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Abstract. We determine the endomorphism categories of cell 2-represen-
tations of fiat 2-categories associated with strongly regular two-sided cells
under some natural assumptions. Along the way, we completely describe J -
simple fiat 2-categories which have only one two-sided cell J apart from the

identities, under the same conditions as above. For positively graded 2-cate-
gories, we show that the additional restrictions are redundant.

1. Introduction and description of the results

Classically, Schur’s Lemma asserts that the endomorphism algebra of a simple mod-
ule (say for a finite dimensional algebra A over some algebraically closed field k) is
isomorphic to k. It might happen that the algebra A is obtained by decategorifying
some 2-category and that the simple module in question is the decategorification of
some 2-representation of A. It is then natural to ask whether the assertion of Schur’s
Lemma is the 1-shadow of some 2-analogue. Put differently, this is a question about
the endomorphism category of a 2-representation of some 2-category.

In [MM1] we defined a class of 2-categories, which we call fiat 2-categories, forming
a natural 2-analogue of finite dimensional cellular algebras. Examples of fiat 2-
categories appear (sometimes in disguise) in e.g. [BG, CR, FKS, KhLa, La, Ro2].
Fiat 2-categories have certain cell 2-representations, which satisfy some natural
generalizations of the concept of simplicity for representations of finite dimensional
algebras. The main objective of the present paper is to study the endomorphism
categories of these cell 2-representations.

We start the paper by extending the 2-setup from [MM1] to accommodate non-
strict 2-natural transformations between 2-representations of fiat 2-categories. This
is done in Section 2, which also contains all necessary preliminaries. The advan-
tage of our new setup is the fact that 2-natural transformations become closed
under isomorphism of functors and under taking inverses of equivalences (see Sub-
section 2.4).

Cell 2-representations of fiat 2-categories have particularly nice properties for so-
called strongly regular cells (see Subsection 2.7) and in the present paper we concen-
trate on this case. We give two sufficient conditions for the endomorphism category
of such a cell 2-representation to be equivalent to k-mod. The first condition is
formulated in terms of the action of endomorphisms of the identity 1-morphisms of
our fiat 2-category on a certain generator of the cell 2-representation, see Theorem 4
in Section 3. The second condition is a numerical condition on the decomposition
of 1-morphisms under composition which also appears in [MM1, Theorem 43], see
Theorem 14 in Section 5.

Under this numerical assumption, we prove two further interesting results. Firstly,
we establish 2-fullness for cell 2-representations with respect to the class of 1-
morphisms in the two-sided cell, see Corollary 10 in Subsection 4.4. Secondly, we
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completely describe fiat 2-categories which have only one two-sided cell J apart
from the identities, in the case when our 2-category is J -simple in the sense of
[MM2], see Theorem 13 in Subsection 4.6.

We propose various examples in Section 7, including the fiat 2-category of Soergel
bimodules acting on the principal block of the BGG category O and the fiat 2-
category associated with the sl2-categorification of Chuang and Rouquier. Finally,
in Section 8, we introduce the notion of graded fiat 2-categories and show that the
numerical condition mentioned above is always satisfied in the positively graded
case, see Theorem 23 in Subsection 8.7.
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edged. The visit was supported by the Swedish Research Council and the De-
partment of Mathematics. The first author is partially supported by the Swedish
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2. Preliminaries

We denote by N and N0 the sets of positive and non-negative integers, respec-
tively.

2.1. Various 2-categories. In this paper by a 2-category we mean a strict lo-
cally small 2-category (see [Le] for a concise introduction to 2-categories and bi-
categories). Let C be a 2-category. We will use i, j, . . . to denote objects in
C ; 1-morphisms in C will be denoted by F,G, . . . ; 2-morphisms in C will be de-
noted by α, β, . . . . For i ∈ C we will denote by 1i the corresponding identity
1-morphisms. For a 1-morphism F we will denote by idF the corresponding identity
2-morphisms.

Denote by Cat the 2-category of all small categories. Let k be an algebraically
closed field. Denote by Ak the 2-category whose objects are small k-linear fully ad-
ditive categories; 1-morphisms are additive k-linear functors and 2-morphisms are

natural transformations. Denote by Af
k the full 2-subcategory of Ak whose objects

are fully additive categories A such that A has only finitely many isomorphism
classes of indecomposable objects and all morphisms spaces in A are finite dimen-
sional. We also denote by Rk the full subcategory of Ak containing all objects which
are equivalent to A-mod for some finite dimensional associative k-algebra A.

2.2. Finitary and fiat 2-categories. A 2-category C is called finitary (over k),
see [MM1], if the following conditions are satisfied:

• C has finitely many objects;

• for any i, j ∈ C we have C(i, j) ∈ Af
k and horizontal composition is both

additive and k-linear;

• for any i ∈ C the 1-morphism 1i is indecomposable.

We will call C weakly fiat provided that it has a weak object preserving anti-
autoequivalence ∗ and for any 1-morphism F ∈ C(i, j) there exist 2-morphisms
α : F ◦F∗ → 1j and β : 1i → F∗ ◦F such that αF ◦1 F(β) = idF and F∗(α) ◦1 βF∗ =
idF∗ . If ∗ is involutive, then C is called fiat, see [MM1].
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2.3. 2-representations. From now on C will denote a finitary 2-category. By a
2-representation of C we mean a strict 2-functor from C to either Ak (additive

2-representation), Af
k (finitary 2-representation), or Rk (abelian 2-representation).

In this paper we define the 2-categories of 2-representations of C extending the
setup (from the one in [MM1, MM2]) by considering non-strict 2-natural transfor-
mations between two 2-representations M and N. Such a 2-natural transformation
Ψ consists of the following data: a map, which assigns to every i ∈ C a functor
Ψi : M(i) → N(i), and for any 1-morphism F ∈ C(i, j) a natural isomorphism
ηF = ηΨF : Ψj◦M(F) → N(F)◦Ψi, where naturality means that for any G ∈ C(i, j)
and any α : F → G we have

ηG ◦1 (idΨj
◦0 M(α)) = (N(α) ◦0 idΨi

) ◦1 ηF.

In other words, the left diagram on the following picture commutes up to ηF while
the right diagram commutes (compare with [Kh, Subsection 2.2]):

M(i)
M(F) //

Ψi

��

M(j)

Ψj

��
s{
ηF

N(i)
N(F) // N(j)

Ψj ◦M(F)
ηF //

idΨj
◦0M(α)

��

N(F) ◦Ψi

N(α)◦0idΨi

��
Ψj ◦M(G)

ηG // N(G) ◦Ψi

Moreover, the isomorphisms η should satisfy

(1) ηF◦0G = (idN(F) ◦0 ηG) ◦1 (ηF ◦0 idM(G))

for all composable 1-morphisms F and G.

Given two 2-natural transformations Ψ and Φ as above, a modification θ : Ψ → Φ
is a map which assigns to each i ∈ C a natural transformation θi : Ψi → Φi such
that for any F,G ∈ C(i, j) and any α : F → G we have

(2) ηΦG ◦1 (θj ◦0 M(α)) = (N(α) ◦0 θi) ◦1 ηΨF .

Proposition 1. Together with non-strict 2-natural transformations and modifica-
tions as defined above, 2-representations of C form a 2-category

Our notation for these 2-categories is C -amod in the case of additive representations
and C-afmod in the case of finitary representations. To define the 2-category C-mod
for abelian representations we additionally assume that all Ψi are right exact (this
assumption is missing in [MM1]).

