation theory (see
[Hu]) with many interesting connections to, in particular, combinatorics, alge-
braic geometry and topology. This category has a natural counterpart in the super-
world and this super version Õ of category O was intensively studied (mostly
for some particular simple classical Lie superalgebra) in the last decade, see e.g.
[Br1, Br2, Go2, FM2, CLW, CMW] or the recent books [Mu, CW] for details.

The aim of the present paper is to compare some basic but general properties
of the category O in the non-super and super cases for a rather general classical
super-setup. We mainly restrict to the properties for which the non-super and super
cases can be connected using the usual restriction and induction functors and the
biadjunction (up to parity change) between these two functors is our main tool. The
paper also complements, extends and gives a more detailed exposition for some
results which appeared in [AM, Section 7].

The original category O has a natural parabolic version which first appeared in
[RC]. We start in Section 2 by setting up an elementary approach (using root system
geometry) to the definition of a parabolic category O for classical finite dimensional
Lie superalgebras. In Section 3 we define the parabolic category Õω and describe
its basic categorical properties, including simple objects and blocks. In Section 4 we
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address the natural stratification on Õω and its consequences, in particular, existence
of tilting modules and estimates for the finitistic dimension, proving the following:

Theorem 1. Category Õω has finite finitistic dimension.

Finally, in Section 5 we address properties of Õω which are based upon projective-
injective modules in this category. This includes an Irving-type theorem describing
socular constituents of Verma modules and an analogue of Soergel’s Struktursatz.
As the last application we prove that category Õω is Ringel self-dual.

Acknowledgment. The research is partially supported by the Swedish Research
Council and the Royal Swedish Academy of Sciences.

2 Preliminaries

2.1 Classical Lie superalgebras

We work over C and set N = {1,2,3, . . .}, Z+ = {0,1,2,3 . . .}. For a Lie (su-
per)algebra a we denote by U(a) the corresponding enveloping (super)algebra.

Let g= g0 ⊕g1 be a Lie superalgebra over C. From now on we assume that g is
classical in the sense that g0 is a finite dimensional reductive Lie algebra and g1 is
a semi-simple finite dimensional g0-module. We do not require g to be simple. We
denote by g-smod the abelian category of g-supermodules. Morphisms in g-smod
are homogeneous g-homomorphisms of degree 0.

Example 1. The general linear superalgebra gl(Cm|n) of the super vector space
Cm|n = Cm

0
⊕Cn

1
with respect to the usual super-commutator of linear operators.

Fix the standard bases in Cm
0

and Cn
1

and gl(Cm|n) becomes isomorphic to the super-
algebra gl(m|n) of (n+m)× (n+m) matrices naturally divided into n× n, n×m,
m×n and m×m blocks, under the usual super-commutator of matrices.

Example 2. The subsuperalgebra qn of gl(n|n) consisting of all matrices of the form(
A B
B A

)
. (1)

The even part corresponds to B = 0 while the odd part corresponds to A = 0.

Example 3. Let a be any finite dimensional reductive Lie algebra and V any semi-
simple finite dimensional a-module. Set g0 := a, g1 := V and g(a,V ) := g0 ⊕ g1.
Setting [g1,g1] = 0 and considering the natural action of the Lie algebra g0 on the
g0-module g1 defines on g(a,V ) the structure of a Lie superalgebra, which is called
the generalized Takiff superalgebra associated with a and V . These superalgebras
appear in [GM].
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2.2 Natural categories of supermodules via restriction

Consider g0 as a purely even Lie superalgebra. Then g0-smod is equivalent to the
direct sum of an even and an odd copy of g0-mod in the obvious way:

g0-smod ∼= (g0-mod)0 ⊕ (g0-mod)1.

Further, we have the usual restriction functor

Resgg0
: g-smod → g0-smod.

For any subcategory C in g0-mod we now can define the category C̃ (the notation
follows [Mu]) as the subcategory in g-smod consisting of all objects and morphisms
which are sent to (C)0 ⊕ (C)1 by Resgg0

.
The functor Resgg0

is exact and has both the left adjoint

Indgg0
:=U(g)⊗U(g0) − : g0-smod → g-smod

and the right adjoint

Coindgg0
:= HomU(g0)

(U(g),−) : g0-smod → g-smod.

Furthermore, by [Go1, Theorem 3.2.3] we have

Indgg0
∼= Π dimg1 ◦Coindgg0

, (2)

where Π is the functor which changes the parity (see e.g. [Go1]). If the subcategory
C above is isomorphism-closed and stable under tensoring with the g0-module

∧
g1,

then Indgg0
maps C to C̃ .

