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Abstract

We describe the support of a simple weight module over the Virasoro Lie algebra

and classify all those modules, whose support is one element less than the weight

lattice. Using the ideas from the proof of the latter result we derive some properties of

the so-called mixed modules, that is the modules, which have both finite-dimensional

and infinite-dimensional weight spaces.

1 Introduction and preliminaries
s1

Let V denote the Virasoro algebra over the complex field C. Recall that V is generated by
a central element, c, and elements ei, i ∈ Z, and has the following Lie bracket:

[ei, ej] = (j − i)ei+j + δi,−j

i3 − i

12
c.

The elements c and e0 span the Cartan subalgebra H of V and any H-diagonalizable
V-module is usually called a weight module. If, additionally, all weight spaces of a weight
V-module are finite-dimensional, this module is called a Harish-Chandra module, see for
example [Mat]. All simple Harish-Chandra modules were classified in [MP1, MP2, Mat]
and are exhausted by simple highest weight modules, simple lowest weight modules and
simple modules from the intermediate series. The last one contains all subquotients of the
modules V (a, b), a, b ∈ C, the latter being defined as follows: V (a, b) has a basis vi, i ∈ Z,
in which ei · vj = (ai + b + j)vi+j, c · vj = 0.

It is easy to see that c acts by a scalar (called central charge) on every simple Harish-
Chandra V-module. Using the above classification, one can also easily answer the following
question: what does the support of a simple Harish-Chandra V-module (i.e. the set of all
eigenvalues of e0 on this module) look like? It happens that for a simple Harish-Chandra
V-module V only one of the following seven possibilities can occur.

1. Supp V = {0}. In this case V is the trivial V-module. It is a simple highest weight
module, a simple lowest weight module, and a simple module from the intermediate
series simultaneously.
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2. Supp V = {0,−2,−3,−4, . . . }. In this case V is a highest weight module with the
highest weight 0 and a non-zero central charge.

3. Supp V = {0, 2, 3, 4, . . .}. In this case V is a lowest weight module with the lowest
weight 0 and a non-zero central charge.

4. There exists λ ∈ C, λ 6= 0, such that Supp V = {λ− k, k ∈ Z+}. Such V is a highest
weight module. All λ 6= 0 really occur.

5. There exists λ ∈ C, λ 6= 0, such that Supp V = {λ + k, k ∈ Z+}. Such V is a lowest
weight module. All λ 6= 0 really occur.

6. There exists λ ∈ C such that Supp V = {λ + k, k ∈ Z}. In this case V is a simple
module from the intermediate series. All λ 6= 0 really occur.

7. Supp V = Z \ {0}. Such V is a simple module from the intermediate series.

Using the terminology, proposed in [Ma1], we call a weight V-module, V , cut if Supp V ⊂
λ + Z+ or Supp V ⊂ λ − Z+ for some λ, dense if Supp V = λ + Z for some λ and pinned
if Supp V = λ + Z \ {λ} for some λ. Now, the above description of the support of a sim-
ple Harish-Chandra V-module can be roughly collected in the following statement: every
simple Harish-Chandra V-module is either cut or pinned or dense.

It is not difficult to find out that the requirement for V to be a Harish-Chandra module
(that is to have finite-dimensional weight spaces) is too restrictive for the last statement.
In Section 2 we prove analogous statement for any weight V-module. As soon as we have
this result, three natural problems arise:

(I) Classify all simple cut modules.

(II) Classify all simple pinned modules.

(III) Classify all simple dense modules.

The first one is very easy. Indeed, any simple cut module is necessarily a highest weight
module or a lowest weight module, thus is a Harish-Chandra module. The third one seems
to be very difficult and not much is known here. For instance, there are examples of simple
dense V-modules all weight spaces of which are infinite-dimensional, see for example [Zh].
Our motivation for this paper is to determine all simple pinned modules. In fact, we will
prove that they are exhausted by the simple pinned modules from the intermediate series.
The main result of this paper is the following Theorem.

tmain Theorem 1. Any simple pinned V-module is a Harish-Chandra module and hence is a
module from the intermediate series.

The arguments we present in the proof of Theorem 1 motivate the definition of a new
class of modules. We call a simple weight V-module, V , mixed provided that there exist
a weight, λ ∈ C, and n ∈ Z such that dim Vλ < ∞ and dim Vλ+n = ∞. This notion is
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closely related to the old conjecture, which asserts that any simple pointed V-module (i.e.
a weight module having a one-dimensional weight space) is a Harish-Chandra module, see
[Xu]. More generally, we conjecture the following:

Conjecture 1. There are no simple mixed V-modules.