Proof. To check that these are 2-categories, we have to verify that (strict) composi-
tion of non-strict 2-natural transformations is a non-strict 2-natural transformation
and that both horizontal and vertical compositions of modifications are modifica-
tions. The first fact follows by defining

ηΨ
′◦Ψ

F := (ηΨ
′

F ◦0 idΨi
) ◦1 (idΨ′

j
◦0 ηΨF )
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and then checking (1) (which is a straightforward computation). Since the diagrams

Ψ′
j ◦Ψj ◦M(F)

idΨ′
j
◦0θj◦0idM(F)

//

idΨ′
j
◦0η

Ψ
F

��

Ψ′
j ◦ Φj ◦M(F)

θ′
j◦0idΦj

◦0idM(F) //

idΨ′
j
◦0η

Φ
F

��

Φ′
j ◦ Φj ◦M(F)

idΦ′
j
◦0η

Φ
F

��
Ψ′

j ◦N(F) ◦Ψi

idΨ′
j
◦0idN(F)◦0θi

//

ηΨ′
F ◦0idΨi

��

Ψ′
j ◦N(F) ◦ Φi

θ′
j◦0idN(F)◦0idΦi //

ηΨ′
F ◦0idΦi

��

Φ′
j ◦N(F) ◦ Φi

ηΦ′
F ◦0idΦi

��
K(F) ◦Ψ′

i ◦Ψi

idK(F)◦0idΨ′
i
◦0θi

// K(F) ◦Ψ′
i ◦ Φi

idK(F)◦0θ
′
i◦0idΦi // K(F) ◦ Φ′

i ◦ Φi

Ψj ◦M(F)
θj◦0M(α) //

ηΨ
F

��

Φj ◦M(G)
τj◦0idM(G) //

ηΦ
G

��

Σj ◦M(G)

ηΣ
G

��
N(F) ◦Ψi

N(α)◦0θi // N(G) ◦ Φi

idN(G)◦0τi // N(G) ◦ Σi

commute, the latter two facts also follow. �

2.4. Properties of 2-natural transformations. Let M and N be two 2-
representations of C and Ψ : M → N a 2-natural transformation. Given, for
every i ∈ C , a functor Φi and an isomorphism ξi : Φi → Ψi, define, for every
1-morphism F ∈ C(i, j)

ηΦF := (idN(F) ◦0 ξ−1
i ) ◦1 ηΨF ◦1 (ξj ◦0 idM(F)).

Then it is straightforward to check that this extends Φ to a 2-natural transforma-
tion.

Proposition 2. Let M and N be two 2-representations of C and Ψ : M → N
a 2-natural transformation. Assume that for every i ∈ C the functor Ψi is an
equivalence. Then there exists an inverse 2-natural transformation.

Proof. For any i ∈ C choose an inverse equivalence Φi of Ψi. Let

ξi : IdM(i) → Φi ◦Ψi and ζi : Ψi ◦ Φi → IdN(i)

be some isomorphisms. Define

ηΦF :=
(
(idΦj◦N(F) ◦0 ζi) ◦1 (idΦj

◦0 ηΨF ◦0 idΦi
) ◦1 (ξj ◦0 idM(F)◦Φi

)
)−1

.

It is obvious that this produces a natural transformation, but we have to check that

(3) ηΦF◦G = (idN(F) ◦0 ηΦG) ◦1 (ηΦF ◦0 idM(G)).
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This follows from commutativity of the diagram

M(F)M(G)Φi

xxrrrrrrrrrr

&&LLLLLLLLLL

ΦkΨkM(F)M(G)Φi

zzvvvvvvvv
v

&&LLLLLLLLLL
M(F)ΦjΨjM(G)Φi

xxrrrrrrrrrr

$$HH
HH

HH
HH

H

ΦkN(F)ΨjM(G)Φi

$$HH
HH

HH
HH

H
ΦkΨkM(F)ΦjΨjM(G)Φi

xxrrrrrrrrrr

&&LLLLLLLLLL
M(F)ΦjN(G)ΨiΦi

zzvvv
vv

vv
vv

��9
99

99
99

ΦkN(F)ΨjΦjΨjM(G)Φi

zzvvv
vv

vv
vv

&&LLLLLLLLLL
ΦkΨkM(F)ΦjN(G)ΨiΦi

xxrrrrrrrrrr

$$HH
HH

HH
HH

H
M(F)ΦjN(G)

����
��

��
�

ΦkN(F)ΨjM(G)Φi

$$HHHHHHHHH
ΦkN(F)ΨjΦjN(G)ΨiΦi

xxrrrrrrrrrr

&&LLLLLLLLLL
ΦkΨkM(F)ΦjN(G)

zzvvv
vv

vv
vv

ΦkN(F)N(G)ΨiΦi

&&LLLLLLLLLL
ΦkN(F)ΨjΦjN(G)

xxrrrrrrrrrr

ΦkN(F)N(G)

where the maps are the obvious ones (each of the maps has exactly one component
of the form ξ, ζ or ηΨ and identities elsewhere). Commutativity of all squares is
immediate. Then reading along the right border gives (the inverse of) the right
hand side of (3). Computing (the inverse of) the left hand side of (3) directly,
using the definition of ηΦ and property (1) of ηΨF◦G, gives the left border of the
diagram, after noting that the third and fourth morphism in this path compose
to the identity on ΦkN(F)ΨjM(G)Φi by adjunction. Therefore (3) holds and this
extends Φ to a 2-natural transformation. �

In this scenario we will say that the 2-representations M and N are equiva-
lent.

2.5. Abelianization and identities. Denote by · : C-afmod → C-mod the
abelianization 2-functor defined as in [MM2, Subsection 4.2]: for M ∈ C-afmod

and i ∈ C , the category M(i) consists of all diagrams of the form X
α−→ Y , where

X,Y ∈ M(i) and α is a morphism in M(i). Morphisms in M(i) are commutative
squares modulo factorization of the right downwards arrow using a homotopy. The
2-action of C on M(i) is defined component-wise.

For any 2-representation M of C and any non-negative integer k, we denote by ♠k

the 2-natural transformation from M to M given by assigning to each i ∈ C the
functor

IdM(i) ⊕ IdM(i) ⊕ · · · ⊕ IdM(i)︸ ︷︷ ︸
k summands

and defining η♠k

F as idF ⊕ · · · ⊕ idF (again with k summands).
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2.6. Principal 2-representations and additive subrepresentations. For i ∈
C we denote by Pi the principal 2-representation C(i,−) ∈ C-afmod. For any
M ∈ C -amod we have the usual Yoneda Lemma (see [Le, Subsection 2.1] and
compare to [MM2, Lemma 9]):

Lemma 3.

(4) HomC -amod(Pi,M) ∼= M(i).

Proof. Let Ψ : Pi → M be a 2-natural transformation and setX := Ψi(1i). Denote
by Φ : Pi → M the unique strict 2-natural transformation sending 1i to X (see
[MM2, Lemma 9]). Then, for any 1-morphism F ∈ C(i, j), we have the natural
isomorphism

(θj)F := (ηΨF )1i
: Ψj(F) → M(F)Ψi(1i) = M(F)X = Φj(F).

This gives us an (invertible) modification θ from Ψ to Φ and the claim follows. �

Given M ∈ C-mod and X ∈ M(i) for some i ∈ C , define MX ∈ C-afmod by
restricting M to the full subcategories add(FX), where F runs through the set of
all 1-morphisms in C(i, j), j ∈ C .

2.7. The multisemigroup of C and cells. The set S[C ] of isomorphism classes
of indecomposable 1-morphisms in C has the natural structure of a multisemigroup
induced by horizontal composition, see [MM2, Subsection 3.1] (see also [KM] for
more details on multisemigroups). Let ≤L, ≤R and ≤J denote the natural left,
right and two-sided orders on S[C ], respectively. For example, F ≤L G means
that for some 1-morphism H the composition H ◦ F contains a direct summand
isomorphic to G. Equivalence classes with respect to ≤L are called left cells. Right
and two-sided cells are defined analogously. Cells correspond exactly to Green’s
equivalence classes for the multisemigroup S[C ].

A two-sided cell J is called regular if different left (right) cells in J are not com-
parable with respect to the left (right) order. A two-sided cell J is called strongly
regular if it is regular and, moreover, the intersection of any left and any right cell
inside J consists of exactly one element.

