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Abstract

A logic is developed in which function symbols are allowed to represent partial
functions. It has the usual rules of logic (in the form of a sequent calculus) except
that the substitution rule has to be modified. It is developed here in its minimal
form, with equality and conjunction, as “partial Horn logic”.

Various kinds of logical theory are equivalent:

• partial Horn theories

• “quasi-equational” theories, partial Horn theories without predicate symbols

• cartesian theories

• essentially algebraic theories

The logic is sound and complete with respect to models in Set, and sound with
respect to models in any cartesian (finite limit) category.

The simplicity of the quasi-equational form allows an easy predicative construc-
tive proof of the free partial model theorem for cartesian theories: that if a theory
morphism is given from one cartesian theory to another, then the forgetful (reduct)
functor from one model category to the other has a left adjoint.

Various examples of quasi-equational theory are studied, including those of carte-
sian categories and of other classes of categories. For each quasi-equational theory
T another, Cart$T, is constructed, whose models are cartesian categories equipped
with models of T. Its initial model, the “classifying category” for T, has properties
similar to those of the syntactic category, but more precise with respect to strict
cartesian functors.
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1 Introduction

One of the most fundamental results in universal algebra is the general ability to construct
free algebras. From it spring other techniques, such as the presentation of algebras by
generators and relations, and the construction of left adjoints to forgetful functors. The
universal characterization of free algebras also encapsulates induction and recursion in a
general way.

In logical terms, the result concerns a particular class of logical theories, the algebraic
theories. They are presented using function symbols (the operators) but no predicates;
and axioms in the form of equational laws – universally quantified equations. Without
introducing any serious difficulties, one can also allow the theory to be many-sorted.

However, the construction of free algebras is not limited to algebraic theories. For
instance, there are many examples involving categories – see [Hig71] for instance. One
can construct the free category over a graph, the free groupoid over a category, and so
on. But the theory of categories is not algebraic.

In fact there is a broader class of theories for which good free algebra results hold.
They are known variously as cartesian theories, essentially algebraic theories or finite
limit theories. Their notable feature is that the operators may be partial, and the logic
provides means (typically using equations) for controlling their domains of definition.
Because of these free algebra results, we contend that the class of cartesian theories
is a very important one logically. In fact we give some substantial examples of logical
constructions (for example, the construction of classifying category) that can be carried
out by defining a suitable cartesian theory and then taking an initial model.

The proof of the free algebra theorem for algebraic theories is simple in outline.
First form the set of all terms constructed using the operators, and then factor out a
congruence generated using the equational laws.

However, with partial operators there is a difficulty with this 2-step process. Factor-
ing out a congruence creates equalities that can bring argument tuples into the domain
of definition of an operator, and thereby create new terms. Standard proofs of the free
algebra theorem for cartesian theories use sophisticated categorical techniques.

In addition, the descriptions of the theories are a little complicated. For example, in
a cartesian theory one can use existential quantification, but it must always be accom-
panied by side conditions proving that the existential witness is unique. This complexity
means that when giving a general account of results such as the free algebra theorem, it
difficult to do it directly in terms of the theory structure – typically, one transforms to
a categorical representation.

The present work is motivated by the following idea. Since the key difference between
algebraic and cartesian is the partiality of operators, can we simplify the presentation of
cartesian theories by building the partiality directly into the logic? We describe such a
logic. Essentially it is the same as a system [Joh02b] for logic of total terms, but with a
modified substitution axiom. It identifies definedness with self-equality.

A minimal quasi-equational kind of theory in this partial logic has functions but no
predicates (other than equality), and has axioms in a sequent form with conjunction
of equations entailing an equation. It turns out that such theories are equivalent to
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cartesian theories. Using the quasi-equational presentation, it is very easy to prove the
free model theorem in a 2-step process similar to that for algebraic theories. One first
forms the set of all partial terms constructed from the operators, and then factors out a
partial congruence generated using the axioms.

A category is the prime example of an algebra with a partial operation (the com-
position). Further properties of categories can often be described in partial algebraic
terms, for instance using the essentially algebraic theories of [Fre72] (see also [FS90] and
[AR94]), or employing the limit theories of [Cos79] appearing as cartesian theories in
[Joh02b] (see also [Kea75], [Vol79] and the closely related cartesian logic [Fre02]). For
an extensive general theory of partial algebras, in a non-categorical context, we refer to
[ABN81], [Bur86], [Bur02]. In this paper we employ a logic for such algebras which per-
mits axioms to be universal Horn formulae. We prove it sound and complete (Sections 3,
4.2). As one application we show that freely generated partial algebras exist (Theorem
5.4). This theorem is already known from topos theory [BW84]. We show here that it
is provable in a predicative meta-theory using a generalisation of Birkhoff’s term model
construction for total algebras (cf. [MT92]). This turns out be quite straightforward
once the appropriate “term logic” is in place. The proof does not use the axiom of choice
and is indeed formalisable in a constructive and predicative theory. The question what
a minimal categorical theory of this kind might be is still open, but the proofs should in
any case be formalisable in the predicative topos of [MP02]. It should be noted that the
crucial completeness theorem (Theorem 4.4) we use was obtained already by Andréka
and Németi [AN83] but using one-sorted signatures, and thus not directly suitable for
categorical applications.

A different approach to the description of categories are using total operations and
sort introduction axioms, as in Ehresmann’s sketches or as in left exact logic [McL86]
Yet another characterisation of the cartesian categories is as locally presentable categories
[AR94].

The main contributions of this paper are the quasi-equational logic for partial alge-
bras, called partial Horn logic (PHL), which is adapted to a standard presentation of
categorical logic (Section 2); its completeness theorem (Section 4.2); its interpretability
in any cartesian category, i.e. a category which have all finite limits (Sections 7 and
8); and finally a new characterisation of cartesian categories using the quasi-equational
logic and natural construction of syntactic categories (Section 9). This makes it easy
to define and reason about categorical structures inside other weak categories. We give
PHL axioms for some theories arising in category theory, including cartesian and locally
cartesian closed categories (Section 6). As further application of the partial algebraic
point of view, we show how to improve the notation of the first order internal language
of categories. A logical characterisation of locally cartesian closed categories among
Heyting categories is given (Section 6.3).
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2 Partial Horn logic

The inference rules of this logic are obtained by a modification of the Horn logic as
presented in [Joh02b, D 1]. We refer to this chapter for background. First recall some
basic definitions.

Let Σ be a many-sorted first-order signature. There is in addition a binary predicate
=A on each sort A of the signature. Self-equality t =A t is abbreviated t↓ (“t is defined”).
A Horn formula over Σ is a formula built up from atomic formulae and the truth constant
> using conjunction ∧. We shall take a conjunction ϕ1 ∧ · · · ∧ ϕn to mean > if n = 0,
and (· · · ((ϕ1 ∧ ϕ2) ∧ ϕ3) · · · ∧ ϕn) if n > 0.

The set of free variables FV(ϕ) of a Horn formula ϕ is simply the variables of the
formula. A context is a finite list of distinct typed variables ~x = x1, . . . , xn, which may
be empty, and then denoted (). A formula ϕ is suitable for the context ~x if each free
variable of ϕ is in the context. A formula-in-context is an expression ~x.ϕ, where ϕ is a
formula suitable for the context ~x. The same terminology is also applied to terms.

A sequent over the signature Σ is an expression of the form

ϕ �
~x

ψ (1)

where ϕ and ψ are formulae over Σ which are suitable for the context ~x. The sequent is
a Horn sequent if both ϕ and ψ are Horn formulae.

That a term t has sort A is indicated by t : A. Each term t over the signature Σ
has a unique sort which is denoted σ(t). For a sequence of terms ~t = t1, . . . , tn define
σ(~t) = σ(t1), . . . , σ(tn). Two sequences of terms ~s and ~t are sort compatible if σ(~s) = σ(~t).

We shall introduce some further notation for sequents. A bisequent ϕ �

~x
� ψ is un-

derstood as the conjunction of the sequents ϕ �
~x

ψ and ψ �
~x

ϕ. If it occurs in a
theory, it really means that these two sequents are in the theory. We use

ϕ1, . . . , ϕn
�
~x

ψ (2)

or even ~ϕ �
~x

ψ as an abbreviation of ϕ1∧· · ·∧ϕn
�
~x

ψ. Thus for n = 1 the notation is

consistent with the old one. For n = 0 then sequent (2) is �

~x
ψ, and means > �

~x
ψ.

Definition 2.1 The basic rules and axioms of partial Horn logic (PHL) are the following,
grouped into (a) structural rules, (b) equality rules and (c) conjunctive rules.

(a1) Identity axiom: for a formula ϕ suitable for ~x:

ϕ �
~x

ϕ

(a2) Cut rule: for formulae ϕ,ψ, θ suitable for ~x

ϕ �

~x
ψ ψ �

~x
θ

ϕ �
~x

θ
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(a3) Partial term substitution rule: For ~t = t1, . . . , tn a sequence of terms, sort compat-
ible with the context ~x, and whose free variables are among ~y, the rule

ϕ �
~x

ψ

~t↓ ∧ ϕ(~t/~x) �

~y
ψ(~t/~x)

is applicable. Here ~t↓ is the conjunction t1 ↓ ∧ · · · ∧ tn ↓.

The rules for equality are the following

(b1) Reflexivity axiom: > �
~x

xk ↓, where xk is some variable in the context ~x.

(b2) Equality axiom: ~x = ~y∧ϕ �

~z
ϕ(~y/~x). Here ~x = x1, . . . , xn are distinct variables,

and the variables ~y = y1, . . . , yn are distinct, and sort compatible with ~x. The
expression ~x = ~y is short for x1 = y1 ∧ · · · ∧ xn = yn.

(b3) Strictness of predicates axiom: R(t1, . . . , tn)
�
~x

tk ↓, for any predicate symbol R
and terms t1, . . . , tn with free variables in the context ~x.

(b4) Strictness of equality axiom: t1 = t2
�
~x

tk ↓, for k = 1, 2 and terms t1, t2 with
free variables in the context ~x.

(b5) Strictness of functions axiom: f(t1, . . . , tn)↓
�
~x

tk ↓, for any function symbol f
and terms t1, . . . , tn with free variables in the context ~x.

The conjunctive rules are, for formulae ϕ,ψ, θ suitable for ~x:

(c1-3) ϕ �
~x

> ϕ ∧ ψ �
~x

ϕ ϕ ∧ ψ �
~x

ψ

(c4)

ϕ �
~x

ψ ϕ �
~x

θ

ϕ �
~x

ψ ∧ θ
.

Remark 2.2 The only difference from Definition D1.1.5(a) in [Joh02b] is the rule (a3).
In D1.1.5(b) the reflexivity rule (b1) has been modified to hold in any context. In a
usual logic, substitution could be applied to (b1) to infer reflexivity for arbitrary terms.
Our (a3) does not allow this, however, and we add explicit strictness axioms (b3) – (b5).
The conjunctive rules above are the same as in D1.1.5(c).

Andréka and Németi [AN83, Section 4] present a similar logic, which is however one-
sorted and lacks the labelling of sequents with variables, which is necessary in order to
deal with empty carriers and give a clean statement of the initial model theorem.
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Remark 2.3 We shall below consider the extension of PHL to partial first order logic
(PFOL). This consists of the rules of PHL together with the rules for the logical constants
⊥, ∨, //, ∀ and ∃ as in Definition D1.3.1(d)–(g) of [Joh02b]. No term substitution
occurs in those quantifier rules. It is straightforward then to derive these rules (with
obvious provisos) in PFOL

ϕ �
~x

t↓ ϕ �
~x

(∀y ∈ A)ψ

ϕ �
~x

ψ(t/y)

ϕ �
~x

t↓ ϕ �
~x

ψ(t/y)

ϕ �
~x

(∃y ∈ A)ψ
.

We refer to [Bee85], [Bee86] and [Sco79] for disscussions of alternative formulations of
partial first order logic. The system in [Bee86] is essentially our PFOL, with the minor
difference that all constants are assumed to be defined there. An axiom scheme for
equality is

(BAx) s ∼= t ∧ ϕ(s/z) �
~x

ϕ(t/z)

where s ∼= t is (s↓ // s = t) ∧ (t↓ // s = t). This scheme with = in place of ∼=
follows readily in PFOL from (b2), (a3) and (b4). However also the stronger (BAx) can
be proved in PFOL by an easy induction on ϕ. For atomic ϕ one makes a distinction as
to whether z occurs in ϕ. If so, the strictness axioms (b3-5) can be applied to show that
s is defined. Then the case follows by the weaker scheme.

For full first order logic it is always possible to interpret partial operations as relations,
and introduce composition of partial operation by a suitable translation. This is a method
common when formalising recursion theory in arithmetic and also the one employed in
Feferman’s systems of explicit mathematics (cf. [Bee85]).

A Horn theory T in a signature Σ is a set of Horn sequents over Σ. In case the
signature is devoid of predicate symbols the theory is called quasi-equational.

Example 2.4 The quasi-equational theory Tcat for a category: The sorts are objects
and arrows:

S = {obj, arr}.

There are three unary operations (identity, domain and codomain)

id : obj // arr, d, c : arr // obj

and a binary composition operation

◦ : arr × arr // arr

The domains of definitions are specified by the four (bi)sequents

�
x

id(x)↓, �

f
d(f)↓, �

f
c(f)↓

(f ◦ g)↓ �

f,g
�

d(f) = c(g)
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Thus the unary operations are total. Further axioms are

(f ◦ g)↓ �

f,g
d(f ◦ g) = d(g)

(f ◦ g)↓ �

f,g
c(f ◦ g) = c(f)

(f ◦ (g ◦ h))↓ �

f,g,h
f ◦ (g ◦ h) = (f ◦ g) ◦ h

�
x

c(id(x)) = x, �
x

d(id(x)) = x

�

f
f ◦ id(d(f)) = f , �

f
id(c(f)) ◦ f = f 2

Example 2.5 Quasi-equational theory Tgr for a graph: The sorts are {obj, arr} and the
operations for source and target are denoted d, c : arr // obj. The only axioms state
that these are total

�

f
d(f)↓, �

f
c(f)↓ 2

A PHL derivation relative to T is a derivation, in which all sequents are Horn sequents
over Σ, and which is obtained by following the rules of PHL, and whose axioms are either
those of the logic, or belong to T. The last sequent of such a derivation is a PHL-theorem
of T.

Proposition 2.6 In PHL the following context weakening rule is derivable: For ~y a
sequence of distinct variables including ~x,

ϕ �

~x
ψ

ϕ �

~y
ψ

. (3)

Proof. Applying the partial term substitution to the premiss of (3) gives

~x↓ ∧ ϕ(~x/~x) �

~y
ψ(~x/~x). (4)

Repeated use of (b1) and (c4) gives > �

~y
~x↓. Then using cut and conjunctive rules

the conclusion of (3) follows from (4). 2

The conjunctive rules and cut yields the following general permutation–weakening
rule for formulae as a derived rule of PHL:

ϕ1, . . . , ϕn
�
~x

ψ

θ1, . . . , θm
�
~x

ψ
(5)

whenever {ϕ1, . . . , ϕn} ⊆ {>, θ1, . . . , θm} and θ1, . . . , θm suitable for ~x.

