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1 Introduction

The notion of a universe of types was introduced into constructive type theory by
Martin-Löf (1975). According to the propositions-as-types principle inherent in
type theory, the notion plays two rôles. The first is as a collection of sets or types
closed under certain type constructions. The second is as a set of constructively
given infinitary formulas. In this paper we discuss the notion of universe in type
theory and suggest and study some useful extensions. We assume familiarity
with type theory as presented in e.g. (Martin-Löf 1984).

Universes have been effective in expanding the realm of constructivism. One
example is constructive category theory where type universes take the rôles of
Grothendieck universes of sets, in handling large categories. A more profound
example is Aczel’s (1986) type-theoretic interpretation of constructive set theory
(CZF). It is done by coding ∈-diagrams into well-order types, with branching
over an arbitrary type of the universe. The latter generality is crucial to interpret
the separation axiom. The introduction of universes and well-orders (W-types)
in conjunction gives a great proof-theoretic strength. This has provided con-
structive justification of strong subsystems of second order arithmetic studied
by proof-theorists (see Griffor and Rathjen (1994) and Setzer (1993), and for
some early results, see Palmgren (1992)). At present, it appears that the most
easily justifiable way to increase the proof-theoretic strength of type theory is
to introduce ever more powerful universe constructions. We will give two such
extensions in this paper. Besides contributing to the understanding of subsys-
tems of second order arithmetic and pushing the limits of inductive definability,
such constructions provide intuitionistic analogues of large cardinals (Rathjen et
al. to appear). A third new use of universes is to facilitate the incorporation of
classical reasoning into constructive type theory. We introduce a universe of clas-
sical propositions and prove a conservation result for ‘Π2-formulas’. Extracting
programs from classical proofs is then tractable within type theory.

The next section gives an introduction to the notion of universe. The central
part of the paper is Section 3 where we introduce a universe forming operator and
a super universe closed under this operator. Section 4 summarises what is known
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2 On Universes in Type Theory

about the proof-theoretic strength of this extension, mainly results due to M.
Rathjen. In Section 5 we introduce the notion of higher order universe operators.
While all of the preceding development is predicative, it is also possible to define
impredicative theories using universes. In Section 6 we point out some dangers
in combining such ideas with elimination rules. In particular, we discuss Setzer’s
Mahlo universe. Finally, in Section 7 we construct the classical universe.

2 Universes

From an abstract point of view a type universe is simply a type of types closed
under certain type constructions. Being a type of types can be formulated in
essentially two ways (Martin-Löf 1984): à la Tarski, by introducing a type of
codes U for types and a decoding function T (·):

U type
a ∈ U

T (a) type

or, alternatively, à la Russell by simply introducing U and identifying codes and
types

U type
A ∈ U

A type
.

The Russell formulation should be regarded as an informal version of the Tarski
formulation, but is too unclear when nesting universe constructions, e.g. as in
the super universe. Thus we use the Tarski formulation for complete precision.

Modern presentations of type theory employ a so called logical framework
(Nordström et al. 1990). This a typed lambda calculus with a dependent func-
tion space construction (Π-types) and a universe of types (Set, El(·)). The types
of this universe are called sets. In this framework different type theories can be
specified by giving closure conditions to the sets, and by introducing constants
and computation rules to types constructed from sets. Later extensions have also
Σ-types or records. We shall here present the rules for the extensions of type
theory in the older, more readable style of Martin-Löf (1984), as far as possible.
(In section 5 we need however a logical framework with Σ-types.)

In Martin-Löf’s type theory two different conceptions of universes occur. The
first captures the idea of reflection of the judgement forms A set and A = B into
a hierarchy of universes (Un, Tn) externally indexed by n = 1, 2, 3, . . .. That is,
whenever A set then in some universe Un, there is a code a so that Tn(a) = A,
and if A = B with Tn(a) = A and Tn(b) = B, then a = b ∈ Un. This is
as in Martin-Löf (1975; 1982) albeit there it is formulated à la Russell. The
second idea, which is preferable, is to uniformly construct universes above earlier
universes (hinted at in Martin-Löf (1984), p. 89).

