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1 Introduction

Intuitionistic logic is a weakening of classical logic by omitting, most promi-
nently, the principle of excluded middle and the reductio adabsurdum rule. As a
consequence, this logic has a wider range of semantical interpretations. The moti-
vating semantics is the so called Brouwer-Heyting-Kolmogorov interpretation of
logic. The propositionsA,B,C, . . . are regarded as problems or tasks to be solved,
and their proofsa,b,c, . . . as methods or (computer) programs that solves them.

• A proof-object, or just proof, forA∧B is a pair〈a,b〉 wherea is a proof for
A andb is proof forB.

• A proof for A→ B is a functionf which to each proofa of A gives a proof
f (a) of B.

• A proof for A∨B is either an expressioninl(a) wherea is a proof ofA or an
expressioninr(b) whereb is proof ofB.

• There is no proof of⊥ (falsity).

• A proof of⊤ (truth) is a symbolt.

We use lambda-notation for functions. For an expressiona(x) in the variable
x, λx.a(x) denotes the function which tot assignsa(t). We also use the equivalent
notationx 7→ a(x), familiar from mathematics.

We use thesequent notation A⊢ B for B follows from A. We identify proof-
objects forA⊢ B with proof-objects forA→ B. Then we may find proof-objects
for the following rules ofintuitionistic propositional logic(IPC) listed below.
Each rule is valid in the sense that if we find proof-objects for the premisses above
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the line, then there is a proof-object for the conclusion below the line. For exam-
ple the (→ E) rule below is verified thus. Supposef is a proof-object ofA→ B
anda is a proof-object ofA. Thenapply( f ,a) is a proof-object ofB.

Rules for IPC

A B
A∧B

(∧I) A∧B
A

(∧E1) B
A∧B

(∧E2)

A
h
....
B

A→ B
(→ I ,h) A→ B A

B
(→ E)

A
A∨B

(∨I1) A
A∨B

(∨I2) A∨B

A
h1
....
C

B
h2
....
C

C
(∨E,h1,h2)

⊥
A

(⊥E)

Negation is defined by¬A= (A→⊥). To obtain classical propositional logic
CPC we add the rule ofreductio ad absurdum(RAA)

¬A
h

....
⊥
A

(RAA,h)

Equivalently we may add, as an axiom, theprinciple of excluded middle(PEM)

A∨¬A
(PEM)

.

Exercises

1.1. ProveA→¬¬A in IPC.

1.2. ProveA→ B→ (¬B→¬A) in IPC.

1.3. Prove that adding all instances(¬B→¬A)→A→B as axioms to IPC makes
RAA provable.

1.4. Prove that over IPC the rule reductio ad absurdum and principle of excluded
middle are equivalent.
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2 Algebraization of logic

Classical propositional logic was first described in an algebraic manner by George
Boole. Aboolean algebrais a distributive lattice with a complementation opera-
tion (see Grätzer 2003). The basic example is the power setP (X) of subsets of a
fixed setX, with intersection∩, union∪ as the lattice operations,/0 andX being
the bottom and the top element respectively. The complementation operation· is
the complement relative toX:

A= {x∈ X : x /∈ A}.

Recall that each finite boolean algebra is isomorphic to some power setP ({1, . . . ,n})
wheren≥ 0. However, infinite boolean algebras need not be isomorphicto power
sets as the following example shows.

Example 2.1Consider the setC which consists of the subsetsSofN that are either
finite, or whose complementS is finite. Notice that/0 andN = /0 are members of
C. It is straightforward to check thatC is closed under intersection, union and
complementation. It is thus a boolean algebra, since the equations that hold in the
boolean algebraP (N) also holds inC.

It is rather clear that the elements ofC can be coded as strings as following
kind

0 −0 011010011 −1011

meaning/0, /0 = N, {1,2,4,7,8} and{0,2,3}= {1,4,5,6, . . .}, respectively. Thus
C is countably infinite. However for any infinite boolean algebra of the power
set formP (M), we must have thatM is infinite. ThusP (M) is uncountable and
cannot be isomorphic toC for size reasons.

