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1 Introduction

A random walk is a stochastic sequence {Sn}, with S0 = 0, defined by

Sn =
n∑

k=1

Xk,

where {Xk} are independent and identically distributed random variables (i.i.d.).
The random walk is simple if Xk = ±1, with P (Xk = 1) = p and P (Xk = −1) = 1−p =

q. Imagine a particle performing a random walk on the integer points of the real line, where it
in each step moves to one of its neighboring points; see Figure 1.

q p

Figure 1: Simple random walk

Remark 1. You can also study random walks in higher dimensions. In two dimensions, each
point has 4 neighbors and in three dimensions there are 6 neighbors.

A simple random walk is symmetric if the particle has the same probability for each of the
neighbors.

General random walks are treated in Chapter 7 in Ross’ book. Here we will only study
simple random walks, mainly in one dimension.

We are interested in answering the following questions:

• What is the probability that the particle will ever reach the point a?
(The case a = 1 is often called “The monkey at the cliff”.)

• What time does it take to reach a?

• What is the probability of reaching a > 0 before −b < 0? (“The gambler’s ruin”)

• If the particle after n steps is at a > 0, what is the probability that

– it has been on the positive side since the first step?

– it has never been on the negative side?

(“The Ballot problem”)

• How far away from 0 will the particle get in n steps?

When analyzing random walks, one can use a number of general methods, such as

• conditioning,

• generating functions,

• difference equations,
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• the theory for Markov chains,

• the theory for branching processes,

• martingales,

but also some more specialized, such as

• counting paths,

• mirroring,

• time reversal.

2 The monkey at the cliff

A monkey is standing one step from the edge of a cliff and takes repeated independent steps;
forward, with probability p, or backward, with probability q.

2.1 Passage probabilities

What is the probability that the monkey, sooner or later, will fall off the cliff?

Call this probability P1. Then

P1 = P (a random walk particle will ever reach x = 1).

We can also study, for k > 0,

Pk = P (a random walk particle will ever reach x = k),

corresponding to the monkey starting k steps from the edge.
By independence (and the strong Markov property) we get

Pk = P k
1 .

To determine P1, condition on the first step.

P1 = p · 1 + q · P2 = p + q · P 2
1 ,

so that
P 2

1 −
1
q
P1 +

p

q
= 0,

with solutions
1
2q
±

√
1

4q2
− p

q
=

1
2q
±
√

1− 4pq

2q
.

Observe that
1 = p + q = (p + q)2 = p2 + q2 + 2pq,

so that
1− 4pq = p2 + q2 − 2pq = (p− q)2

and thus √
1− 4pq = |p− q|.
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The solutions can thus be written

1± (p− q)
2q

=

{
1,
p
q .

(1)

If p > q the solution p
q > 1 is rejected, so that, for p ≥ q (i.e. p ≥ 1/2), we get P1 = 1, and

thus Pk = 1 for k ≥ 1.
It is somewhat more difficult to see that for p < q the correct solution is P1 = p/q < 1,

which gives Pk = (p/q)k.
This can be shown using generating functions, e.g. by using the theory for branching pro-

cesses, where the extinction probability is the smallest positive root to the equation g(s) = s;
see Problem 2.

A more direct way is to study

Pk(n) = P (to reach x = k in the n first steps).

Again conditioning on the first step gives

P1(n) = p + q · P2(n− 1) ≤ p + q · P 2
1 (n− 1).

Since P1(1) = p ≤ p/q, we can, by induction, show that P1(n) ≤ p/q for all n ≥ 1, if we can
show that P1(n) ≤ p/q implies that also P1(n + 1) ≤ p/q.
Suppose that P1(n) ≤ p/q. Then

P1(n + 1) ≤ p + q · P 2
1 (n) ≤ p + q · (p/q)2 = p +

p2

q
=

p

q
.

Since
P1 = lim

n→∞
P1(n) ≤ p

q
,

we can, for p < q, reject the solution P1 = 1.

We have thus proved

Theorem 1. With Pk defined as above, for k ≥ 1,

Pk =

{
1 if p ≥ q,

(p
q )k if p < q.

Remark 2. This implies that a symmetric random walk, with probability 1, will visit all points
on the line!

Problem 1. Let p < q. Determine the distribution of Y = max
n≥0

Sn. Compute E(Y ).

Hint: Study P (Y ≥ a).

Problem 2. Let p < q. Show that P1 is the extinction probability of a branching process with
reproduction distribution p0 = p, p2 = q.
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2.2 Passage times

What time does it take until the monkey falls over the edge?