Given a left cell L, there exists an iL ∈ C such that every 1-morphism F ∈ L belongs
to C(iL, j) for some j ∈ C . Similarly, given a right cell R, there exists a jR ∈ C
such that every 1-morphism F ∈ R belongs to C(i, jR) for some i ∈ C .

2.8. Cell 2-representations. Let L be a left cell and i = iL. Consider Pi. For
an indecomposable 1-morphism F in some C(i, j) denote by LF the unique simple
top of the indecomposable projective module 0 → F in Pi(j). By [MM1, Propo-
sition 17], there exists a unique GL ∈ L (called the Duflo involution in L) such
that the indecomposable projective module 0 → 1i has a unique quotient N such
that the simple socle of N is isomorphic to LGL and FN/LGL = 0 for any F ∈ L.
Set Q := GL LGL . Then the additive 2-representation CL :=

(
Pi

)
Q

is called the

additive cell 2-representation of C associated to L. The abelianization CL of CL
is called the abelian cell 2-representation of C associated to L. For F ∈ L we set
PF := FLGL , which we also identify with the indecomposable projective object
0 → FLGL in CL.
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3. First sufficient condition for 2-Schur’s lemma

3.1. The claim. In this section we prove the following:

Theorem 4. Let C be a fiat 2-category, J a strongly regular two-sided cell of C
and L a left cell in J . Set i = iL and G = GL. Assume that the natural map

(5)
EndC (1i) −→ EndCL(PG)

ϕ 7→ CL(ϕ)PG

is surjective. Then any endomorphism of CL is isomorphic to ♠k for some k (in
the category EndC -afmod(CL)). Similarly, any endomorphism of CL is isomorphic
to ♠k for some k (in the category EndC -mod(CL)).

3.2. Annihilators of various objects in CL. For any 2-representation M of C
and X ∈ M(j) for some j, let AnnC (X) denote the left 2-ideal of C consisting of
all 2-morphisms α which annihilate X. The key observation to prove Theorem 4 is
the following:

Lemma 5. Under the assumption of Theorem 4, if X ∈ CL(i) is such that
AnnC (X) ⊃ AnnC (LG), then X ∈ add(LG).

Proof. Let F ∈ L be different from G. Then F∗ LF 6= 0 by [MM1, Lemma 15].
At the same time, from the fact that J is strongly simple it follows that F∗ 6∈ L.
Therefore F∗ LG = 0 by [MM1, Lemma 15]. Hence idF∗ ∈ AnnC (LG) and at the
same time idF∗ 6∈ AnnC (LF).

Since F∗ is exact, the previous paragraph implies that for any X satisfying
AnnC (X) ⊃ AnnC (LG), every simple subquotient of X is isomorphic to LG. As-
sume now that X is indecomposable such that there is a short exact sequence

0 → LG → X → LG → 0.

Then there is a short exact sequence K ↪→ PG � X and an endomorphism of PG

which induces a non-trivial nilpotent endomorphism of X. From (5), it follows that
the natural map

EndC (1i) −→ EndCL(X)
ϕ 7→ CL(ϕ)X

is surjective. Let α ∈ EndC (1i) be a 2-morphism which produces a non-trivial
nilpotent endomorphism of X. Then α 6∈ AnnC (X) while α2 ∈ AnnC (X). At the
same time, EndC (1i) is a local finite dimensional k-algebra (see Subsection 2.2),
and hence α is either nilpotent or invertible. But α cannot be invertible as α2

annihilates X. Therefore, α is nilpotent. This implies that α ∈ AnnC (LG) as any
nonzero endomorphism of LG is invertible by Schur’s lemma.

Finally, if Y is an indecomposable module, every simple subquotient of which is
isomorphic to LG, then Y has a subquotient X as in the previous paragraph.
Therefore AnnC (LG) 6⊂ AnnC (Y ). The claim of the lemma follows. �

3.3. Proof of Theorem 4. Let Ψ ∈ EndC -mod(CL). By Lemma 5, we have

Ψi(LG) ∼= L⊕k
G for some non-negative integer k. Now for any F ∈ L we have an

isomorphism

Ψj(PF) = Ψj(FLG) ∼= FL⊕k
G

∼= P⊕k
F ,

natural in F. As Ψj is right exact, every indecomposable projective is of the form
PF, and 2-morphisms in C surject onto homomorphisms between indecomposable
projectives (see [MM1, Subsection 4.5]), we have that Ψj is isomorphic to Id⊕k

CL(j)
.
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Clearly, k does not depend on j. Now we repeat the argument from the proof of
Lemma 3. We have the natural isomorphisms

(θj)FLG := (ηΨF )LG : Ψj ◦CL(F)LG → CL(F) ◦ (♠k)i LG = CL(F)L
⊕k
G ,

which give us an invertible modification θ from Ψ to ♠k. This proves the abelian
part of Theorem 4.

To prove the additive part we just note that any Ψ ∈ EndC -mod(CL) abelianizes to
Ψ ∈ EndC -mod(CL). Now the additive claim of Theorem 4 follows from the abelian
claim by restricting to projective modules. �

4. Description of J -simple fiat 2-categories

4.1. Definition of 2-full 2-representations. Let C be a finitary category and
M a 2-representation of C . We will say that M is 2-full provided that for any
1-morphisms F,G ∈ C the representation map

(6) HomC (F,G) → HomX(M(F),M(F)),

where X ∈ {Ak,A
f
k ,Rk} is the target 2-category of M, is surjective. In other

words, 2-morphisms in C surject onto the space of natural transformations between
functors.

If J is a 2-sided cell of C , we will say that M is J -2-full provided that for any
1-morphisms F,G ∈ J the representation map (6) is surjective.

4.2. The 2-category associated with J . Let now C be a fiat 2-category and J
a two-sided cell in C . Let L be a left cell of J , G := GL and i := iL. Let J be
the unique maximal 2-ideal of C which does not contain idF for any F ∈ J (see
[MM2, Theorem 15]). Then the quotient 2-category C/J is J -simple (see [MM2,

Subsection 6.2]). Denote by C (J ) the 2-full 2-subcategory of C/J generated by
1iL and all F ∈ J (and closed with respect to isomorphism of 1-morphisms). We
will call C (J ) the J -simple 2-category associated to J .

The cell 2-representation CL of C factors over C/J by [MM2, Theorem 19] and

hence restricts to a 2-representation of C (J ). Assume now that J is strongly
regular. Then, by [MM1, Proposition 32], J remains a strongly regular two-sided
cell in C (J ). Moreover, using [MM2, Subsection 6.5], the restriction of CL to C (J )

is equivalent to the corresponding cell 2-representation of C (J ). For F ∈ J denote
by mF the multiplicity of G in F∗F.

For the remainder of this section we fix a strongly regular cell J , assume that
C = C (J ) and that the function F 7→ mF is constant on right cells of J .

4.3. Detecting 2-fullness. We consider the cell 2-representation M := CL. We
start our analysis with the following observation:

Proposition 6. For F ∈ J and j ∈ C consider the representation map

(7) HomC (F,1j) → HomRk(M(F),M(1j)).

If this map is surjective for F = G and j = i, then it is surjective for any F and j.

Note that both sides of (7) are empty unless F ∈ C(j, j). As usual, to simplify
notation we will use the module notation and write FX instead of M(F)(X).
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Proof. Let H,K ∈ L and assume that H,K ∈ C(i, j). By strong regularity of J
we have HK∗ = aF for some F ∈ J and a ∈ N, moreover, if we vary H and K,
we can obtain any F ∈ J in this way. To see that HK∗ 6= 0, one evaluates HK∗

on LK obtaining K∗LK = PG (by [MM1, Corollary 38(a)]), and HPG 6= 0 since
HLG = PH 6= 0.

Similarly, we have K∗H = bG for some b ∈ N since K∗H is in the same left cell as H
(which is L) and the same right cell as K∗ (which is L∗), and L ∩ L∗ = {G} since
J is strongly regular. Using the involution ∗ we have

HomC (H,K) ∼= HomC (K∗,H∗).

