
Classification of simple weight Virasoro
modules with a finite-dimensional weight space

Volodymyr Mazorchuk and Kaiming Zhao

2000 Mathematics Subject Classification: 17B68, 17B10
Key words: Virasoro algebra, weight module, simple module, support

Abstract

We show that the support of a simple weight module over the
Virasoro algebra, which has an infinite-dimensional weight space, co-
incides with the weight lattice and that all non-trivial weight spaces
of such module are infinite dimensional. As a corollary we obtain that
every simple weight module over the Virasoro algebra, having a non-
trivial finite-dimensional weight space, is a Harish-Chandra module
(and hence is either a simple highest or lowest weight module or a
simple module from the intermediate series). This implies positive
answers to two conjectures about simple pointed and simple mixed
modules over the Virasoro algebra.

1 Description of the results

The Virasoro algebra V over an algebraically closed field, k, of characteristic
zero has a basis, consisting of a central element, c, and elements ei, i ∈ Z,
with the Lie bracket defined for the basis elements as follows:

[ei, ej] = (j − i)ei+j + δi,−j
i3 − i

12
c.

The linear span of c and e0 is called the Cartan subalgebra H of V and an
H-diagonalizable V-module is usually called a weight module. If, additionally,
all weight spaces of a weight V-module are finite-dimensional, the module is
called a Harish-Chandra module, see for example [M]. All simple Harish-
Chandra modules were classified in [MP1, MP2, M] and are exhausted by
simple highest weight modules, simple lowest weight modules and simple
modules from the so-called intermediate series (see e.g. [M] for definitions).
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If M is a simple weight V-module, then c acts on M by a scalar, called
the central charge of M . Furthermore, M can be written as a direct sum of
its weight spaces, M = ⊕λ∈kMλ, where Mλ is the set of all elements of M on
which e0 acts as the multiplication with λ. The set of all λ for which Mλ 6= 0
is called the support of M and is denoted by supp(M). Obviously, if M is a
simple weight V-module, then there exists λ ∈ k such that supp(M) ⊂ λ+Z.
A simple weight V-module, M , is called pointed provided that there exists
λ ∈ k such that dim Mλ = 1 (for example from the classification of simple
Harish-Chandra modules it follows that they all are pointed). The following
question was formulated in [Xu, Problem 3.3]:

Question: Is any simple pointed V-module a Harish-Chandra module?

A simple weight V-module, M , is called mixed provided that there exist
λ ∈ k and k ∈ Z such that dim Mλ = ∞ and dim Mλ+k < ∞. The follow-
ing conjecture, a positive answer to which implies a positive answer to the
question above, was formulated in [Maz, Conjecture 1]:

Conjecture: There are no simple mixed V-modules.

In the present paper we prove the following result, which implies positive
answers to both the Question and the Conjecture above:

Theorem 1. Let M be a simple weight V-module. Assume that there exists
λ ∈ k such that dim Mλ = ∞. Then supp(M) = λ + Z and for every k ∈ Z
we have dim Mλ+k = ∞.

Apart from the positive answers to the Question and the Conjecture
above, Theorem 1 also implies the following classification of all simple weight
V-modules which admit a non-trivial finite-dimensional weight space:

Corollary 2. Let M be a simple weight V-module. Assume that there exists
λ ∈ k such that 0 < dim Mλ < ∞. Then M is a Harish-Chandra module.
Consequently, M is either a simple highest or lowest weight module or a
simple module from the intermediate series.

The paper is organized as follow: Theorem 1 is proved in Section 2 and
in Section 3 we discuss the corollaries from this theorem.
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2 Proof of Theorem 1

Our strategy to prove Theorem 1 is the following: first we show in Lemma 3
that a simple weight V-module with an infinite-dimensional weight space
can have at most one weight space of finite dimension in the weight lattice.
Then in Lemma 5 we show that this finite-dimensional weight must belong
to {−1, 0, 1}. These three cases are excluded in Lemma 6 and Lemma 7
by a case-by-case analysis. The key point of our proof is Lemma 4, which
is an easy technical statement claiming that some special element from the
universal enveloping algebra U(V) annihilates certain elements of the module.
The statement is very easy to prove by a direct computation, however, the
main and perhaps most non-trivial idea of the paper is that there should
exist an element in the universal enveloping algebra U(V), which satisfies
the conclusion of Lemma 4.

