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Abstract

The random assignment problem is to minimize the cost of an assign-

ment in a n×n matrix of random costs. In this paper we study this prob-

lem for some integer valued cost distributions. We consider both uniform

distributions on 1, 2, . . . , m, for m = n or n
2, and random permutations

of 1, 2, . . . , n for each row, or of 1, 2, . . . , n
2 for the whole matrix. We find

the limit of the expected cost for the n
2 cases, and prove bounds for the

n cases. This is done by simple coupling arguments together with Aldous

recent results for the continuous case. We also present a simulation study

of these cases.

1 Introduction

In the assignment problem we are to choose n elements from a n× n matrix C

of costs, one element from each row and each column, in such a way that the
total cost is minimized. In other words, we are looking for a permutation π,
that minimizes

Z =

n
∑

i=1

Ciπ(i).

If we let the elements of C be random variables, we have the random as-
signment problem. Traditionally, the random costs have been independent,
identically distributed, with the exponential or the uniform distribution.

When the costs are i.i.d. exponential (mean 1) there are strong conjec-
tures for the more general case of k-assignment from a m× n cost matrix. Let
Z∗(k, m, n) denote the minimal cost. Mézard and Parisi [8], [9], conjectured
that

lim
n→∞

E(Z∗(n, n, n)) = π2/6.

This was proven by Aldous [1]. Parisi [11] has also conjectured that

E(Z∗(n, n, n)) =

n
∑

i=1

1

i2
,

which was improved by Coppersmith and Sorkin [3] to

E(Z∗(k, m, n)) =
∑

i+j<k

1

(m− i)(n− j)
.
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The last conjecture was proven by Alm and Sorkin [2] for k ≤ 4, k = m =
5, and k = m = n = 6. Linusson and Wästlund [7] extended this to k ≤
6, and k = m = n = 7.

1.1 Discrete variants

We will study four discrete variants of the random assignment problem.

Case I Each row in C is an independent random permutation of {1, 2, . . . , n},
chosen uniformly from the set of all permutations.

Case II Each element in C is an independent random number, chosen uni-
formly from {1, 2, . . . , n}.

Case III C is a random permutation of {1, 2, . . . , n2} chosen uniformly.

Case IV Each element in C is an independent random number, chosen uni-
formly from {1, 2, . . . , n2}.

In the first two cases we normalize by n, and in cases III and IV by n2, thus
considering the problem of minimizing

Z =
1

n

∑

i

Ciπ(i) or Z =
1

n2

∑

i

Ciπ(i).

The (random) minimal costs will be denoted by Z∗i (n), for the four discrete
cases, and by Z∗c (n) in the case of continuous costs.

In [1], Aldous proves the following theorems, valid for any non-negative
continuous distribution, such that the density of the independent costs have
value 1 at 0. Let π denote the permutation giving an optimal assignment.

Theorem 1.1.

lim
n→∞

EZ∗c (n) =
π2

6
.

Theorem 1.2. nCiπ(i) converges in distribution. The limit distribution has

density

h(x) =
e−x(e−x − 1 + x)

(1− e−x)2
, 0 ≤ x < ∞.

Theorem 1.3.

lim
n→∞

P (Ciπ(i) is the kth smallest element of the ith row in C) = 2−k.

Remark. In a simulation study in [10], Olin noted that, even for as small di-
mensions as n = 50, the row rank distribution is surprisingly close to the above.

2 Coupling arguments

In this section we will prove the following theorem.
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Theorem 2.1. Let EZ∗i = limn→∞EZ∗i (n). Then

π2

6
≤ EZ∗1 ≤ 2,

π2

6
+

12

24
≤ EZ∗2 ≤

π2

6
+

13

24
,

EZ∗3 =
π2

6
, EZ∗4 =

π2

6
.

The idea is to compare a discrete case of the problem with the case of
(continuous) uniform costs. We want to generate matrices for both cases simul-
taneously, such that an optimal assignment for one matrix is close to optimal
for the other.

When we say that π is optimal for the matrix C, we mean that π is a
permutation giving an optimal assignment for the random assignment problem,
with cost matrix C.