We have seen that one of the characteristics of intuitionistic logic is that not
every proposition is true or false. For subsets this means that not every subset has
a complement.

Example 2.2 Let L3 = { /0,{1},{1,2}} ⊆ P ({1,2}). This is a distributive lattice
with the operations∩ and∪, the bottom element⊥ = /0, and top element⊤ =
{1,2}. However,A= {1} lacks complement, i.e. there is noC∈ L3 with

A∩C=⊥ A∪C=⊤.

Example 2.3 A subset of the euclidean lineA⊆ R is said to beopen, if for ev-
ery pointx ∈ A, there is an interval(a,b) ⊆ A such thatx ∈ (a,b). For instance
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intervals of the form(a,b),(a,+∞),(−∞,b) are open sets. However the intervals
[a,b], [a,+∞),(−∞,b] are not. It can be checked (Exercise) that the setO of such
open subsets is a distributive lattice with operations∩,∪ and bottom and top el-
ements⊥ = /0, ⊤ = R. In fact, any union of open sets is an open set. It can be
shown (Exercise) that there are only two elements inO, which have complements,
namely⊥ and⊤. Define forA,B∈ O the open set

(A→ B) =
⋃

{U ∈ O : U ∩A⊆ B}.

Now (almost) by definition, for allU ∈ O

U ∩A⊆ B⇐⇒U ⊆ (A→ B)

Define thepseudo-complement¬A of A to be(A→⊥). Thus

¬A=
⋃

{U ∈ O : U ∩A= /0}.

Clearly A∩¬A = ⊥, but not necessarilyA∪¬A = ⊤. For instance, we have
¬(1,2) = (−∞,1)∪ (2,∞), so(1,2)∪¬(1,2) is the real line except the numbers 1
and 2. The pseudo-complement¬A is the largest open set which does not intersect
A.

¬A A ¬A
- - - —————————)(————)(———————— - - -

Definition 2.4 An abstracttopologyis a setX together with a setO of subsets of
X (conventionally called theopen setsof the topology) satisfying the conditions

(O1) /0 ∈ O, X ∈ O,

(O2) if U,V ∈ O, thenU ∩V ∈ O,

(O3) for any index setI , if Ui ∈ O for all i ∈ I , then∪i∈IUi ∈ O.

(Note that (O3) actually implies/0 ∈ O by takingI = /0.)
The definitions ofU → V and¬U apply to the open sets of any topological

space.

Example 2.5 The euclidean planeR2 has the standard topology given by:U ⊆R
2

is anopen setiff for every point p= (x,y) ∈U there is a rectangle

(a,b)× (c,d)⊆U

which contains the pointp. Then we can, for instance, show that the disc{(x,y)∈
R

2 : x2+y2 < 1} is open (Exercise).
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Example 2.6 Let P= (P,≤) be a partially ordered set. Declare a subsetU ⊆ P
to be open, ify∈U wheneverx∈U andx≤ y. These sets,upper sets,form the
so-calledAlexandrov topologyonP. (Exercise: check O1-3.)

Example 2.7 Every setX can be equipped with thediscrete topology.In this
topology every subsetA of X is considered open.

We shall here to some extent follow the presentation of Troelstra and van
Dalen 1988.

Definition 2.8 A Heyting algebrais a partially ordered set(H,≤) with a smallest
element⊥ and a largest element⊤ and three operations∧ and∨ and→ satisfying
the following conditions, for allx,y,z∈ H

(i) x≤⊤

(ii) x∧y≤ x

(iii) x∧y≤ y

(iv) z≤ x andz≤ y impliesz≤ x∧y

(v) ⊥≤ x

(vi) x≤ x∨y

(vii) y≤ x∨y

(viii) x≤ z andy≤ z impliesx∨y≤ z

(ix) z≤ (x→ y) iff z∧x≤ y.