By adjunction, we have

(8) HomC (H,K) ∼= bHomC (G,1i), HomC (K∗,H∗) ∼= aHomC (F,1j).

Evaluating HomC (H,K) at LG (which is surjective by [MM1, Subsection 4.5]) and
using adjunction, we get

HomM(j)(HLG,KLG) ∼= bHomM(i)(GLG, LG).

As GLG
∼= PG, the space HomM(i)(GLG, LG) is one-dimensional, and thus

(9) b = dimHomM(j)(HLG,KLG)

On the other hand, evaluating HomC (K∗,H∗) at a multiplicity free direct sum L
of all simple modules in M(j) and using adjunction, we have

(10) HomM(i)(K
∗ L,H∗ L) ∼= aHomM(j)(FL,L).

By [MM1, Lemma 12], K∗ LQ 6= 0 for a direct summand LQ of L, labeled by Q ∈ L,
implies that K is in the same right cell as Q. Strong regularity implies Q = K and
by [MM1, Corollary 38(a)], we have K∗ L ∼= PG. Similarly H∗ L ∼= PG and the left
hand side of (10) is isomorphic to EndM(i)(PG).

As F is a direct summand of HK∗, again LK is the only simple module which is not
annihilated by F. By [MM1, Theorem 43], the module FLK is an indecomposable
projective in M(j), namely PH. This means that dimHomM(j)(FL,L) = 1 and
hence

(11) a = dimEndM(i)(PG).

To proceed we need the following claim:

Lemma 7. Let A be a finite dimensional k-algebra and e, f ∈ A primitive idempo-
tents. Assume that F is an exact endofunctor of A-mod such that FLf

∼= Ae and
FLg = 0 for any simple Lg 6∼= Lf . Then F is isomorphic to the functor F′ given by
tensoring with the bimodule Ae⊗k fA and, moreover,

HomRk(F, IdA-mod) ∼= HomA(Ae,Af).

Proof. Let L be a multiplicity free sum of all simple A-modules. As FLf has
simple top Le, it follows that F is a quotient of F′, which gives us a surjective
natural transformation α : F′ → F. Further, FL ∼= F′ L, meaning that α is an
isomorphism when evaluated on simple modules. Using induction on the length of
a module and the 3-Lemma we obtain that α is an isomorphism, which proves the
first claim. The second claim follows by adjunction. �
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From Lemma 7 and surjectivity of (7) for G, we get

dimHomC (G,1i) = dimEndM(i)(PG).

Using (8), (9) and Lemma 7, we have

dimHomC (H,K) = dimHomM(j)(HLG,KLG) · dimEndM(i)(PG)

= dimHomM(j)(PH, PK) · dimEndM(i)(PG).

On the other hand, using (8) and (11) we have

dimHomC (K∗,H∗) = dimHomC (F,1j) · dimEndM(i)(PG).

As C is J -simple, dimHomC (F,1j) ≤ dimHomRk(M(F),M(1j)) and the latter by
Lemma 7 is equal to dimHomM(j)(PH, PK). Dividing through by dimEndM(i)(PG)
yields

dimHomM(j)(PH, PK) = dimHomC (F,1j)

≤ dimHomRk(M(F),M(1j))

= dimHomM(j)(PH, PK)

and hence
dimHomC (F,1j) = dimHomRk(M(F),M(1j)).

Injectivity of the representation map, which follows from J -simplicity of C , now
implies surjectivity and hence the statement of the proposition. �

Proposition 8. Let H,K ∈ C(j, k)∩J . If the representation map (7) is surjective
for F = G and i = j, then the representation map

HomC (H,K) → HomRk(M(H),M(K))

is surjective.

Proof. As J is strongly regular, we have K∗H = Q⊕m for some m ∈ N0, where Q
is in the intersection of the left cell of H and the right cell of K∗. We have the
commutative diagram

HomC (H,K)

��

∼ // HomC (K∗H,1j)

��

∼ // HomC (Q,1j)
⊕m

��
HomRk(M(H),M(K))

∼ // HomRk(M(K∗H), IdM(j))
∼ // HomRk(M(Q), IdM(j))

⊕m

where the vertical arrows are the representation maps, the left horizontal arrows
are isomorphisms given by adjunction, and the right horizontal arrows are isomor-
phisms given by additivity. Then the rightmost vertical arrow is an isomorphism
by Proposition 6 and J -simplicity of C . This implies that all vertical arrows are
isomorphisms and the claim follows. �

4.4. Cell 2-representations are J -2-full.

Theorem 9. The cell 2-representation M := CL is J -2-full.

Proof. Thanks to Proposition 8, we have only to show that the representation map
(7) is surjective for F = G and i = j. In order to show this it suffices, by Lemma 7
and J -simplicity of C , to show that

dimHomC (G,1i) = dimEndM(i)(PG).

By Lemma 7 and J -simplicity of C , we have

dimHomC (G,1i) ≤ dimEndM(i)(PG).
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Recall from [MM1, Proposition 17] that there is a unique submodule K of the
indecomposable projective module 0 → 1i in Pi(i) which has simple top LG and
such that the quotient of the projective by K is annihilated by G. We denote by
β some 2-morphism from G to 1i which gives rise to a surjection from 0 → G to
K in Pi(i). Then the EndC (G)-module HomC (G,1i) has simple top and β is a
representative for this simple top.

Let A be a basic finite dimensional associative k-algebra such that M(i) ∼= A-mod.
Let 1 =

∑n
i=1 ei be a decomposition of 1 ∈ A into a sum of pairwise orthogonal

primitive idempotents. We assume that e = e1 is a primitive idempotent corre-
sponding to LG. From Lemma 7, we have that the functor M(G) is isomorphic to
tensoring with Ae⊗k eA. Clearly, M(1i) is isomorphic to tensoring with A.

Since J is strongly regular, Duflo involutions in J ∩ C(i, i) are in bijection with
{e1, e2, . . . , en}. Let Gi be the Duflo involution corresponding to ei. Similarly to
the existence of β, there is a βi for each i, which we can put into the 2-morphism

γ := (β1, β2, . . . , βn) :
⊕
i

Gi → 1i.

The cokernel Coker(γ), as an object of Pi, is annihilated by all 1-morphisms in
J . This implies that M(Coker(γ)) annihilates LF for every F ∈ L and hence
M(Coker(γ)) = 0 by right exactness of M(Coker(γ)). From this we derive that
M(γ) is surjective and hence we can choose β and the above identifications of
functors with bimodules such that M(β) is the multiplication map Ae⊗k eA→ A.

In order to show that dimHomC (G,1i) ≥ dimEndM(i)(PG), we show that no
ϕ ∈ EndC (G) that induces a nonzero endomorphism of PG when evaluated at LG,
is sent to zero under composition with β.

In order to see this, let ϕ ∈ EndC (G) be such that M(ϕ) ∈ eAe⊗ eAe is not killed
under the map eAe⊗ eAe� eAe⊗ eAe/Rad(eAe) ∼= eAe. In other words, writing
M(ϕ) =

∑
j(ψj⊗(cje+rj)) for some cj ∈ k, rj ∈ Rad(eAe), and where ψj runs over

a basis of eAe, chosen in accordance with radical powers, we have that ψ :=
∑

j cjψj

is nonzero in eAe. Then M(β ◦ ϕ) = ψ + (
∑

j cjψjrj) ∈ eAe. As ψ ∈ Radk(eAe)

implies ψj ∈ Radk(eAe) for all ψj such that cj 6= 0, the summand
∑

j cjψjrj is in

Radk+1(eAe) and hence M(β ◦ ϕ) ∈ HomRk(M(G),M(1i)) is nonzero. Therefore
β◦ϕ ∈ HomC (G,1i) is nonzero for any ϕ ∈ EndC (G) that is not killed by evaluation
at LG. By surjectivity of the map from EndC (G) onto EndM(i)(PG) given by
evaluation at LG (see [MM1, Subsection 4.5]), this implies

dimHomC (G,1i) ≥ dimEndM(i)(PG)

and completes the proof of the proposition. �

Corollary 10. Assume that C is any fiat 2-category and J is a strongly regular
2-sided cell of C such that the function F 7→ mF is constant on right cells of J .
Then for any left cell L in J the cell 2-representation CL is J -2-full.