2.1 Case I

Let U be a n× n matrix of i.i.d. U(0, n) (uniform on (0, n)) random variables.

It will be convenient to denote the rows of U by U
(i). We want to use U to get

an independent random permutation for each row. To achieve this, we can use
the row ranks of the matrix U . If we let

Pi(j) = rank U
(i)
j ,

each Pi will be an independent random permutation, chosen uniformly from the
set of all permutations. By Theorem 1.3 we have,

lim
n→∞

P (rank U
(i)
j = k) = 2−k.

This gives, if π is the optimal assignment for U ,

lim
n→∞

EZ∗1 (n) ≤ lim
n→∞

E

(

1

n

n
∑

i=1

Pi(π(i))

)

= lim
n→∞

E(rank U
(i)
j ) = 2.

For a lower bound, assume that, for 1 ≤ i ≤ n, Pi is a random permutation of
{1, 2, . . . , n}, and that V is a n× n matrix with i.i.d. U(0, n) random variables
as elements. We will now use the permutations Pi to rearrange the rows of V .
This will give us another matrix, U , also with i.i.d. U(0, n) elements, such that
Uij is close to Pi(j). To be precise, let

U
(i)
j = V

(i)
(Pi(j))

= the Pi(j)th smallest element in row i of V ,

and note that E(k − V
(i)
(k) ) = k − nk/(n + 1) = k/(n + 1), since V

(i)
(k)/n is

Beta(n + k + 1, k). We therefore have, for all permutations π,

E(Pi(π(i))− U
(i)
π(i)) > 0.

Now assume that π is an optimal assignment for the discrete problem. The cost
can then be bounded below by the cost of the problem with cost matrix U :

EZ∗1 (n) = E

(

1

n

n
∑

i=1

Pi(π(i))

)

= E

(

1

n

n
∑

i=1

(

U
(i)
π(i) + Pi(π(i))− U

(i)
π(i)

)

)

>
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> E

(

1

n

n
∑

i=1

U
(i)
π(i)

)

≥ EZ∗c (n) →
π2

6
.

2.2 Case II

Let Uij be i.i.d. U(0, n). To get i.i.d. random variables from the discrete
uniform distribution on {1, 2, . . . , n}, we can simply take the integer part of Uij

and add 1. Let
Yij = [Uij ] + 1,

where [x] denotes the integer part of x. Then Yij are i.i.d. with the desired
distribution, and the differences Yij −Uij are uniform on (0, 1). Assume that π
is an optimal assignment for Y . Then we still have

Yiπ(i) − Uiπ(i) ∈ U(0, 1) and E(Yiπ(i) − Uiπ(i)) = 1/2,

and for the lower bound of EZ∗2 (n),

EZ∗2 (n) = E

(

1

n

n
∑

i=1

Yiπ(i)

)

= E

(

1

n

n
∑

i=1

Uiπ(i)

)

+
1

2
≥ EZ∗c (n) +

1

2
.

Now for the other direction. Assume that π is the optimal assignment for U .
Svante Janson [5] has calculated the expectation of the fractional part of one
element in the optimal assignment, {Uiπ(i)} = Uiπ(i) − [Uiπ(i)], with respect to
the limit distribution, given by Theorem 1.2.

lim
n→∞

E(Uiπ(i) − [Uiπ(i)]) =

∞
∫

0

{x}h(x)dx =
1

2
−

1

24
+

∞
∑

k=1

π2

sinh2(2π2k)
=

11

24
+ c,

where c ≈ 2.83 · 10−16. Let Zπ
2 be the cost of Y given by the assignment π.

lim
n→∞

E(Z∗c − Zπ
2 ) = lim

n→∞
E

(

1

n

n
∑

i=1

Uiπ(i) − Yiπ(i)

)

= lim
n→∞

E(U1π(1) − [U1π(1)])− 1 = −
13

24
+ c.

Since Z∗2 ≤ Zπ
2 , we get the upper bound

EZ∗2 ≤
π2

6
+

13

24
.

2.3 Case III

This is similar to the first case, but for ease of notation we consider a vector of
n2 elements instead of a n× n matrix.