Universes as full reflections. We view the formation of the hierarchy (U1, T1),
(U2, T2), . . . as a process. At first there is no universe. Then we introduce a
universe U1 of codes for all basic sets,

U1 set
x ∈ U1

T1(x) set



On Universes in Type Theory 3

n1
0, n

1
1, n

1 ∈ U1 T1(n
1
0) = N0 T1(n

1
1) = N1 T1(n

1) = N,

where N0 is the empty set, N1 is the set with single element 01, and N is the set
of natural numbers. Furthermore we assume that it is closed under Π-formation:

(x ∈ T1(a))
...

a ∈ U1 b ∈ U1

π(a, (x)b) ∈ U1

(x ∈ T1(a))
...

a ∈ U1 b ∈ U1

T1(π(a, (x)b)) = (Πx ∈ T1(a))T1(b),

and we also assume that (U1, T1) is similarly closed under Σ, I, + and other set
formers, if desired. Hence for every set A formed without universes there is
a ∈ U1 so that T1(a) = A. At this stage there is no difference between the
two versions of universes. We have that if A = B is formed without the use of
universes, then a = b ∈ U1 for some a and b such that T1(a) = A, T1(b) = B, by
the usual equalities that come with every canonical constant. Then at the next
stage we introduce a new universe (U2, T2) closed under the set formers Π, Σ, . . .
with new codes for all sets

n2
0, n

2
1, n

2 ∈ U2 T2(n
2
0) = N0 T2(n

2
1) = N1 T2(n

2) = N.

But U1 and T1(x) are sets of the previous stage, so we must also introduce

u2
1 ∈ U2 T2(u

2
1) = U1

x ∈ U1

t21(x) ∈ U2
.

We have a host of new set equalities to reflect in U2: T1(n
1
k) = Nk and T1(n

1) =
N give

t21(n
1
k) = n2

k ∈ U2 t21(n
1) = n2 ∈ U2

and since T1(π(a, (x)b)) = (Πx ∈ T1(a))T1(b) we should assume

t21(π(a, (x)b)) = π(t21(a), (x)t21(b)) ∈ U2

and so on for all codes for set formers. We may also express this as: t21 is a homo-
morphism with respect to set constructors, extending t21(n

1
k) = n2

k and t21(n
1) =

n2 ∈ U2. At each step in the construction of the hierarchy of universes we intro-
duce new codes and equalities between codes for sets and set equalities which can
be formed. Having completed the hierarchy (U1, T1), (U2, T2), . . . , (Un, Tn), . . .,
n < ω we notice that any proof in the resulting system can only use finitely
many universes (proofs are finite and the universes are externally indexed) and
hence the reflection principle holds for both sets and set equalities.

If we try to iterate this process into the transfinite we run into something like

uω
1 , uω

2 , uω
3 , . . . ∈ Uω

a universe which has infinitely many introduction rules. Thus it is impossible to
formulate an elimination rule without having some kind of internal indexing of
the universes.
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Universes as uniform constructions. Here we do not reflect set equalities.
This allows us to simply inject the codes for sets from an earlier universe into
the next. We construct a hierarchy of universes (U1, T1), (U2, T2), . . . stepwise.
Assume that (Un, Tn) has already been constructed, then

Un+1 set
x ∈ Un+1

Tn+1(x) set

and
un ∈ Un+1 Tn+1(un) = Un

x ∈ Un

tn(x) ∈ Un+1

x ∈ Un

Tn+1(tn(x)) = Tn(x)
.

Thus tn(a) is now considered to be a canonical element in Un+1, and is regarded
as a copy of a in Un+1. As an example, note that the code for Uj , j < n + 1 in
Un+1 is tn(tn−1(. . . tj+1(uj) . . .)). We furthermore assume that (Un+1, Tn+1) is
closed under the same set formers as (Un, Tn). The construction of (Un+1, Tn+1)
depends thus only on the family (Un, Tn). Observe that we still reflect the judge-
ment form A set.

It seems that the idea of universes as full reflections is difficult to formulate
for transfinite hierarchies. The usefulness of reflecting equalities of sets is not
clear. Thus we shall only consider hierarchies of universes built using the uniform
construction.