Theorem 1 in fact implies that there are no pinned mixed modules, and the positive
solution of the conjecture from [Xu], mentioned above, would imply that there are no
pointed mixed modules.

2 The support of a weight V-module
s2

We start with a description of the support of a weight V-module. Note that this result is
easier than the corresponding result for some higher rank Virasoro algebras, obtained in
[Ma1, Ma2]. However, we present it since we have never seen it published.

t1 Theorem 2. Any simple weight V-module is either cut or pinned or dense.

Proof. Let V be a simple weight V-module. Clearly, there exists λ ∈ C such that Supp V ⊂
λ + Z. Assume that V is neither dense nor pinned. We will show that in this case V is
a highest or a lowest weight module (and hence cut). As V is neither dense nor pinned
there exist at least two k < l ∈ Z such that λ + k, λ + l 6∈ Supp V . Up to the standard
involution σ on V, which interchanges the highest and the lowest weight modules, we can
assume that Supp V contains λ + m for some m < k. Consider the following cases.

Case 1. If we can choose l = k + 1, then any non-zero element in Vλ+m, where m
is maximal such that m < k and λ + m ∈ Supp V , is annihilated by e1 and e2 and thus
generates a highest weight submodule of V . This means that V is a highest weight module.

Case 2. Assume that we are outside Case 1 and we can choose l = k +n, n > 2. Then
λ+(k+1) ∈ Supp V since we ore outside Case 1 and for any v ∈ Vλ+(k+1) we have e−1v = 0
and en−1v = 0. Commuting e−1 with en−1 we obtain that eiv = 0 for any 1 6 i 6 n − 1
and hence e1v = e2v = 0 since n > 2. As in Case 1 we now have that V is a highest weight
module.

Case 3. Assume that we are outside Case 1 and Case 2. This means that we can choose
l = k + 2 and λ + m ∈ Supp V for any m ∈ Z \ {k, l}. Consider a non-zero, v ∈ Vλ+(k−1).
We have e1v = e3v = 0 and hence eiv = 0 for any i > 3. If w = e2v = 0, then v generates
a highest weight submodule of V and hence V is a highest weight module. Assume that
w 6= 0. For any i > 3 we still have eiw = eie2v = e2eiv + (2 − i)e2+iv = 0. Moreover,
e−1w = 0 and, as in Case 2, we obtain that e1w = e2w = 0 implying that V is a highest
weight module. This completes the proof of the theorem.

3 Proof of Theorem 1
s3

l3.1 Lemma 1. Let V be a simple V-module. Assume that there is 0 6= v ∈ V and n ∈ N such
that elv = 0 for all l > n. Then for any w ∈ V there exists N(w) ∈ N such that elw = 0
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for all l > N(w).

Proof. As V is simple, we have V = U(V)v. Note that if we have that elw1 = 0 for
all l > N1 and elw2 = 0 for all l > N2, then, by linearity, el(a1w1 + a2w2) = 0 for all
l > max{N1, N2} and all a1, a2 ∈ C. Hence, choosing a monomial PBW-basis in U(V), we
obtain that it is sufficient to prove the statement for the elements w = ei1 . . . eisv. Further,
by induction, it is sufficient to prove the statement just for w = eiv, i ∈ Z. In the last case
we set N(w) = max{n, n − i, |i| + 1, 2} and obtain the following: for l > N(w) we have
elw = eleiv = eielv+ (i − l)ei+lv. Now elv = 0 since l > N(w) > n and ei+lv = 0 since
i + l > i + N(w) > i + (n − i) = n. This gives elw = 0 completing the proof.

l3.2 Lemma 2. There does not exist a simple pinned V-module, V , with Supp V = {λ+Z}\{λ},
which satisfies the following condition: there is 0 6= v ∈ V and n ∈ N such that elv = 0 for
all l > n.

Proof. Assume that such module exists. Take any non-zero w ∈ Vλ+1. For some N ∈ N we
have elw = 0 for all l > N by Lemma 1. Moreover, we have e−1w = 0 since λ 6∈ Supp V .
Now let us prove by induction that elw = 0 for all l ∈ N. We know this already for all
l > N . But if elw = 0 and l > 1, we have el−1w = 1

−1−l
[el, e−1]w = 0 as well, which

completes the induction. As the result we obtain that V is generated by a highest weight
vector and hence is a highest weight module. This contradicts the assumption that V is
pinned and completes the proof.

c3.3 Corollary 1. Let V be a simple pinned V-module such that Supp V = {λ+Z}\{λ}. Then

1. for any k ∈ Z, k 6= 0,−1, the action of the linear operator e1 : Vλ+k → Vλ+k+1 is
injective;

2. for any k ∈ Z, k 6= 0, 1, the action of the linear operator e−1 : Vλ+k → Vλ+k−1 is
injective.