Define¬x= (x→⊥).
A distributive lattice L= (L,≤,∧,∨,⊤,⊥) is a partial order with operations

that satisfies (i) – (viii) above and the two distributive law

x∧ (y∨z) = x∧y∨x∧z x∨ (y∧z) = (x∨y)∧ (x∨z).

The second law is actually a consequence of the first.

Lemma 2.9 Every Heyting algebra is a distributive lattice.
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Proof. We have by (vi):y∧x≤ y∧x∨z∧x and hence by (ix):y≤ x→ y∧x∨z∧x.
Similarly z≤ x→ y∧x∨z∧x. Hence by (viii):y∨z≤ x→ y∧x∨z∧x and using
(ix)

(y∨z)∧x≤ y∧x∨z∧x.

Fromy≤ y∨zandy∧x≤ y andy∧x≤ x follows y∧x≤ (y∨z)∧x. Similarly
y∧x≤ (y∨z)∧x. Thusy∧x∨z∧x≤ (y∨z)∧x. 2

We leave the proofs of the following results to the reader, and only give some
hints.

Theorem 2.10 Every Boolean algebra is a Heyting algebra.

Proof. Define(x→ y) = ¬x∨y. 2

Theorem 2.11 Every Heyting algebra, where x∨¬x= ⊤ for all x, is a Boolean
algebra.

Theorem 2.12 Every finite distributive lattice is a Heyting algebra.

Proof. Let H be a finite distributive lattice. Define

(x→ y) =
∨

{a∈ H : a∧x≤ y}, (1)

and note that the join is finite.2

The formula (1) is very useful for computing implications ina finite lattice.
Note the special case

¬x=
∨

{a∈ H : a∧x≤⊥}.

Example 2.13 Here are some examples of distributive lattices. The first, second
and fourth lattices on the top row are boolean algebras, while the other lattices are
not. (Exercise: in each such case find the elements which lackcomplements.)
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Recall that the standard semantics of a formula of classical propositional logic
is given by assigning the propositional variables a truth-value inB2 = {⊥,⊤}
or {0,1} or any other boolean algebra with two elements. Such an assignment
V : P → {⊥,⊤} is called avaluation. (HereP is an infinite set of propositional
variables, which we shall usually denoteP,Q,R,P′,Q′,R′, . . ..) It is then extended
to all formulas recursively

V(⊤) = ⊤

V(⊥) = ⊥

V(A∧B) = V(A)∧V(B)

V(A∨B) = V(A)∨V(B)

V(A→ B) = V(A)→V(B).

The operations∧,∨,→ on the right hand side are given by the usual truth-tables
for connectives. A formulaA is valid if V(A) =⊤, for all valuationsV : P→ B2.
The completeness of propositional logic says thatA is provable iffA is valid.

We may also replaceB2 by an arbitrary boolean algebraB, and extend the
notion of valuation to this algebra. We say thatA is B-valid if V(A) = ⊤, for all
valuationsV : P→ B.

By noting that the usual proof of soundness only depends on theabstract prop-
erty we get

Theorem 2.14 For any boolean algebra B, if A is provable in classical proposi-
tional logic, then A is B-valid.
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Thus we have the following version of the completeness theorem

Theorem 2.15 The formula A is provable in classical propositional logic iff A is
B-valid, for each boolean algebra B.

Of course the usual version of the theorem states that we may restrict to check-
ing validity for B= B2, the two-element boolean algebra.

Intuitionistic propositional logic (IPC) is given semantics in the same way,
but the truth values belong to a Heyting algebraH instead of boolean algebra.
An H-valuation is a functionV : P → H, extended to all propositional formu-
las according the same recursive equations as above. A formula A is H-valid if
V(A) =⊤ for all H-valuationsV. These notions are extended to sets of formulas
in the obvious way. More generally, we say thatA is anH-consequenceof (a finite
set of formulas)Γ if V(

∧
Γ)≤V(A). We denote this relation byΓ |=H A

Lemma 2.16 (Soundness)Let H be a Heyting algebra and let V: P → H be a
valuation. IfΓ ⊢ A in IPC, then

Γ |=H A.