Let Tjk = “the time it takes to go from x = j to x = k”, so that
T0k = “the time it takes the particle to reach x = k for the first time (when starting in x = 0)”,
and further let

Ek = E(T0k),

if the expectation exists. If it doeas, we must have, for k > 0,

Ek = k · E1.

Conditioning gives
E1 = 1 + p · 0 + q · E2 = 1 + 2q · E1.

Separate the cases p < q, p = q and p > q.

For p < q we have, by Theorem 1, that P (T01 = ∞) = 1 − P1 > 0, which implies that
E1 = +∞.

For p = q = 1/2 we get, if E1 is supposed to be finite, that

E1 = 1 + E1,

that is a contradiction, so that also in this case E1 = +∞.

Finally, for p > q, we get

E1 =
1

1− 2q
=

1
p− q

< ∞.

We have proved

Theorem 2. For k ≥ 1,

Ek =

{
+∞ if p ≤ q,

k
p−q if p > q.

Using Theorems 1 and 2 we can also study returns to the starting point. Let

P0 = P (that the particle ever returns to the starting point),
T00 = “the time until the first return”,

E0 = E(T00).

Theorem 3. E0 = +∞ for all p and

P0 =

{
1 if p = q,

1− |p− q| if p 6= q.

Proof: With notation as before, we get by conditioning that

P0 = p · P−1 + q · P1.

If p = q, by Theorem 1, we get P−1 = P1 = 1, so that also P0 = 1. If p 6= q, either P−1 < 1
or P1 < 1, so that P0 < 1.
In the case p < q, P−1 = 1 and P1 = p/q, so that

P0 = p + q · p

q
= 2p = 1− (q − p) < 1.
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In the case p > q, instead P−1 = q/p and P1 = 1, so that

P0 = p · q

p
+ q = 2q = 1− (p− q) < 1.

For p 6= q, we thus have P0 = 1 − |p − q| < 1 and consequently P (T00 = ∞) > 0, so that
E0 = +∞.
If p = q we get

E0 = 1 +
1
2
E−1 +

1
2
E1 = +∞,

by Theorem 2.

Remark 3. The symmetric random walk will therefore, with probability 1, return to 0. This
holds after each return, so that

P (Sn = 0 i.o.) = 1.

Although the walk will return infinitely often, the expected time between returns is infinite! The
law of large numbers can therefore not be interpreted as saying that the particle usually is close
to 0. In fact, the particle is rarely close to 0 and a large proportion of the time is spent far away
from 0, even in a symmetric random walk! See Section 4.5.

Remark 4. It can be shown that the symmetric random walk in two dimensions also returns to
the origin with probability 1, while in three dimensions the probability is ≈ 0.35.

Problem 3. Let p 6= q. Determine the distribution for Y = # returns to 0. Compute E(Y ).

3 The gambler’s ruin

The monkey at the cliff can be interpreted as placing an absorbing barrier at x = 1 (or x = k).
By studying a random walk with two absorbing barriers, one on each side of the staring point,
we can solve The Gambler’s ruin:

Two players, A and B, play a game with independent rounds where, in each round, one
of the players wins 1 krona from his opponent; A with probability p and B with probability
q = 1 − p. A starts the game with a kronor and B with b kronor. The game ends when one of
the players is ruined.

3.1 Absorption probabilities

What are the player’s ruin probabilities?
This corresponds to a random walk where the particle starts at 0 and is absorbed in the states b
and −a, or, equivalently, starts in a and is absorbed in 0 and a + b.
Let

Ak = P (A wins when he has k kronor).

Then, A0 = 0, Aa+b = 1 and we seek Aa. Condition on the outcome of the first round!

Ak = p ·Ak+1 + q ·Ak−1. (2)

This homogeneous difference equation can be solved by determining the zeroes of the charac-
teristic polynomial

z = p · z2 + q ⇔ z2 − 1
p
· z +

q

p
= 0,
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with solutions z1 = 1 and z2 = q/p. (Compare with (1).) This gives, for p 6= q, the following
general solution to (2)

Ak = C1 · 1k + C2 · (
q

p
)k,

where the constants C1 and C2 are determined by the boundary conditions

A0 = 0 ⇒ C1 + C2 = 0,

Aa+b = 1 ⇒ C1 + C2(
q

p
)a+b = 1,

so that

C1 =
−1

( q
p)a+b − 1

,

C2 =
1

( q
p)a+b − 1

,

and

Ak =
−1

( q
p)a+b − 1

+
1

( q
p)a+b − 1

(
q

p
)k =

( q
p)k − 1

( q
p)a+b − 1

,

Aa =
( q

p)a − 1

( q
p)a+b − 1

.