Remark The formation of the next universe was formulated as an operator in
the domain-theoretic model (Palmgren 1993) of partial type theory. This leads
to the formalisation of universe operators in the next section.

3 Universe Operators and Super Universes

By having universe formation as an operator and a super universe closed under
this operator we may form transfinite level universes much the same way as we
may form transfinite sets using an ordinary universe. The universe forming oper-
ation acts on families of sets. We can form a universe (U(A, (x)B), T (A, (x)B))
above any family of sets (A, (x)B)

(x ∈ A)
...

A set B set

U(A, (x)B) set

a ∈ U(A, (x)B)

T (A, (x)B, a) set
.

We assume that (U(A, (x)B), T (A, (x)B)) is closed under the usual set formers
Π, Σ, +, Id. That the universe is above the family (A, (x)B) is expressed by

∗(A, (x)B) ∈ U(A, (x)B) T (A, (x)B, ∗(A, (x)B)) = A
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a ∈ A

ℓ(A, (x)B, a) ∈ U(A, (x)B)

a ∈ A

T (A, (x)B, ℓ(A, (x)B, a)) = B(a/x)

Thus ∗(A, (x)B) is a code for A in U(A, (x)B), and ℓ(A, (x)B, a) is a copy of the
code a in A for B(a/x). If we assume that (U0, T0) is some basic family of sets,
then we can define the hierarchy of universes as follows

Un+1 := U(Un, (x)Tn(x)) Tn+1(a) := T (Un, (x)Tn(x), a),

and let un := ∗(Un, (x)Tn(x)) and tn(a) := ℓ(Un, (x)Tn(x), a).

The super universe. We now consider a universe (V, S) — the super universe
— which in addition to being closed under the set formers Π, Σ, +, I is also closed
under universe formation. Moreover we assume that it contains basic sets. The
closure under the universe operator is given by

(x ∈ S(a)))
...

a ∈ V b ∈ V

u(a, (x)b) ∈ V

(x ∈ S(a)))
...

a ∈ V b ∈ V

S(u(a, (x)b)) = U(S(a), (x)S(b))

(x ∈ S(a))
...

a ∈ V b ∈ V c ∈ S(u(a, (x)b))

t(a, (x)b, c) ∈ V

(x ∈ S(a))
...

a ∈ V b ∈ V c ∈ S(u(a, (x)b))

S(t(a, (x)b, c)) = T (S(a), (x)S(b), c)

Note that u(a, (x)b) and t(a, (x)b, c) are canonical elements. The term t(a, (x)b, ·)
injects codes from the universe U(S(a), (x)S(b)) into V . The super universe has
an inductive structure and it is not difficult to formulate an elimination rule for
it.

Transfinite hierarchies. Examples of a transfinite sets can easily be con-
structed using recursion and a universe (cf. Martin-Löf (1975), p. 83). Transfi-
nite level universes are, however, more complicated to construct since they are
to be given as families of sets. Consider the set of all codes for families in the
super universe V

FV := (Σx ∈ V )[S(x) → V ].

In the following, let 〈·, ·〉 denote pairing and p,q the first and second projection
respectively. Define BV (c) := S(p(c)) for c ∈ FV , the base of the family coded
by c, and FV (c, x) := S(Ap(q(c), x)) for x ∈ BV (c), the family of sets over BV (c)
coded by c ∈ FV . We shall define û ∈ FV → FV , such that

BV (û(c)) = U(BV (c), (x)FV (c, x)) FV (û(c), w) = T (BV (c), (x)FV (c, x), w).
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and this is achieved by

û := (λc)〈u(p(c), (x)Ap(q(c), x)), (λw)t(p(c), (x)Ap(q(c), x), w)〉.

Hence if c is a code for a universe, then û(c) is a code for the universe above c.
Let c0 be a code for a suitable basic family of sets. By recursion we can define

ûn(c0) (n ∈ N) the codes for finite iterates of universes above c0. Then

Uω := U((Σn ∈ N)BV (ûn(c0)), (z)FV (ûp(z)(c0), q(z)))

is a universe of transfinite level, and it is straightforward to find its code in the
super universe.