2.3 Weight (super)modules

Fix some Cartan subalgebra h0 in g0. Since the Lie algebra g0 is reductive, the alge-
bra h0 is commutative and contains the (possibly zero) center of g0. A g0-module V
is called a weight module (with respect to h0) provided that the action of h0 on V is
diagonalizable. Put differently, the module V is weight if we have a decomposition

V ∼=
⊕

λ∈h∗
0

Vλ , where Vλ := {v ∈V |h · v = λ (h)v for all h ∈ h0}.

The space Vλ is called the weight space of V corresponding to a weight λ . For a
weight module V the support of V is the set

supp(V ) = supph0
(V ) := {λ ∈ h∗0|Vλ 6= 0}.
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Denote by W the full subcategory in g0-mod consisting of all weight modules.
Note that W is both isomorphism-closed and closed under the usual tensor product
of g0-modules. Furthermore, since g1 is a semi-simple finite dimensional g0-modu-
le, we have g1 ∈W and thus

∧
g1 ∈W. This implies that W is stable under tensoring

with
∧
g1.

Now we can consider the corresponding category W̃ of weight g-supermodu-
les and from Subsection 2.2 we obtain that (Indgg0

,Resgg0
,Coindgg0

) restricts to an

adjoint triple of functors between W and W̃.

Example 4. We have g0 ∈W and g ∈ W̃, where g0 and g are the adjoint module and
supermodule, respectively.

2.4 Parabolic and triangular decompositions

This is inspired by [DMP]. Consider the real vector space H := Rsupp(g0). The
set R0 := supp(g0)\{0} is a root system in H and we let W be the corresponding
Weyl group and (·, ·) the usual W -invariant inner product on H . For a fixed ω ∈H
we have a parabolic decomposition

g0 = nω,−
0

⊕ lω0 ⊕nω,+

0
(3)

of g0, where

nω,−
0

=
⊕

α∈R0
(α ,ω)<0

(g0)λ , lω0 =
⊕

α∈R0∪{0}
(α ,ω)=0

(g0)λ , nω,+

0
=

⊕
α∈R0

(α,ω)>0

(g0)λ .

The subalgebra pω
0

:= lω
0
⊕nω,+

0
is a parabolic subalgebra of g0, nω,+

0
is the nilpotent

radical of pα
0

and lω
0

is the corresponding Levi subalgebra. In the case (α,ω) 6= 0
for all α ∈ R0, we have lω

0
= h0, moreover, bω

0
:= h0 ⊕nω,+

0
is a Borel subalgebra

of g0 and the decomposition (3) is a triangular decomposition of g0 in the sense of
[MoPi]. For nonzero ω1,ω2 ∈ H say that ω1 and ω2 are equivalent if the parabolic
decompositions of g0 corresponding to ω1 and ω2 coincide. Then the equivalence
classes are exactly the (nonzero) facets of the simplicial cone decomposition of H
as described e.g. in [Sa, § 1.2].

Consider the derived Lie algebra g′0 := [g0,g0] of g0 and let h′0 := g′0 ∩ h0. Set
R′

0 := supph′
0
(g0) \ {0} and H ′ := RR′

0. Then the set R′
0 is again a root system in

H ′ (of the same type as R0). Moreover, there is the obvious canonical isomorphism
R′

0
∼= R0 of root systems which induces an isomorphism H ′ ∼= H of vector spaces.

Using this isomorphism we identify H ′ and H .
Let R′

1 := supph′
0
(g1)⊂ H ′. Then the same ω ∈ H = H ′ leads to the decom-

position
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g1 = nω,−
1

⊕ lω1 ⊕nω,+

1
, (4)

where

nω,−
1

=
⊕

α∈R1
(α,ω)<0

(g1)λ , lω1 =
⊕

α∈R1
(α ,ω)=0

(g1)λ , nω,+

1
=

⊕
α∈R1

(α,ω)>0

(g1)λ .

Setting
nω,± := nω,±

0
⊕nω,±

1
and lω := lω0 ⊕ lω1 ,

and combining (3) and (4) we obtain the following parabolic decomposition of g
corresponding to ω:

g := nω,−⊕ lω ⊕nω,+. (5)

Here pω := lω ⊕ nω,+ is a parabolic subalgebra with the “nilpotent radical” nω,+

and the “Levi subalgebra” lω .
Set R′ := R′

0 ∪R′
1. If the only α ∈ R′ satisfying (α,ω) = 0 is α = 0, then de-

composition (5) is called a triangular decomposition. An important difference with
the Lie algebra case is that even in the case of a triangular decomposition we might
have lω 6= h0.

Example 5. Let g = qn for n > 1, and h0 be the subalgebra of all matrices of the
form (1) for which B = 0 and A is diagonal. Choose any ω such that nω,+

0
consists

of all matrices of the form (1) for which B = 0 and A is upper triangular. Then nω,−
0

consists of all matrices of the form (1) for which B = 0 and A is lower triangular; h1
consists of all matrices of the form (1) for which A = 0 and B is diagonal; nω,+

1
con-

sists of all matrices of the form (1) for which A = 0 and B is upper triangular; nω,−
1

consists of all matrices of the form (1) for which A = 0 and B is lower triangular. In
this case the “Cartan subalgebra” h := lω is not commutative.