The Equality Axiom (b2) shows how if x = y then all occurrences of x in ϕ can be
replaced by y. It is often useful to know that we can choose to replace just a selection
of the occurrences of x. That is the content of the next lemma.
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Lemma 2.7 Let ~w be a context that includes x and y with the same sort, and let ϕ be
a formula suitable for ~w. Then

x = y ∧ ϕ(x/y) �
~w

ϕ.

Proof. Let z be a variable not in ~w and of the same sort as x and y. Then

z = y ∧ ϕ(z/y) �

~w,z
ϕ(z/y)(y/z)

and the right-hand side is just ϕ (because z is not free in ϕ). Substituting x for z, we
obtain

x↓ ∧ x = y ∧ ϕ(z/y)(x/z) �
~w

ϕ(x/z)

which then gives the result. 2

Proposition 2.8 Relative to the empty theory in any signature, PHL proves the follow-
ing. r, s and t are terms in context ~x.

(i) r = s ∧ s = t �
~x

r = t.

(ii) r = s �
~x

s = r.

(iii) Let ~u and ~v be vectors of terms in context ~y, with sorts compatible with ~x. Then

~u = ~v ∧ t(~u/~x)↓ �

~y
t(~u/~x) = t(~v/~x).

Proof. As an illustration we prove (iii). We apply Lemma 2.7 to the formula t = t( ~x′/~x)
and deduce

~x = ~x′ ∧ t↓ �

~x,~x′

t = t(~x′/~x).

The result now follows if we substitute ~u/~x and ~v/~x′ and use the fact that ~u = ~v implies
that both ~u and ~v are defined. 2

For a signature Σ, let Tot(Σ) be the theory consisting of all the axioms

> �
~x

f(~x)↓

where f is a function symbol of Σ. This theory expresses that all functions are total and

constants are defined. It is easy to prove by induction that > �
~x

t↓ is a PHL-theorem
of Tot(Σ), for any Σ-term t. Under the assumption of these totality axioms PHL becomes
ordinary Horn logic, since (b3-b5) are trivially true and the proviso of (a3) may removed.
More precisely we have:

Theorem 2.9 Let T be a Horn theory over the signature Σ. Then a sequent σ is PHL-
theorem of T ∪ Tot(Σ) iff σ is a Horn logic theorem of T. 2
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The following two results are usually known as the Theorem on Constants and the
Deduction Theorem [Sho67].

Theorem 2.10 Let S be a Horn theory over some signature Σ. Let c be a constant not
occurring in S. Then following are equivalent

(i) ϕ �
~x

ψ is a PHL-theorem of S ∪ {> � c↓}

(ii) ϕ(z/c) �

~x,z
ψ(z/c) is a PHL-theorem of S, for any variable z of the same sort as

c, and not in ~x.

In addition, the above equivalence holds for PFOL-theorems and arbitrary first-order
theories S.

Proof. That (ii) implies (i) follows by a simple application of partial substitution and
cut.

The implication (i) ⇒ (ii) is proved by induction on the height of derivations. The
logical axioms are checked by noting they are logical axioms also when making the sub-
stitution of z for c. The non-logical axioms are verified by observing that the substitution
has no effect on them, since c is not in S. The two binary rules are straightforward to
verify using the inductive hypothesis. The partial term substitution rule is verified as
follows: suppose it was the last rule applied as the instance

ϕ �
~x

ψ

~t↓ ∧ ϕ(~t/~x) �

~y
ψ(~t/~x)

,

where the substituted sequence is ~t = t1, . . . , tn. Consider any z of the same sort as c
and not in ~y. Let u be some variable of the same sort as c and not in ~x, ~y, z. We may
then invoke the inductive hypothesis, that

ϕ(u/c) �

~x,u
ψ(u/c) (6)

is PHL-theorem of S. Let ~s = ~t(z/c). Now make the substitution (~s, z/~x, u) into (6) and
get

~s↓ ∧ z ↓ ∧ ϕ(u/c)(~s, z/~x, u) �

~y,z
ϕ(u/c)(~s, z/~x, u)

Since z is a variable the conjunct z ↓ may be eliminated using the reflexivity axiom.
We have the syntactic equality ~s↓ ≡ (~t↓)(z/c). Moreover since z is not in ~x, we may
interchange some substitutions

ϕ(u/c)(~s, z/~x, u) ≡ ϕ(z/c)(~s/~x) ≡ ϕ(~t/~x)(z/c),

and similarly ψ(u/c)(~s, z/~x, u) ≡ ψ(~t/~x)(z/c).
We thus have the desired PHL-theorem

(~t↓)(z/c) ∧ ϕ(~t/~x)(z/c) �

~y,z
ψ(~t/~x)(z/c)
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of S. This completes the inductive step.
To extend the result to PFOL is straightforward for the propositional connectives,

and for quantifiers one need to apply the variable rule to permute and rename variables.
2

Theorem 2.11 Let S be a Horn theory over some signature Σ. Let θ be a closed Horn
formula over Σ. The following are equivalent:

(i) ϕ �
~x

ψ is a PHL-theorem of S ∪ {> � θ},

(ii) θ ∧ ϕ �
~x

ψ is a PHL-theorem of S.

Moreover, this equivalence holds for PFOL-theorems and arbitrary first-order theories S

and closed formulae θ over Σ.

Proof. (i) ⇒ (ii) is proved by a straightforward induction on the height of derivation.
(ii) ⇒ (i) follows by a simple application of cut and conjunctive axioms. 2

For any Horn theory T over the signature Σ, we get as an immediate corollary

that: the PHL-provability of ϕ �
~z

ψ from T is equivalent to the PHL-provability of
> � ψ(~c/~z) from T ∪ {> � ~c↓} ∪ {> � ϕ(~c/~z)}, where ~c is sequence of distinct
constants not in T and sort compatible with ~z.

3 Structures, models and homomorphisms in PHL

In this section we show how PHL is interpreted using set-theoretic models.
Let Σ be a many-sorted first-order signature. We write f : A1 · · ·An // B for

f being a function symbol with values in B and with n arguments of respective sorts
A1, . . . , An. For n = 0 it is a constant of sort B. Writing R � A1 · · ·An indicates that R
is a predicate symbol with n arguments of sorts in A1, . . . , An, respectively. In addition
to the predicates in Σ, formulae over Σ may be formed using binary equality predicates
(=A) � AA for each sort A of Σ.

Like the system presented in [Joh02b] (though unlike most classical model theory) we
permit sorts to be modelled by empty sets. The contexts labelling the sequent turnstiles
ensure that the logic can handle empty carriers correctly, since they mean that elements
of the carriers can be explicitly hypothesized instead of being presumed always to exist.
(This device is due to Mostowski – see [LS86].)

Where we differ from [Joh02b] is that each function symbol will be interpreted by a
partial function. This is why we need the partial substitution rule. A partial function
f : A ⇁ B is a relation f ⊆ A×B such that

(x, y), (x, z) ∈ f =⇒ y = z. (7)

We employ standard notation for application and take “f(a) defined” to mean that
there is some b ∈ B with (a, b) ∈ f . The restriction f |S of f to a subset S ⊆ A is

10



defined as the graph f ∩ (S × B). Equality of partial functions means equality of their

graphs. Composition of partial functions A
f
⇁ B

g
⇁ C is defined as composition of

relations. Thus (g � f)(a) is defined iff both f(a) and g(f(a)) are defined, and in such
case (g�f)(a) = g(f(a)). Note that partial functions A ⇁ 1 are in a 1-1 correspondence
with subsets of A.

Remark 3.1 We make a short digression (this may preferably be skipped on first read-
ing) about subsets in constructive systems which will motivate the categorical version of
partial map, using monics to represent subobjects, that will be used later in Section 7.
In constructive mathematics as in [BB85] subsets are defined in a quite categorical way
and suitable to formalisation in type theories. Let X be a set (a type with a prescribed
equivalence relation). A subset A of X is a set ∂A together with an injection ιA : ∂A

// X. An element x of X is a member of this subset A if x = ιA(d) for some (neces-
sarily) unique d ∈ ∂A. Then define the subset relation between subsets using logic, as
for subclasses in set theory. It is easy to see that A ⊆ B is equivalent to there being a
function (necessarily unique and injective) ιA,B : ∂A // ∂B so that ιB◦ιA,B = ιA. Now
two subsets A and B of X are equal if ιA,B is a bijection satisfying the same equation.

Next we see how this gives an alternative definition of partial functions in terms of
arrows only. A subset R of A×B is represented by a pair ιR = 〈r1, r2〉 : ∂R // A×B.
It is now easy to check that for any r1 : ∂R // A, r2 : ∂R // B, the pair 〈r1, r2〉
is injective and the corresponding relation R satisfies the univalency condition (7) if,
and only if, the function r1 is injective. Thus a partial function f from A to B can
be taken to be a span from A to B – a triple (Df ,df ,mf ) where df : Df

// A,
mf : Df

// B – whose first leg df is injective. The subset df : Df
// A is called

the domain of definition of f . Such a partial function is included in another partial
function g = (Dg,dg,mg) as a subset if, and only if, there is a function i : Df

// Dg

(necessarily unique and an injection) so that dg ◦ i = df and mg ◦ i = mf . These partial
functions are equal as subsets if this i is an isomorphism. For f : A ⇁ B, g : B ⇁ C
with f = (Df ,df ,mf ) and g = (Dg,dg,mg) their relational composition g � f may be
constructed as

Dg�f = {(u, v) ∈ Df × Dg : mf (u) = dg(v)},

dg�f(u, v) = df(u),

mg�f (u, v) = mg(v).

This construction is in effect a pullback construction, compare to (19) below.

A partial structure M for Σ is an assignment M , which to each sort A in Σ assigns a
set M A, and to each sequence ~A of sorts assigns the set M( ~A) = M A1 × · · · ×M An.
If n = 0 this is a canonical 1-element set {∗} (a fixed terminal object in the category of
sets). To each function symbol f : ~A // B in Σ a partial function M f : M( ~A) ⇁M B
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is assigned, and to each predicate symbol R � ~A in Σ a subset M R of M( ~A). Moreover,
M (=A) is the identity relation on M A. Let M and N be partial structures for Σ.

For each term ~x.t we define a partial function

[[~x.t]]M : M σ(~x) ⇁M σ(t). (8)

by induction. A variable is interpreted by a projection (which is a total function)

[[~x.xk]]M = πnk : M(σ(~x)) // M σ(xk). (9)

For a constant c let
[[~x.c]]M = (M c)� !M(σ(~x)) (10)

where the second factor indicates the unique map M(σ(~x)) // 1. For a sequence of
partial functions fi : A ⇁ Bi (1 ≤ i ≤ m), define the strict tupling

〈~f〉p : A ⇁ B1 × · · · ×Bm

by letting 〈 ~f〉p(a) be defined iff each fk(a) is defined, and if so, then set to (f1(a), . . . , fm(a)).
Note that 〈〉p may be identified with the unique map A // 1. We write

[[~x.~t]]M , 〈[[~x.t1]]M . . . [[~x.tm]]M 〉p

and now the interpretation of a function symbol g applied to terms of appropriate sorts
is defined as

[[~x.g(~t)]]M , (M g) � [[~x.~t]]M . (11)

A formula ϕ (suitable for ~x) will in general be interpreted as [[~x.ϕ]]M ⊆ M( ~A). For
a sequence of terms ~t we now define [[~x.R(~t)]]M to be the set of tuples

{~a ∈M( ~A) : [[~x.~t]]M (~a) defined and belongs to M R}. (12)

Moreover [[~x.t1 = t2]]M is the set

{~a ∈M( ~A) : [[~x.t1]]M (~a) and [[~x.t2]]M (~a) are defined and equal }. (13)

(Note that this is consistent with (12) if M R = M (=A).) Thus in particular [[~x.t↓]]M
consists of those ~a for which [[~x.t]]M (~a) is defined. Further, we have that [[~x.t1]]M and
[[~x.t2]]M are equal as partial functions iff [[~x.t1 ↓]]M = [[~x.t2 ↓]]M = [[~x.t1 = t2]]M . The
interpretation may be extended to all first-order formulae over Σ as in [Joh02b].

We say that a sequent ϕ �

~x
ψ over Σ is valid in a partial structure M for Σ if

[[~x.ϕ]]M ⊆ [[~x.ψ]]M .

Such a structure M is a model for theory T over Σ, if each sequent in T is valid in M .
In this case we write, as usual, M |= T.

Continuing Examples 2.4 and 2.5 we have

12



Example 3.2 The models of Tcat and Tgr are the categories and directed graphs re-
spectively.

We need the following lemmas for interpreting substitutions:

Lemma 3.3 Let M be a partial Σ-structure. Suppose we are given Σ-terms ~x.s and ~y.~t,
where ~t is sort compatible with ~x. Then:

[[~y.s(~t/~x)]]|[[~y.~t ↓]] = [[~x.s]] � [[~y.~t]],

writing [[·]] for [[·]]M .

Proof. By induction on the structure of the term s, and using the following laws for
partial functions

πnk � 〈f1, . . . , fn〉p = fk|df1 ∩ · · · ∩ dfn

(f � g)|S = f � (g|S)

〈f1, . . . , fn〉p|S = 〈f1|S, . . . , fn|S〉p|S

〈f1, . . . , fn〉p � g = 〈f1 � g, . . . , fn � g〉p|dg. 2

Lemma 3.4 Let M be a partial Σ-structure. Consider any first-order formula ~x.ϕ over
the signature Σ. For any sequence of Σ-terms ~y.~t, sort compatible with ~x, the set [[~y.(~t↓∧
ϕ(~t/~x))]]M is

{~a ∈M(σ(~y)) : [[~y.~t]]M (~a) defined and belongs to [[~x.ϕ]]M}.

Proof. By induction on the structure of the formula. The inductive steps are straight-
forward using a little intuitionistic logic for the implicational case. The base case for
non-constant atomic fomulae ϕ ≡ R(~s) follows straightforwardly from Lemma 3.3. The
base cases for > and ⊥ are trivial. 2

Theorem 3.5 (Soundness) PHL and PFOL are sound for the semantics above.

Proof. The only nonstandard rules to verify are the partial substitution rule (a3) and
the strictness rules (b3–5). The rule (a3) is evidently valid since by Lemma 3.4, [[~x.ϕ]]M ⊆
[[~x.ψ]]M implies

[[~y.~t↓ ∧ ϕ(~t/~x)]]M ⊆ [[~y.~t↓ ∧ ψ(~t/~x)]]M ⊆ [[~y.ψ(~t/~x)]]M .