4 Proof-theoretic Strength

Type theory with one universe closed under the W-set, named ML1W, is proof-
theoretically very strong, among the theories that have so far been given a com-
plete constructive justification. Recall that the W-set is a general inductive set
former, by which one may construct the Brouwer ordinals as well-founded trees
which branch over a given family of sets. A slight weakening of ML1W has the
strength of Kripke–Platek set theory extended with a principle corresponding to
the existence of an inaccessible cardinal (Griffor and Rathjen 1994). Indepen-
dently, Setzer (1993) determined the strength of the full theory.

It is interesting to note that universes give strength already without W-sets.
Let γ0 = ε0 and let γn+1 = ϕγn

0, where (ϕα)α are the Veblen functions, i.e.
ϕ0(ξ) = ωξ and, for α > 0, ϕα is the enumeration function for the common fixed
points of the functions ϕβ (β < α). Aczel (1977) showed that the strength of
type theory with one universe is γ1. Hancock’s conjecture (cf. Martin-Löf (1975))
stated that the strength of type theory with n universes is γn, and was proved
by Feferman (1982). From this it follows that the strength of type theory with
arbitrarily many finite level universes is the limit of (γn)n, i.e. Γ0. The latter
result was achieved independently by Aczel.

In a previous version of the present paper we interpreted an intuitionistic
version of a theory ATR using an internally indexed hierarchy (Un, Tn) (n ∈
N). The classical version of this theory has strength Γε0

(cf. Simpson 1982).
Subsequently, Rathjen has obtained sharp results for theories involving the super
universe. One ingredient in the proof of the lower bound of the super universe is
(a relativised version of) the interpretation of ATR. We summarise his results.
Let MLU denote the type theory with the universe operator U of Section 3 and
no elimination rules for U . Let MLS be type theory with the universe operator
U and the super universe closed under this operator, as in Section 3, and no
elimination rules. The variant of MLS where the operator U may only act on
families from the super universe is called MLS ↾. Let (Φα)α be defined just as
the hierarchy of Veblen functions, except that Φ0(ξ) = Γξ.

Theorem 4.1. (Rathjen 1997)
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(i) |MLU| = Γ0

(ii) |MLS ↾ | = Φε0
(0)

(iii) |MLS| = ΦΓ0
(0)

The strength of MLS with W-types has also been determined by Rathjen
(1997). We refer to Griffor and Rathjen (1994), Palmgren (1992), Rathjen et al.
(to appear), Setzer (1993; 1995) and the next section for further proof-theoretic
results.

Remark The ordinal Γ0 is usually called the Feferman–Schütte bound for pred-
icativity. The proof-theorist’s notion of predicativity is based on the idea that
an ordinal is predicative if it can be reached by a certain autonomous progres-
sion of theories starting from Peano arithmetic. This is to be contrasted with
what we could call the constructivist’s notion of predicativity, which recognises
a construction as predicative if it has a clear inductive structure, e.g. W-sets
and super universes. Note for example that the theory MLS goes well beyond
Γ0. Not too many theories of strength between Γ0 and the Howard ordinal have
been found. According to the results above, universes seem to provide natural
examples of such theories.

5 Higher Order Universe Operators

The notion of universe operator can be extended to all finite orders. To formulate
them we use a logical framework (Set, El(·)) with Σ-types. The Σ-types are
written in boldface (Σx ∈ B)C and their associated pairing function, left and
right projections are denoted by ⌊·, ·⌋, p and q respectively. Where no confusion
can arise we write A instead of El(A) to simplify the presentation.

Definition 5.1 Construct an externally indexed hierarchy of types

O0 = Set, Fn = (ΣA ∈ V )(A)On,
On+1 = (Fn)Fn.

Then On is the type of operators of order n, and Fn is the type of families of
operators of order n.