Equivalence classes of elements from H ′ which give rise to the same parabolic
decomposition of g define a simplicial cone decomposition of H ′ which refines the
one defined for g0 above.

3 Parabolic category Õ and its elementary properties

3.1 Parabolic categories Oω and Õω

Fix an ω as above and consider the corresponding parabolic decompositions of g0
and g, given by (3) and (5), respectively. Denote by Oω = g0Oω the full subcategory
of g0-mod consisting of all modules M which are

• finitely generated,
• decompose into a direct sum of simple finite dimensional lω

0
-modules,



6 Volodymyr Mazorchuk

• are locally nω,+

0
-finite in the sense that dim(U(nω,+

0
)v)< ∞ for all v ∈ M.

The category Oω is the pω
0

-parabolic version of the BGG category O . The original
category O was defined in [BGG] (it corresponds to the situation when the decom-
position (3) is a triangular decomposition), and the parabolic version was defined in
[RC]. We also refer to [Hu] for more details. We will drop the superscript g0 if it is
clear from the context.

The category Oω is isomorphism-closed and stable under tensoring with simple
finite dimensional g0-modules. Hence the corresponding category Õω = gÕω of g-
modules leads us to the nice situation described at the end of Subsection 2.2 (we will
drop the superscript g if it is clear from the context). Alternatively, the category Õω

can be described as the full subcategory of g-smod consisting of all supermodules
M which are

• finitely generated,
• decompose into a direct sum of simple finite dimensional lω

0
-modules,

• are locally nω,+-finite in the sense that dim(U(nω,+)v)< ∞ for all v ∈ M.

Note that it is really lω
0

and not lω in the second condition.

3.2 Elementary categorical properties of Õω

Proposition 1.

(a) Õω is a Serre subcategory of W̃, in particular, Õω is abelian.
(b) Every object of Õω has finite length as a g-module.
(c) Õω has enough projective modules.
(d) Õω has enough injective modules.
(e) All morphism spaces in Õω are finite dimensional.
(f) For every i and any M,N ∈ Õω we have dimExti

Õω (M,N)< ∞.

Proof. Claim (a) follows directly from the definitions. To prove claim (b) we just
observe that each M ∈ Õω is in Oω , when considered as a g0-module. In particular,
it has finite length already as a g0-module (see e.g. [RC, Proposition 3.3] or [BGG,
Hu]).

Because of claim (b), to prove claims (c) and (d) it is enough to prove that each
simple object in Õω has both a projective cover and an injective envelope. We prove
the first claim and the second one is proved similarly. Let L ∈ Õω be simple and
let P ∈ Oω be a projective cover of (Resgg0

L)0 (see e.g. [RC, Corollary 4.2] or
[BGG, Hu] for existence of projective covers in Oω ), which we may assume to be
nonzero up to parity change. Then, by adjunction, we have

0 6= Homg0

(
P,(Resgg0

L)0
)
= Homg

(
Indgg0

P,L
)
.
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As Indgg0
is left adjoint to the exact functor Resgg0

, the former functor maps projec-

tive objects to projective objects. Hence Indgg0
P is a projective object in Õω which

surjects onto L.
Claim (e) follows directly from the definition and the fact that all morphism

spaces in Oω are finite dimensional (again, see e.g. [RC, Sections 3 and 4] or [BGG,
Hu]). Claim (f) follows from claims (c) and (e) considering projective resolutions.
ut

3.3 Simple objects in Õω

For each simple finite-dimensional lω
0

-module V we have the corresponding gener-
alized Verma module

M(ω,V ) :=U(g0)
⊗

U(lω
0
⊕n

ω,+

0
)

V,

where nω,+

0
V = 0. This module lies in Oω and has a unique simple quotient de-

noted L(ω,V ). Let I ω,0
0

denote the set of isomorphism classes of simple finite-

dimensional lω
0

-modules. As lω
0

is reductive, the set I ω,0
0

is well-understood, see
e.g. [Di, Hu]. Furthermore, by [RC, Proposition 3.3], the set

I ω
0 :=

{
L(ω,V )|V ∈ I ω,0

0

}
is a full set of representatives of isomorphism classes of simple objects in Oω (and
in this sense I ω,0

0
and I ω

0
are canonically identified). Denote by I ω

1
an odd copy

of I ω
0

. Now a rough description of simple objects in Õω is given by the following:

Proposition 2. Let L be a simple object in Õω . Then there is V ∈ I ω,0
0

such that L
is a quotient of Indgg0

L(ω ,V ) up to parity change.