Proof. The lemma is proved by induction on the height of derivationsin IPC.
Thus we need to check that the rules of IPC preserve the order of H. Suppose the
last rule in the derivationΓ ⊢ A was (∧I ). ThenA= B∧C and we have derivations
Γ1 ⊢ B andΓ2 ⊢C for subsetsΓ1,Γ2 ⊆ Γ. By induction hypothesis we then have
V(

∧
Γ1) ≤ V(B) andV(

∧
Γ2) ≤ V(C), whenceV(

∧
Γ) ≤ V(

∧
Γ1)∧V(

∧
Γ2) ≤

V(B)∧V(C) = V(B∧C) by the definition of valuation and meet in a Heyting
algebra. Suppose the last rule applied in the derivation ofΓ ⊢ A was (→ I ). Then
A= B→C andΓ∪{B} ⊢C and so

V(
∧

Γ)∧V(B) =V(
∧

Γ∪{B})≤V(C)

by the induction hypothesis. But then by the definition of→ in H we have

V(
∧

Γ)≤V(B)→V(C) =V(B→C),

where the equality holds by the definition of valuation. For one more example,
supposeΓ ⊢ A is derived with last rule (∨E) so that there is a derivationΓ ⊢ B∨C
with Γ∪{B} ⊢ A andΓ∪{C} ⊢ A. Then by induction hypothesis we have

V(
∧

Γ)≤V(B∨C) =V(B)∨V(C),

and
V(

∧
Γ)∧V(B)≤V(A), V(

∧
Γ)∧V(C)≤V(A).

8



That is,

V(
∧

Γ) ≤ V(
∧

Γ)∧ (V(B)∨V(C))

= (V(
∧

Γ)∧V(B))∨ (V(
∧

Γ)∧V(C))

≤ V(A).

The other rules are immediately verified using the corresponding properties of a
Heyting algebra.2

Interestingly, for intuitionistic logic it is not possibleto restrict the truth-values
to one fixedfiniteHeyting algebra to obtain the completeness. We have

Theorem 2.17 The formula A is provable in IPC iff A is H-valid, for each Heyting
algebra H.

Proof. (⇒) If A is provable in IPC, this means there is a derivation of⊢ A. Hence
⊤≤V(A) for anyH-valuationV, by Lemma 2.16. ThusA is H-valid.

(⇐) (Outline of proof). Construct the following Heyting algebra. LetF be the
set of IPC-formulas. Define an equivalence relation onF by

(A∼ B)⇐⇒ ⊢ A↔ B in IPC.

Let H = F/∼ be the set of equivalence classes[A] = {B∈ F : A∼B} with respect
to∼. Partially orderH by

[A]≤ [B]⇐⇒ ⊢ A→ B in IPC.

Set⊥H = [⊥] and⊤H = [⊤]. Define operations by

[A]∧H [B] = [A∧B] [A]∨H [B] = [A∨B] [A]→H [B] = [A→ B].

Now one can check that(H,≤,∧H ,∨H ,→H ,⊥H ,⊤H) is a Heyting algebra. For
example we verify the left to right direction of condition (ix) in the definition of
Heyting algebra: Suppose[A]∧ [B] ≤ [C], i.e. [A∧B] ≤ [C], i.e. ⊢ A∧B → C.
Then we have a derivation

A∧B
h

....
C

A∧B→C
(→ I ,h)
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which we can change into a derivation

A
h1 B

h2

A∧B
(∧I)

....
C

B→C
(→ I ,h2)

A→ (B→C)
(→ I ,h1)

That is⊢ A→ (B→C), or [A]≤ [B→C] = [B]→ [C].
Now, we may define a valuationV : P→H byV(Q)= [Q]. Thus, by induction,

for any formula
V(A) = [A].

If now V(A) =⊤H , we have that⊢ A↔⊤ and thus⊢ A in IPC.2

A formula A is intutionistically validif A is H-valid for each Heyting algebra
H.