The Theories MLn, n = 0,1,2, . . .. We define this sequence of theories in-
ductively. Basic type theory with Π, Σ, + and I-sets, and the basic sets N0, N1

and N is ML0. We define a type theory MLn+1 by adding to the theory MLn,
the new functions Un

0 , . . . , Un
n , T n

0 , . . . , T n
n , ℓn

0 , . . . , ℓn
n, ∗n

0 , . . . , ∗n
n, un

0 , . . . , un
n−1

and tn0 , . . . , tnn−1. The pair Un
k , T n

k is used to construct a family of operators of
order k from given families operators of orders k, k + 1, . . . , n. Thus Un

0 , T n
0 will

construct the actual universe. The constants ℓn
k , ∗n

k are lifting functions analo-
gous to ℓ and ∗ for the universe operator of Section 3. The constants un

k , tnk
signify the application of an operator of level k to a family of operators of level
k − 1. All these functions are canonical (constructors), except the T n

k :s. Their
axiomatisation is as follows.
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Let An ∈ Set, Bn ∈ (An)On, . . . , A0 ∈ Set, B0 ∈ (A0)O0. Write P for the
sequence of parameters An, Bn, . . . , A0, B0. For k = 0, . . . , n, we assume the
following rules:

Un
k (P) ∈ Set

a ∈ Un
k (P)

T n
k (P , a) ∈ Ok

a ∈ Ak

ℓn
k (P , a) ∈ Un

k (P)

a ∈ Ak

T n
k (P , ℓn

k(P , a)) = Bk(a)

∗n
k (P) ∈ Un

0 (P) T n
0 (P , ∗n

k(P)) = Ak.

We assume rules that states that Un
0 (P), T n

0 (P , ·) is a universe closed under Π, Σ,
+ and I and that it contains the basic sets N0, N1 and N . Below we abbreviate
Un

k (P) by Un
k and T n

k (P , ·) by T n
k (·). For k = 1, . . . , n we have the following

rules for application of operators. Introduce codes for the code sets resulting
when applying o to (a, (x)b):

(x ∈ T n
0 (a))

...
o ∈ Un

k a ∈ Un
0 b ∈ Un

k−1

un
k−1(P , o, a, (x)b) ∈ Un

0 ,

and under the same assumptions we have the equality

T n
0 (un

k−1(P , o, a, (x)b)) = p
(

T n
k (o)(⌊T n

0 (a), (x)T n
k−1(b)⌋)

)

∈ Set.

Furthermore

(x ∈ T n
0 (a))

...
o ∈ Un

k a ∈ Un
0 b ∈ Un

k−1 z ∈ T n
0 (un

k−1(P , o, a, (x)b))

tnk−1(P , o, a, (x)b, z) ∈ Un
k−1,

and under same assumptions we have the equality

T n
k−1(t

n
k−1(P , o, a, (x)b, z)) = q

(

T n
k (o)(⌊T n

0 (a), (x)T n
k−1(b)⌋)

)

(z) ∈ Ok−1.

This concludes the axiomatisation of MLn+1.

Remark Note that the axiomatisation of MLn+1 is not minimal, since for
k < n, Un

k , T n
k can do the job of Un−1

k , T n−1
k by letting Un−1

k = Un
k (N0, (x)B),

where B(x) (x ∈ N0) is an empty family, and similarly for T n−1
k etc.

Example 5.2 (Universe operator.) The theory ML1 is simply MLU. Clearly
U0

0 (A, B) and T 0
0 (A, B, ·) is a universe above the family of sets A, B.



On Universes in Type Theory 9

Example 5.3 (Super universe operator.) Define an operator Q1 ∈ O1 = (F0)F0

of order one by letting

Q1(⌊A, B⌋) = ⌊U0
0 (A, B), (x)T 0

0 (A, B, x)⌋.

Then U1
0 (N1, (x)Q1, A, B) and T 1

0 (N1, (x)Q1, A, B, ·), with Q1 as in Example
5.2, defines a super universe above the family of sets A, B. Indeed, letting
P = N1, (x)Q1, A, B then u1

0(P , ℓ1
1(P , 01), a, (x)b) corresponds to the canonical

expression u(a, (x)b) of Section 3, and t10(P , ℓ1
1(P , 01), a, (x)b, z) corresponds to

t(a, (x)b, z). The theory ML2 also allows the formation of universes closed under
arbitrary prescribed family of operators.

Example 5.4 Here is an example of the use of ML3. Let Q2 ∈ (F1)O1 be
defined by

Q2(⌊I, J⌋)(⌊A, B⌋) = ⌊U1
0 (I, J, A, B), (x)T 1

0 (I, J, A, B, x)⌋.