Let M be a simple weight V-module. We start with the following obvious
observation:

Principal Observation: Assume that there exists µ ∈ k and a non-zero
element, v ∈ Mµ, such that e1v = e2v = 0 or e−1v = e−2v = 0. Then M is a
Harish-Chandra module.

Proof. Indeed, under these conditions v is either a highest or a lowest weight
vector and hence M is either a highest or a lowest weight module. Hence M
is a Harish-Chandra module (see e.g. [M]).

Assume now that M is a simple weight V-module and that there exists
λ ∈ k such that dim Mλ = ∞.

Lemma 3. There exists at most one i ∈ Z such that dim Mλ+i < ∞.

Proof. Assume that dim Mλ+i < ∞ and dim Mλ+j < ∞ for different i, j ∈ Z.
Without loss of generality we may assume i = 1 and j > 1. Let V denote
the intersection of the kernels of the linear maps e1 : Mλ → Mλ+1 and
ej : Mλ → Mλ+j. Since dim Mλ = ∞, dim Mλ+1 < ∞ and dim Mλ+j < ∞,
we have dim V = ∞. Since [e1, ek] = (k−1)ek+1 6= 0 for all k > 1, and j > 1,
inductively we get

ekV = 0 for all k = 1, j, j + 1, j + 2, . . . . (2.1)

(Here we cannot directly use the well known [M, Lemma 1.5] to deduce
that M is a highest weight module). If there would exist 0 6= v ∈ V such
that e2v = 0, then e1v = e2v = 0 and M would be a Harish-Chandra module
by the Principal Observation. A contradiction. Hence e2v 6= 0 for all v ∈ V .
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In particular, dim e2V = ∞. Since dim Mλ+1 < ∞, there exists 0 6= w ∈ e2V
such that e−1w = 0. Let w = e2u for some u ∈ V . For all k > j, using (2.1)
we have

ekw = eke2u = e2eku + (2− k)ek+2u = 0 + 0 = 0.

Hence ekw = 0 for all k = −1, j, j+1, j+2, . . . . Since [e−1, el] = (l+1)el−1 6= 0
for all l > 1, inductively we get ekw = 0 for all k = 1, 2, . . . . Hence M is a
Harish-Chandra module by the Principal Observation. A contradiction. The
statement follows.

Because of Lemma 3 we can now fix the following notation until the end of
this section: M is a simple weight V-module, µ ∈ k is such that dim Mµ < ∞
and dim Mµ+i = ∞ for every i ∈ Z \ {0}.

Lemma 4. Let 0 6= v ∈ Mµ−1 be such that e1v = 0. Then

(e3
1 − 6e2e1 + 6e3)e2v = 0.

Proof.

(e3
1 − 6e2e1 + 6e3)e2v = (e3

1e2 − 6e2e1e2 + 6e3e2)v =

(e2e
3
1 + 3e3e

2
1 + 6e4e1 + 6e5 − 6e2

2e1 − 6e3e2 − 6e5 + 6e3e2)v =

(e2e
3
1 + 3e3e

2
1 + 6e4e1 − 6e2

2e1)v = [using e1v = 0] = 0.

Lemma 5. µ ∈ {−1, 0, 1}.

Proof. Let V denote the kernel of e1 : Mµ−1 → Mµ. Since dim Mµ−1 =
∞ and dim Mµ < ∞ we have dim V = ∞. For any v ∈ V consider the
element e2v. By the Principal Observation, e2v = 0 would imply that M
is a Harish-Chandra module, a contradiction. Hence e2v 6= 0, in particular,
dim e2V = ∞. This implies that there exists w ∈ e2V such that w 6= 0 and
e−1w = 0. From Lemma 4 we have (e3

1 − 6e2e1 + 6e3)w = 0, in particular,
e3
−1(e

3
1 − 6e2e1 + 6e3)w = 0. However, by a direct calculation we obtain

e3
−1(e

3
1 − 6e2e1 + 6e3) = 48e3

0 − 144e2
0 + 96e0 mod U(V)e−1.

This implies (48e3
0 − 144e2

0 + 96e0)w = 0. But w ∈ Mµ+1, which implies
e0w = (µ + 1)w, and hence (µ + 1)3 − 3(µ + 1)2 + 2(µ + 1) = 0, that is
µ ∈ {−1, 0, 1}.