Proof. As Resgg0
L ∈ Oω and each object in Oω has finite length, Resgg0

L has a

simple subobject, which is isomorphic to L(ω,V ) for some V ∈ I ω,0
0

by the above
(and which we may assume to be even up to parity change). By adjunction, we have

0 6= Homg0

(
L(ω,V ),(Resgg0

L)0
)
= Homg

(
Indgg0

L(ω,V ),L
)
.

and the claim follows. ut

We denote by I ω the set of isomorphism classes of simple objects in Õω . De-
fine a binary relation Ω ⊂ I ω × (I ω

0
∪I ω

1
) (here the last union is automatically

disjoint) by (L,L(ω ,V )) ∈ Ω if L(ω,V ) is isomorphic to a submodule of Resgg0
L.

Then Ω is finitary in the sense that for each L ∈ I ω the set



8 Volodymyr Mazorchuk

{L(ω ,V ) ∈ I ω
0 ∪I ω

1 |(L,L(ω,V )) ∈ Ω}

is non-empty and finite, moreover, for each L(ω,V ) ∈ I ω
0
∪I ω

1
the set

{L ∈ I ω |(L,L(ω,V )) ∈ Ω}

is non-empty and finite. Unfortunately, in the general case Ω is not a function in
any direction. Anyway, I ω can be considered as a “finite cover” of I ω

0
in some

sense. Put differently, the set I ω is only “finitely more complicated” than the very
well-understood set I ω

0
. An alternative description of I ω which uses lω will be

given in Proposition 6.

3.4 Blocks of Õω

Let ∼ be the minimal equivalence relation on I ω
0

which contains all pairs (L,L′) ∈
I ω

0
×I ω

0
such that Ext1Oω (L,L′) 6= 0. For an equivalence class X ∈ I ω

0
/ ∼ let

Oω(X ) denote the Serre subcategory of Oω generated by simples in X . Then we
have the usual decomposition

Oω ∼=
⊕

X ∈I ω
0
/∼

Oω(X )

into a direct sum of indecomposable subcategories, called blocks of Oω . Every
equivalence class X is finite as there are only finitely many (up to isomorphism)
simple highest weight g0-modules for each given central character, see [Di, Chap-
ter 7] for details.

Let ≈ be the minimal equivalence relation on I ω which contains all pairs
(L,L′) ∈ I ω ×I ω such that Ext1

Õω (L,L
′) 6= 0. For an equivalence class X ∈

I ω/ ≈ let Õω(X ) denote the Serre subcategory of Õω generated by simples in
X . Then we have the decomposition

Õω ∼=
⊕

X ∈I ω/≈
Õω(X )

into a direct sum of indecomposable subcategories, called blocks of Õω . For exam-
ple, an explicit description of blocks for g= gl(m|n) can be found in [CMW].

Proposition 3. Each X ∈ I ω/≈ is at most countable.

Proof. Let L ↪→ N � L′ be a non-split extension in Õω(X ) with L,L′ simple.
Take some λ ∈ supp(N) such that Nλ 6= Lλ . Then N = U(g)Nλ and it follows
that supp(N) ⊂ λ + ZR′, in particular, we have both supp(L) ⊂ λ + ZR′ and
supp(L′) ⊂ λ +ZR′. Therefore supp(N′) ⊂ λ +ZR′ for any N′ ∈ Õω(X ). Note
that λ +ZR′ is an at most countable set.
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Simples in Oω are classified by their highest weight (see [RC, Proposition 3.3]),
in particular, there are only at most countably many simple objects in Oω with sup-
port in λ +ZR′. Now each simple in Õω(X ) has, as a g0-module and up to parity
change, some simple submodule L(ω,V ) from Oω with support in λ +ZR′ and
hence is a quotient of Indgg0

L(ω,V ) (see Proposition 2). The module Indgg0
L(ω,V )

has finite length by Proposition 1(b). Since we have only at most countably many
L(ω,V ) to start with, the claim follows. ut

For each L ∈I ω fix an indecomposable projective cover P(L) of L (which exists
by Proposition 1(c)). For X ∈ I ω/ ≈ let P̃ω(X ) denote the full subcategory of
Õω with objects P(L), L ∈ X . From Propositions 1 it follows that the C-linear
category P̃ω(X ) has the following properties:

• for each L ∈ X we have Hom
P̃ω (X )

(P(L),P(L′)) 6= 0 for at most finitely many
L′ ∈ X ;

• for each L ∈ X we have Hom
P̃ω (X )

(P(L′),P(L)) 6= 0 for at most finitely many
L′ ∈ X .

We also set P̃ω =
⋃

X ∈I ω/≈
P̃ω(X ).

Let P̃ω(X )op be the category, opposite to P̃ω(X ). Consider the category
P̃ω(X )op-fmod of finite dimensional P̃ω(X )op-modules, that is the category of
C-linear functors

F : P̃ω(X )op → C-mod

satisfying the condition ∑
L∈X

dim(F(P(L))) < ∞. Now from the standard abstract

nonsense (see e.g. [Ga]), we have:

Proposition 4. For X ∈ I ω/≈ the categories Õω(X ) and P̃ω(X )op-fmod are
equivalent.