This gives a super universe operator from a given family I, J of (universe) op-
erators. Define from this an operator Q̂2 ∈ (F1)F1 of order two, by letting
Q̂2(⌊I, J⌋) = ⌊N1, (x)Q2(⌊I, J⌋)⌋. Let P ′ be the sequence N1, (x)Q̂2, N1, (x)Q1,
A, B. Then M = U2

0 (P ′), S(·) = T 2
0 (P ′, ·) is a universe closed under this

operator as well. Let Q = U2
1 (P ′) and F(a)(X, Y ) = p(T 2

1 (P ′, a)(⌊X, Y ⌋)),
G(a)(X, Y )(c) = q(T 2

1 (P ′, a)(⌊X, Y ⌋))(c). Then (Q;F,G) represents the uni-
verse of universe operators (cf. Rathjen et al. (to appear)).

There are interesting proof-theoretic applications of this kind of theories. In
the presence of W-sets the universes become type-theoretic counterparts of large
cardinals. Setzer (1995) gives a type theory whose strength exceeds Kripke-
Platek (KP) set theory together with a Mahlo cardinal. His universe construc-
tion is however impredicative, see Section 6. Rathjen (1997) considers a theory
MLFW which is essentially ML2 extended with W-sets and where all universes
are closed under W-sets. The strength is that of a KP set theory with a Mahlo
cardinal, but with restricted set induction. The corresponding theory without
W-sets, MLF, seems considerably harder to analyse, nevertheless its strength
has been conjectured (Rathjen 1997). Rathjen et al. (to appear) presents an
extension of Aczel’s constructive set theory which encompasses constructive ver-
sions of Mahlo’s π-numbers. A constructive justification of this set theory is
obtained by an interpretation in the type theory MLQ. This theory may in
turn be interpreted into ML3, if we expand it and its universes with W-sets.

Example 5.5 (The theory MLm+1.) To give a further example of the use of
the higher operators, we show how some operator

Q ∈ (Fn)(Fn−1) · · · (Fk)Fk,

n > k, may be internalised. Notice its mixed order. Write Q(Gn, . . . , Gk) for
p(Q(Gn, . . . , Gk)) — the code set — and Q̃(Gn, . . . , Gk) for q(Q(Gn, . . . , Gk))
— the decoding function. We need to lift Q to Q̂ ∈ (Fn)Fn by putting

Q̂ = (Gn)⌊N1, (x)(Gn−1)⌊N1, . . . ⌊N1, (x)(Gk)Q(Gn, . . . , Gk)⌋ · · ·⌋⌋.
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Let P = Am, Bm, . . . , An+1, Bn+1, . . . , A0, B0, m > n, be a set of parameters,
where Bn+1(q̂) = Q̂ for some q̂ ∈ An+1 and ⌊Ai, Bi⌋ ∈ Fi. We show that Q is
indeed internal to the universe given by Ui ≡ Um

i (P) and Ti(·) ≡ T m
i (P , ·). We

write ti(r, a, b, c), ℓi(d) for tmi (P , r, a, b, c), ℓm
i (P , d), respectively. Suppose that

an ∈ U0, bn ∈ (T0(an))Un, . . . , ak ∈ U0, bk ∈ (T0(ak))Uk.

Define q(an, bn, . . . , ak, bk) ∈ Uk to be

uk(tk+1(· · · tn(ℓn+1(q̂), an, bn, 01), . . . , ak+1, bk+1, 01), ak, bk).

Then a straightforward calculation shows that T0(q(an, bn, . . . , ak, bk)) is

Q(⌊T0(an), (x)Tn(bn(x))⌋, . . . , ⌊T0(ak), (x)Tk(bk(x))⌋).

Moreover define q̃(an, bn, . . . , ak, bk, z) ∈ Uk to be

tk(tk+1(· · · tn(ℓn+1(q̂), an, bn, 01), . . . , ak+1, bk+1, 01), ak, bk, z).

Then Tk(q̃(an, bn, . . . , ak, bk, z)) is

Q̃(⌊T0(an), (x)Tn(bn(x))⌋, . . . , ⌊T0(ak), (x)Tk(bk(x))⌋, z).