Proof. Applying σ it is easy to see that it is enough to prove only the first statement.
Assume that e1v = 0 for some k ∈ Z, k 6= 0,−1, and some v ∈ Vλ+k, v 6= 0. Remark that
e−kv = 0 since e−kv ∈ Vλ = 0. We consider the following cases.

Case 1. k < 0. Commuting e1 with e−k we inductively get that elv = 0 for all l > −k.
From Lemma 2 it follows that this case is not possible.

Case 2. k > 1. Commuting e1 with e−k we inductively get that elv = 0 for all
−k 6 l 6 −1, in particular, both e−2 and e−1 annihilate v. Thus elv = 0 for all l < 0
and it follows that V is a lowest weight module. This contradicts the condition that V is
pinned and hence this case is not possible either.

Case 3. k = 1. In this case e−1v ∈ Vλ = 0. Consider the element w = e2v. If w = 0,
then both e1v = 0 and e2v = 0, which implies that elv = 0 for all l > 0, which is impossible
by Lemma 2. If w 6= 0 we have

e−1w = e−1e2v = e2e−1v + 3e1v = 0.
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Moreover, e−3w ∈ Vλ = 0. Using induction we get elw = 0 for all l < e−3 and from (the
σ-opposite version of) Lemma 2 it follows that this situation is not possible either. This
completes the proof.

c3.4 Corollary 2. Let V be a simple, mixed, and pinned V-module such that Supp V = {λ +
Z} \ {λ}. Then dim Vλ+k = ∞ for all k ∈ Z \ {0}.

Proof. Since V is mixed, we have that dim Vλ+k = ∞ for some k ∈ Z and, without loss of
generality, we can assume k < 0 (otherwise we can apply σ and come to this situation).
From Corollary 1 it follows immediately that dim Vλ+k = ∞ for all k < 0. Assume now that
dim Vλ+k = N < ∞ for some k > 0. Then the linear operator ek+1 : Vλ−1 → Vλ+k starts in
an infinite-dimensional space and has finite rank. Hence there should exist 0 6= v ∈ Vλ−1

such that ek+1v = 0. But e1v ∈ Vλ = 0 and hence, by induction, we obtain elv = 0 for all
l > k +1. From Lemma 2 it follows that this contradicts our assumption that V is pinned.
This completes the proof.

Now we are ready to prove Theorem 1. We denote by a the sl2-subalgebra of V,
generated by e±1. Let V be a simple, mixed, and pinned V-module such that Supp V =
{λ+Z}\{λ}. Fix v = v−1 ∈ Vλ−1, v 6= 0, and denote v−k = ek−1

−1 v for k ∈ Z, k > 1. Denote
further v1 = e2v and vk = ek−1

1 v1 for k ∈ Z, k > 1. Then Theorem 1 follows directly from
the following statement.

p3.5 Proposition 1. The linear span N = 〈vi : i ∈ Z \ {0}〉 is a V-submodule of V .

Proof. Let N+ and N− denote the linear spans 〈vi : i > 0〉 and〈vi : i < 0〉 respectively.
Since V is generated, as a Lie algebra, by e±1 and e±2, it is enough to show that these four
elements preserve N .

Step 1. e±1N ⊂ N . We have e1N+ ⊂ N+ by definition of N+. Since e1v−1 ∈ Vλ = 0,
the module U(a)v−1 is a Verma module over a, in particular, it has 1-dimensional weight
spaces since a ∼= sl2. This implies that N− is invariant under e1 as well. The arguments
for e+ are analogous.

Step 2. e2N− ⊂ N . We have e2v−1 = v1 ∈ N , e2v−2 ∈ Vλ = 0. Assume that we have
already shown that e2vl ∈ N for all n < l 6 −1, where n < −2. We have

e2vn = e2e−1vn−1 = e−1e2vn−1 − 3e1vn−1.

We have e2vn−1 ∈ N by induction, hence e−1e2vn−1 ∈ N by Step 1. Further, e1vn−1 ∈ N
again by Step 1. It follows that e2vn ∈ N and this step is completed by induction.

Step 3. e2N+ ⊂ N . For every n ∈ N we have

e−1e2vn = e2e−1vn + 3e1vn.