Proof. This follows directly from Theorem 9 and [MM1, Corollary 33]. �

4.5. Construction of J -simple 2-categories C (J ). Let n ∈ N and A :=
(A1, A2, . . . , An) be a collection of pairwise non-isomorphic, basic, connected,
weakly symmetric finite dimensional associative k-algebras. For i ∈ {1, 2, . . . , n}
choose some small category Ci equivalent to Ai-mod, and let Zi denote the center of
Ai. Set C = (C1, C2, . . . , Cn). Denote by CC the 2-full fiat 2-subcategory of Rk with
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objects Ci, which is closed under isomorphisms of 1-morphisms and generated by
functors that are isomorphic to tensoring with projective Ai-Aj bimodules.

We identify Zi with EndCC (1Ci) and denote by Z ′
i the subalgebra of Zi generated by

id1Ci
and all elements which factor through 1-morphisms given by tensoring with

projective Ai-Ai bimodules.

Remark 11. In general, Z ′
i 6= Zi. For example, let n = 1 and A = A1 = k[x]/(x3).

Then Z = Z1 = A while Z ′
1 is the linear span of 1 and x2 in Z. Indeed, we have

only one projective bimodule A⊗kA, which has Loewy length 5 and unique Loewy
filtration. As A has Loewy length 3, any nonzero composition A → A ⊗k A → A
must map the top of A to the socle of A. It is easy to check that the composition
of the unique (up to scalar) injection A ↪→ A ⊗k A and the unique (up to scalar)
surjection A⊗k A� A is nonzero.

Choose subalgebras Xi in Zi containing Z
′
i and let X = (X1, X2, . . . , Xn). Consider

the additive 2-subcategory CC,X of CC defined as follows: CC,X has the same objects
and the same 1-morphisms as CC ; all 2-morphism spaces between indecomposable
1-morphisms in CC,X are the same as for CC except for EndCC,X

(1Ci) := Xi.

Lemma 12. The 2-category CC,X is well-defined and fiat.

Proof. To prove that CC,X is well-defined we have to check that it is closed under
both horizontal and vertical composition of 2-morphisms. That it is closed under
vertical composition follows directly from the fact that Xi is a subalgebra. To check
that it is closed under horizontal composition, we first observe that if 1Ci

appears
(up to isomorphism) as a direct summand of F ◦ G for some indecomposable 1-
morphisms F and G, then both F and F are isomorphic to 1Ci

. For x, y ∈ Xi, we
have

A
∼−→ A⊗A A

x⊗y−→ A⊗A A
∼−→ A

1 7→ 1⊗ 1 7→ x⊗ y 7→ xy

from which the claim follows, again using that Xi is a subalgebra.

To prove that CC,X is fiat we have to check that it contains all adjunction mor-
phisms. The adjunction morphism from 1Ci to 1Ci is id1Ci

and thus contained in
CC,X . All other adjunction morphisms are between 1Ci and direct sums of indecom-
posable 1-morphisms none of which is isomorphic to 1Ci and therefore contained in
CC,X by definition. �

4.6. Description of J -simple 2-categories C (J ). Now we are ready to prove
the main result of this section, which gives a description, up to biequivalence, of
fiat 2-categories that are “simple” in some sense.

Theorem 13. Let C = C (J ) be a skeletal fiat J -simple 2-category. Assume that
J is strongly regular and that the function F 7→ mF is constant on right cells of J .
Then C is biequivalent to CC,X for appropriate C and X.

Proof. Let L be a left cell in J and M := CL be the corresponding cell 2-
representation. Set Ci := M(i) and let Ai be a basic algebra such that Ai-mod
is equivalent to M(i). Let Zi be the center of Ai which we identify with
EndRk(1M(i)). Set Xi := M(EndC (1i)) ⊂ Zi. Then the representation map M is
a 2-functor from C to CC,X , which is a biequivalence by Theorem 9, J -simplicity
of C and construction of X. �
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5. Second sufficient condition for 2-Schur’s lemma

Here we give a different version of Theorem 4.

Theorem 14. Let C be a fiat 2-category and J a strongly regular two-sided cell of
C such that the function F 7→ mF is constant on right cells of J . Let L be a left
cell of J . Then any endomorphism of CL is isomorphic to ♠k for some k (in the
category EndC -afmod(CL)). Similarly, any endomorphism of CL is isomorphic to
♠k for some k (in the category EndC -mod(CL)).

Proof. We follow the proof of Theorem 4 described in Section 3. What we need is
the analogue of Lemma 5 in the new situation. More precise, we have to prove that
given a non-split short exact sequence

0 → LG → X → LG → 0

in CL(i), the obvious inclusion AnnC (X) ⊂ AnnC (LG) is strict.

As in Subsection 4.4, CL(i) is equivalent to A-mod for some finite dimensional
associative k-algebra A and the functorCL(G) can be identified with tensoring with
Ae⊗k eA for some primitive idempotent e ∈ A. By Theorem 9, this identification
is fully faithful on 2-morphisms. Clearly,

AnnC (LG) ∩ EndA⊗kAop(Ae⊗k eA) = eAe⊗k Rad(eAe).

At the same time, as X is a non-split self-extension of LG, we have

AnnC (X) ∩ EndA⊗kAop(Ae⊗k eA) = eAe⊗k U,

where U is a proper subalgebra of Rad(eAe) (since eA⊗AX = eX = X as a vector
space). The rest of the proof follows precisely the proof of Theorem 4. �

6. The second layer of 2-Schur’s lemma

6.1. Endomorphisms of the identity functor. So far we have only determined
the objects in the endomorphism category of a cell 2-representation (Theorems 4
and 14) up to isomorphism. Now we would like to describe morphisms in this
category.

Proposition 15. Let C be a fiat 2-category, J a strongly regular two-sided cell
of C and L a left cell in J . For any k ∈ N, consider ♠k ∈ EndC -mod(CL) (or
♠k ∈ EndC -mod(CL)). Then there are isomorphisms

EndEndC -mod(CL)(♠k) ∼= Matk×k(k) and EndEndC -mod(CL)(♠k) ∼= Matk×k(k).

Proof. We prove the statement for CL, the other case being analogous. For i ∈ C ,
let Ai be a finite dimensional associative k-algebra such that CL(i) is equivalent to
Ai-mod. Let θ : ♠k → ♠k be a modification. As endomorphisms of IdCL(i) can be

identified with the center Zi of Ai, we can view θi as an element of Matk×k(Zi).

First consider the case k = 1. Clearly, scalars belong to the endomorphism ring of
♠1. We would like to show that the radical of Zi does not. Let e be a primitive
idempotent of Ai. From [MM1, Corollary 38(b)] it follows that there is F ∈ J such
that CL(F) can be described by tensoring with a direct sum of bimodules of the
form Aie ⊗k eAi. The action of ♠1 on CL(i) is described as tensoring with Ai,

and the isomorphism η♠1

F is a direct sum of morphisms

Ai ⊗Ai
Aie⊗k eAi

∼= Aie⊗k eAi ⊗Ai
Ai
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sending 1⊗ e⊗ e to e⊗ e⊗ 1.

Let 0 6= z ∈ eRad(Zi)e. Then applying z after η sends 1 ⊗ e ⊗ e to e ⊗ e ⊗ z,
which is identified with e ⊗ z in Aie ⊗k eAi. Applying z before η sends 1 ⊗ e ⊗ e
to z⊗ e⊗ 1, which is identified with z⊗ e in Aie⊗k eAi. We have e⊗ z 6= z⊗ e as
z ∈ eRad(Zi)e.