Given a random permutation P of {1, 2, . . . , n2}, and a vector V of n2 i.i.d.
U(0, n2) random variables, let Ui be the P (i)th smallest element of V , that is,
Ui = V(P (i)).

Conversely, given random variables Ui, 1 ≤ i ≤ n2, i.i.d. U(0, n2), define the
random permutation by P (k) = rank Uk.
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This gives our desired relations between U and P . By noting that, since
V(k)/n2 is Beta(n2 + k + 1, k) distributed,

E(k − V(k)) =
k

n2 + 1
,

we also have for i in the optimal assignment for either case

1

n2 + 1
≤ E(P (i)− Ui) ≤

n2

n2 + 1
.

Now, if π is optimal for P ,

EZ∗3 (n) = E

(

1

n2

∑

i∈π

P (i)− U(i) + U(i)

)

≥ EZ∗c (n) +
1

n(n2 + 1)
,

and if π is optimal for U ,

EZ∗c (n) = E

(

1

n2

∑

i∈π

U(i)− P (i) + P (i)

)

≥ EZ∗3 (n)−
n

n2 + 1
.

And by letting n tend to infinity, we get the limit

EZ∗3 = lim
n→∞

EZ∗3 (n) =
π2

6
.

2.4 Case IV

As in the second case, given the i.i.d. uniform (0, n2) variables Uij , define Xij

and Yij by
Xij = [Uij ], Yij = Xij + 1.

If π is optimal for Y ,

Z∗4 (n) =
1

n2
(Y1π(1) + · · ·+ Ynπ(n)) ≥

1

n2
(U1π(1) + · · ·+ Unπ(n)) ≥ Z∗c (n).

If π is optimal for U ,

Z∗c (n) =
1

n2
(U1π(1) + · · ·+ Unπ(n)) ≥

1

n2
(X1π(1) + · · ·+ Xnπ(n)) ≥ Z∗4 (n)−

1

n
.

Combining this, we get by letting n tend to infinity

EZ∗4 = lim
n→∞

EZ∗4 (n) =
π2

6
.

3 Simulation

The primary purpose of the simulation study is of course to estimate the ex-
pected minimal cost. Besides that, we look at the variance of the expected
minimal cost, as well as the row rank distribution.

To solve the realizations, we used an algorithm by Jonker and Volgenant [6].
In a recent survey [4], it came out as one of the fastest available algorithms for
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Figure 1: Simulation results, case I

problems like ours. Source code written by Jonker is available on the Internet1,
and a C++ version was used for these simulations. The algorithm has time
complexity O(n3). Beside the dimension, the time also depends on the size of
the matrix elements, which makes the simulations of cases III and IV more time
consuming.
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Figure 2: Simulation results, case II

As an indication of how fast the implemented algorithm really is, we note
that in the permutation cases, the generation of the matrices takes about the
same time as solving the assignment problem. In the independent cases the pro-
portion of the time, spent generating the matrices, is about 0.25–0.4, depending
on the dimension. An instance of dimension 1000 is solved in less than a second
for all cases. For cases I and II it takes about 75–95 seconds to solve the problem
with dimension 10000, and 30 seconds to generate the matrix. Almost 400 MB
of RAM is needed for this dimension. The high dimension cases was run on a
computer with two 1000 MHz Pentium III processors and 2 GB of RAM.

1http://www.magiclogic.com/assignment.html
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Figure 3: Simulation results, cases III and IV

3.1 Results

3.1.1 Mean

The results are summarized in Tables 1–4 and Figures 1–3. Note that n in the
tables is the number of realizations.

For case I and case II we simulated problems with dimensions up to 10000.
The number of realizations varies between 40000 and 4000. We see that the
estimated means stabilize quite fast. The difference between dimensions 2000
and 10000 is of order 10−4, the same order as the standard error.