The strictness axioms (b3-5) are easily verified from the definitions above. 2

A Horn theory in a signature with no predicate symbols is called quasi-equational.
The following result shows that this is no great restriction when setting up a theory:

Proposition 3.6 For any Horn theory T there is an equivalent quasi-equational theory.
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Proof. First, introduce a new sort U with constant u : U and axioms > � u↓ and

> �
x

x = u. This guarantees that U is interpreted as a one-element set, so adding it
makes no essential difference to T. Now we use the 1-1 correspondence between subsets
and partial functions into one-element sets. Each predicate R � A1 · · ·An may be
replaced by a function symbol fR : A1 · · ·An // U , and then instead of R(t1, . . . , tn)
use fR(t1, . . . , tn)↓. 2

3.1 Homomorphisms

If M and N are partial structures for a signature Σ, then a Σ-homomorphism α : M
// N is a family of total functions

αS : M S // N S (S is a sort in Σ)

satisfying certain conditions. We can normally omit the subscript S, and indeed for a
sequence ~a of variables, terms or elements with sorts ~S we write α(~a) for the sequence

αS1(a1), . . . , αSn(an)

The first condition on α is that for each function symbol f : ~A // B in Σ, and for all
~a ∈M(~a), if (M f)(~a) is defined, then so is (N f)(α(~a)) and

α((M f)(~a)) = (N f)(α(~a)).

(For m = 0, we get the condition for constants.) Further, for each predicate symbol
R � ~A the α-functions should satisfy for all ~a ∈M( ~A) that

~a ∈ (M R) =⇒ α(~a) ∈ (N R)

Example 3.7 For Tcat, where the models are the categories, the homomorphisms are
the functors. Note how if f ◦ g is defined then so is F (f ◦ g) and F (f ◦ g) = F (f) ◦F (g).
But even if F (f) ◦ F (g) is defined, f ◦ g need not be.

For Tgr, the homomorphisms are the directed graph morphisms.

Remark 3.8 This notion of homomorphism is also used in connection with partial met-
ric algebras [SHT03].

The class of partial structures for Σ and Σ-homomorphisms form the category of
partial structures for Σ denoted Σ-PStr. Note that the standard category Σ-Str of
structures for Σ [Joh02b] is isomorphic to a full subcategory of Σ-Pstr. Let T be a
theory over Σ. The full subcategory of Σ-PStr consisting of those partial structures that
are models of T is denoted T-PMod.

We have already seen how a partial structure can be extended from the function and
predicate symbols to all terms and formulae. The same goes for a homomorphism, though
not for all formulae. A formula is coherent if it is constructed from atomic formulae
(including equations) using conjunction, disjunction and existential quantification.

14



Proposition 3.9 Let T be a quasi-equational theory and let M and N be partial struc-
tures for it. Let α : M // N be a homomorphism. For every sequence ~S of sorts, we
get a product function

α~S : M(~S) // N(~S).

Then

1. For each term ~x.t we have commutative squares

M(σ(~x)) [[~x.t↓]]Moo ?
_[[~x.t↓]]M M(σ(t))

[[~x.t]]M
//

N(σ(~x)) [[~x.t↓]]Noo ?
_[[~x.t↓]]N N(σ(t))

[[~x.t]]N
//

M(σ(~x))

N(σ(~x))

ασ(~x)

��

[[~x.t↓]]M

[[~x.t↓]]N

[[~x.t↓]]α

��

M(σ(t))

N(σ(t))

ασ(~x)

��

where the row spans are the interpretations of the term t in the two models.

2. For each coherent formula ~x.ϕ we have a commutative square

M(σ(~x)) [[~x.ϕ]]Moo ?
_

N(σ(~x)) [[~x.ϕ]]Noo ?
_

M(σ(~x))

N(σ(~x))

ασ(~x)

��

[[~x.ϕ]]M

[[~x.ϕ]]N

[[~x.ϕ]]α

��

Proof. Use induction on the structure of the terms and formulae. 2

With homomorphisms as we have defined them the result fails to work for negation,
implication and universal quantification. (For a simple example of the last, consider the
fact that a homomorphism of groups does not in general map centre to centre.)

4 The term model and completeness

We now turn to the completeness theorem, using a construction analogous to the term
model of equational logic as set out in [MT92]. Note, however, that they assume suf-
ficient constants to ensure the carriers are non-empty. This is because their equational
logic is not properly adapted to empty carriers. We avoid this problem by our use of
contexts of variables labelling the turnstiles as discussed in the previous section. The
first completeness theorem for partial models is due to Andréka and Németi [AN83].
Their construction avoided the labelling of the sequents, but the theorem was restricted
to single-sorted theories.
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4.1 The term model

In Section 9 we shall show that quasi-equational theories are equivalent to cartesian
theories. This implies that there should be various free model constructions. These
are best known for algebraic theories, but work also for cartesian theories (even with
infinitary operations) and are discussed in [BW84, Chapter 4]. The most fundamental of
these is the Initial Model Theorem – every cartesian theory has an initial model –, and
the others can be proved from it. That is the term model which we now construct. Its
initiality encapsulates important uses of induction on the structure of terms and proofs.

The proof, by taking all terms and factoring out a partial congruence of provable
equality, is hardly any more complicated in our partial Horn logic than the usual proof for
algebraic theories. Nonetheless, it is constructive and predicative – unlike the discussion
in [BW84], which uses the Adjoint Functor Theorem.

Let T be a quasi-equational theory in the signature Σ. Define the closed term model
Ter(T) = M as follows. For each sort S in Σ, let M0 S be the set of its closed terms.
(Note that this set may well be empty.) M0 is a (total) structure for Σ.

Now we define a partial equivalence relation =S on each M0 S by provable equality:
t1 =S t2 if � t1 = t2 is a PHL-theorem of T.

In fact, the family of partial equivalence relations =S is a partial congruence on
M0. If ~t1 and ~t2 are sequences of closed terms sort compatible with the arguments of
a function symbol f , and if � ~t1 = ~t2 is a PHL-theorem of T, then by Proposition
2.8.(iii) so is � f(~t1) = f(~t2).

We deduce that factoring out the partial congruence on the structure M0 gives a
partial structure M . Its carriers M S are

{t is a closed Σ-term : � t↓ is a PHL-theorem of T}.

with equality

M(=S) = {(t1, t2) ∈M S ×M S : � t1 = t2 is a PHL-theorem of T}.

This is an equivalence relation on M S. It defines the partial Σ-structure Ter(T). We
show by structural induction that for closed Σ-terms t of sort S:

t ∈M(S) =⇒ [[().t]](∗) defined and =M S t. (14)

Here we are writing [[·]] for [[·]]M . For a constant t = c

[[().c]] = (M c)� !M().

and hence [[().c]](∗) = c, when c ∈M(S). More generally, for f(~t) with f : σ(~t) // S,

[[().f(~t)]] = (Mf) � [[().~t]].

Now if f(~t) ∈ M(S), then by the strictness axiom (b5) we also have tk ∈ M(σ(tk)) for
each component tk of ~t. By inductive hypothesis [[().tk]](∗) is defined and equal to tk.
Thus [[().~t ]](∗) is defined and equals ~t, and since f(~t) ∈M(S) also [[().f(~t)]](∗) is indeed
defined and equals f(~t).

The crucial lemma for the term model is the following
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Lemma 4.1 Let M = Ter(T), where T is a quasi-equational theory over Σ. For any
Σ-equation ~x.ϕ,

[[~x.ϕ]]M = {~t ∈M(σ(~x)) : > � ϕ(~t/~x) is a PHL-theorem of T}. (15)

Proof. Let ϕ = (r1 =A r2) be an equation in context ~x. Consider ~t in M(σ(~x)). We
write just [[·]] for [[·]]M below. >From Lemma 3.3 follows for j = 1, 2 that

[[().rj(~t/~x)]]|[[().~t ↓]] = [[~x.rj ]] � [[().~t]]. (16)

Note that any closed term is suitable for the empty context. We check (15): If ~t ∈ [[~x.ϕ]],
then by (13) [[~x.r1]](~t) and [[~x.r2]](~t) are both defined and equal. Now [[().tk]](∗) = tk by
(14). By (16) it follows that [[().r1(~t/~x)]](∗) and [[().r2(~t/~x)]](∗) are defined and equal,
and hence by (14)

r1(~t/~x) =MA r2(~t/~x),

i.e. > � ϕ(~t/~x) is a PHL-theorem of T. Conversely, assume this to be the case. Thus
we get by strictness of equality that r1(~t/~x), r2(~t/~x) ∈M A and by assumption they are
equal elements. Moreover (14) gives [[().r1(~t/~x)]](∗) and [[().r2(~t/~x)]](∗) are defined and
equal. Now (16) yields that [[~x.r]](~t) and [[~x.s]](~t) are both defined and equal, and we
have ~t ∈ [[~x.ϕ]]. 2

Theorem 4.2 Let T be a quasi-equational theory. Then Ter(T) is an initial model of T.

Proof. First we must show it is indeed a model. Consider an axiom of T

ϕ �
~x

ψ (17)

We wish to show that it is valid in M = Ter(T), which means that for any ~t ∈M(σ(~x)),

~t ∈ [[~x.ϕ]]M =⇒ ~t ∈ [[~x.ψ]]M .

From (17) we get by the partial substitution rule with ~t, the PHL-theorem of T:

~t↓ ∧ ϕ(~t/~x) � ψ(~t/~x). (18)

By Lemma 4.1, ~t ∈ [[~x.ϕ]]M implies that > � ϕ(~t/~x) is a PHL-theorem of T and hence
so is > � ~t↓ ∧ ϕ(~t/~x), since ~t are all provably defined. Then the cut rule and (18)
gives that > � ψ(~t/~x) is a PHL-theorem of T, which by the lemma, is nothing but
~t ∈ [[~x.ψ]]M .

For initiality, let N be another model. If α : M // N is to be a homomorphism,
then by induction on the structure of terms t we see that α(t) can only be [[().t]]N (∗).
This is well defined if t ∈ M S. For then T proves > � t↓. This is therefore also
valid in N , so [[().t]]N is total and [[().t]]N (∗) exists. Similarly if t1 = t2 in M then
[[().t1]]N (∗) = [[().t2]]N (∗). 2
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4.2 Completeness

We can now use the term model to prove completeness results.

Theorem 4.3 (Strong completeness for equations) Let T be a quasi-equational theory
over Σ. For each closed equation r = s over Σ:

Ter(T) |= r = s iff > � r = s is a PHL-theorem of T.

Proof. This is the special case of Lemma 4.1 when ϕ ≡ (r = s) is closed. 2

Theorem 4.4 (Completeness) Let T be a quasi-equational theory over Σ. For each
formula in context ~x.ϕ over Σ there is a partial Σ-structure M which is a model of T

and such that for every formula ~x.ψ,

[[~x.ϕ]]M ⊆ [[~x.ψ]]M iff ϕ �
~x

ψ is a PHL-theorem of T

In particular, a sequent ϕ �
~x

ψ holds in all models of T iff ϕ �
~x

ψ is a PHL-theorem
of T.

Proof. Let
T′ = T ∪ {> � ~c↓} ∪ {> � ϕ(~c/~x)},

where ~c are some distinct constants, sort compatible with ~x, and not in Σ. Let Σ ′ denote
Σ extended by these constants. Form the term model M ′ = Ter(T′) over Σ′ and the
restriction M = M ′|Σ to the smaller signature. For equations θ over Σ suitable for ~x we
thus have [[~x.θ]]M = [[~x.θ]]M ′ . Suppose now [[~x.ϕ]]M ⊆ [[~x.ψ]]M . Then this holds also for
M ′ in place of M . Next, using this inclusion for ~c, we get by Lemma 4.1 the implication

> � ϕ(~c/~x) is a PHL-theorem of T′ =⇒ > � ψ(~c/~x) is a PHL-theorem of T′.

The lefthand side is immediate by the extra axiom of T′. Thus > � ψ(~c/~x) is a PHL-
theorem of T′. The Deduction Theorem 2.11 then implies that ϕ(~c/~x) � ψ(~c/~x) is

a PHL-theorem of T. Theorem 2.10 on Constants finally gives that ϕ �
~x

ψ is PHL-
theorem of T.

The implication (⇒) of the final statement of the theorem follows now by specialisa-
tion to M . The reverse implication (⇐) is the soundness theorem. 2

The corollary below shows that PFOL is “conservative” over PHL for quasi-equational
sequents.

Corollary 4.5 Consider a quasi-equational theory T over Σ. If a quasi-equational se-

quent ϕ �
~x

ψ over Σ is a PFOL-theorem of T, then it is also a PHL-theorem of T.

Proof. By soundness of PFOL this follows from Theorem 4.4. 2
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5 Free partial models

The freeness theorem for partial models will be formulated as the existence of left adjoints
to very general forgetful functors. Consider two signatures Σ and Σ′, without relation
symbols, since we do not need them here. A signature morphism ρ : Σ // Σ′ consists
of an assignment: to each sort A of Σ, a sort Aρ of Σ′ and to each function symbol
f : A1 · · ·An // A of Σ, a function symbol f ρ : Aρ1 · · ·A

ρ
n

// Aρ of Σ′. This gives a
translation of a formula ϕ over Σ to a formula ϕρ over Σ′ by applying ρ to its symbols for
sorts and functions. The signature morphism ρ induces a restriction (or reduct) functor
(·)|ρ : Σ′-PStr // Σ-PStr as follows: for a partial Σ′-structure N define N |ρ to be the
partial Σ-structure M given by

M(A) = N(Aρ)

(M(f) : M(A1, . . . An) ⇁M(A)) = (N(f ρ) : N(Aρ1, . . . , A
ρ
n) ⇁ N(Aρ))

For a morphism α : N // N ′ in Σ′-PStr define a morphism α|ρ : N |ρ // N ′|ρ in
Σ-PStr by letting

(α|ρ)A = α(Aρ) (A sort in Σ).

Naturally, any inclusion Σ ⊆ Σ′ of sort and function symbols will be an example of
a signature morphism. In this case we write (as usual) N |Σ for the restriction.

Example 5.1 A different example is that which maps the signature of modules ΣMod

to that of rings ΣRng. The signature ΣMod has a sort K for scalars and a sort V for
vectors, and appropriate function symbols, in particular multiplication of scalars with
vectors g : K,V // V . The ring signature has a single sort R and a multiplication
m : R,R // R. Now map Kρ = V ρ = R and gρ = m. The restriction functor treats
any ring as a module over itself.

Lemma 5.2 Let ρ : Σ // Σ′ be a signature morphism. For N ∈ Σ′-PStr, and term t
and formula ϕ over Σ suitable for ~x,

[[~x.tρ]]N = [[~x.t]](N |ρ),

[[~x.ϕρ]]N = [[~x.ϕ]](N |ρ).

If ρ : Σ ⊆ Σ′ is an inclusion, then [[~x.t]]N = [[~x.t]](N |Σ) and [[~x.ϕ]]N = [[~x.ϕ]](N |Σ).

Proof. The first equation follows by a straightforward induction on t. The base case of
the second equation then follows from this. The inductive steps for formulae are trivial.
2

Suppose that T and T′ are two theories of signature Σ and Σ′, respectively. A
signature morphism ρ : Σ // Σ′ is a theory morphism T // T′, if for each axiom

ϕ �
~x: ~A

ψ of T, the ρ-translation ϕρ �
~x: ~Aρ

ψρ is an axiom of T′. Note that for such a theory
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morphism, the restriction functor maps T′-PMod into T-PMod. Suppose N |= T′. For

an axiom ϕ �
~x

ψ of T, we have that its translation ϕρ �
~x

ψρ is an axiom of T′, so
by assumption [[~x.ϕρ]]N ⊆ [[~x.ψρ]]N . By Lemma 5.2 this is the same as [[~x.ϕ]](N |ρ) ⊆
[[~x.ψ]](N |ρ). This proves (N |ρ) |= T. We may now conclude the following result.