Here e±1vn ∈ N by Step 1 and thus e2e−1vn ∈ N by induction. It follows that e−1e2vn ∈ N
and thus e−1e2vn = avn+1 for some a ∈ C, a 6= 0. But, by Corollary 1, the action of e−1 on
Vλ+n+2 is injective. Since e−1vn+2 ∈ N and is non-zero (as e−1 acts injectively), we have
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e−1vn+2 = bvn+1 for some C 3 b 6= 0. This implies that e2vn = b′vn+2 for some b′ ∈ C and
completes this step.

Step 4. e−2N− ⊂ N . For every n ∈ −N we have

e1e−2vn = e−2e1vn − 3e−1vn.

Here e±1vn ∈ N by Step 1 and thus e−2e1vn ∈ N by induction. It follows that e1e−2vn ∈ N
and thus e1e−2vn = avn−1 for some a ∈ C, a 6= 0. But, by Corollary 1, the action of e1

on Vλ+n−2 is injective. Since e1vn+2 ∈ N and is non-zero (as e1 acts injectively), we have
e1vn−2 = bvn−1 for some C 3 b 6= 0. This implies that e−2vn = b′vn−2 for some b′ ∈ C and
completes this step.

Step 5. e−2vl ∈ N for l > 1. Obviously we have e−2v2 ∈ Vλ = 0 and now we can now
proceed by induction. For n > 2 we have

e1e−2vn−1 = e−2e1vn−1 − 3e−1vn−1.

Here e−2vn−1 ∈ N by induction and hence e1e−2vn−1 =∈ N by Step 1. Further, e−1vn−1 ∈
N by Step 1. This implies e−2e1vn−1 = e−2vn ∈ N .

Step 6. e−2v1 ∈ N . We have

e−2e3v−2 = e3e−2v−2 + 5e1v−2.

Here e1v−2 ∈ N by Step 1. Moreover, e−2v−2 ∈ N by Step 4, in particular, e−2v−2 = av−4

for some a ∈ C. Further

e3e−2v−2 = e3av−4 = a(e1e2 − e2e1)v−4 = ae1e2v−4 − ae2e1v−4.

We have e2v−4 ∈ N by Step 2 and thus e1e2v−4 ∈ N by Step 1. Moreover, we have
e1v−4 ∈ N by Step 1 and thus e2e1v−4 ∈ N by Step 2. Hence e3e−2v−2 ∈ N , which implies
e−2e3v−2 ∈ N . But

e3v−2 = (e1e2 − e2e1)v−2 = e1e2v−2 − e2e1v−2 = −e2e1v−2.

We have e1v−2 ∈ N by Step 1, moreover, e1v−2 6= 0 by Corollary 1, in particular, e1v−2 =
bv−1 for some b ∈ C, b 6= 0. Thus −e2e1v−2 = −bv1 6= 0 and we obtain e−2(−bv1) ∈ N
with b 6= 0. This completes the proof.

4 Deriving some properties for mixed modules
s4

In this chapter we assume that V is a simple mixed V-module and Supp V ⊂ λ + Z for
some λ ∈ C.

l4.1 Lemma 3. |{k ∈ Z : dim Vλ+k = ∞}| = ∞.
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Proof. If this is not the case, we can find k ∈ Z such that dim Vλ+k = ∞ and dim Vλ+l < ∞
for all l > k. But then the linear operators e1 : Vλ+k → Vλ+k+1 and e2 : Vλ+k → Vλ+k+2

both start from an infinite-dimensional space and end up in a finite-dimensional space. It
means that there exists 0 6= v ∈ Vλ+k such that e1v = e2v = 0. Hence v is a highest weight
vector and thus V is a highest weight module, which contradicts the assumption that V is
mixed. This completes the proof.

p4.2 Proposition 2. |{k ∈ Z : dim Vλ+k < ∞}| = 1.

Proof. Assume that this is not the case. Then from Lemma 3 it follows that we can assume
that dim Vλ = ∞, dim Vλ+1 < ∞ and dim Vλ+k < ∞ for some k ∈ {2, 3, . . . }. It follows
that there exists 0 6= v ∈ Vλ such that e1v = ekv = 0, and hence elv = 0 for all l > k. If we
can choose k = 2, then v is a highest weight vector and thus V is a highest weight module,
which contradicts the assumption that V is mixed. Otherwise we have that for every w ∈ V
there exists N(w) such that elw = 0 for all l > N(w) by Lemma 1. Since dim Vλ+1 < ∞
and dim Vλ+2 = ∞, we can choose w ∈ Vλ+2 such that e−1w = 0. Using elw = 0 for
all l > N(w) and e−1w = 0 one obtains elw = 0 for all l > 0 by induction. Hence w
is a highest weight vector and V is a highest weight module, which again contradicts the
assumption that V is mixed. This completes the proof.