3.5 Duality

The category Oω has the standard simple preserving duality ?, that is a contravariant
anti-equivalence which preserves isomorphism classes of simple objects (see [Hu,
Subsection 3.2] for details). This duality lifts to Õω in the obvious way (and will
also be denoted by ?), however, because of (2), simple modules are preserved by the
lifted duality ? only up to a possible parity change. We note also that some simple
modules in Õω might be stable under Π (that is, isomorphic, in Õω , to their parity
changed counterparts). We will not need any explicit criterion for when ? preserves
simples strictly or only up to parity change, we refer the reader to [Fr3] for the
qn-example.
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4 Stratification

4.1 Standard and proper standard objects

The superalgebra lω is a classical Lie superalgebra in the sense of Subsection 2.1.
The category lω

0 O0 is just the category of semi-simple finite dimensional lω
0

-modules.

Consider now the category lωÕ0 which has all the properties described in Proposi-
tion 1. Furthermore, we have:

Proposition 5. Projective and injective modules in lωÕ0 coincide.

Proof. It is enough to show that the indecomposable projective cover of each sim-
ple object in lωÕ0 is injective and that the indecomposable injective envelope of
each simple object in lωÕ0 is projective. We will prove the first claim an the second
is proved similarly. From the proof of Proposition 1(c) it follows that the indecom-
posable projective cover of each simple object in lωÕ0 is a direct summand of a
module of the form Indgg0

P, where P is projective in lω
0 O0. The latter category is

semi-simple and hence P is also injective. Now (2) implies that, up to parity change,
the module Indgg0

P is isomorphic to Coindgg0
P where P is injective. Then the mod-

ule Coindgg0
P is injective as Coindgg0

is right adjoint to an exact functor (and thus
sends injective modules to injective modules). The claim follows. ut

Denote by lI ω the set of isomorphism classes of simple objects in lωÕ0. For
V ∈ lI ω denote by V̂ the indecomposable projective cover of V in lωÕ0 (note that
the module V̂ is also injective by Proposition 5 but it does not have to coincide with
the indecomposable injective envelope of V ). Set nω,+V = nω,+V̂ = 0. Define the
proper standard or generalized Verma g-module

∆(V ) :=U(g)
⊗

U(lω⊕nω,+)

V

and the standard g-module

∆(V ) :=U(g)
⊗

U(lω⊕nω,+)

V̂ .

Since the parabolic induction from lω ⊕nω,+ to g is exact, Proposition 1(b) implies
that each standard module has a finite filtration whose subquotients are proper stan-
dard modules (these subquotients do not have to be isomorphic one to the other).

Proposition 6. Let V ∈ lI ω .

(a) The module ∆(V ) has simple top denoted by L(V ).
(b) The module L(V ) is also the simple top of ∆(V ).
(c) The set {L(V )|V ∈ lI ω} is a full set of representatives of isomorphism classes

of simple objects in Õω .



Category O for Lie superalgebras 11

Proof. For λ ,µ ∈ h∗0 write λ ≤ω µ if and only if µ − λ ∈ Z+supp(lω ⊕ nω,+).
Now for λ ∈ supp(V ) the unique maximal submodule of ∆(V ) is the sum of all
submodules M of ∆(V ) which satisfy the following condition: µ ∈ supp(M) implies
µ <ω λ . This implies claim (a) and claim (c) follows from the definition of Õω and
the universal property of induced modules. Claim (b) follows from claim (a) and
definitions. We refer the reader to [Di, Chapter 7] for similar properties of the usual
Verma modules written with all details. ut

Proposition 6(c) allows us to canonically identify lI ω and I ω . From the proof
of Proposition 6(a) it follows that the simple top L(V ) has composition multiplicity
one in ∆(V ).

4.2 Stratified structure

Theorem 2. Each projective module in Õω has a standard filtration, that is a filtra-
tion whose subquotients are isomorphic to standard modules.