The n2 cases III and IV behaves as expected. The mean increases nicely
towards π2/6, with case IV slightly ahead. Since these cases are more time
consuming, and the limit is known to be π2/6, we was content with simulations
up to dimension 6000.
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Figure 4: Estimated variance

7



3.1.2 Variance

Alm and Sorkin [2] conjectures that the variance in the exponential case is
2/n + O(log n/n2). It is natural to suspect the same behavior in all our four
cases. Figure 4 shows n times the estimated variance plotted against n. It is
interesting to note is that the variance in the permutation cases is about half of
that in the independent cases.

1 2 3 4 5 6 7 8 9 10
k

10–4
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10–1

1

p,
 lo

gs
ca

le

case II
case I

case III, case IV, and 0.5k

Figure 5: Estimated rank distribution, log-scale

3.1.3 The rank distribution

In the continuous cases, the limiting rank distribution is geometric, with pa-
rameter 1/2. For comparison, we generated 1000 matrices of dimension 2000
for each discrete case, and determined the rank of every element in the optimal
assignment given by the program. (Optimal assignments are not necessarily
unique.) In the case of ties, we gave the element the lowest rank.

As suspected, cases III and IV seems to have the same limiting distribution
as in the continuous case. Also in case II a geometric distribution, but with
extra weight on 1, fit the data very well. For case I the picture looks a bit
different. When plotted on a logarithmic scale, (Figure 5) we no longer get a
straight line, but a slightly concave curve. (In this scale, a polynomial in k of
degree 2 fit the data well.)
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Table 1: Simulation results, case I.

dimension n mean std. dev. s.e. mean
100 40000 1.80990 0.0797616 0.000398808
250 40000 1.82313 0.0512889 0.000256445
500 20000 1.82742 0.0364174 0.000257510
1000 20000 1.82924 0.0258506 0.000182791
2000 10000 1.83034 0.0183741 0.000183741
3000 10000 1.83062 0.0149616 0.000149616
4000 5000 1.83068 0.0128971 0.000182393
5000 5000 1.83058 0.0116841 0.000165238
6000 4000 1.83068 0.0105195 0.000166328
7000 4000 1.83087 0.0098804 0.000156223
8000 4000 1.83075 0.0092924 0.000146927
9000 4000 1.83064 0.0085737 0.000135563
10000 4000 1.83046 0.0082750 0.000130840
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Table 2: Simulation results, case II.

dimension n mean std. dev. s.e. mean
100 40000 2.13618 0.1269710 0.000634857
250 40000 2.15438 0.0816278 0.000408139
500 20000 2.16071 0.0586444 0.000414678
1000 20000 2.16370 0.0411801 0.000291188
2000 10000 2.16539 0.0289196 0.000289196
3000 10000 2.16557 0.0239816 0.000239816
4000 5000 2.16520 0.0208703 0.000295150
5000 5000 2.16581 0.0190736 0.000269742
6000 4000 2.16601 0.0170615 0.000269765
7000 4000 2.16566 0.0156181 0.000246944
8000 4000 2.16600 0.0147405 0.000233067
9000 4000 2.16562 0.0138590 0.000219130
10000 4000 2.16547 0.0131255 0.000207532

Table 3: Simulation results, case III.

dimension n mean std. dev. s.e. mean
100 40000 1.60254 0.0905816 0.000452908
250 40000 1.62781 0.0587116 0.000293558
500 20000 1.63629 0.0416650 0.000294616
1000 20000 1.64064 0.0297464 0.000210339
2000 10000 1.64274 0.0208671 0.000208671
3000 10000 1.64366 0.0170409 0.000170409
4000 2000 1.64398 0.0147322 0.000329422
5000 2000 1.64464 0.0132429 0.000296119
6000 2000 1.64454 0.0122086 0.000272994

Table 4: Simulation results, case IV.

dimension n mean std. dev. s.e. mean
100 40000 1.61806 0.1296140 0.000648068
250 40000 1.63331 0.0830974 0.000415487
500 20000 1.63948 0.0591263 0.000418086
1000 20000 1.64231 0.0422843 0.000298995
2000 10000 1.64349 0.0297958 0.000297958
3000 10000 1.64406 0.0243364 0.000243364
4000 2000 1.64400 0.0210041 0.000469665
5000 2000 1.64410 0.0186728 0.000417537
6000 2000 1.64463 0.0165169 0.000369328
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