Proposition 5.3 Each theory morphism ρ : T // T′ induces a functor — the forgetful
functor —

Uρ : T′-PMod // T-PMod

given by Uρ = (·)|ρ. 2

Our aim now is to prove that Uρ has a left adjoint, a free model functor Fρ. We
shall construct Fρ(M) as the initial partial model for a theory in which T′ is augmented
with constants and axioms for the elements and equalities in M . This uses an auxiliary
construction of the kind familiar from model theory of total structures. For a partial Σ-
structure M , and a signature morphism ρ : Σ // Σ′, let the diagram (theory) Dρ(M) of
M be the theory whose signature ΣDρ(M) is Σ′, extended with a fresh constant cA,s : Aρ,
for each sort A of Σ and each s ∈M(A). (Note carefully the “typing” of the constants.)
Thus ρ : Σ // Σ′ ⊆ ΣDρ(M). Its axioms are totality axioms for the new constants

� cA,s↓ (s ∈M(A), A ∈ Σ-Sort)

and axioms for graphs of partial functions

� fρ(cA1 ,s1 , . . . , cAn,sn) = cA,s

for all s1 ∈ M(A1), . . . , sn ∈ M(An), s ∈ M(A) and f : A1 · · ·An // A in Σ with
(M f)(s1, . . . , sn) = s. (Again, note the typing.)

Theorem 5.4 (Free Partial Model Theorem) Let T and T′ be quasi-equational theories
with respective signatures Σ and Σ′ and let ρ : T // T′ be a theory morphism. Then
the forgetful functor Uρ : T′-PMod // T-PMod has a left adjoint.

Proof. For a Σ-structureM in T-PMod extend the theory T′ as follows: T′′ = T′∪Dρ(M)
whose signature is Σ′′ = ΣDρ(M).

If L is a model of T′′, then it has a reduct N to T′. The only information in L
that is not already contained in N is the interpretation of the constants cA,s, and this is
determined by carrier maps

αA : M A // N Aρ = Uρ(N)A.

The axioms of Dρ(M) are equivalent to requiring these to form a homomorphism α : A
// Uρ(N).

Hence, the models of T′′ are equivalent to pairs (N,α) where N is a model of T′ and
α : M // Uρ(N) is a homomorphism.
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A T′′-homomorphism γ from (N,α) to (N ′, α′) reduces to a T′ homomorphism β : N
// N ′. β already contains all the structure (the carrier maps) needed for γ. The

only additional information needed for it to be a T′′-homomorphism are that it should
preserve the constants c(A, s), and this is expressed by commutativity of the following
diagram.

M Uρ(N)
α //M

Uρ(N
′)

α′

��?
?

?

?

?

?

?

?

?

?

?

?

Uρ(N)

Uρ(N
′)

Uρ(β)

��

Hence, T′′-homomorphisms from (N,α) to (N ′, α′) are equivalent to T′ homomor-
phisms β : N // N ′ making the above diagram commute.

Now the term model Ter(T′′) can be expressed as (Fρ(M), ηM ) where

Fρ(M) = Ter(T′′)|Σ′

is a model of T′, and ηM : M // Uρ(Fρ(M)) is a Σ-homomorphism.
For any model N of T′, we now see that the following are equivalent.

• a homomorphism α : M // Uρ(N)

• a models (N,α) for T′′ whose Σ′-reduct is N

• a T′′-homomorphism (Fρ(M), ηM ) // (N,α) whose codomain has N as Σ′-reduct
(here we use initiality of the term model)

• a T′-homomorphism Fρ(M) // N (since α is determined as Uρ(β) ◦ ηM )

This shows that ηM is a universal arrow from M to Uρ and hence [ML71] that Fρ provides
a left adjoint to Uρ. 2

As an application of the theorem we see that the left adjoint to U : Tcat-PMod
// Tgr-PMod generates categories from graphs. Further examples of interesting left

adjoints follows from the examples given in the next section.

6 Examples from category theory

The sequents may also be useful for expressing uniqueness conditions. The theory Tter

of a category with a terminal object is Tcat extended with a constant > : obj and a
function symbol ! : obj // arr satisfying the following axioms. (x and f are of sorts
obj and arr.)

(i) � >↓ �
x

!x ↓,

(ii) �
x

d(!x) = x �
x

c(!x) = >,
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(iii) d(f) = x, c(f) = > �

xf
f = !x.

Let C be a category with finite limits, i.e. with pullbacks and a terminal object. Such
categories are also known as cartesian categories, or lex categories for short. But note
that we are assuming here that they have canonical finite limits. More precisely, they
have canonical terminal objects and pullbacks, and other finite limits are canonically
constructed from them. We use the following notation for canonical pullbacks. For α : A

// X and β : B // X let P(α, β) be the pullback object, and let p1
α,β and p2

α,β be
the projections into A and B respectively, which satisfy

αp1
α,β = βp2

α,β.

The common value of these compositions is denoted p(α, β). For f : C // A and
g : C // B with αf = βg, let 〈f, g〉α,β be the unique arrow h such that the following
commutes

A Xα
//

P(α, β)

A

p
1
α,β

��

P(α, β) B
p
2
α,β

// B

X

β

��

C

B

g

))S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

SC

P(α, β)

h
?

?

?

��?
?

?

C

A

f

��
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
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For the case when X = > is the terminal object, P(!A, !B) is an ordinary product A×B
and p1

A,B = p1
!A,!B

, p2
A,B = p2

!A,!B
are its projections, and 〈·, ·〉A,B = 〈·, ·〉!A,!B is the

ordinary pairing operation.
The canonical n-ary pullback of αk : Ak // X, k = 1, . . . , n, has projections

pkα1,...,αn
: P(α1, . . . , αn) // Ak, and tupling operation 〈·, . . . , ·〉α1 ,...,αn . Write

p(α1, . . . , αn) = αkp
k
α1,...,αn

.

6.1 Cartesian categories

To facilitate the formulation of certain theories, introduce the following notion of a partial
equality: for terms t and t′ which together contains exactly the free variables ~x, and let
t � t′ denote the sequent

t↓, t′ ↓ �
~x

t = t′.

Thus the terms are considered equal whenever they are both defined.
The following is a quasi-equational theory for cartesian categories. The theory Tcart

consists of Tter extended with function symbols p1, p2 : arr × arr // arr and 〈·, ·〉·,· :
arr × arr × arr × arr // arr satisfying the axioms
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(i) pkf1,f2 ↓
�

f1,f2
�

c(f1) = c(f2), for k = 1, 2.

(ii) c(pkf1,f2) � d(fk), for k = 1, 2.

(iii) f1 ◦ p1
f1,f2

� f2 ◦ p2
f1,f2

.

(iv) 〈h1, h2〉f1,f2 ↓
�

h1h2f1f2
� f1 ◦ h1 = f2 ◦ h2

(v) d(〈h1, h2〉f1,f2) � d(hk), for k = 1, 2.

(vi) c(〈h1, h2〉f1,f2) � d(pkf1,f2), for k = 1, 2.

(vii) pkf1,f2 ◦ 〈h1, h2〉f1,f2 � hk, for k = 1, 2.

(viii) 〈p1
f1,f2

◦ h, p2
f1 ,f2

◦ h〉f1,f2 � h

We use the abbreviation p(f1, f2) for f1 ◦ p1
f1,f2

, and P(f1, f2) for d(p(f1, f2)). Note
that

c(f1) = c(f2)
�

f1f2
p(f1, f2) = f2 ◦ p2

f1,f2
.

A homomorphism between cartesian categories C and C ′ is thus a strict cartesian
functor, i.e. a functor F satisfying

F (>) = >′

F (!x) = (!′)x

F (pkf1,f2) = p′kF (f1),F (f2)

F (〈h1, h2〉f1,f2) = 〈F (h1), F (h2)〉
′
F (f1),F (f2)

whenever the left hand side expressions are defined. We have also F (p(f1, f2)) =
p′(F (f1), F (f2)).

6.2 Locally cartesian closed categories

First we indicate how the theory of cartesian categories yields that products exist in
every slice. Denote by f : a y b the equation b ◦ f = a. This means that a and b have
common codomain, and f is a morphism in the slice category.

Proposition 6.1 In Tcart we have

(i) c(f1) = c(f2)
�

f1f2
pkf1,f2 : p(f1, f2) y fk, for k = 1, 2

(ii) q1 : g y f1, q2 : g y f2
�

q1q2f1f2
〈q1, q2〉f1,f2 : g y p(f1, f2)

(iii) q1 : g y f1, q2 : g y f2
�

q1q2f1f2
pkf1,f2 ◦ 〈q1, q2〉f1,f2 = qk, for k = 1, 2
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(iv) q : g y p(f1, f2)
�

f1f2qg
〈p1
f1,f2

◦ q, p2
f1,f2

◦ q〉f1,f2 = q. 2

The theory Tlccc of a locally cartesian closed category is Tcart extended with the
function symbols (⇐) : arr× arr // arr, ε : arr× arr // arr, Λ : arr× arr× arr× arr

// arr. Write Λkf,g(h) for Λ(k, f, g, h). Furthermore these axioms are included:

(i) (f ⇐ g)↓ �

fg
�

c(f) = c(g),

(ii) c(f ⇐ g) � c(f),

(iii) εf,g ↓
�

fg
�

c(f) = c(g),

(iv) c(f) = c(g) �

fg
εf,g : p(f ⇐ g, g) y f ,

(v) Λkf,g(h)↓
�

kfgh
� h : p(k, g) y f

(vi) h : p(k, g) y f �

kfgh
Λkf,g(h) : k y (f ⇐ g),

(vii) εf,g ◦ 〈Λ
k
f,g(h) ◦ p1

k,g, p
2
k,g〉f⇐g,g � h,

(viii) Λkf,g(εf,g ◦ 〈m ◦ p1
k,g, p

2
k,g〉f⇐g,g) � m.

6.3 A logical characterisation of locally cartesian closed categories

Next we give an application of a stronger logic, partial first order logic.
Let C be a Heyting category [Joh02a], thus admitting first-order intuitionistic logic

as internal logic — see Section 8. The following notation for fibers of arrows is used
in the internal language. If α : A // X is an arrow in C, then a ∈ Ax is short for
α(a) = x, and (∀a ∈ Ax)P (x, a) is an abbreviation of (∀a ∈ A)(α(a) = x ⇒ P (x, a))
whereas (∃a ∈ Ax)P (x, a) is short for (∃a ∈ A)(α(a) = x ∧ P (x, a)).

Then there is this “logical” characterisation: C is a locally cartesian closed category
iff for all a : A // X and b : B // X in C there are ϕa,b : Φ(a, b) // X and

eva,b : Φ(a, b) ×A ⇁ B

in C such that for all P � A × B × C the following sequents are valid in the internal
language of C.

(i) eva,b(f, y)↓
�

fy
� ϕa,b(f) = a(y)

(ii) f ∈ Φ(a, b)x, y ∈ Ax
�

xyf
eva,b(f, y) ∈ Bx

(iii) (∀x ∈ X)(∀f, g ∈ Φ(a, b)x)[(∀y ∈ Ax)(eva,b(f, y) = eva,b(g, y)) // f = g]

(iv) (∀y ∈ Ax)(∃!u ∈ Bx)P (y, u; t) �
xt

(∃f ∈ Φ(a, b)x)(∀y ∈ Ax)P (y, eva,b(f, y); t).
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6.4 Finitary sheaves

Definition 6.2 Let L be a distributive lattice, with operations 0, 1, ∨ and ∧ (not to
be confused with logical conjunction and disjunction). Then a finitary sheaf over L is
a presheaf F : Lop // Sets that satisfies the following pasting condition. Let ai ∈ L
(1 ≤ i ≤ n), and let xi ∈ F (ai) be such that xi|(ai ∧ aj) = xj|(ai ∧ aj) for all i, j in
the range 1 to n. (We write “ |” for the restriction operations.) Then there is a unique
x ∈ F (

∨
iai) such that x|ai = xi for all i.

With a little work one can show that it suffices to have the pasting condition in the
cases n = 0 and n = 2. The nullary pasting just says that F (0) is a singleton. The
finitary sheaves are then the models of a quasi-equational theory described as follows.

First, for each a ∈ L there is a sort Xa.
For each a ≤ b in L, there is a total restriction function ρab : Xb

// Xa. Totality
is axiomatized by

> �

x:Xb
ρab(x)↓.

Functoriality is axiomatized by

> �

x:Xa
ρaa(x) = x

> �

x:Xc
ρac(x) = ρab(ρbc(x))

(Note: what we have introduced so far is the theory of presheaves over L.)
X0 is forced to be a singleton by a constant ∗ : X0 axiomatized to be total and

unique.

> � ∗↓

> �

x:X0
x = ∗

For each a, b ∈ L, there is a partial pasting operation πab : Xa ×Xb
// Xa∨b. Its

domain of definition is axiomatized by

πab(x, y)↓
�

xy
� ρa∧b,a(x) = ρa∧b,b(y)

(though the ` direction is unnecessary, since it is implied by the other axioms). Its
characterizing condition is axiomatized by

πab(x, y)↓
�

xy
ρa,a∨b(πab(x, y)) = x ∧ ρb,a∨b(πab(x, y)) = y.

Finally, uniqueness is axiomatized by

> �

z:Xa∨b
z = πab(ρa,a∨b(z), ρb,a∨b(z)).

Because the theory of finitary sheaves is cartesian and extends the theory of presheaves,
the free partial model theorem shows us that each presheaf can be sheavified, at least
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finitarily. The usual sheavification, for the case where L is a frame (complete, with meet
distributing over arbitrary joins), requires infinitary pasting. The consequent need for
partial operators that are infinitary, and more seriously of unbounded arity, means that
the freeness theorem cannot be applied directly. Nonetheless, it encourages us to expect
general sheavification to exist, as indeed it does.

The lattice L can also be internalized: we can define a theory whose models are pairs
(L,F ) with F a finitary sheaf over L. For this we have a sort L with operators and laws
to make it a distributive lattice. A sort X represents the disjoint union of the Xas, and
is equipped with a total function p : X // L. Restriction is most conveniently given by
a total operation ρ : X × L // X, with ρ(x, a) representing x|(p(x) ∧ a), with axioms

> �
x:X

ρ(x, p(x)) = x

> �

x:X
ρ(x, a ∧ b) = ρ(ρ(x, a), b).

Then pasting π : X ×X // X has

π(x, y)↓ �

xy
� ρ(x, p(y)) = ρ(y, p(x)).

It is axiomatized by

p(π(x, y)) � (p(x) ∨ p(y))

ρ(π(x, y), p(x)) � x

ρ(π(x, y), p(y)) � y

p(z) = (a ∨ b) �

z:X,a,b:L
z = π(ρ(z, a), ρ(z, b)).