Now consider arbitrary k. From the above it follows that we can view θi as an el-
ement of Matk×k(k) (here k ∼= Zi/Rad(Zi)). That every element M ∈ Matk×k(k)
indeed defines an element of EndEndC -mod(CL)(♠k) can be seen from the commuta-

tive diagram

A⊕k ⊗A Ae⊗k eA

M⊗id

��

ηk // Ae⊗k eA⊗A A
⊕k

id⊗M

��
A⊕k ⊗A Ae⊗k eA

ηk // Ae⊗k eA⊗A A
⊕k

where A := Ai and ηk is the diagonal k × k-matrix with η on the diagonal. This
completes the proof. �

6.2. The endomorphism category of a cell representations.

Theorem 16. Let C be a fiat 2-category, J a strongly regular two-sided cell of C
and L a left cell in J . Assume that one of the following holds:

(i) The natural map (5) is surjective.

(ii) The function F 7→ mF is constant on right cells of J .

Then both categories EndC -mod(CL) and EndC -amod(CL) are equivalent to k-mod.

Proof. This follows directly from Theorems 4 and 14 and Proposition 15. �

7. Examples

7.1. Category O in type A. Consider the simple complex Lie algebra g = sln
with the standard triangular decomposition g = n−⊕h⊕n+ and a small category O0

equivalent to the principal block of the BGG-category O for g (see [Hu]). Let S be
the 2-category of projective functors associated to O0 as in [MM1, Subsection 7.1].
Indecomposable 1-morphisms in S are in natural bijection with elements of the
symmetric group Sn (the Weyl group of g) and left, right and two-sided cells are
Kazhdan-Lusztig right, left and two-sided cells, respectively. As shown in [MM1,
Subsection 7.1], all two-sided cells are strongly regular and satisfy the numerical
condition in Theorem 16(ii). Hence Theorem 16 completely describes the endomor-
phism category of all cell 2-representations for S (the latter were first constructed
in [MS2]). As cell 2-representations corresponding to the same two-sided cell are
equivalent (see [MS2, MM1]), it follows that this equivalence is unique (as a func-
tor) up to isomorphism of functors. In [MS2], equivalence of cell 2-representations
corresponding to the same two-sided cell was obtained using Arkhipov’s twisting
functors and the fact that they naturally commute with projective functors, see
[AS]. Our present result shows that the shadows of Arkhipov’s twisting functors
act, on a cell 2-representation, simply as a direct sum of the identity.

We also would like to note that in this example we can also apply Theorem 4. A very
special feature of Sn is that every two-sided Kazhdan-Lusztig cell of Sn contains the
longest element w := wP

0 in some parabolic subgroup P in Sn. Then w is the Duflo
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involution in its Kazhdan-Lusztig right cell and hence the corresponding projective
in the cell 2-representation is isomorphic to θwLw. From [MS1, Theorem 6.3] it
follows that the center of O0 surjects onto the endomorphism algebra of θwLw and
hence we can apply Theorem 4.

7.2. Category O in type B2. Consider the previous example for g of type B2.
LetW be the Weyl group of type B2 with elements {e, s, t, st, ts, sts, tst, stst} (here
s2 = t2 = e and stst = tsts). We have the 2-category S with 1-morphisms θw,
w ∈ W . Cells are again given by Kazhdan-Lusztig combinatorics, the two-sided
cells are Je = {e},Js,t = {s, t, st, ts, sts, tst} and Jstst = {stst}. The middle cell
splits into two left cells L1 = {s, st, sts} and L2 = {t, ts, tst} (recall that our left
cells are Kazhdan-Lusztig’s right cells and vice versa) as shown in the following
picture:

L1 L2

L∗
1 {s, sts} {ts}

L∗
2 {st} {t, tst}.

Since strong regularity fails, we cannot apply Theorem 16 and, indeed, it turns out
that the cell 2-representation CL1 has more endomorphisms than just the identity,
as we now show.

For w ∈ Li, i = 1, 2, set Lw := Lθw . Let Ts and Tt be Arkhipov’s twisting functors
corresponding to s and t. Starting from CL1 we apply Ts, project onto CL2 , apply
Tt and project onto CL1 . This maps Ls to Ls⊕Lsts. As twisting functors naturally
commute with projective functors, it follows that AnnS (Ls) = AnnS (Lsts) and
hence mapping Ls to Lsts extends to an endomorphism of CL1 which is clearly not
isomorphic to the identity functor.

7.3. sl2-categorification. Consider the 2-category Bn associated with the sl2-ca-
tegorification of Chuang and Rouquier (see [CR]) as described in detail in [MM2,
Subsection 7.1]. This is a fiat 2-category with strongly regular cells satisfying the
numerical condition in Theorem 16(ii). Hence Theorem 16 completely describes en-
domorphisms for each cell 2-representation of sl2 (compare [CR, Proposition 5.26]).
However, we would like to point out that in the case of Bn describing the endomor-
phism category for cell 2-representations is much easier (than e.g. for the example
in Subsection 7.1). Indeed, as explained in [MM2, Subsection 7.1], each two-sided
cell of Bn has a left cell with Duflo involution G such that, in the corresponding cell
2-representation, the simple module LG is projective (the corresponding Duflo invo-
lution has the form 1i). Due to this, any endomorphism of the cell 2-representation
maps LG to a direct sum of copies of LG and is uniquely determined by the image
of LG up to isomorphism.

7.4. A non-symmetric local algebra. In this subsection we describe an example
for which the condition in Theorem 16(i) is not satisfied, while the condition in
Theorem 16(ii) is. Let A := k〈x, y〉/(x2, y2, xy + yx) and C be a small category
equivalent to A-mod. The center Z of A is the linear span of 1 and xy. Consider
the fiat 2-category CC,Z . This category has two two-sided cells, one consisting of
the identity and the other one, say J , consisting of the 1-morphism G given by
tensoring with A⊗kA. Then G is the Duflo involution in J and the corresponding
cell 2-representation is equivalent to the defining 2-representation. Therefore, the
projective module PG is isomorphic to AA. Since A is not commutative, Z does not
surject on the endomorphism algebra of PG. Hence the condition in Theorem 16(i)
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is not satisfied. On the other hand, the condition in Theorem 16(ii) is satisfied as
explained in [MM1, Subsection 7.3].

8. The numerical condition in the graded case

In this section, by graded we always mean Z-graded.

8.1. 2-categories with free Z-action. Let A be 2-category. Assume that, for
each i, j ∈ A , we are given an automorphism (·)1 of A(i, j). For k ∈ Z, set
(·)k := (·)k1 and, for F ∈ A(i, j), set Fk := (F)k. We will say that this datum
defines a free action of Z on A provided that, for any F ∈ A(i, j), the equality
Fk = Fm implies k = m and, moreover, for any composable 1-morphisms F and G,
we have

(12) Fk ◦Gm = (F ◦G)k+m.

Example 17. Let A be a graded, connected, weakly symmetric finite dimensional
associative k-algebra and C a small category equivalent to the category A-gmod of
finite dimensional graded A-modules. The algebra A⊗k A

op inherits the structure
of a graded algebra from A. Let 〈1〉 denote the functor which shifts the grading
such that (M〈1〉)i = Mi+1, i ∈ Z. Consider the 2-category CC defined as follows:
It has one object (which we identify with C), its 1-morphisms are closed under iso-
morphism of functors and are generated by 〈±1〉 and functors induced by tensoring
with projective A-A-bimodules (the latter are naturally graded), its 2-morphisms
are natural transformations of functors (which correspond to homogeneous bimod-
ule morphisms of degree zero). The group Z acts on CC by shifting the grading and
this is free in the above sense.