For p = q, we get the difference equation

Ak =
1
2
Ak+1 +

1
2
Ak−1.

The characteristic polynomial z2 − 2z + 1 has the double root z1 = z2 = 1, so that we need
one more solution. Ak = k works, so that

Ak = C1 · 1k + C2 · k.

A0 = 0 ⇒ C1 = 0,

Aa+b = 1 ⇒ C2 =
1

a + b
,

so that

Ak =
k

a + b
,

Aa =
a

a + b
.

Above we have shown

Theorem 4. The probability that A ruins B (the particle is absorbed in x = b) is

Aa =


( q

p)a − 1

( q
p)a+b − 1

if p 6= 1
2 ,

a

a + b
if p = 1

2 .
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Remark 5. a = +∞, b = 1 corresponds to The monkey at the cliff. P1 = P (the monkey falls over the edge) =
lima→∞ P (A wins). For p = q we get

P1 = lim
a→∞

a

a + 1
= 1

and for p 6= q

P1 = lim
a→∞

( q
p)a − 1

( q
p)a+1 − 1

=

{
1 if p > q,
p
q if p < q.

Example 1. Consider a symmetric random walk on the points 0, 1, . . . , n, on the circumference
of a circle; see Figure 2. The random walk starts at 0. It is easily seen that, with probability 1,
all points will be visited. (Why?)

What is the probability that the point k (k = 1, . . . , n) is the last to be visited?
Before k is visited one of k − 1 and k + 1 must be visited. Consider the time point when this
happens for the first time. Because of symmetry, we can assume that it is k − 1 that is visited.
That k is the last point visited means that k +1 must be visited before k and this can only occur
if the random walk passes clockwise from k − 1 to k + 1 before it visits k. The probability for
this is the same as the ruin probability for a player with n− 1 kronor against an opponent with
1 krona, i.e. 1/n. We then have shown the surprising result that

P (k is the last point visited ) =
1
n

for k = 1, . . . , n.

n 0
1

k−1

k

k+1

Figure 2: Random walk on a circle

Example 2. Consider a symmetric random walk starting at 0 and a position a > 0.
Let Ya = “# visits in a before the random walk returns to 0”. For a to be visited at all, the first
step must be to the right, so that P (Ya > 0) = 1

2 · P (Ya > 0|S1 = 1). This conditional
probability is the chance to win for a player with 1 krona against an opponent with a − 1
kronor, i.e. P (Ya > 0|S1 = 1) = 1

a , so that P (Ya > 0) = 1
2a . Similarly, we can compute

P (Ya = 1|Ya > 0). Consider the random walk when a is visited, which we know will happen
if Ya > 0. For this to be the last visit in a, before the next visit to 0, the first step must be to the
left, so that P (Ya = 1|Ya > 0) = 1

2 · P (0 is reached before a starting in a− 1) = 1
2 ·

1
a = 1

2a .
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The same situation appears at every visit in a, so that (Ya|Ya > 0) is ffg(1/2a) (Geometric
distribution starting at 1) and P (Ya > 0) = 1/2a. This gives

E(Ya) =
1
2a
· 2a = 1

for all a > 0! (Due to symmetry, this also holds for negative a.)
Above we have shown something very surprising:

Between two visits to 0, the symmetric random walk will make on average 1 visit to all other
points!
For this to be possible, we must have E0 = ∞, which also was shown in Theorem 3.

Problem 4. Use Theorem 1 to prove that, for all p, a and b, the game will finish with probability
1.

Problem 5. Suppose that you have 10 kronor and your opponent has 100 kronor. You get the
choice to play with stakes of 1, 2, 5 or 10 kronor per round. How would you choose, and what
are your chances of winning, if your probability to win a single round is
a) p = 0.5, b) p = 0.4, c) p = 0.8.

3.2 Absorption times

How long will it take before someone is ruined?
Let

Yk = “# remaining rounds when A has k kronor”,

Ek = E(Yk).

Conditioning gives
Ek = 1 + p · Ek+1 + q · Ek−1, (3)

with
E0 = Ea+b = 0.

Equation (3) is a non-homogeneous difference equation. To solve this we need both to solve
the corresponding homogeneous equation, as above, and also to find a particular solution to the
inhomogeneous equation.

We start with the symmetric case (p = q = 1/2). The difference equation is

Ek = 1 +
1
2
· Ek+1 +

1
2
· Ek−1,

with homogeneous solution A+B · k. A particular solution is−k2, so that the general solution
is

Ek = A + B · k − k2.