The cartesian nature of the theory of finitary sheaves is exploited in [Vig04] to inves-
tigate sheaves over stably locally compact locales.

7 Partial morphisms

We refer to [Joh02b] for basic results about partial morphisms in categories. In this
section we let C be a cartesian category. A partial morphism f from the object A to
the object B in C, in symbols f : A ⇁ B, is a pair (df ,mf ) where df : Df

// A is
a monomorphism in C, the domain of definition, and mf : Df

// B is an arbitrary
morphism in C. It extends another f ′ : A ⇁ B, in symbols f ′ ⊆ f , if there is a ϕ : Df ′

// Df with
df ◦ ϕ = df ′ mf ◦ ϕ = mf ′ .

Note that ϕ is necessarily a unique monomorphism. The relation ⊆ is clearly a preorder,
and in fact we make it a partial order on partial morphisms by defining equality of partial
morphisms to be the corresponding equivalence relation: f = f ′ iff f ′ ⊆ f and f ⊆ f ′.
Equivalently, f = f ′ iff f ′ ⊆ f with the corresponding ϕ : Df ′

// Df an isomorphism.
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Now let g = (dg,mg) be partial morphism from B to C. The (partial) composition
of g and f , denoted g � f , is by definition (dfp

1
mf ,dg

,mgp
2
mf ,dg

).

Df Bmf

//

P(mf ,dg)

Df

��

p
1
mf ,dg

��

P(mf ,dg) Dg

p
2
mf ,dg

// Dg

B

��

dg

��

Dg C
mg

//

Df

A

��

df

��

(19)

Then it is clear that as subobjects of A

dg�f ≤ df . (20)

Lemma 7.1 For f1, g1 : X ⇁ Y and f2, g2 : Y ⇁ Z with f1 ⊆ g1, f2 ⊆ g2,

f2 � f1 ⊆ g2 � g1.

Hence partial composition respects the defined equality. It is easily shown to be
associative. Note that any (total) morphism f : A // B can be regarded as a partial
morphism (1A, f) : A ⇁ B. The total identities for objects will also serve as identities
for partial composition.

If f1 : A ⇁ B1, . . . , fn : A ⇁ Bn are partial morphisms, let f = 〈f1, f2, . . . , fn〉p :
A ⇁ B1 × · · · ×Bn be

(p(df1 , . . . ,dfn), 〈mf1p
1
df1

,...,dfn
, . . . ,mfnpndf1

,...,dfn
〉B1,...,Bn).

The notation for binary pullbacks is extended here in an obvious way. For n > 2 we
make an arbitrary choice of the order in which binary pullbacks are iterated to construct
n-ary pullbacks. Then

df = df1 ∧ · · · ∧ dfn . (21)

Lemma 7.2 For fk, gk : X ⇁ Yk, with fk ⊆ gk for all k = 1, . . . , n

〈f1, . . . , fn〉p ⊆ 〈g1, . . . , gn〉p.

As a consequence of this lemma, the tupling operation respects equality of partial
functions. The restriction of f : X ⇁ Y to a subobject a : A � X, is the partial
morphism f |a = f � (a, a) : X ⇁ Y . Thus for g : Y ⇁ Z we have by associativity

(g � f)|a = g � (f |a).

Obviously (f |a) ⊆ f and d(f |a) = a ∧ df . The next lemma is also straightforward.
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Lemma 7.3 Suppose that f1 : Y ⇁ Z1, . . . , fn : Y ⇁ Zn and g : X ⇁ Y . Then

(i) 〈f1, . . . , fn〉p � g = 〈f1 � g, . . . , fn � g〉p|dg.

(ii) pk � 〈f1, . . . , fn〉p = fk|d〈f1,...,fn〉p

As a corollary of part (i) of the lemma, if a is a monomorphism with codomain Y then
we can take g to be the partial morphism (a, a) and obtain

〈f1, . . . , fn〉p|a = 〈f1|a, . . . , fn|a〉p|a.

The following notion will be useful. Consider partial morphisms f = (D, d,m) : X ⇁
Y and g = (E, e, n) : U ⇁ V , and morphisms k : U // X and h : V // Y . If there
is a morphism j : E // D so that both squares of

X Doo
d

oo

U

X

k

��

U Eoo e oo E

DD Ym
//

E

D

j

��

E V
n // V

Y

h

��
.

(22)

are pullback squares, then we call

X Y
f

/

U

X

k

��

U V
g

/ V

Y

h

��

a partial pullback square. It is clear that the partial morphisms f and g may be replaced
by equivalent partial morphisms, and it will remain a partial pullback square.

Example 7.4 An example of a partial pullback square is given by in diagram (22) letting
U = X×Z, E = D×Z, V = Y ×Z, e = d×1, n = m×1 and taking the vertical arrows
to be projections to the first coordinate. Denote the partial morphism g by f ×p 1Z .

8 Categorical semantics of partial Horn logic

The semantics of PHL is now generalised from the category of sets to an arbitrary
cartesian category C. We assume throughout that cartesian categories have canonical
terminal objects and pullbacks, and hence are models for the theory Cart. However,
a cartesian functor (a functor that preserves finite limits) does not have to preserve
canonicity. A cartesian functor is strict if it preserves canonical limits (i.e. if it is a
homomorphism for Cart).

A partial structure M for a signature Σ in C, assigns to each sort S, an object
M S in C, to each function symbol f : S1 · · ·Sn // S a partial morphism M (f) :

28



M(S1, . . . , Sn) ⇁ M(S) in C. Here M(S1, . . . , Sn) is some canonical choice of product
of the objects M(S1), . . . ,M(Sn). The interpretations of terms are now built up just
as in Section 3, see (8 — 11). Furthermore, to each relation symbol R � S1 · · ·Sn
a subobject M(R) of M(S1, . . . , Sn) is assigned. The identity relation symbol =S is
assigned the diagonal subobject ∆ : M(S) � M(S, S).

Depending on further properties of the category, it may be possible extend this
semantics to first order formulas over the signature Σ. To each formula ϕ with free
variables ~x = x1, . . . , xn, of sorts ~S = S1, . . . , Sn we assign a subobject [[~x.ϕ]]M of M(~S).
The sequent

ϕ1, . . . , ϕm
�
~x

ψ (23)

is valid in M , if the following inclusion of subobjects holds

[[~x.ϕ1]]M ∧ · · · ∧ [[~x.ϕm]]M ≤ [[~x.ψ]]M . (24)

From the algebraic properties of the semilattice of subobjects of a given object, the
identity rule (a1), the cut rule (a2) and the conjunctive rules (c1-4) are easily verified.
This is exactly as for standard Horn logic. The crucial difference is in the interpretation
of a predicate applied to a sequence of partial terms. Say that a subobject of Y is
represented by a monomorphism a : A � Y . The resulting subobject when substituting
a partial morphism f : X ⇁ Y into the subobject is represented by the monomorphism
dfp

1
mf ,a

.

Df Ymf

//

P(mf , a)

Df

��

p
1
mf ,a

��

P(mf , a) A
p
2
mf ,a

// A

Y

��

a

��

Df

X

��

df

��

Write f∼1(a), with a wavy minus sign, for this subobject. Note that

f∼1(a) ≤ df (25)

as subobjects of X, and that if a = 1Y : Y // Y , then f∼1(a) = df . If f is total (that
is, df is an isomorphism), then f∼1(a) coincides with the usual f−1(a) as subobjects of
X. Note that the f∼1(a) is also the domain of definition of the composition

â� f.

Here â = (a, !A) is the partial morphism Y ⇁ 1 corresponding to the mono a. The
following results are now easily checked directly.
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Lemma 8.1 For f, g : X ⇁ Y and monomorphisms a : A � Y , b : B � Y

(i) a ≤ b, f ⊆ g =⇒ f∼1(a) ≤ g∼1(b),

(ii) f∼1(a ∧ b) = f∼1(a) ∧ f∼1(b).

Lemma 8.2 For g : X ⇁ Y , f : Y ⇁ Z and monomorphisms a : A � Z, b : B // Y

(i) (f � g)∼1(a) = g∼1(f∼1(a)),

(ii) (f |b)∼1(a) = b ∧ f∼1(a).

Lemma 8.3 For f : X ⇁ Y ,

〈f, f〉∼1
p (∆Y ) = df = f∼1(1Y ),

as subobjects of X.

We now extend the usual interpretation of atomic formulae to allow also partial
terms. We fix a partial structure M for a signature Σ in a cartesian category. Write
simply [[·]] for [[·]]M in the remainder of this subsection.

Consider a predicate symbol R � S1 · · ·Sn and partial terms ~t = t1, . . . , tn suitable
for ~x and where σ(tk) = Sk. Then define

[[~x.R(~t )]] , [[~x.~t ]]∼1(M(R)) = 〈[[~x.t1]], . . . , [[~x.tn]]〉
∼1
p (M(R)),

and for t1, t2 : S
[[~x.t1 = t2]] , 〈[[~x.t1]], [[~x.t2]]〉

∼1
p (M(=S)).

Thus by Lemma 8.3
[[~x.t↓]] = [[~x.t = t]] = d[[~x.t]], (26)

and hence for t = xk this is isomorphic to 1M(σ(~x)). The reflexivity axiom (b1) is thereby
evident. The equality axiom (b2) follows by the validity of the rule for total terms, since
[[~z.xk]] and [[~z.yk]] are indeed total.

To prove the validity of the partial term substitution rule (a3) we first prove

Lemma 8.4 Let (~x.~s) and (~y.~t) be term tuples in context over Σ, where ~t is sort com-
patible with ~x. Then

[[~y.~s(~t/~x)]]|d[[~y.~t ]] = [[~x.~s]] � [[~y.~t ]]. (27)

Proof. Suppose for each component si of ~s, the result holds when ~s is replaced by si.
Then

[[~x.~s]] � [[~y.~t ]] = 〈. . . [[~x.si]] . . .〉p � [[~y.~t ]]

= 〈. . . [[~x.si]] � [[~y.~t ]] . . .〉p|d[[~y.~t ]]

= 〈. . . [[~x.si(~t/~x)]]|d[[~y.~t ]] . . .〉p|d[[~y.~t ]]

= 〈. . . [[~x.si(~t/~x)]] . . .〉p|d[[~y.~t ]]

= [[~y.~s(~t/~x)]]|d[[~y.~t ]]
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It remains only to use induction to show the case where ~s is of length 1, a single term
s. For s = xi, a variable, the righthand side of (27) is

[[~x.xi]] � [[~y.~t ]] = πi � 〈[[~y.t1]], . . . , [[~y.tn]]〉p

= [[~y.ti]]|d〈[[~y.t1]],...,[[~y.tn]]〉p

= [[~y.ti]]|d[[~y.~t ]]

= [[~y.xi(~t/~x)]]|d[[~y.~t ]]

Here Lemma 7.3 is used in the second step. For s = f(~r), the righthand side of (27) is

[[~x.f(~r)]] � [[~y.~t ]] = (M f) � [[~x.~r]] � [[~y.~t ]]

= (M f) � [[~y.~r(~t/~x)]]|d[[~y.~t ]]

= [[~y.f(~r)(~t/~x)]]|d[[~y.~t ]]

In this calculation, Lemma 7.3 and properties of the restriction operation have been
used. 2

Then

Lemma 8.5 Let ϕ be a conjunction of atomic Σ-formulae suitable for the context ~x,
and let ~t be terms over Σ suitable for ~y, and sort compatible with ~x. Then

[[~y.(~t↓) ∧ ϕ(~t/~x)]] = [[~y.~t ]]∼1([[~x.ϕ]]).

Proof. First note that

[[~y.(~t↓)]] = [[~y.t1 ↓]] ∧ . . . ∧ [[~y.tn ↓]]

= d[[~y.t1]] ∧ . . . ∧ d[[~y.tn]]

= d〈[[~y.t1]],...,[[~y.tn]]〉p

= d[[~y.~t]]

Now the proof is done by induction on ϕ.
Case ϕ = R(~s): By an earlier remark, [[~y.R(~s)(~t/~x)]] is the domain of definition of

M̂(R) � [[~y.~s(~t/~x)]], and hence

[[~y.(~t↓) ∧ ϕ(~t/~x)]] = d[[~y.~t]] ∧ [[~y.R(~s)(~t/~x)]]

is the domain of definition of

M̂(R) � [[~y.~s(~t/~x)]]|d[[~y.~t]] = M̂(R) � [[~y.~s]] � [[~y.~t]].

But this domain of definition is [[~y.~t ]]∼1([[~x.R(~s)]]).
Case ϕ = >: Employing properties of ∧, > and the equation (26) and Lemma 8.3

we get

[[~y.(~t↓) ∧>]] = d[[~y.~t]] ∧ [[>]]

= [[~y.~t ]]∼1([[~x.>]]).
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Case ϕ = ϕ1 ∧ ϕ2: Using the properties of ∧, the inductive hypotheses and Lemma
8.1.(ii) we compute as follows

[[~y.(~t↓) ∧ ϕ(~t/~x)]] = [[~y.(~t↓) ∧ ϕ1(~t/~x) ∧ ϕ2(~t/~x)]]

= [[~y.(~t↓) ∧ ϕ1(~t/~x)]] ∧ [[~y.(~t↓) ∧ ϕ2(~t/~x)]]

= [[~y.~t ]]∼1([[~x.ϕ1]]) ∧ [[~y.~t ]]∼1([[~x.ϕ2]])

= [[~y.~t ]]∼1([[~x.ϕ1]] ∧ [[~x.ϕ2]])

= [[~y.~t ]]∼1([[~x.ϕ1 ∧ ϕ2]]).

2

Using Lemma 8.5 the rule (a3) is now straightforward to check: if

[[~x.ϕ]] ≤ [[~x.ψ]],

then we get by Lemma 8.1.(i)

[[~y.~t ]]∼1([[~x.ϕ]]) ≤ [[~y.~t ]]∼1([[~x.ψ]]).

Applying Lemma 8.5 on both sides we obtain the first member of

[[~y.(~t↓) ∧ ϕ(~t/~x)]] ≤ [[~y.(~t↓) ∧ ψ(~t/~x)]] ≤ [[~y.ψ(~t/~x)]]

The axiom for strictness of predicates (b3) is verified thus:

[[~x.R(~t)]] = [[~x.~t]]∼1
p (M(R))

≤ d[[~x.~t]]

= d[[~x.t1]] ∧ · · · ∧ d[[~x.tn]]

≤ d[[~x.tk]]

= [[~x.tk ↓]].

The first inequality is (25), the following equality is (21) and the last equality is (26).
The verification of (b4) is similar, and could in fact be regarded a special case of the
above setting R to =S . The validity of strictness axiom for functions (b5) follows by
using (26) and then (20):

[[~x.f(t1, . . . , tn)↓]] = d[[~x.f(t1 ,...,tn)]]

= dM(f)�〈[[~x.t1]],...,[[~x.tn]]〉p

≤ d〈[[~x.t1]],...,[[~x.tn]]〉p

≤ [[~x.tk ↓]].