Proof. This claim is proved similarly to e.g. [FKM, Proposition 3] or [Fr3, Theo-
rem 12]. As mentioned above, each projective object in Õω is a direct summand of
a module of the form Indgg0

P where P is projective in Oω . Similarly to [BGG] one
shows that existence of a standard filtration is and additive property, that is inher-
ited by all direct summands. Each projective in Oω has a Verma filtration, that is a
filtration whose subquotients are isomorphic to Verma modules. Hence it is enough
to show that each module of the form Indgg0

M(λ ), where M(λ ) is a usual Verma
module, has a standard filtration. The induction from g0 to g can be factorized via
lω . From Proposition 5 it thus follows that the module Indgg0

M(λ ), when considered

as an lω -module, is a direct sum of projective-injective modules in lωÕ0. Moreover,
by construction, the module Indgg0

M(λ ) is free of finite rank over U(nω,−). Take an
lω -direct summand N of Indgg0

M(λ ) of maximal possible weight (with respect to
the order ≤ω introduced in the previous subsection). From the universal property of
induced modules and the fact that Indgg0

M(λ ) is free over U(nω,−) it follows that
U(g)N is a direct sum of standard modules. Furthermore, U(g)N, when considered
as an lω -module, is a direct sum of projective-injective objects in lωÕ0. This implies
that U(g)N is a direct summand of Indgg0

M(λ ) as an lω -module. Now the proof is
completed by induction with respect to ≤ω . ut

Combination of Proposition 6 and Theorem 2 means that each P̃ω(X ) is
weakly properly stratified in the sense of [Fr1] (in particular, it is standardly strati-
fied in the sense of [CPS]).

Using ? we define proper costandard modules as ?-duals of proper standard mod-
ules. We also define costandard modules as ?-duals of standard modules. Then every
costandard module has a proper costandard filtration, that is a filtration whose sub-
quotients are isomorphic to proper costandard modules. The ?-dual of Theorem 2
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says that each injective module in Õω has a costandard filtration, that is a filtration
whose subquotients are isomorphic to costandard modules.

The ?-dual of Proposition 6 says that all costandard and proper costandard mod-
ules have simple socle. For V ∈ lI ω we denote by ∇(V ) and ∇(V ) the costandard
and proper costandard modules with simple socle L(V ), respectively. We denote
by F (∆) the full subcategory of Õω consisting of all modules having a standard
filtration and define F (∆), F (∇) and F (∇) similarly.

By standard arguments (see e.g. [Fr1, Fr2]), the fact that P̃ω(X ) is weakly
properly stratified is equivalent to the following homological orthogonality:

Corollary 1. For V,V ′ ∈ lI ω we have

ExtiO(∆(V ),∇(V ′))∼=

{
C, if V ∼=V ′ and i = 0;
0, otherwise.

Using ? one obtains a similar homological orthogonality between proper standard
and costandard modules. As a consequence of this, for N ∈F (∆) and V ∈ lI ω the
number of occurrences of ∆(V ) as a subquotient of a standard filtration of N does
not depend on the choice of the filtration and will be denoted by (N : ∆(V )).

Weakly proper stratification of P̃ω(X ) also implies the following standard
characterization of modules with (proper) (co)standard filtration (see [Ri, Fr1]):

Corollary 2.

(a) F (∆) = {M ∈ Õω |Exti
Õω (M,∇(V )) = 0 for any V ∈ lI ω and i > 0}.

(b) F (∇) = {M ∈ Õω |Exti
Õω (∆(V ),M) = 0 for any V ∈ lI ω and i > 0}.

(c) F (∆) = {M ∈ Õω |Exti
Õω (M,∇(V )) = 0 for any V ∈ lI ω and i > 0}.

(d) F (∇) = {M ∈ Õω |Exti
Õω (∆(V ),M) = 0 for any V ∈ lI ω and i > 0}.

For a simple L we denote by [N : L] the composition multiplicity of L in N.
Another standard corollary is the following BGG-reciprocity:

Corollary 3. For V,V ′ ∈ lI ω we have

(P(V ) : ∆(V ′)) = [∇(V ′) : L(V )].

For example, description of the stratified structure of the category O for the queer
Lie superalgebra qn can be found with all details in [Fr3].

4.3 Tilting modules

An object in Õω is called a tilting or cotilting module if it belongs to F (∆)∩
F (∇) or F (∇)∩F (∆), respectively. We have the following standard description
of (co)tilting modules (see [Ri, Fr1, Ma2, MT]):
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Proposition 7.

(a) Each (co)tilting module is a direct sum of indecomposable (co)tilting modules.
(b) For every V ∈ lI ω there is a unique (up to isomorphism) indecomposable tilting

module T (V ) such that ∆(V ) ↪→ T (V ) and the cokernel of this embedding has
a standard filtration.

(c) T (V ) is also cotilting.

Proof. From Corollary 2 it follows that all categories F (∆), F (∇), F (∇) and
F (∆) are fully additive. This implies claim (a). Uniqueness of T (V ) follows from
Corollary 1 by standard arguments, e.g. as in [Ri]. To prove existence, recall that
it is well-known, see e.g. [Hu], that Oω has tilting modules, that is ?-self-dual
modules with (generalized) Verma flag. Inducing these up to g gives ?-self-dual
(up to parity change) modules with standard filtration. Now existence of T (V ) fol-
lows by tracking the highest weight (with respect to ≤ω ), which proves claim (b).
Furthermore, by construction, all these induced modules belong to the category
F (∆)∩F (∇)∩F (∇)∩F (∆), which proves claim (c). ut

The standard useful property of tilting modules (see [Ri, Fr1]) is that every mod-
ule with standard filtration has a finite coresolution by tilting modules. Furthermore,
every module with a proper costandard filtration has a (possibly infinite) resolution
by tilting modules.