After Proposition 2 we can assume dim Vλ < ∞ and dim Vλ+k = ∞ for all k ∈ Z \ {0}.

c4.3 Corollary 3. There does not exist a simple mixed V-module in which there would exists
v 6= 0 with the property elv = 0 for all l > N (or all l < N) and some N ∈ N (resp.
N ∈ −N).

Proof. Assume that such module V exists. Then, by Lemma 1, we have that for every
w ∈ V there exists N(w) such that elw = 0 for all l > N(w). Since dim Vλ+1 = ∞ and
dim Vλ < ∞, we can find 0 6= w ∈ Vλ+1 such that e−1w = 0. Using elw = 0 for all
l > N(w) and e−1w = 0 one obtains elw = 0 for all l > 0 by induction. Hence w is a
highest weight vector and V is a highest weight module, which contradicts the assumption
that V is mixed. This completes the proof.

p4.4 Proposition 3. Let V be a simple mixed V-module such that dim Vλ < ∞ and dim Vλ+k =
∞ for all k ∈ Z \ {0}. Then λ = 0, 1/2,−1/2 or λ 6∈ (Z ∪ 1/2 + Z).

Proof. Because of σ it is of course enough to show that λ 6= 1, 3/2, 2, 5/2, 3, . . . .
Case 1. λ 6= 3/2, 2, 5/2, 3, . . . . Assume that λ ∈ {3/2, 2, 5/2, 3, . . .}. Then the kernel

K of e1 : Vλ−1 → Vλ has finite codimension in the infinite-dimensional space Vλ−1. Each
element v ∈ K is a highest weight vector for a of highest weight λ − 1. The simple
highest weight a-module of highest weight λ − 1 is finite-dimensional and has dimension
k = 2λ− 1 > 1. Since K is infinite-dimensional, we have that either dim ek

−1K = ∞ or ek
−1

has infinite-dimensional kernel on K (note that ek−1
−1 acts injectively on K).

Subcase 1. dim ek
−1K = ∞. In this case we have e1e

k
−1K = 0 since all these elements

correspond to highest weight vector in M(λ − 1). This implies the existence of 0 6= w ∈
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ek
−1K such that e1w = 0 and ek+1w = 0. From Corollary 3 we obtain that this situation is

not possible.
Subcase 2. dim{w ∈ ek−1

−1 K : e−1w = 0} = ∞. In this case we obtain some
0 6= w ∈ {w ∈ ek−1

−1 K : e−1w = 0}, such that e−1w = 0 and ekw = 0. Since k > 2, it
follows that w is a highest weight vector, and thus this situation is not possible either.

Case 2 λ 6= 1. If dim e2
−1Vλ−1 = ∞ we get the same contradiction as in Subcase 1

above. So, we can assume that the codimension of the kernel X of e−1 on Vλ−1 is finite.
But this then means that there exists w ∈ Vλ+1 such that e−2w ∈ X and e−1w = 0 (since
the dimension of the kernel of e−1 on Vλ+1 is infinite). We have e−1w = 0 and e−1e−2w = 0,
which implies e−3w = 0. Now e−1w = 0 and e−3w = 0 imply elw = 0 for all l < − 3, and
hence this situation is impossible by Corollary 3.

t4.5 Theorem 3. There does not exist a simple mixed V-module V such that dim Vλ < ∞ and
dim Vλ+k = ∞ for all k ∈ Z \ {0}, which would satisfy the following conditions:

e−1 acts injectively on Vλ+k for all k > 3 (1) eq4.7

e1 acts injectively on Vλ+k for all k 6 −3. (2) eq4.8

Proof. Assume that such V exists. Since Vλ−1 is infinite-dimensional and Vλ is finite-
dimensional, we can choose 0 6= v ∈ Vλ−1 such that e1v = e−1e2v = 0. Set v−1 = v,
v−l = el−1

−1 v for l > 1, v1 = e2v, and vl = el−1
1 v1 for l > 1. Using (1) and (2) one proves that

N = 〈vi : i ∈ Z \ {0}〉 is a V-submodule of V using the same arguments as in the proof of
Proposition 1. This implies that V must be a Harish-Chandra module, which contradicts
the assumption that V is mixed. The obtained contradiction completes the proof.
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