From the above verifications we conclude

Theorem 8.6 PHL is sound for the categorical semantics in any cartesian category. 2
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We shall prove that also partial intuitionistic first-order logic PFOL is sound for the
given semantics but in Heyting categories. It suffices to extend Lemma 8.5 to all first
order formulae in order to verify the partial term substitution rule. In fact, we can prove
soundness of subsystems of PFOL, corresponding to regular logic, and coherent logic as
well. Therefore we look at the different classes of categories: regular categories (cartesian
categories with images, which are stable under pullback), coherent categories (a regular
category with finite sums, such that all substitution functions f−1 preserve finite joins)
and Heyting categories (coherent categories in which each f−1 has a right adjoint). We
refer to [Joh02a] for further background, including the Frobenius and Beck-Chevalley
conditions.

Let C be a regular category. For a partial map f = (D, d,m) : X ⇁ Y , the partial
substitution operation f∼1 : Sub(Y ) // Sub(X) may be decomposed into an ordinary
substitution and extential quantifier

f∼1 = ∃d ◦m
−1,

where m−1 : Sub(Y ) // Sub(D) and ∃d : Sub(D) // Sub(X). The existential
quantifier ∃d quantifies over domains that have at most one element, since d is mono,
and indeed in this case

∃d([h]) = [d ◦ h] (28)

for any mono h.
Ordinary substitution commutes with all logical operations associated with regular,

coherent and Heyting categories respectively. This is naturally not the case with exis-
tential quantification, even of the special form above. However we have the following
useful results: Lemmas 8.7, 8.8 and 8.10.

Lemma 8.7 Let C be a regular category. For any monomorphism f : X // Y and
subobjects A and B of X:

(i) ∃f(>X) = [f ]

(ii) ∃f(A ∧B) = ∃f (A) ∧ ∃f (B)

(iii) ∃f(A) ≤ [f ]

(iv) f−1(∃f (A)) = A

(v) if ∃f (A) ≤ ∃f (B), then A ≤ B

Proof. Item (i) and (iii) follows directly from (28). The direction ≤ of (ii) is mono-
tonicity of ∃f . The reverse direction follows since if P is a pullback of fα and gα it
is also a pullback of α and β, whenever f is mono. The equation (iv) is true since for
monomorphisms α : A // X, the pullback of fα along f is α. The implication (vi)
follows using (28) and that f is mono. 2
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Lemma 8.8 In a regular category we have for morphisms with f ◦ g = h ◦ k that

∃f ◦ ∃g = ∃h ◦ ∃k.

Proof. Using (f ◦ g)−1 = g−1 ◦ f−1 and adjointness gives ∃f◦g = ∃f ◦ ∃g. From this the
result is immediate. 2

Lemma 8.9 Let C be a coherent category. For any partial f : X ⇁ Y and subobjects
A � Y and B � Y :

(i) f∼1(⊥Y ) = ⊥X

(ii) f∼1(A ∨B) = f∼1(A) ∨ f∼1(B).

Proof. Write f = (D, d,m), so that f∼1 = ∃d ◦m
−1. The following holds for any d : D

// X, and subobjects S � D and T � D, in a coherent category:

(i) ∃d(⊥D) = ⊥X

(ii) ∃d(S ∨ T ) = ∃d(S) ∨ ∃d(T ). 2

Combining this with the fact that m−1 commutes with finite joins in a coherent category
we obtain the result. 2

Lemma 8.10 Let C be a Heyting category.

(i) For any monomorphism f : X // Y and subobjects A � X and B � X:

[f ] ∧ (∃f (A) ⇒ ∃f (B)) = ∃f (A⇒ B).

(ii) For any pullback square, where f is mono,

V Y
k

//

U

V

��

g

��

U X
h // X

Y

��

f

��

and for any subobject A � U ,

[f ] ∧ ∀k(∃g(A)) = ∃f (∀h(A)).

(iii) For any partial morphism f : X ⇁ Y and subobjects A B of X:

df ∧ (f∼1(A) ⇒ f∼1(B)) = f∼1(A⇒ B).
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Proof. We subdivide the proof of (i) in two parts

(ia) ∃f(A⇒ B) ≤ ∃f (A) ⇒ ∃f(B)

(ib) [f ] ∧ (∃f (A) ⇒ ∃f (B)) ≤ ∃f(A⇒ B).

Since ∃f (A ⇒ B) ≤ [f ] by Lemma 8.7.(iii) this will suffice. The inequality (ia) follows
by applying ∃f to (A⇒ B) ∧A ≤ B and then using Lemma 8.7.(ii) and the adjunction
property for implication. Using Lemma 8.7.(i) and the Frobenius reciprocity we may
rewrite (ib) as

∃f (>X ∧ f−1(∃f (A) ⇒ ∃f (B))) ≤ ∃f (A⇒ B)

Using Lemma 8.7.(v) we see that this is equivalent to

f−1(∃f (A) ⇒ ∃f (B)) ≤ A⇒ B

Now distributing f−1 over the implication and using Lemma 8.7.(iv) we see that it is
equivalent to a tautology.

To prove (ii) we start from g−1(∃g(A)) = A in Lemma 8.7.(i) and apply ∀h to get

∀h(g
−1(∃g(A))) = ∀h(A).

The Beck-Chevalley property for the pullback square and intersection with > give

> ∧ f−1(∀k(∃g(A))) = ∀h(A).

Thus applying ∃f :
∃f (> ∧ f−1(∀k(∃g(A)))) = ∃f (∀h(A)).

Using Frobenius reciprocity and Lemma 8.7.(i) the lefthand side may be rewritten as
[f ] ∧ ∀k(∃g(A)) and the equality is proved.

To prove (iii), substitute df for f in (i) and use the fact that

f∼1(A) = ∃df
(m∗

f (A)).

m∗
f , which pulls back subobjects along mf , preserves ⇒. 2

Lemma 8.11 (Partial Beck-Chevalley) Let C be a regular category. Consider partial
morphisms f = (D, d,m) : X ⇁ Y and g = (E, e, n) : U ⇁ V in a partial pullback square

X Y
f

/

U

X

k

��

U V
g

/ V

Y

h

��

Then
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(i) f∼1 ◦ ∃h = ∃k ◦ g
∼1

(ii) if C is Heyting, then for any subobject A � V :

f∼1(∀h(A)) = [d] ∧ ∀k(g
∼1(A)).

Proof. Write the partial pullback square explicitly as

X Doo
d

oo

U

X

k

��

U Eoo e oo E

DD Ym
//

E

D

j

��

E V
n // V

Y

h

��
.

To prove (i) we calculate, applying first the usual Beck-Chevalley and then Lemma
8.8,

f∼1 ◦ ∃h = ∃d ◦m
−1 ◦ ∃h

= ∃d ◦ ∃j ◦ n
−1

= ∃k ◦ ∃e ◦ n
−1 = ∃k ◦ g

∼1.

As for (ii), assume C is a Heyting category and that A � V is any subobject. Lemma
8.10.(ii) and the ordinary Beck-Chevalley property now yield

[d] ∧ ∀k(g
∼1(A)) = [d] ∧ ∀k(∃e(n

−1(A)))

= ∃d(∀j(n
−1(A)))

= ∃d(m
−1(∀h(A)))

= f∼1(∀h(A))

2

Lemma 8.12 Let M be a partial Σ-structure in a cartesian category. Consider a vector
~t of terms over Σ suitable for the context ~y and let ~x be a context sort compatible with
~t. Let z be a variable neither in ~x nor in ~y. Then these term interpretations fits into a
partial pullback square:

M(σ(~y)) M(σ(~x))
[[~y.~t ]]

/

M(σ(~yz))

M(σ(~y))

p

��

M(σ(~yz)) M(σ(~xz))
[[~yz.~t,z]]

/ M(σ(~xz))

M(σ(~x))

q

��

Here p and q are the canonical projections.
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Proof. According to Example 7.4

M(σ(~y)) M(σ(~x))
[[~y.~t ]]

/

M(σ(~y)) ×M(σ(z))

M(σ(~y))

π1

��

M(σ(~y)) ×M(σ(z)) M(σ(~x)) ×M(σ(z))
[[~y.~t ]]×p1

/ M(σ(~x)) ×M(σ(z))

M(σ(~x))

π1

��

is a partial pullback square. Composing the upper partial arrow with the canonical
isomorphisms M(σ(~yz)) ∼= M(σ(~y)) ×M(σ(z)) and M(σ(~x)) ×M(σ(z)) ∼= M(σ(~yz))
we get [[~yz.~tz]] (using Lemma 8.4) and the desired partial pullback square. 2

Lemma 8.13 Let C be a cartesian category. Let M be a partial Σ-structure in C, and
write [[·]] for [[·]]M . Consider a first-order Σ-formulae ϕ suitable for the context ~x, and ~t
terms over Σ suitable for the context ~y, and sort compatible with ~x. Then

[[~y.(~t↓) ∧ ϕ(~t/~x)]] = [[~y.~t ]]∼1([[~x.ϕ]]), (29)

if

(i) ϕ is a regular formula and C regular, or

(ii) ϕ is a coherent formula and C coherent, or

(iii) ϕ is a first-order formula and C Heyting.

Proof. The proof goes by induction on the formula ϕ. In Lemma 8.5 we already dealt
with the atomic cases and the conjunctive case.

Part (i). For a regular ϕ and regular category C we need to check the ∃-case.
Case ϕ = (∃z ∈ V )ψ: We may assume that z is not in ~x or ~y. Let p be the

projection of M(σ(~yz)) on M(σ(~y)), q the projection of M(σ(~xz)) on M(σ(~x)). We
write ϕ(~t/~x) = (∃z ∈ V )ψ(~t/~x) = (∃z ∈ V )ψ(~t, z/~x, z) and calculate

[[~y.(~t↓) ∧ (∃z ∈ V )ψ(~t, z/~x, z)]] = [[~y.~t↓]] ∧ [[~y.(∃z ∈ V )ψ(~t, z/~x, z)]]

= [[~y.~t↓]] ∧ ∃p([[~yz.ψ(~t, z/~x, z)]])

= ∃p(p
−1([[~y.~t↓]]) ∧ [[~yz.ψ(~t, z/~x, z)]])

= ∃p([[~yz.~t↓ ∧ z ↓]] ∧ [[~yz.ψ(~t, z/~x, z)]])

= ∃p([[~yz.~t↓ ∧ z ↓ ∧ ψ(~t, z/~x, z)]])

= ∃p([[~yz.~t, z]]
∼1([[~xz.ψ]]))

= [[~y.~t ]]∼1(∃q([[~xz.ψ]]))

= [[~y.~t ]]∼1[[~x.(∃z ∈ V )ψ]])
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The third member is the Frobenius reciprocity. The sixth is the inductive hypothesis.
The seventh member is Lemma 8.11.(i) using the partial pullback square of Lemma 8.12.

Part (ii). For coherent ϕ and coherent C there are in addition cases for ⊥, ∨:
Case ϕ = ⊥: [[~y.(~t↓) ∧ ⊥]] = ⊥ = [[~y.~t ]]∼1(⊥) = [[~y.~t ]]∼1([[~x.⊥]]). Here the second

member follows from Lemma 8.9.(i).
Case ϕ = ϕ1 ∨ ϕ2: This case follows using Lemma 8.9.(ii), the inductive hypothesis,

and distributivity of the lattice of subobjects.

[[~y.(~t↓) ∧ (ϕ1 ∨ ϕ2)(~t/~x)]] = [[~y.~t↓]] ∧ ([[~y.ϕ1(~t/~x]] ∨ [[~y.ϕ2(~t/~x)]])

= ([[~y.~t↓]] ∧ [[~y.ϕ1(~t/~x)]]) ∨ ([[~y.~t↓]] ∧ [[~y.ϕ2(~t/~x)]])

= ([[~y.(~t↓) ∧ ϕ1(~t/~x)]]) ∨ ([[~y.(~t↓) ∧ ϕ2(~t/~x)]])

= [[~y.~t ]]∼1([[~x.ϕ1]]) ∨ [[~y.~t ]]∼1([[~x.ϕ2]])

= [[~y.~t ]]∼1([[~x.ϕ1]] ∨ [[~x.ϕ2]])

= [[~y.~t ]]∼1([[~x.ϕ1 ∨ ϕ2]]).

Part (iii). Finally, for a general ϕ and Heyting category C there are the additional cases
for ∀ and ⇒.

Case ϕ = (∀z ∈ V )ψ: Let p and q be the same projections as in the existential case.

[[~y.~t↓ ∧ (∀z ∈ V )ψ(~t, z/~x, z)]] = [[~y.~t↓]] ∧ [[~y.(∀z ∈ V )ψ(~t, z/~x, z)]]

= [[~y.~t↓]] ∧ ∀p([[~yz.ψ(~t, z/~x, z)]])

= [[~y.~t↓]] ∧ ([[~y.~t↓]] ∧ ∀p([[~yz.ψ(~t, z/~x, z)]]))

= [[~y.~t↓]] ∧ ∀p(p
−1([[~y.~t↓]]) ∧ [[~yz.ψ(~t, z/~x, z)]])

= d[[~y.~t ]] ∧ ∀p([[~yz.(~t↓ ∧ z ↓) ∧ ψ(~t, z/~x, z)]])

= d[[~y.~t ]] ∧ ∀p([[~yz.~tz]]
∼1([[~xz.ψ]]))

= [[~y.~t ]]∼1(∀q([[~xz.ψ]]))

= [[~y.~t ]]∼1([[~x.(∀z ∈ V )ψ]])

In the fourth member, ≤ is the law A ∧ ∀p(B) ≤ ∀p(p
−1(A) ∧B), and ≥ is monotonicty

of ∀p. The sixth member is the inductive hypothesis. The seventh member is Lemma
8.11.(ii) using the partial pullback square of Lemma 8.12.

Case ϕ = ϕ1 ⇒ ϕ2: This case follows using Lemma 8.9.(ii), the inductive hypothesis,
and distributivity of the lattice of subobjects.

[[~y.(~t↓) ∧ (ϕ1 ⇒ ϕ2)(~t/~x)]] = [[~y.~t↓]] ∧ ([[~y.ϕ1(~t/~x)]] ⇒ [[~y.ϕ2(~t/~x)]])

= [[~y.~t↓]] ∧ (([[~y.~t↓]] ∧ [[~y.ϕ1(~t/~x)]]) ⇒ ([[~y.~t↓]] ∧ [[~y.ϕ2(~t/~x)]]))

= d[[~y.~t ]] ∧ ([[~y.~t ]]∼1[[~x.ϕ1]] ⇒ [[~y.~t ]]∼1[[~x.ϕ2]])

= [[~y.~t ]]∼1([[~x.ϕ1]] ⇒ [[~x.ϕ2]])

= [[~y.~t ]]∼1([[~x.ϕ1 ⇒ ϕ2]]).

The fourth step of this uses part (iii) of Lemma 8.10. 2
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8.1 Homomorphisms

Suppose T is a quasi-equational theory, C a cartesian category, and M and N models
of T in C. Then the notion of homomorphism between M and N will be defined in the
obvious way.