For each V ∈ lI ω we fix some T (V ) as given by Proposition 7(b). Denote by
T̃ ω the full subcategory of Õω with objects T (V ), V ∈ lI ω . Similarly, for X ∈
lI ω/ ≈ we denote by T̃ ω(X ) the full subcategory of Õω with objects T (V ),
V ∈ X .

4.4 Finitistic dimension

As an application of tilting module in the subsection we obtain a bound for the fini-
tistic dimension of Õω which, in particular, implies Theorem 1. Let C be an abelian
category with enough projectives. The global dimension gl.dim(C ) is defined as
the supremum of projective dimensions p.dim(X) taken over all objects X ∈ C . The
finitistic dimension fin.dim(C ) is defined as the supremum of p.dim(X) taken over
all objects in X ∈ C for which p.dim(X) < ∞. It is known that the global dimen-
sion of the category Oω is finite and hence coincides with the finitistic dimension
of Oω (finiteness follows from [RC] and [So90] and explicit bounds and different
interpretations can be found in [Ma1, KKM, MaPa, MO, FM1]). For Õω we have:

Theorem 3.

fin.dim(Õω) = 2 · max
V∈lI ω

p.dim(T (V ))≤ gl.dim(Oω).
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Proof. Let us prove the inequality first. We start with the claim that all injective
modules in Õω have finite projective dimension. Indeed, this is obviously true for
injectives in Oω . Given a finite projective resolution of an injective I in Oω , we can
induce this resolution up to Õω and obtain a finite projective resolution of Indgg0

I

in Õω . As any injective in Õω is a direct summand of some Indgg0
I, we have our

claim. Moreover, as a bonus we even have that max
V∈lI ω

p.dim(I(V ))≤ gl.dim(Oω).

Similarly one shows that all projective modules in Õω have finite injective di-
mension. Now we claim that every M ∈ Õω has finite projective dimension if and
only if it has finite injective dimension. By symmetry, it is enough to prove the “if”
statement. Let

0 → I0 → I1 → ··· → Ik → 0

be an injective resolution of M. Each Is, s= 0, . . . ,k, has a finite projective resolution
by the above. Substituting each Is by its projective resolution (using the iterated
cone construction, see e.g. [MO]), we get a finite complex of projective modules
with unique non-zero homology M concentrated in position 0. Deleting all trivial
direct summands we obtain a finite projective resolution of M and hence M has
finite projective dimension.

Next we claim that fin.dim(Õω) = max
V∈lI ω

p.dim(I(V )). Note that the right hand

side is bounded by gl.dim(Oω) by the above. Set N := max
V∈lI ω

p.dim(I(V )). Assume

that X ∈ Õω is such that p.dim(X)> N. Consider a short exact sequence

X ↪→ I � Y (6)

Then, because of the dimension shift in the long exact sequence obtained by apply-
ing to (6) the functor Hom(−,L(V )), V ∈ lI ω , we get p.dim(Y ) > p.dim(X). At
the same time, X has finite injective dimension by the above and hence the injective
dimension of Y is strictly smaller then the injective dimension of X . Proceeding in-
ductively we get an injective module of projective dimension greater than N, a con-
tradiction. This completes the proof of the inequality fin.dim(Õω)≤ gl.dim(Oω).

Now let us prove the equality

max
V∈lI ω

p.dim(I(V )) = 2 · max
V∈lI ω

p.dim(T (V )). (7)

First we claim that the right hand side of (7) is finite. Indeed, it is finite in the case
of Oω . Having a projective resolution of a tilting module in Oω , we can induce this
resolution up to Õω and get a projective resolution of the induced tilting module.
Since, by the highest weight argument, each tilting module is a direct summand of
an induced tilting module, we have our claim. Now the proof is completed as in
[MO, Theorem 1]. ut

We note one important difference between Õω and Oω , namely the fact ad-
dressed in Subsection 3.4 that blocks of Oω are described by finite dimensional
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associative algebras while blocks of Õω are described, in general, only by infinite
dimensional associative algebras with local units. This fact makes Theorem 3 non-
trivial and, to some extend, surprising.

5 Projective-injective modules and their applications

5.1 Irving-type theorems

Category Oω has a lot of projective-injective modules with remarkable properties,
see [Ir] and [So90]. These extend to Õω as follows. For V ∈ lI ω let us denote by
I(V ) the indecomposable injective envelope of L(V ) in Õω .