Remark The theories MLn were suggested by the author in October 1989.
A more recent development is Dybjer’s general scheme for inductive-recursive
definitions (Dybjer, to appear). It captures the super universe construction, and
a further generalisation captures also MLn. The scheme was partly inspired by
Mendler’s (1991) categorical interpretation of universes, which in turn took as a
motivation the super universe of Section 3.

6 Stepping into the Impredicative

Impredicative theories can be formulated very clearly using universes. However,
such universes have no inductive structure as we shall see in two examples.

Consider type theory with one universe (Ü , T̈ ) extended by codes for second
order universal quantification ∀̈ in the following manner. Letting P(a) := T̈ (a) →
Ü , we adopt the introduction rules

(X ∈ P(a))
...

a ∈ Ü b ∈ Ü

∀̈(a, (X)b) ∈ Ü

(X ∈ P(a))
...

a ∈ Ü b ∈ Ü

T̈ (∀̈(a, (X)b)) = (ΠX ∈ P(a))T̈ (b)
.

We thus add second order quantification over each set a in Ü . As is wellknown,
the second order existential quantifier is definable from the universal quantifier.
It is straightforward to see that the full comprehension principle is valid in this
universe.
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We note that the universe (Ü , T̈ ) is in some sense non-wellfounded. Indeed,
assume one imposes the natural elimination rule for the universe by assuming
U -elimination (cf. Palmgren (1992), p. 95) extended with a clause for the ∀̈-case

h(∀̈(a, (X)b)) = d
∀̈
(a, (X)b, h(a), (λX)h(b)). (6.1)

Then we obtain an inconsistent theory with non normalising terms. Let n0 and
n1 be codes for the sets N0 and N1, respectively. Using (6.1) we define a term
h(z) ∈ Ü (z ∈ Ü) such that h(∀̈(a, (x)b)) = Ap(g, Ap((λx)h(b), (λy)ϕ)) where g ∈
Ü → Ü is an arbitrary function and ϕ ∈ Ü . Now letting ϕ := ∀̈(n1, (x)Ap(x, 01)),
we have

h(ϕ) = Ap(g, Ap((λx)h(Ap(x, 01)), (λy)ϕ)) = Ap(g, h(ϕ)).

Hence h(ϕ) is a fixed point of g. Letting g := (λx)(x → n0), this leads to outright
inconsistency, since we then obtain a set A = T̈ (h(ϕ)), such that A = ¬A. If
we instead take g := (λx)(x → x), the equation A = A → A emerges. From
this we obtain a nonterminating term, by considering it as a model of untyped
λ-calculus. The problematic point with the above universe is that it occurs
negatively in one of its own introduction rules.

Another, proof-theoretically more interesting example, is Setzer’s Mahlo uni-
verse (M, S) (Setzer 1995). Here one crucial introduction rule is

f ∈ FM → FM

uf ∈ M
,

where FM = (Σx ∈ M)[S(x) → M ]. Similarly to the above we can prove that
it is inconsistent with the natural elimination rule. This rule is analogous to the
one for (Ü , T̈ ) but we have instead

h(uf) = du(f, (λx)h(f(x))).

For any g ∈ M → M we define g+ ∈ FM → FM by g+(w) = 〈g(p(w)), (λx)n1〉,
and for any f ∈ FM → FM we define f− ∈ M → M by f−(a) = p(f〈a, (λx)n1〉).
(The particular choice of n1 is not important, any other code would do.) Thus
(g+)−(a) = g(a). By the natural elimination rule, there exists h ∈ M → M such
that

h(uf ) = h(f−(uf)) → n0 (f ∈ FM → FM ).

Now put f = ((λx ∈ M)x)+. Then by the above f−(uf ) = uf , so h(uf ) =
h(uf ) → n0. Hence A = ¬A, for some A and analogously to the above B = B →
B for some B. We summarise the results as a theorem.

Theorem 6.1 Let T be a type theory with either the second order universe or
with Setzer’s Mahlo universe. Then T becomes inconsistent and non-normalising,
when adding the natural elimination rules.