Some simple category theory helps the discussion of homomorphisms.
Let C and D be categories, with C cartesian. Then the functor category [D, C] is

cartesian. (See [Joh02a, A 1.2.1].) We shall use this in the particular case where D is the
category ~2, with two objects and one non-identity morphism between them. Then [~2, C]
is the arrow category for C, whose objects are morphisms in C and whose morphisms are
commutative squares.

Proposition 8.14 There is a bijection between –

• triples (M,α,N) where M and N are models of T in C and α : M // N is a
homomorphism, and

• models of T in [~2, C].

Proof. The bijection is obvious for partial structures. Next, Proposition 3.9 generalizes
to this categorical setting and this enables us to conclude that the bijection between
partial structures restricts to models. 2

We shall also use later the fact that if D is another cartesian category, then a cartesian
functor D // [~2, C] is equivalent to a pair of cartesian functors D // C with a natural
transformation between them.

8.2 Cartesian categories equipped with models

In this subsection we show how the categorical semantics is itself quasi-equational. More
precisely, if T is a quasi-equational theory then we can form another quasi-equational
theory whose models are cartesian categories equipped with models of T. For this, we
introduce the notation Cart$T, where $ is intended to be pronounced “with”.

We first discuss some structure of the theory Cart.
An arrow d is monic iff, in its kernel pair

d
//

q

��

p
//

d

��

the two projections p and q are equal. Hence monicity can be described by a formula in
context d.Mon, where d is of sort arr. in Cart,

Mon , p1
d,d = p2

d,d

39



Then partial morphisms can be described by a formula d,m.pArr (m also of sort arr),

pArr , Mon ∧ d(d) = d(m)

We shall use such formulae in a shorthand for describing functions and axioms. For
instance, a “constant a of type pArr” is a pair of constants ad and am, with an axiom

� pArr(ad, am/d,m)

We can talk about partial morphisms in the obvious way. For instance, each partial
morphism (d,m) has a domain (the codomain of d), a codomain (the codomain of m)
and a domain of definition (the common domain of d and m).

Let T have sets Sort, Fun and Ax of sorts, function symbols and axioms. These
come with additional structure. The domains and codomains of the function symbols
are expressed by functions

dom : Fun // Sort∗

cod : Fun // Sort

where Sort∗ is the set of finite lists over Sort.
From these can be constructed the set TT of term tuples in context, modulo renaming

of variables. (It is clear that the variables in a context are just a device for labelling
components in a product of sorts, so their names are inessential.) We have domain and
codomain functions

dom, cod : TT // Sort∗.

Finally we have a set Form of equation sequences – in other words, the formulae. These
are the pairs of term tuples (~t1,~t2) with common domain (for the context) and codomain
(for the number and sorts of the component equations). Again, each equation sequence
has a domain and codomain.

Now the structure of the axiom set Ax is given by two functions for premiss and
conclusion,

prem, conc : Ax // Form

such that for each axiom a in Ax,

dom(prem(a)) = dom(conc(a))

(for the context of the axiom).

Remark 8.15 It is possible to formalize a type theory whose models are quasi-equational
theories. It will not be a theory in finitary first-order logic because of its use of list types
such as Sort∗. However, it is possible to formalize it as a geometric theory, using infini-
tary disjunctions [Joh02b], because the type constructions required can be characterized
using geometric structure and axioms [Vic99].
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We now turn to our description of Cart$T.
First, its only sorts are obj and arr. In addition, it has all the functions and axioms

of Cart.
Next, for each S ∈ Sort there is a constant γS of sort obj. Since products of objects

can be constructed with Cart, we can now find for each sequence ~S ∈ Sort∗ a term ().γ
~S

representing the product of the components γSi .
Next, for each f ∈ Fun there is a constant γf of type pArr – that is to say, as

described above, constants γfd and γfm of sort arr with an axiom

� pArr(γfd , γ
f
m/d,m).

If dom(f) = ~S and cod(f) = T then we also have axioms

� c(γfd ) = γ
~S ,

� c(γfm) = γT .

Now for each ~t ∈ TT, the categorical semantics provides corresponding terms in con-
text ().γ~td and ().γ~tm for the partial morphism corresponding to ~t. Also, for each formula
in context ϕ ∈ Form it provides a term in context ().γϕ for the monic corresponding to
ϕ.

Next, for each a ∈ Ax there is a constant γa to represent the monic showing that the
premiss ϕ is a subset of the conclusion ψ. It has a single axiom

� γϕ = γψ ◦ γa.

That completes the description of Cart$T. Since it includes Cart, every model
certainly reduces to a cartesian category C. But the extra constants and axioms just
specify a model of T in C.

9 Quasi-equational theories are equivalent to cartesian the-

ories

It is well known that total function symbols can be eliminated in favour of predicates. It
is done by introducing, for each function symbol f : ~A // B, a predicate Γf � ~A,B.

This is constrained by an axiom Γf (~x, y)
�

~x,y
� y = f(~x) to represent the graph of f . Then

a graph formula ~z, w.Γt can be defined for every term in context (~z.t), with provably

Γt
�

~z,w
� w = t. In particular, suppose t is f(~s) with ~s compatible with ~x. Then Γt is

(∃~x)(Γf (~x,w) ∧
∧
iΓsi

(xi/w)).

Then each formula in context (~x.ϕ) has a provably equivalent version (~x.Γϕ) using graphs
instead of terms.

We now find that the original theory is equivalent to one with –
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• the original sorts and predicates,

• the graph predicates Γf ,

• functionhood axioms for each Γf (single-valuedness and totality),

• axioms Γϕ
�

~x
Γψ for each original axiom ϕ �

~x
ψ.

The same can be done with partial function symbols, the only difference being that
we do not introduce totality axioms for the graph predicates. It follows that our partial
interpretation of function symbols brings no change in expressive power of theories when
predicate symbols are available.

It is not hard to see that the above argument works in the presence of regular logic,
which has >, ∧, = and ∃ with their usual rules, together with the Frobenius rule

ϕ ∧ (∃y)ψ �
~x

(∃y)(ϕ ∧ ψ).

However, it also works for cartesian logic (see [Joh02b, D 1.3.4]), in which witnesses for
existential quantifications are required to be provably unique.

Definition 9.1 Let T be a first-order theory. The formulae in context that are cartesian
relative to T are those that can be constructed using atomic formulae R(~s), equations s =
t, conjunctions > and ∧, and provably unique existential quantification in the following
way. Let (~x, y.ϕ) be cartesian relative to T, and suppose from T it can be proved that

ϕ ∧ ϕ(y′/y) �

~x,y,y′

y = y′.

Then (~x.(∃y)ϕ) is cartesian relative to T.

Definition 9.2 A regular theory T is cartesian if there is some well-founded partial

ordering of its axioms such that in each axiom ϕ �
~x

ψ, the formulae ϕ and ψ are
cartesian relative to the axioms that precede it in the ordering.

It is easy to check that when you eliminate partial function symbols in favour of
predicates, the formulae introduced are all cartesian. Hence if the original theory was
cartesian, so is the new one.

The importance of cartesian theories lies in the fact that their logic is embodied in
the categorical structure of cartesian categories. This is obscured by the way they are
defined using ∃, which is not interpreted directly in all cartesian categories – in general it
requires image factorization. Nonetheless, a simple lemma shows that cartesian formulae
are interpretable.

This excursion via regular logic makes cartesian theories slightly difficult to deal with.
One of the advantages of our quasi-equational theories is that they provide a more direct
way to handle cartesian theories, with a logic whose notation can be interpreted in full
in cartesian categories.
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In fact, quasi-equational theories are equivalent to cartesian theories. We already
know how to eliminate the partial function symbols in favour of predicates and cartesian
axioms. The reverse can also be done, with predicates eliminated in favour of partial
function symbols, and in Section 9.4 we shall show how to do this explicitly. Meanwhile,
we give a more theoretical treatment.

[Joh02b, D 1.4.8] shows that, up to equivalence of model categories, cartesian theo-
ries are ‘the same thing as’ small cartesian categories. What this really means is that
cartesian theories are a scheme for presenting cartesian categories – of course, quite dif-
ferent theories may present equivalent categories. The basis for the assertion essentially
comprises two parts. First, Theorem D 1.4.7 shows that any cartesian theory T has a
syntactic category CT, a cartesian category characterized by

Cart(CT,D) ' T-Mod(D)

for any cartesian category D. This is the cartesian category “presented by” T, which
appears in CT as a generic model. Next, Example D 1.4.8 shows that for any small
cartesian category C there is a cartesian theory Th(C) such that

Cart(C,D) ' Th(C)- Mod(D)

for any cartesian category D. It follows that C ' CTh(C). Two theories T and T′ are said
to be Morita equivalent if their syntactic categories are equivalent.

As ways of discussing the theories, both forms have their drawbacks. The definition
of cartesian theory (using existential quantification but only where it is provably unique)
is slightly awkward, and in practice the entire syntactic category is too complex to deal
with. Our aim now is to show that quasi-equational theories also are ‘the same thing as’
small cartesian categories. It follows that cartesian theories can always be replaced by
quasi-equational theories. For many purposes the quasi-equational theories are a simple
and convenient mode of presentation, and this has already been demonstrated in the free
construction, Section 5.

Our proof is in two parts, just as in [Joh02b]. First we show how to construct a
syntactic category CT for each quasi-equational theory T, and then we show how to
construct a quasi-equational theory Th(C) for each cartesian category C.

9.1 Classifying categories for quasi-equational theories

Our purpose in this section is to show that for each quasi-equational theory T there is a
classifying category CT. This is a cartesian category that is freely generated by a generic
model MT of T. What this means technically is that for any cartesian category D, there
is a bijection between models of T in D and strict cartesian functors from CT to D.

For the rest of this subsection, we fix a quasi-equational theory T.

Definition 9.3 We write (CT,MT) for the term model for Cart$T.
The cartesian category CT, its reduct to Cart, is called the classifying category for T,

and MT, the model of T with which CT is equipped, is the generic model of T.
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Theorem 9.4 For any cartesian category D, there is an isomorphism of categories be-
tween T-PMod(D) and StrCart(CT,D) (the category of strict cartesian functors).

Proof. Suppose M is a model of T in D. Then (D,M) is a model of Cart$T and
so there is a unique homomorphism (CT,MT) // (D,M). In other words, there is a
unique strict cartesian functor

FM : CT
// D

that maps MT to M .
On the other hand, any strict cartesian functor F : CT

// D maps MT to a model
M in D and is the unique such F . Hence, there is a bijection between models M and
strict cartesian functors F .

We must still prove functoriality. By Proposition 8.14, a homomorphism α between
models in C is the same as a model in [~2,D], and hence corresponds to a strict cartesian
functor CT

// [~2,D]. This in turn corresponds to a natural transformation between
two strict cartesian functors from CT to D. One can then check the details to show that
identities and composition are preserved. 2

We shall also prove a version that relaxes the strictness and has equivalence of the
categories. We first prove a lemma.

Lemma 9.5 Let F,G : CT
// D be two cartesian functors. Then for each homomor-

phism α : F (MT) // G(MT) there is a unique natural transformation α′ : F // G
whose restriction to MT is α.

If α is an isomorphism, then α′ is a natural isomorphism.

Proof. Let E be a category defined as follows. Its objects are pairs (A, u) where A is
an object in CT and u : F (A) // G(A) in D. A morphism from (A, u) to (B, v) is a
morphism f : A // B in CT such that this square commutes.

G(A) G(B)
G(f)

//

F (A)

G(A)

u

��

F (A) F (B)
F (f)

// F (B)

G(B)

v

��

One can show that E is cartesian, with canonical limits determined by the canonical
limits in CT. (In fact, D doesn’t need canonical limits here.) Let P : E // CT be the
strict cartesian functor that, on each object (A, u), forgets u.

We now find a series of bijective correspondences. Homomorphisms α : F (MT)
// G(MT) correspond to T-models M in E such that P (M) = MT. Then by Theorem

9.4 these correspond to strict cartesian functors K : CT
// E such that P ◦ K = Id,

and these correspond to natural transformations from F to G.
If we consider a further cartesian functor H : CT

// D, then it is clear that the
process of restricting natural transformations to give model homomorphisms preserves
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composition and identities, and so the inverse process does the same. From this we
deduce the statement about isomorphisms. 2

Theorem 9.6 For any cartesian category D, there is an equivalence of categories be-
tween T-PMod(D) and Cart(CT,D).

Proof. StrCart(CT,D) is a full subcategory of Cart(CT,D) isomorphic to T-PMod(D).
Hence we already have a functor

Φ : T-PMod(D) // StrCart(CT,D) // Cart(CT,D)

Any cartesian functor F : CT
// D gives a model F (MT) in D, and this gives us a

functor
Ψ : Cart(CT,D) // T-PMod(D)

From our work on the strict cartesian functors, Ψ ◦ Φ is the identity on T-PMod(D). It
remains only to show that if F : CT

// D is cartesian, then it is naturally isomorphic
to the strict cartesian functor corresponding to F (MT), but this follows from the lemma.
2

Our classifying category plays exactly the same role as the syntactic categories of
[Joh02b, D 1.4]. The only reason we do not call it a syntactic category is that it is not
built from the logical syntax – although its construction as a term model is extremely
syntactic. The phrase “classifying category” is by analogy with the classifying topos, in
which the generic model generates the rest of the category by finite limits and small
colimits.

Syntactic categories for quasi-equational theories can be constructed using exactly
the same techniques as in [Joh02b]. However, it is then harder to get such close control
over the strict cartesian functors and their universal characterization uses equivalence of
categories (as in Theorem 9.6) rather than isomorphism (Theorem 9.4). Of course, the
universal characterizations are sufficient to show that the syntactic category is equivalent
to our classifying category.

We conjecture that our technique using the free partial model theorem can also be
applied to give analogues of other syntactic categories. Note that the technique eliminates
the need for induction on structure of formulae and proofs. The induction is encapsulated
in the free partial model theorem.

9.2 Quasi-equational theories for cartesian categories

Let C be a (small) cartesian category. We define a quasi-equational theory Th(C) for it
as follows.

For each object A of C, there is a sort Ā.
For each partial morphism f = (df ,mf ) : A ⇁ B in C, there is a corresponding

function symbol f̄ : Ā // B̄, with axioms as follows.
For morphisms f : A // B (represented as a partial morphism (IdA, f)) and g : B
// C we have totality and functoriality axioms
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(t) > �
x:Ā

f̄(x)↓

(f1) > �
x:Ā

x = IdA(x)

(f2) > �
x:Ā

ḡ(f̄(x)) = g ◦ f(x).

Now suppose d : A // B is a monomorphism. Let us write d̃ for the partial
morphism (d, IdA) : B ⇁ A, and ď for (IdA, d). We introduce axioms

(m1) > �

x:Ā
d̃( ¯̌d(x)) = x

(m2) d̃(y)↓ �

y:B̄ ¯̌d(d̃(y)) = y.

Next, for each partial morphism f = (df ,mf ) : A ⇁ B we introduce axioms

(pm1) f̄(x)↓ �

x:Ā
� d̃f (x)↓

(pm2) f̄(x) � m̄f (d̃f (x)).

