Complex Analysis 10hp Kand Ma2 Spring Term 2014

Home assignment 2 (for training only - do not hand in)

- 1. (a) Compute $\int_C \frac{1}{z^3 1} dz$, where C is the positively (counter-clock) oriented circle $|z + \frac{1}{2}| = 1$. (b) Compute $\int_{\Gamma} \frac{z}{(z^2 - 1)^2} dz$, where Γ is the positively oriented circle |z| = 2.
- **2.** Suppose that f(z) is analytic in a region Ω and γ is a closed curve in Ω . Show that

$$\int\limits_{\gamma} \overline{f(z)} f'(z) \ dz$$

is purely imaginary.

3. Assume that f(z) is analytic and satisfies the inequality |f(z) - 1| < 1 in a region Ω . Show that

$$\int\limits_{\gamma} \frac{f'(z)}{f(z)} dz = 0$$

for every closed curve γ in Ω .

4. If P(z) is a polynomial and C denotes the positively oriented circle |z - a| = R, show that

$$\int_C P(z) \ d\overline{z} = -2\pi i R^2 P'(a) \ .$$

(Here, for a continuous function g(z) and a curve γ : $z = z(t), a \le t \le b$, in \mathbb{C} one defines $\int_C g(z) \, d\overline{z}$ by $\int_C g(z) \, d\overline{z} := \int_a^b g(z(t)) \cdot \overline{z'(t)} \, dt$.)

Answers: 1. (a) $I = -\frac{2\pi i}{3}$. (b) I = 0.