We remark that Setzer did not himself consider an elimination rule for his
universe (Setzer 1995). However, it seems reasonable from a predicative point of
view to require that any set introduced in type theory should be consistent with
the natural elimination rules generated by the introduction rules.
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7 Classical Universes Within Type Theory

The A-translation is a combination of Gödel’s negative translation with Dragalin
and Friedman’s wellknown syntactic translation. This translation gives an easy
method for proving conservativity of Π0

2-sentences of many classical theories
over their intuitionistic counterpart. We shall here use a universe of classical
propositions to obtain a semantic version of this method. The idea is to extend
type theory with a universe of propositions for which classical logic holds. It is
in a precise sense a (small-) complete boolean algebra with prescribed falsity.

The A-translation for the ∀, ∧, → fragment of minimal logic (Berger and
Schwichtenberg 1995) has a particularly simple form. We shall make a semantic
version of this translation. Our starting point is a Martin-Löf type theory with
a universe of sets (U, T ). Here it will be useful to think of a code a ∈ U as a
(constructively) given infinitary formula, and the decoding T (a) as its canonical
Tarski semantics. We extend this type theory with a universe of propositions
(U¬¬, TA) for each set A. We define it as follows:

U¬¬ set
A set b ∈ U¬¬

TA(b) set
.

The absurdity of this universe will be A, and for each set p of U we introduce a
new proposition gp into the new universe.

⊥ ∈ U¬¬ TA(⊥) = A

p ∈ U
gp ∈ U¬¬

p ∈ U

TA(gp) = (T (p) → A) → A
.

We assume closure only under implication, conjunction and universal quantifi-
cation over small sets:

b ∈ U¬¬ c ∈ U¬¬

b ⊃ c ∈ U¬¬

b ∈ U¬¬ c ∈ U¬¬

TA(b ⊃ c) = TA(b) → TA(c)

b ∈ U¬¬ c ∈ U¬¬

b ∧ c ∈ U¬¬

b ∈ U¬¬ c ∈ U¬¬

TA(b ∧ c) = TA(b) × TA(c)

(x ∈ T (s))
...

s ∈ U b ∈ U¬¬

∀(s, (x)b) ∈ U¬¬

(x ∈ T (s))
...

s ∈ U b ∈ U¬¬

TA(∀(s, (x)b)) = (Πx ∈ T (s))TA(b)
.

We admit also proof by induction on this universe, a principle which is no
stronger than recursion on an ordinary universe. This is then the semantic
version of the A-translation for minimal logic. The basic results are proved
similarly as in the syntactic case.
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Theorem 7.1 The universe (U¬¬, TA) satisfies stability and ex falso quod libet,
i.e. there are constructions for TA(¬¬b ⊃ b) and TA(⊥ ⊃ b) for any b ∈ U¬¬.

Proof By induction on the universe. 2

Theorem 7.2. (Π2-conservation) Let p(x, y) ∈ U (x ∈ R, y ∈ S) be a family
of small sets over small sets R = T (r) and S = T (s). If for all small A,
TA(∀(r, (x)¬∀(s, (y)¬gp(x, y)))) is true, then (Πx ∈ R)(Σy ∈ S)T (p(x, y)) is
true.

Proof For any given x ∈ R, substitute for A the set (Σy ∈ S)T (p(x, y)) and
then proceed as in the familiar syntactic proof. 2

Note that TA(b) does not in general follow from T (b). It is possible to make
intricate analyses for what b this in fact is the case, by generalising results from
the syntactic situation. Here we only observe that TA(gi(s, x, y)) holds whenever
I(T (s), x, y) holds and that the translation of Peano’s fourth axiom (n + 1 6= 0)
is valid. Moreover the induction schemata for natural numbers and W-sets,
with branching over any small family of sets, are valid in translated form. This
means that in the classical universe we may use higher type arithmetic and the
mentioned induction schemes. It seems to be an interesting task to investigate
what further principles are valid.

The semantic version of the A-translation was completely formalised using the
proof support system ALF, and tested on a small program extraction problem.
This was done in cooperation with U. Berger. The advantage of the semantic
version is that it is possible to work entirely within one theory, and that classical
and constructive methods may be mixed.
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