For each terminal object A in C, there is a constant symbol uA : Ā, with axioms as
in Proposition 3.6 constraining Ā to be a terminal object.

For each pullback square P

C Ag
//

D

C

q

��

D B
p

// B

A

f

��

in C there is a function symbol rP : B̄, C̄ // D̄ with axioms

(pb1) rP (x, y)↓ �

x:B̄,y:C̄
� f̄(x) = ḡ(y),

(pb2) p̄(rP (x, y)) � x,

(pb3) q̄(rP (x, y)) � y,

(pb4) z � rP (p̄(z), q̄(z)).

There is an obvious canonical interpretation of the signature of Th(C) in C, inter-
preting Ā and f̄ as A and f .

Lemma 9.7 This canonical interpretation is a model M0 of Th(C) in C.
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Proof. It is routine to check the categorical meanings of the axioms. 2

In [Joh02b, D 1.4.8] there is an analogous construction of a cartesian theory corre-
sponding to the cartesian category C. That in effect introduces function symbols f̄ for
total f (i.e. morphisms rather than partial morphisms), and in fact a similar construction
would serve our immediate purpose (Proposition 9.9). We use a more elaborate theory,
with function symbols corresponding to all partial morphisms, in order that models in
C can correspond to theory morphisms to Th(C). This will be used (Theorem 9.11) to
prove a generalization of the intial model theorem.

Axioms (t), (f1) and (f2) serve to enforce functoriality on the morphisms and then
the terminal object axioms and axioms (pb1)-(pb4) enforce cartesianness. (However,
we do not know how to enforce strict cartesianness in a similar way.) The remaining
axioms serve to define the interpretation of symbols f̄ for partial morphisms f in terms
of the interpretation for morphisms. Axioms (m1) and (m2) deal with the case where
f = (d, Id) for a monomorphism d, and axioms (pm1) and (pm2) then deal with the
general case.

Lemma 9.8 Let D be a cartesian category, and let f : A ⇁ B and g : B ⇁ A be two
partial morphisms satisfying conditions corresponding to axioms (m1) and (m2), with ¯̌d

and d̃ interpreted as f and g respectively. Then there is a unique monic d : A // B
such that f = (IdA, d) and g = (d, IdA).

Proof. Suppose f = (df ,mf ) and g = (dg,mg). Let there be a pullback square

Dg B
dg

//Dg

m′

f

��

Df

d′

g
// Df

B

mf

��

The composite g � f is then (df ◦ d′
g,mg ◦ m′

f ). Axiom (m1) tells us that this is equal
to (Id, Id), hence df and d′

g are both isomorphisms. Hence without loss of generality we
can assume df = d′

g = IdA, so mf = dg ◦ m′
f and mg ◦ m′

f = IdA.
The composite f�g is (dg,mf ◦mg), and the second axiom tells us that mf ◦mg = dg.

Hence dg = dg ◦m′
f ◦dmg, so dg monic implies m′

f ◦dmg = Id, so m′
f is an isomorphism.

Hence
g = (dg ◦ m′

f ,mg ◦ m′
f ) = (mf , IdA).

2

Proposition 9.9 Let D be a cartesian category. Then Cart(C,D) ∼= Th(C)-PMod(D).
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Proof. If F : C // D is a cartesian functor, then for any quasi-equational theory F
transforms partial models in C to partial models in D. Hence F (M0) is a partial model
of Th(C) in D. Moreover, this is functorial — any natural transformation between two
cartesian functors gives a homomorphism between the corresponding partial models.

Now suppose M is a partial model of Th(C) in D. We define a cartesian functor
FM : C // D as follows. For each object A of C, FM (A) = M Ā. Now suppose f : A

// B is a morphism in C. In D we have a partial morphism M f̄ : M Ā // M B̄, but
by axiom (t) this is total and can be expressed in the form (IdM Ā, FM (f)) for a unique
morphism FM (f) : M Ā // M B̄. Axioms (f1) and (f2) tell us that FM is a functor,
and the axioms for terminal objects, and (pb1) and (pb2), tell us that it is cartesian
(though not necessarily strict). The transformation from M to FM is functorial.

We show that M = FM (M0).

FM (M0) Ā = FM (M0 Ā) = FM (A) = M Ā

Now suppose f = (d,m) : A ⇁ B in C. By (pm1) and (pm2), and using Lemma 9.8,

M f̄ = M m̄ ◦M d̃

= (IdD, FM (m)) � (FM (d), IdA)

= (FM (d), FM (m))

= FM (M0 f̄) = FM (M0) f̄ .

Finally, if F : C // D is cartesian, we must show that FF (M0) = F . They clearly
agree on objects, and if f : A // B in C then F (M0) f̄ = (IdF (A), F (f)) and so
FF (M0)(f) = F (f). 2

9.3 Generalized theory morphisms

Our definitions (Section 5) of signature morphism and theory morphism were completely
bound to the syntax: they transformed sorts to sort, function symbols to function sym-
bols and so on. One important role of the classifying category is to provide a presentation-
independent form of the theory, in which the objects and morphisms are understood as
derived sorts and functions.

Suppose T and T′ are two quasi-equational theories, and suppose we have a uniform
method, applicable in any cartesian category, that transforms partial models of T ′ into
partial models of T. In particular, we can apply the method to the generic model of T ′

to obtain a partial model of T in C ′
T
.

On the other hand, given such a model, we can exploit the equivalence between
partial models and strict cartesian functors out of the classifying category. Then (see
below) composition of the functors provides a uniform method of transforming partial
models of T′ into partial models of CT.

Definition 9.10 Let T and T′ be two quasi-equational theories. A generalized theory
morphism from T to T′ is a model of T in CT′ .
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If M is a generalized theory morphism from T to T′, then for any cartesian category
D we get a forgetful functor

UM : T′-PMod(D) // T-PMod(D)

It is such that if M corresponds to F : CT
// CT′ and a partial model N of T′ in D

corrsponds to G : CT′
// D, then UM (N) corresponds to G ◦ F .

In terms of non-strict cartesian functors, suppose G : CT′
// D is cartesian. Its

corresponding partial model of T′ in D is G(MT′). Applying UM to this gives (G ◦
F )(MT) = G(M).

We can now generalize the Free Partial Model Theorem (5.4). As before, we prove it
only for models in Set. It is not true for models in a cartesian category in general, since
the cartesian structure is not enough to construct the free models.

Theorem 9.11 Let T and T′ be quasi-equational theories and let M : T // T′ be a
generalized theory morphism. Then the forgetful functor UM : T′-PMod // T-PMod
has a left adjoint.

Proof. First, note that the original Free Partial Model Theorem easily allows for a mild
generalization of theory morphism. Let Σ and Σ′ be the signatures of T and T′, and let

ρ : Σ // Σ′ be a signature morphism. Suppose that for each axiom ϕ �
~x: ~A

ψ of T, the

ρ-translation ϕρ �
~x: ~Aρ

ψρ is a consequence of the axioms of T′. (Previously it had to be
one of the axioms.) If T′′ is defined to be T′ with the addition of all these ρ-translations
as axioms, then clearly T′′-PMod is equal to T′-PMod, and ρ is a theory morphism from
T to T′′.

Now consider a generalized theory morphism M . This gives a signature morphism ρ
from Σ to the signature of Th(CT′). By completeness, if a sequent is valid in the classifying
category then it is derivable, so ρ is a theory morphism in the mildly generalized sense
described above. It follows that

Uρ : T′-PMod // T-PMod

has a left adjoint. We have an isomorphism

Cart(CT′ ,Set) ∼= Th(CT′)-PMod(Set)

and an equivalence
Cart(CT′ ,Set) ' T′-PMod(Set)

it suffices to show that UM and Uρ act in the same way modulo the equivalence. Let
G : CT′

// Set be cartesian. An easy calculation shows that its images in T-PMod(Set)
via UM and via Uρ are both G(M).

We have glossed over the fact that Set is not a small category, but it can always be
replaced by a small subcategory in these calculations. 2
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9.4 Practical conversions

The proof of the equivalence between quasi-equational theories and cartesian theories,
with its explicit use of a classifying category, gives some insight into the theory but is
not very useful in practice when one wants to convert from one form to another. We
now give an alternative proof that shows an explicit conversion.

Theorem 9.12 Let T be a cartesian theory. Then there is an equivalent quasi-equational
theory.

Proof. We show how to construct a quasi-equational theory T′ and axioms U over
the union of the signatures for T and T′ so that T∪T′∪U is equivalent to both T and to
T′. The basic idea is similar to that of Proposition 3.6, but some extra work is needed
for the unique existential quantification.

T′ is constructed as follows.
First, T′ has the sorts and function symbols of T.
Second, give T′ a new sort U with constant u and axioms as in the proof of Proposition

3.6.
Third, for each predicate symbol R � ~S in T, T′ has a (partial) function symbol

fR : ~S // U . The only axioms of U are corresponding axioms

fR(~x)↓ �
~x

� R(~x), (30)

which define each of R and fR in terms of the other.
Now for each cartesian formula or subformula (~x.ϕ) in the axioms of T, we define a

formula ϕ◦ in T′ in the same context as follows.

• (s = t)◦ ≡ (s = t)

• R(~t)◦ ≡ fR(~t)↓

• >◦ ≡ >

• (ϕ ∧ ψ)◦ ≡ (ϕ◦ ∧ ψ◦)

Now suppose ϕ is a unique existential quantification (∃!y)ψ where ψ is in context
~x, y. Then we give T′ a new function symbol Wψ : σ(~x) // σ(y) (the witness function)
and an axiom

Wψ(~x) = y �

~x,y
� ψ◦, (31)

which defines Wψ in terms of previous ingredients of T′. Note that it is the cartesianness,
the uniqueness of the existential quantification, that guarantees that in any model of T

there is such a partial function Wψ. This is essential in showing that T is equivalent to
T ∪ T′ ∪ U. We define

((∃!y)ψ)◦ ≡Wψ(~x)↓.
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Now for each axiom ϕ �
~x

ψ in T, we give T′ an axiom

ϕ◦ �

~x
ψ◦. (32)

The main property needed is that

ϕ◦ �
~x

� ϕ (33)

should be PHL provable from T∪T′∪U. This is used in two directions. First, suppose we
are given a model of T. Then one shows by induction on the axioms and their subformulae
that the symbols of T′ can be interpreted in a unique way that validates the axioms of
T′ (except for (32)) and U. The induction also proves that property (33) holds, and this
validates axiom (32), completing the proof that we have a model of T ∪ T′ ∪ U. Next
suppose we are given a model of T′. The predicates of T can be interpreted uniquely in
accordance with Axiom (30) of U, and then by induction one can show the other axioms
of U, property (33), and the axioms of T. 2

9.5 Essentially algebraic theories

Essentially algebraic theories were introduced in [Fre72]. From our point of view, they
are best defined as follows.

Definition 9.13 A quasi-equational theory is essentially algebraic if

1. the set of function symbols has a well-founded partial order;

2. for each function symbol f : ~A // B, there is an axiom

f(~x)↓ �

~x
� ~s = ~t,

where ~s and ~t, term sequences in context ~x, are constructed from function symbols
preceding f in the ordering; and

3. all other axioms are of the form s � t.

In other words, each function symbol comes with an equational characterization of
its domain of definition, and the other axioms can be expressed as equations under the
interpretation that the equation holds if both sides are defined. For an example, see the
theory of cartesian categories in Section 6.1.

By definition, every essentially algebraic theory is quasi-equational. For the converse,
we work via cartesian categories C. Recall the theory Th(C) of Subsection 9.2, and
consider a subtheory Th′(C) that has operators f̄ only for total morphisms f , and omits
the axioms (m1), (m2), (pm1) and (pm2). Th′(C) is essentially algebraic, and Proposition
9.9 still holds with Th(C) replaced by Th′(C) – in fact the proof is somewhat simpler.
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9.6 Summary

We have now seen five different kinds of theory that can be used to describe models in
cartesian categories.

• cartesian categories (so models are strict cartesian functors)

• partial Horn theories, quasi-equational theories and essentially algebraic theories,
all using partial structures

• cartesian theories, using total structures

[Joh02b] shows that cartesian theories are equivalent to cartesian categories – that
is to say, they are able to describe the same classes of models. Proposition 3.6 showed
that partial Horn theories are equivalent to quasi-equational theories. In this Section we
have shown that cartesian categories, quasi-equational theories and essentially algebraic
theories are all equivalent, and we also gave a more concrete description of how to convert
cartesian theories into quasi-equational theories.

Hence all five types have the same expressive power in cartesian categories.
They each have their advantages and disadvantages.
The advantages of the cartesian categories, the classifying categories, are largely

theoretical. The classifying category is a direct, presentation-independent embodiment
of the theory and it is often useful in abstract discussion. On the other hand it is normally
infinite and to describe it in practice it is often much more convenient to present it by
generators and relations. That is what the other kind of theory in effect do.

The advantage of the cartesian theories is that they work within the standard logic
of total functions and terms. The disadvantage is that this then compels the use of
predicates in order to describe partial functions such as pullbacks, and the use of unique
existential quantifications in the theory. The resulting complications in the theory, with
a logical quantifier whose use has to be justified by side-proofs, make it difficult to use
cartesian theories as a theoretical device.

The three that use partial terms have the disadvantage that they have to work in a
modified logic. However, they avoid all the problems of the unique existential quantifi-
cation. Of the three, we have found the quasi-equational theories the most effective in
both practical and theoretical use, giving an excellently short proof of the Initial Model
Theorem.

We have mentioned sketches [BW84] briefly in the introduction. They provide a
graphical, rather than logical, approach. In particular the finite limit sketches (or, in
[BW84], the LE-sketches or left exact sketches) are equivalent to cartesian categories,
and hence to the five kinds of theory we listed above. The LE-theories described in
[BW84] are the analogues of our classifying categories.

10 Conclusions

The theories whose logic corresponds to the structure of cartesian categories have long
been known to be important. For instance, since at least as far back as [Ken68] it
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has been known that free models can be constructed for these theories. Various ways
have been devised to present these theories, notably the cartesian theories using unique
existential quantification, the essentially algebraic theories using equationally described
domains of definition, and the finite limit sketches using graph-theoretic devices.

The partial Horn logic presented here works by a single change to ordinary logic,
amending the substitution rule to allow for partial terms, with definedness represented
by self-equality. Once that is done, the cartesian theories correspond to the minimal
kind of theory in that logic, the quasi-equational theories. The simplicity of the quasi-
equational theories makes it just about as easy to prove the free partial model theorem
predicatively as it is in the better known algebraic case: form terms, and factor out a
partial congruence.

Once proved, the free partial model theorem is extremely powerful since it is the basis
of inductive proofs based on the structure of terms, formulae and proofs. In particular,
we use it to prove the existence of classifying categories for quasi-equational theories. We
conjecture that the same technique will readily extend to other logics in the following
way. Suppose we are given a cartesian theory C whose models are categories with a
certain kind of structure, and suppose T is a theory in a logic (in general not cartesian)
that can be interpreted in categories that model C. We conjecture that in many useful
cases there is then a cartesian theory C$T whose initial model is a classifying C-category
for the theory T.
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