There is a sharpening of Theorem 2.17 which is useful for exhibiting counter-
models.

Theorem 2.18 The formula A is provable in IPC iff A is H-valid, for each finite
Heyting algebra H.

Proof. See Troelstra and van Dalen 1988.2

Thus to prove that a particularA formula is unprovable in IPC, we may search
for a finite Heyting algebraH and a valuationV : P→ H such thatV(A) 6=⊤. The
pairH,V will then be a counter-model toA.

A crude decision method for intuitionistic validity of propositional formulas
is thus to look in parallel for proofs, or finite counter-models, which may both be
generated systematically. In fact, the decision problem for intuitionistic validity
is much harder than for the classical case. We refer to (Troelstra and van Dalen
1988) and (Troelstra and Schwichtenberg 2000) for further reading.

Example 2.19 The formulaP∨¬P is not provable in IPC. Consider the latticeL3

of Example 2.2. AssignV(P) = {1}. We haveV(¬P) = ¬{1}= /0, so

V(P∨¬P) = {1}∪ /0 = {1} 6= {1,2}=⊤.

Thus by the soundness part of the completeness theorem, the formula cannot be
provable in IPC.
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The same assignment shows also that

V(¬¬P→ P) =V(¬¬P)→V(P) =⊤→V(P) =V(P) 6=⊤

Thus¬¬P→ P is not provable in IPC either. Note however that

V(¬P∨¬¬P) = /0∪⊤=⊤.

In fact, for any choice ofL3-valuationV, this holds. Hence¬P∨¬¬P is L3-valid.

Example 2.20 Let L6 be the first lattice on the second row in Example 2.13. In
this lattice there is an elementa with ¬a∨¬¬a 6= ⊤. This shows that¬P∨¬¬P
is notL6-valid, and thus not provable in IPC.

Example 2.21 The two elementsa andb just above⊥ in L6 satisfies

¬(a∧b) =⊤ 6= ¬a∨¬b.

Thus¬(P∧Q)↔ (¬P∨¬Q) is unprovable in IPC.

Exercises

2.1. Do the exercise in Example 2.13.

2.2. For each latticeH in Example 2.13 find a finite setSand a subsetM ⊆ P (S)
such that the Hasse diagram of(M,⊆) is the same as that ofH. The third lattice
in the first row corresponds to the set and subset given in Example 2.2.

2.3. Prove that in a Heyting algebra: ifa∧b= ⊥, a∨b= ⊤, thenb= ¬a. Thus
every true complement is a pseudo-complement.

2.4*. Prove that the set of open sets, as defined in Example 2.3, form a distributive
lattice. Prove that the union of any set of open sets is open. Conclude thatO is
Heyting algebra.

2.5. Show that the following formulas are unprovable in IPC. This may be done
by finding a suitable Heyting algebra and a valuation which give a value6= ⊤ to
the formula. Another strategy is to try to show that the formula implies (in IPC) a
formula which is already known to be unprovable.

(a) ¬(P→ Q)→ P∧¬Q,

(b) (¬Q→¬P)→ (P→ Q),

(c) (¬¬P→¬¬Q)→ (P→ Q),

(d) (P→ Q∨R)→ (P→ Q)∨ (P→ R).

2.6* Complete the proofs of Lemma 2.16 and Theorem 2.17.
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3 Kripke semantics

Kripke semanticsor possible worlds semanticsis another complete semantics for
intuitionistic logic (van Dalen 1997; Troelstra and van Dalen 1988). It can be
obtained as a special case of the Heyting-valued semantics as follows.

First we show how a partial order generates a Heyting algebra. Let S= (S,≤)
be a partially ordered set. Fora∈ Sdefine

a↑= {b∈ S: a≤ b},

i.e. the set of elements abovea. We say that a subsetU of S is upper closed
if a↑ ⊆ U for anya∈ U . For any partially ordered setS the setUC(S) of upper
closed subsets ofSordered by inclusion form a Heyting algebra. Here∩ and∪ are
meet and join operations respectively. ForA,B∈ UC(S) define the upper closed
set

A→ B= {x∈ S: (x↑)∩A⊆ B}.