8.2. Graded fiat 2-categories. Assume that A is a 2-category equipped with a
free action of Z. Assume further that A satisfies the following conditions:

• A has finitely many objects;

• for any i, j ∈ A , we have A(i, j) ∈ Ak and horizontal composition is both
additive and k-linear;

• the set of Z-orbits on isomorphism classes of indecomposable objects in
A(i, j) is finite;

• all spaces of 2-morphisms are finite dimensional;

• for each 1-morphism F, there are only finitely many indecomposable 1-mor-
phisms G (up to isomorphism) such that HomA (F,G) 6= 0;

• for each 1-morphism F, there are only finitely many indecomposable 1-mor-
phisms G (up to isomorphism) such that HomA (G,F) 6= 0;

• for any i ∈ C the 1-morphism 1i is indecomposable;

• A has a weak object preserving involution and adjunction morphisms.

We will call such A pro-fiat.

Define the quotient 2-category C = A/Z to have the same objects as A , and as
morphism categories the categorical quotients C(i, j) := A(i, j)/Z. Recall that
objects of A(i, j)/Z are orbits of Z acting on objects of A(i, j) (for F ∈ A(i, j),
we will denote the corresponding orbit by F•) and, for F,G ∈ A(i, j), the space
HomC (F•,G•) is the quotient of

⊕
k,l∈Z HomA (i,j)(Fk,Gl) modulo the subspace



ENDOMORPHISMS OF CELL 2-REPRESENTATIONS 17

generated by the expressions α − αl for l ∈ Z. Horizontal composition in C is
induced by the one in A in the natural way (which is well-defined due to (12)). We
denote by Ω : A → C the projection 2-functor.

Thanks to our assumptions on A , the 2-category C is a fiat 2-category. We will say
that C is a graded fiat 2-category. If we fix a representative Fs in each F•, then,
by construction, the category C(i, j) becomes graded (in the sense that for any
1-morphisms F•,G• we have

HomC (F•,G•) =
⊕
i∈Z

Homi
C (F•,G•),

where Gt is our fixed representative for G• and Homi
C (F•,G•) = HomA (Fs,Gt+i),

vertical composition being additive on degrees). We will say that this grading is
positive provided that the following condition is satisfied: for any indecomposable
1-morphisms F•,G• ∈ C , the inequality Homi

C (F•,G•) 6= 0 implies i > 0 unless
F• = G•. In the latter case we require End0C (F•) = k idF• .

Example 18. Let D = k[x]/(x2) with x in degree 2 and consider CC as in Ex-
ample 17 for some C equivalent to D-gmod. Choosing the representatives IdD-gmod

and (D ⊗k D ⊗D −)〈1〉 makes CC/Z into a positively graded 2-category.

8.3. From 2-representations of A to 2-representations of C . Let A be a
pro-fiat 2-category and C := A/Z. Let M be a 2-representation of A and i ∈ A .
Then the group Z acts (strictly) on M(i) via isomorphisms 1i,k, k ∈ Z. We call
M pro-graded if this action is free (i.e. the stabilizer of every object is trivial) for
every i.

Let M be a pro-graded 2-representation of A . We define a 2-representation M of C
as follows: For i ∈ C , we set M(i) := M(i)/Z, that is objects of M(i) are orbits
of Z acting on objects of M(i) (for Q ∈ M(i), we will denote the corresponding
orbit by (Q)). For F ∈ A(i, j) and Q ∈ M(i), we define M(F•) (Q) := (M(F)Q)

while, for f : Q→ P , mapping the class f̂ : (Q) → (P ) to the class

M̂(F)f : (M(F)Q) → (M(F)P )

defines the action of M(F•) on morphisms (this is well-defined because of the strict-
ness of our Z-action). Functoriality of M(F•) follows directly from the definition.
Each α : F → G induces a morphism from F• to G• and we define

M(α)(Q) : M(F•) (Q) → M(G•) (Q)

as the class of M(α)Q : M(F)Q → M(G)Q. This extends to all 2-morphisms by
additivity. It follows directly from the definitions that M becomes a 2-representa-
tion of C .

8.4. Functoriality of · . Unfortunately, · is not a 2-functor between the 2-
categories of 2-representations of A and C = A/Z. However, it turns out to be a
2-functor on a suitably defined subcategory of 2-representations of A . Define the
2-category A-pgamod as follows: objects are pro-graded additive 2-representations
of A ; 1-morphisms are 2-natural transformations satisfying the condition that η1i,n

is the identity map for all i and n (that is, our 2-natural transformations commute
strictly with all shifts of the identity); 2-morphisms are modifications. This clearly
forms a 2-subcategory in the category of additive 2-representations of A .

Proposition 19. The operation · defines a 2-functor from A-pgamod to C-amod.
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Proof. Let M,N ∈ A-pgamod and Ψ ∈ HomA -pgamod
(M,N). Define Ψ : M → N

by Ψi (Q) := (ΨiQ). This is well defined as Ψi commutes strictly with the action
of 1i,n and each element in (Q) is obtained by applying some 1i,n to Q. We have
to check commutativity of the diagram

Ψj ◦M(F•)
ηF• //

idΨj
◦0M(α)

��

N(F•) ◦Ψi

N(α)◦0idΨi

��
Ψj ◦M(G•)

ηG• // N(G•) ◦Ψi

for any α : F → G in A (here ηF• is the class of ηF and similarly for ηG•). To
check commutativity of this diagram, we have to evaluate it at any object and it is
straightforward to check commutativity there using strict commutativity of Ψ with
shifts of the identity. Condition (1) for ηF• is automatic. This verifies the first level
of 2-functoriality.

For a modification θ : Ψ → Φ in A-pgamod, we define θ by θi,(Q) := θ̂i,Q. We have

to check (2), that is commutativity of the diagram

Ψj ◦M(F•)
ηΨ
F• //

θj◦0M(α)

��

N(F•) ◦Ψi

N(α)◦0θi

��
Φj ◦M(G•)

ηΦ
G• // N(G•) ◦ Φi

which again follows by evaluating it at any object and using strict commutativity
of Ψ and Φ with shifts of the identity. �

8.5. Principal and cell 2-representations of A . For i ∈ A , consider the prin-
cipal 2-representation PA

i of A .

Proposition 20. The 2-representations PA
i and Pi of C are equivalent.

Proof. First we note that PA
i is pro-graded by definition. For j ∈ C , the orbits of Z

on PA
i (j) coincide with the fibers of Ω on C(i, j). The equivalence is then defined

by mapping the fiber to its image under Ω. �

Directly from the definitions, we have that (M) = (M) for any 2-representation

M of A . Consider the 2-representation PA
i . By definition, each PA

i (j) is a length
category with enough projective objects. For any j, there is a bijection between
isomorphism classes of simple objects in Pi(j) and Z-orbits on isomorphism classes

of simple objects in PA
i (j).

The 2-functor Ω induces a bijection between left, right and two-sided cells of A
and C . Let L be a left cell in C and G a 1-morphism in A such that G• is the
Duflo involution in L. Setting Q := GLG as in Subsection 2.8, we consider the

2-representation CA
L := (PA

i (j))Q. We leave it to the reader to check that this is
the cell 2-representation of A associated with Ω−1(L).

Proposition 21. The 2-representations CA
L and CL of C are equivalent.

Proof. The fact that CA
L is pro-graded follows from the definition of CA

L and the
fact that PA

i is pro-graded. Similarly to Proposition 20, the equivalence is induced
by Ω. �
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8.6. Graded adjunctions. Let A be a pro-fiat 2-category and C := A/Z. Let L
be a strongly regular left cell of C and i := iL. We assume that we have chosen
some representatives in Z-orbits such that the induced grading on C is positive.
We also assume that 1i,• is represented by the identity 1-morphism 1i,0 in A(i, i).
Let G• be the Duflo involution for L and let G be its chosen representative in
A(i, i).

We have HomC (G•,1i,•) 6= 0 by [MM1, Proposition 17] and hence it makes sense
to define a as the smallest integer such that

Homa
C (G•,1i,•) = HomA (G−a,1i,0) 6= 0.

Consider the cell 2-representation CL of C . By Proposition 21, we have a positive
grading on CL(i). Denote by l the maximal i ∈ Z such that Endi(PG•) 6= 0.

Lemma 22. We have G∗ ∼= Gl−2a.