Lemma 6. µ ∈ {−1, 1} is not possible.
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Proof. We show that µ = 1 is not possible and for µ = −1 the statement will
follow by applying the canonical involution on V . Assume µ = 1 and denote
by V the infinite-dimensional kernel of the linear map e1 : M0 → M1. For
v ∈ V , using e1v = e0v = 0 we have

e1e−1v = e−1e1v − 2e0v = 0 + 0 = 0. (2.2)

Hence if e−1V would be infinite-dimensional, there would exist 0 6= w ∈
e−1V such that e1w = 0 (by (2.2)) and e2w = 0 (since dim V1 < ∞). The
Principal Observation then would imply that M is a Harish-Chandra module,
a contradiction. Hence dim e−1V < ∞. This means that the kernel W of the
linear map e−1 : V → M−1 is infinite-dimensional. For every x ∈ W we have

e1e−2x = e−2e1x− 3e−1x = [using e−1x = e1x = 0] = 0 + 0 = 0. (2.3)

If there would exist 0 6= x ∈ W such that e−2x = 0, then we would have
e−2x = e−1x = 0 and the Principal Observation would imply that M is
a Harish-Chandra module, a contradiction. Thus dim e−2W = ∞. Let H
denote the kernel of the linear map e3 : e−2W → M1. Since dim e−2W = ∞
and dim M1 < ∞, we have dim H = ∞. For every y ∈ H we also have
e1y = 0 by (2.3), implying by induction that ekH = 0 for all k = 1, 3, 4, . . . .

If e2h = 0 for some 0 6= h ∈ H then the Principal Observation implies
that M is a Harish-Chandra module, a contradiction. Hence dim e2H = ∞.
For every h ∈ H and k > 3 we have

eke2h = e2ekh + (2− k)ek+2h = [using eih = 0 for i > 3] = 0 + 0 = 0.

Hence eke2H = 0 for all k > 3. Let, finally, K denote the infinite-dimensional
kernel of the linear map e1 : e2H → M1. If e2z = 0 for some 0 6= z ∈ K
then the Principal Observation implies that M is a Harish-Chandra module,
a contradiction. Hence dim e2z 6= 0 for all z ∈ K. For every z ∈ K and
k > 3 we have

eke2z = e2ekz + (2− k)ek+2z = [using eiz = 0 for i > 3] = 0 + 0 = 0.

Hence eke2K = 0 for all k > 3. At the same time, since dim e2K = ∞ and
dim M1 < ∞, we can find some 0 6= t ∈ e2K such that e−1t = 0. By induction
we get eit = 0 for all i > 0 and thus M is a Harish-Chandra module by the
Principal Observation. This last contradiction completes the proof.

Now the proof of Theorem 1 follows from the following lemma:

Lemma 7. µ = 0 is not possible.
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Proof. Define

V = Ker(e1 : M−1 → M0) ∩Ker(e−1e2 : M−1 → M0)∩
∩Ker(e1e−2e2 : M−1 → M0),

W = Ker(e−1 : M1 → M0) ∩Ker(e1e−2 : M1 → M0)∩
∩Ker(e−1e2e−2 : M1 → M0).

Since dim M−1 = ∞ and dim M0 < ∞, V is a vector subspace of finite
codimension in M−1. Since dim M1 = ∞ and dim M0 < ∞, W is a vector
subspace of finite codimension in M1. In order not to get a direct contradic-
tion using the Principal Observation, we assume e2v 6= 0 for all 0 6= v ∈ V
and e−2w 6= 0 for all 0 6= w ∈ W . Then dim e2V = ∞ and, by Lemma 4, for
every 0 6= v ∈ V we have (e3

1 − 6e2e1 + 6e3)e2v = 0.
Since the codimension of W in M1 is finite, the intersection W ′ = e2V ∩W

is infinite-dimensional. Note that

e−1(e
3
1 − 6e2e1 + 6e3) = 6e2

1e0 + 6e2
1 − 12e2e0 − 18e2

1 + 24e2 mod U(V)e−1.