Then→ satisfies 2.8.(viii): ForA,B,C∈ UC(S),

C⊆ (A→ B) ⇔ (∀x∈C)(x↑)∩A⊆ B

⇔ (∀x∈C)(∀y∈ A)(x≤ y⇒ y∈ B)

⇔ (∀x∈C∩A)(x∈ B)

⇔ C∩A⊆ B

The third equivalence follows sinceA is upper closed.

Now several of the lattices encountered can be reconstructed as(UC(S),⊆)
for some suitable chosen partial orderS.

Example 3.1 1. The rightmost lattice in the top row of Example 2.13 is isomor-
phic to

UC({1,2,3},≤) = { /0,{3},{2,3},{1,2,3}}.

Here≤ is the usual order of natural numbers.

2. The leftmost lattice in the bottom row is isomorphic to

UC({0,a,b},≤) = { /0,{a},{b},{a,b},{0,a,b}}.

Here 0≤ a and 0≤ b and no other relations hold except reflexivity.

Next, for a first order formulaA and a valuationV : P → UC(S) define the
forcing relation

p� A⇐⇒def p∈V(A).
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ThusA is valid under the valuationV iff p� A for all p∈ S. SinceV(A) is upper
closed we have the so-calledmonotonicity property

p� A andp≤ q=⇒ q� A.

Note that ifS has a smallest elementp0 then validity underV is equivalent to
p0 � A, due to this property.

Remark 3.2 An intuitive reading of the above is to think ofSas the set of possible
worlds and the relationp � A as A is true in world p. The judgementp ≤ q
indicates thatq is accessible fromp. A further suggestive reading is to think of
worlds asstates of knowledge,and thenp≤ q indicates thatq is a state of greater
knowledge thanp. This is in accordance with the monotonicty property.

Remark 3.3 The relation� is most often written, but we use this notation
to distinguish from the notation for the Kripke models formodal logicsin Huth
and Ryan (2004). Their notion of model is more general since the “accessibility
relation” between worlds may be an arbitrary relation.

The logical connectives are then interpreted as follows.

Theorem 3.4 The forcing relation(�) = (�V) for a given valuation V satisfies
the conditions:

(i) p � P iff p∈V(P) for propositional variables P.

(ii) p �⊥ never holds.

(iii) p � A∧B iff p� A and p� B

(iv) p� A∨B iff p� A or p� B

(v) p� A→ B iff (∀q≥ p)(q� A→ q� B).

Proof. (i) is immediate by the definition. For (ii) note thatp�⊥ is equivalent to
p∈V(⊥) = /0. (iii) and (iv) follows sinceV(A∧B) =V(A)∩V(B) andV(A∨B) =
V(A)∪V(B). To prove (v): We havep� A→ B iff

p↑∩V(A)⊆V(B)

iff
(∀q≥ p)(q∈V(A)→ q∈V(B)).

Then (v) follows by definition of the forcing relation.2

The following are especially noteworthy consequences which explains why
negation does not have the classical meaning in Kripke models.
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Corollary 3.5 (i) p � ¬A iff for all q ≥ p, q� A is false.

(ii) p � ¬¬A iff for each q≥ p there exists r≥ q so that r� A.

Remark 3.6 The common approach to Kripke models is to take the conditions
(i)–(v) as a definition ofp� A by recursion on the formulaA. Note thatV(P) de-
termines in which “worlds” the propositional variableP is true. Under the reading
as states-of-knowledgeV(P) tells at which states of knowledgeP is known to be
true.

Example 3.7 A Kripke model may be specified by drawing a Hasse diagram
decorated with the propositional letters which are true at different nodes. Below
is the Kripke model with partial orderS= {0,a,b} as in Example 3.1.2, and where
V(P) = {b} andV(Q) = {a,b}.