Theorem 4. Let V ∈ lI ω . Then the following assertions are equivalent:

(i) P(V ) is injective.
(ii) P(V ) is isomorphic to I(V ) up to parity change.
(iii) L(V ) occurs in the socle of a projective-injective module in O .
(iv) L(V ) occurs in the top of a projective-injective module in O .
(v) L(V ) occurs in the socle of some standard module.
(vi) L(V ) occurs in the socle of some proper standard module.

Proof. Equivalence of claims (iii) and (iv) follows by applying ?. Equivalence of
claims (v) and (vi) follows from Proposition 5 and the fact that every standard mod-
ule has a proper standard filtration. Claim (ii) obviously implies claim (iii). Each
projective-injective module has a standard filtration and hence claim (iii) implies
claim (v). That claim (ii) implies claim (i) is obvious and the reverse application
would follow from the fact that claim (iv) implies claim (ii). It is left to prove that
claim (v) implies claim (ii).

Assume claim (v). The module ∆(V ), when restricted to g0, has a Verma flag.
Therefore, by the main result of [Ir], we have Resgg0

∆(V ) ↪→ I, where I is projective-
injective in Oω . Adjunction gives a non-zero map ∆(V ) → Indgg0

I. This map is
injective as it is non-zero when restricted to the socle (which is not annihilated by
the induction). The module Indgg0

I is projective since I is projective and Indgg0
is left

adjoint to an exact functor. The module Indgg0
I is injective since I is injective and

Indgg0
is right adjoint to an exact functor by (2). This proves claim (iii). Note that

every projective module is tilting and hence self-dual with respect to ?. Now claim
(ii) follows applying ?. ut

5.2 Dominance dimension

The next application of projective modules is the dominance dimension property,
described for Oω in [KSX, St].
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Proposition 8. Every projective P in Õω admits a two step coresolution

0 → P → X1 → X2,

where both X1 and X2 are projective-injective.

Proof. This property is obviously additive. From the proof of Proposition 1 it fol-
lows that every projective in Õω is a direct summand of a module induced from
a projective module in Oω . Induction is exact and preserves both projective and
injective modules (the latter because of (2)). Hence the claim follows from the cor-
responding property of Oω , see [KSX, St]. ut

5.3 Soergel’s Struktursatz

Denote by Q̃ω the full subcategory of P̃ω whose objects are both projective and
injective in Õω . As a corollary from Proposition 8, we have the following analogue
of Soergel’s Struktursatz, see [So90], for Õω .

Theorem 5. The bifunctor

Φ := Hom
P̃ω (−,−) : (P̃ω)op × Q̃ω → C-mod

induces a functor Φ̃ : (P̃ω)op → Q̃ω -mod and the latter functor is full and faithful.

Proof. Mutatis mutandis the proof of [AM, Theorem 4.4]. ut

5.4 Ringel self-duality

Our final application of the above is the following statement about Ringel self-
duality of Õω :

Theorem 6. For any X ∈ lI ω/ ≈ the categories T̃ ω(X ) and P̃ω(X ) are
canonically isomorphic.

Proof. For simplicity, we prove the claim in the case when ω is such that the de-
composition (3) is a triangular decomposition. The general case can be dealt with
using e.g. the approach of [MS, Subsection 10.4].

Simples in the category Oω which occur as socles of projective-injective mod-
ules are exactly the simple objects of maximal Gelfand-Kirillov dimension (this
follows from [Ir, Proposition 4.3] and [Ja, Kapitel 8]). Furthermore, for ω as de-
scribed above simple modules in Oω of maximal Gelfand-Kirillov dimension are
tilting. Recall that the functor Indgg0

is given by a tensor product (over C) with a
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finite dimensional vector space and hence preserves Gelfand-Kirillov dimension.
Therefore, applying Indgg0

and taking into account that it maps projective-injective
modules to projective-injective modules, we get that simples which occur as socles
of projective-injective modules Õω are again exactly the simple objects of maximal
Gelfand-Kirillov dimension.

Given two modules M and N, the trace of M in N is the sum of images of all
homomorphisms from M to N. For a projective module P ∈ Oω denote by P′ the
trace in P of all projective injective modules in Oω . As mentioned in the previous
paragraph, for our choice of ω the socle of a dominant Verma module in Oω (which
is also projective) is a tilting module. Using translation functors we obtain that P′

is a tilting module for any projective P. Applying Indgg0
and using the previous

paragraph, we get the same property for Õω .
For any P1,P2 ∈ P̃ω(X ) any homomorphism from P1 to P2 restricts to a homo-

morphism from P′
1 to P′

2. From Theorem 5 it follows that this restriction is, in fact,
an isomorphism. This implies that P′

1 is an indecomposable tilting module and that
P′

1
∼= P′

2 if and only if P1 ∼= P2. Taking into account the previous paragraph, renam-
ing P into P′ defines an isomorphism from P̃ω(X ) to T̃ ω(X ). This completes
the proof. ut
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