Choose v ∈ V such that wv := e2v ∈ W ′ \ {0}. The equality e−1(e
3
1− 6e2e1 +

6e3)e2v = 0 implies that (2e2 − e2
1)wv = 0. In particular, for this v we have

e−2(2e2 − e2
1)wv = 0. However,

e−2(2e2 − e2
1) = 2e2e−2 + 2e0 − c− e2

1e−2 − 6e1e−1,

and since e1e−2wv = e−1wv = 0 by assumptions, we get e2e−2wv = τwv for
some τ ∈ k. In order not to get a direct contradiction using the Principal
Observation, we must assume e−2wv 6= 0. Since e1e−2wv = 0, we also must
assume e2e−2wv 6= 0, that is τ 6= 0.

Denote y = wv and x = e−2y. Let us sum up, what we know about x and
y:

e1x = 0, e−1y = 0, x = e−2y, τy = e2x. (2.4)

Let U+ and U− denote the subalgebras of U(V), generated by e1, e2 and
e−1, e−2 respectively. Consider the vector space

N = U−x⊕ U+y ⊂ M.

From the definition it follows that both U+ and U− are stable under the
adjoint action of e0. Since both x and y are eigenvectors for e0, we derive
that N decomposes into a direct sum of weight spaces which are obviously
finite-dimensional. Hence, to complete the proof we have just to show that
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N is stable under the action of the whole V . Since V is generated by e1, e−1,
e2, e−2, it is enough to show that N is stable under the action of these four
operators. Because of the symmetry of our situation, it is even enough to
show that N is stable under the action of, say e1 and e2.

That e1U+y ⊂ U+y and e2U+y ⊂ U+y is clear. Let us show that e1U−x ⊂
U−x. For any a ∈ U− we have e1ax = ae1x + [e1, a]x. By (2.4), ae1x = 0.
Further, [e1, a] =

∑
i,j ai,je

i
0c

j for some ai,j ∈ U−. Since x ∈ M−1, we have

ei
0c

jx = ξx for some ξ ∈ k. Therefore [e1, a]x ∈ U−x, which means that e1

preserves U−x and hence N .
Finally, let us show that e2U−x ⊂ N . For any a ∈ U− we have e2ax =

ae2x + [e2, a]x. By (2.4), e2x = τy 6= 0. Let A = ei1 . . . eil be a monomial,
where is ∈ {−1,−2} for all s = 1, . . . , l. If il = −1 we have Ae2x = 0 since
e−1y = 0. If il = −2 we have Ae2x = ζei1 . . . eil−1

x ∈ U−x for some ζ ∈ k
by (2.4). This implies that ae2x ∈ N . Let us write the element [e2, a] in
the PBW basis corresponding to the order . . . , e−2, e−1, e0, c, e1. By (2.4),
e1x = 0, and hence all terms, which end on e1 will vanish. This means that
[e2, a]x =

∑
i,j ai,je

i
0c

jx for some ai,j ∈ U−. In the previous paragraph it was
shown that in this case [e2, a]x ∈ U−x. This completes the proof.

3 Corollaries from Theorem 1

As an immediate corollary from Theorem 1 we have:

Corollary 8. Let M be a simple weight V-module. Assume that there exists
λ ∈ k such that 0 < dim Mλ < ∞. Then M is a Harish-Chandra module.
Consequently, M is either a simple highest or lowest weight module or a
simple module from the intermediate series.

Proof. Assume that this M is not a Harish-Chandra module. Then there
should exists i ∈ Z such that dim Mλ+i = ∞. In this case Theorem 1 implies
dim Mλ = ∞, a contradiction. Hence M is a Harish-Chandra module, and
the rest of the statement follows from [M, Theorem 1].

The following corollary gives a positive answer to [Xu, Problem 3.3]:

Corollary 9. Every pointed V-module is a Harish-Chandra module.

Proof. Every pointed module satisfies the conditions of Corollary 8 by defi-
nition. Hence the statement follows from Corollary 8.

The following corollary gives a positive answer to [Maz, Conjecture 1]:

Corollary 10. There are no simple mixed V-modules.

7



Proof. Let M be a simple mixed V-module. Then, by the definition, there
exists λ ∈ k and i ∈ Z such that dim Mλ = ∞ and dim Mλ+i < ∞. However,
Theorem 1 implies dim Mλ+i = ∞. A contradiction.
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