0

a bQ P, Q

A formula A is thus valid in this model iff 0� A. We note the following:
0 6� Q, 0 6� ¬Q, 0 � ¬¬Q. Thus 0� ¬Q∨¬¬Q but 0 6� Q∨¬Q. We have
0 6� ¬P and 06� ¬¬P, so 06� ¬P∨¬¬P.

In the style of Huth and Ryan (2004) the above model is graphically presented
as follows.

0

a bQ P,Q

Remark 3.8 The Kripke models presented here and those of Huth and Ryan
(2004) may be related as follows. Define the labelling function asL(x) = {P∈ P :
x∈V(P)}. Define a translation of IPC formulas into modal formulas by recursion:

A∗ = A for A propositional variable,A=⊥ or A=⊤,

(A∧B)∗ = A∗∧B∗,
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(A∨B)∗ = A∗∨B∗,

(A→ B)∗ =2(A∗ → B∗).

As examples of translation, note that

(¬P∨P)∗ =2(¬P)∨P (¬P→ Q)∗ =2(2(¬P)→ Q).

The following is easily proved by induction on formulasA of IPC.

Theorem 3.9 x� A if, and only if, x A∗

Exercises

3.1* Let Sbe a partially ordered set. Show thatUC(S) is a boolean algebra iff the
partial order satisfiesp= q wheneverp≤ q.

3.2* Does each finite distributive lattice have the formUC(S) for some partial
orderS?

4 Complete Heyting algebras

Existential and universal quantification over a set may be regarded as a (possibly)
infinitary generalisation of the disjunction and conjunction operations. This is
easy to describe algebraically.

A Heyting algebraH is complete(cHA) if each of its subsets has a supremum,
that is if for anyA⊆ H there is

∨
A∈ H such that for allb∈ H:

∨
A≤ b⇐⇒ (∀a∈ A)a≤ b.

(ForA= {ai : i ∈ I} we write
∨

i∈I ai =
∨

A.)
Note that the supremum of/0 in a Heyting algebra is⊥, and forA= {a1, . . . ,an},∨

A=
∨n

i=1ai = a1∨·· ·∨an. Thus each finite distributive lattice is a cHA.

Theorem 4.1 The open sets of a topology(X,O) form a complete Heyting alge-
bra, where inclusion is the order and
∨

i∈I

Ui =
⋃

i∈I

Ui U ∧V =U ∩V (U →V) =
⋃

{W ∈ O : W∩U ⊆V}.2

Proposition 4.2 In a cHA the infimum of a set A is given by
∧

A=
∨

{x∈ H : (∀a∈ A)x≤ a}.
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Proof. Exercise.2

For complete Heyting algebras there is an infinitary generalisation of the dis-
tributive law

Proposition 4.3 For a subset A of an cHA and any element b

b∧ (
∨

A) =
∨

{b∧a : a∈ A}. (2)

Proof. (≥) follows sinceb∧ (
∨

A)≥ b∧a for anya∈ A.
(≤): To show the inequality

b∧ (
∨

A)≤
∨

{b∧a : a∈ A},

note that it is equivalent to

(
∨

A)≤ (b→
∨

{b∧a : a∈ A}),

by the→-axiom. This is in turn equivalent to

(∀a∈ A)a≤ (b→
∨

{b∧a : a∈ A}),

which by the→-axiom is equivalent to

(∀a∈ A)(a∧b≤
∨

{b∧a : a∈ A}).

This is however obviously true, so we are done.2.

There is also a converse: any complete latticeL satisfying the infinite distribu-
tive law (2) becomes a cHA by letting

(a→ b) =
∨

{x∈ X : x∧a≤ b}.

This law is used to show thatc≤ a→ b impliesc∧a≤ b (Exercise).

Exercises

4.1. Prove Proposition 4.2. (It is easier if one notes that the result holds for any
partial order which is complete in the sense that each of its subsets has supremum.)

4.2. Prove Theorem 4.1.
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