Proof. As G∗
•
∼= G•, we have G

∗ ∼= Gx for some x ∈ Z. As in [MM1, Subsection 4.7],
we denote by ∆ the unique quotient of 0 → 1i,0 which has simple socle LG−a . We
compute:

0 6= Hom(G1i,0, LG)
⊂ Hom(G∆, LG)
= Hom(GLG−a , LG)
= Hom(LG−a ,Gx LG)
= Hom(LG−a ,Gx+a LG−a).

Here the third line follows from the fact that G annihilates all subquotients of ∆
apart from LG−a (see [MM1, Proposition 17]), and the fourth line uses adjunc-
tion. The module Gx+a LG−a has simple socle LGx+a−l

. Therefore, the inequality
Hom(LG−a ,Gx+a LG−a) 6= 0 means that −a = x+ a− l, that is x = l− 2a. �

8.7. The numerical condition. Now we are ready to formulate our main result
in this section.

Theorem 23. Let A be a pro-fiat 2-category and assume that C := A/Z is pos-
itively graded. Assume that J is a strongly regular two-sided cell in C . Then J
satisfies the condition in Theorem 16(ii).

Proof. Let L and L′ be two different left cells in J , set i := iL and let G ∈ L be the
Duflo involution. Let F be the unique element in the intersection of L′ and the right
cell of G. Consider the cell 2-representations CL and CL′ of C . Let A and B be
positively graded associative algebras describing CL(i) and CL′(i), respectively.
Let e be a primitive idempotent of A corresponding to LG and e′ a primitive
idempotent of B corresponding to LF. By [MM1, Corollary 38(a)] and Lemma 7,
the functor CL(G) can be described as Ae⊗k eA. By [MM1, Corollary 38(b)] and
Lemma 7, the functor CL′(G) can be described as (Be′ ⊗k e

′B)⊕k for some k ∈ N.
To prove the claim we need to show that k = 1.

Lemma 24. There is a nonzero 2-natural transformation from CL to CL′ sending
LG to LF.

Proof. To prove this we have to show that AnnC (LG) ⊂ AnnC (LF). Choose a
1-morphism K and a 2-morphism α : K → G with the following properties:

• each indecomposable direct summand H of K satisfies H 6≤J J ;
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• if an indecomposable direct summand H of K is isomorphic to G, then the
restriction of α to H is not an isomorphism;

• for any indecomposable 1-morphism H satisfying H 6≤J J and any 2-mor-
phism β : H → G (which is not an isomorphism if H ∼= G), β factors
through α.

We claim that the cokernel of the evaluation of K
α→ G at LF is nonzero. Let H be

an indecomposable direct summand of K and H
αH→ G the restriction of α to H. If

H 6∼L G, then HLF = 0 by [MM1, Lemma 12]. If H ∼L G and H 6∼= G, then the
top of HLF is different from the top of GLF by strong regularity of J . Finally, if
H ∼= G, then αH is not an isomorphism by our second assumption, which implies
that its evaluation at LF is not an isomorphism either. The claim follows.

Let Q be the functor isomorphic to the cokernel of CL′(α). It is nonzero by the

previous paragraph. Let K′ α′

→ G be a projective presentation of LG and Q′ be the
functor isomorphic to the cokernel of CL′(α′). We claim that Q ∼= Q′. From the
definitions, we have a natural surjection Q � Q′ with kernel K. By construction,
for an indecomposable 1-morphism H, existence of a nonzero homomorphism from
CL′(H) to K implies H <J J . Therefore K = 0 by [MM1, Lemma 42] and hence
Q ∼= Q′ 6= 0. Now [MM1, Theorem 24] implies existence of a nonzero 2-natural
transformation Φ from CL to CL′ . Setting X := Φ(LG) 6= 0, we have the inclusion
AnnC (LG) ⊂ AnnC (X).

Let F′ ∈ L′ be different from F. Then there is G′ ∈ J \ L and G′ LF′ 6= 0. This
implies that AnnC (LG) 6⊂ AnnC (LF′) and hence every composition subquotient of
X is isomorphic to LF. Taking a composition subquotient can only increase the
annihilator and hence AnnC (LG) ⊂ AnnC (X) ⊂ AnnC (LF). The claim of the
lemma follows. �

From Lemma 24, we get a nonzero 2-natural transformation from CL to CL′ and,
from the discussion before the lemma, we have that it thus maps the functor
Ae ⊗k eA to the functor (Be′ ⊗k e

′B)⊕k. Now we lift the whole picture to A .
We identify 1-morphisms in C with their chosen representatives in A (consistent
with Subsection 8.6).

Abusing notation, let L and L′ be the left cells in A corresponding to L and L′

under Ω. Then, considering C
A
L and C

A
L′ , the above gives us a nonzero 2-natural

transformation Φ from C
A
L to C

A
L′ mapping LG to LF. We can also identify C

A
L (i)

and C
A
L′(i) with A-gmod and B-gmod, respectively (see Proposition 21). The

functor C
A
L (G) is given by tensoring with Ae⊗k eA〈a〉.

Let K denote an indecomposable functor on C
A
L′(i) such that

Φ(G) ∼=
⊕
i∈Z

K⊕ki
i ,

where ki 6= 0 implies i ≤ 0 and k0 6= 0 (note that we have k =
∑

i ki). We set
ψ(t) :=

∑
i∈Z kit

−i

Now we would like to evaluate adjunction morphisms at simple modules. Fix some
adjunction morphisms

η : G∗ ◦G → 1i and ζ : 1i → G ◦G∗.
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Let ni denote the graded composition multiplicity (PG : LG〈−i〉) and define
χG(t) :=

∑
i∈Z nit

i. We have

G ◦G ∼=
⊕
i∈Z

G⊕ni+a
i

and therefore

G∗ ◦G ∼= G ◦G∗ ∼=
⊕
i∈Z

G⊕ni+l−a
i .

As the evaluation of η at LG is nonzero (it is the image of the identity morphism
on PG), we obtain that η induces a nonzero map from the unique direct summand
G−a of G∗ ◦ G to 1i. All other direct summands of G∗ ◦ G are annihilated by
this evaluation. Similarly, ζ induces a nonzero map from 1i to the unique direct
summand Gl−a of G ◦ G∗. Composition of these two maps gives a nonzero map
from G−a to Gl−a, that is a map of degree l.

Let l′ be the maximal i such that (e′Be′)i 6= 0. Exactly the same arguments applied
to K say that any adjunctions

η′ : K∗ ◦K → 1i and ζ ′ : 1i → K ◦K∗

produce, when evaluated at LF, a non-zero map from K to K〈l′〉, that is a map
of degree l′. By additivity of adjunctions, for a direct sum of shifts of K we get
a direct sum of the corresponding shifts of such maps (all of degree l′). As Φ is
a 2-natural transformation, it sends the adjunction morphisms η and ζ to some
adjunction morphism for a direct sum of shifts of K (with k summands). Since
grading is preserved, we obtain l = l′.

Denote by pi the graded composition multiplicity (e′Be′ : LF〈−i〉) and define
χF(t) :=

∑
i∈Z pit

i.

Lemma 25. We have χG(t) = χF(t)ψ(t).

Proof. This follows by comparing the linear transformations induced by the exact

functors C
A
L (G) and C

A
L′(G) on the Grothendieck groups of A-gmod and B-gmod,

respectively. �

Note that l is the degree of χG(t) while l′ is the degree of χF(t). Therefore, l = l′

implies that the degree of ψ(t) is zero. As n0 = 1, we have k0 = 1 and thus k = 1,
which completes the proof. �

Remark 26. The main result (Theorem 43) in [MM1] and Theorems 9, (13) and
(14) as well as Corollary 10 in the present paper are proved for strongly regular
cells under the assumption that condition Theorem 16(ii) is satisfied. Theorem 23
shows that for positively graded fiat 2-categories this assumption is superfluous.

Conjecture 27. Theorem 23 is true without the grading assumption.
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