The boundary conditions are A = 0 and B = a + b, so that

Ek = k · (a + b− k),
Ea = a · b.

In the asymmetric case, the homogeneous solution is, as before, A + B · (q/p)k and a
particular solution is given by k/(q − p), which gives the general solution

Ek =
k

q − p
+ A + B · (q

p
)k. (4)
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By using the boundary conditions, we can determine

A =
a− b

(q − p)(( q
p)a+b − 1)

,

B = −A.

Inserting this into (4) gives

Theorem 5. The expected number of rounds until one of the players is ruined is

Ea =


a · b if p = q = 1

2 ,

a

q − p
− a + b

q − p
·

( q
p)a − 1

( q
p)a+b − 1

if p 6= q.

Example 3. In a fair game with a + b = 100, we get
a b Aa Ea

1 99 1/100 99
2 98 1/50 196
5 95 1/20 475

10 90 1/10 900
20 80 1/5 1600
25 75 1/4 1875
50 50 1/2 2500

Problem 6. Compute the corresponding table as in Example 3 when
a) p = 0.6, b) p = 0.2.

Problem 7. For which value of a is Ea maximal/minimal when a + b = 100 and
a) p = 0.4, b) p = 0.8.

Problem 8. Consider the random walk in Example 1 and let Ek =“# steps until x = k is
visited for the first time”. Calculate Ek for k = 1, . . . , n, when
a) n = 2, b) n = 3, c) n = 4.

Problem 9. In Example 1, let P (counterclockwise) = p and P (clockwise) = q = 1−p. Show
that, for all 0 ≤ p ≤ 1, with probability 1, all points will be visited.

3.3 Reflecting barriers

So far we have studied absorbing barriers. One can also consider reflecting barriers. That a is
a reflecting barrier means that as soon as the particle reaches x = a, in the next step it returns
with probability 1 to the previous position. With two reflecting barriers in a and b, a < b, there
are only b−a+1 possible positions, and all will be visited infinitely many times (if 0 < p < 1).
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Example 4. Let 0 be a reflecting barrier, i.e. P (Sn+1 = 1|Sn = 0) = 1. Consider a symmetric
random walk with S0 = 0 and let

Ej,k = E(the time it takes to go from j to k).

Then,

E0,1 = 1,

E1,2 = 1 +
1
2
· E0,2 = 1 +

1
2
· (E0,1 + E1,2) =

3
2

+
1
2
· E1,2,

so that E1,2 = 3 and E0,2 = 1 + 3 = 4. In the same way we see that

E2,3 = 1 +
1
2
· E1,3 = 1 +

1
2
· (E1,2 + E2,3) =

5
2

+
1
2
· E2,3,

so that E2,3 = 5 and E0,3 = 4 + 5 = 9. Obviously, for k = 1, 2, 3,

Ek−1,k = 2k − 1,

E0,k = k2.

suppose that this holds for k ≤ n. Then

En,n+1 = 1 +
1
2
· En−1,n+1 = 1 +

1
2
· (En−1,n + En,n+1) = 1 +

2n− 1
2

+
1
2
· En,n+1

=
2n + 1

2
+

1
2
· En,n+1 = 2n + 1,

E0,n+1 = E0,n + En,n+1 = n2 + 2n + 1 = (n + 1)2.

The induction shows that, for n ≥ 1,

En−1,n = 2n− 1,

E0,n = n2.

Problem 10. Determine recursive expressions for En−1,n and E0,n in the general case (0 <
p < 1). Show that E0,n < ∞ for all n ≥ 1. What is E0,2 expressed in p?

4 Counting paths

Define the events

Fn = “the particle is at 0 after n steps”,

Gn = “particle returns to 0 for the first time after n steps”

and the corresponding probabilities

fn = P (Fn),
gn = P (Gn).
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Observe that the particle can only return after an even number of steps, so that

f2n+1 = g2n+1 = 0.

For n even, the particle must have taken equally many steps to the right and to the left, so that

f2n =
(

2n

n

)
pnqn.

One way of determining gn is to count paths. This is facilitated if the random walk is
illustrated by plotting the pairs (n, Sn); see Figure 3.

n

nS

Figure 3: Plotted random walk

Remark 6. Here time is given on the x-axis and the movement of the particle to the right or to
the left corresponds to steps up or down in the figure.

Observe that each path that contains h steps to the right (up) and v steps to the left (down)
has probability ph · qv, so that it often suffices to count the number of such paths in order to
determine the requested probabilities.

For example, if we want to determine

fn(a, b) = P (the particle goes from a to b in n steps),

we must have
h + v = n and h− v = b− a,

i.e.
h =

n + b− a

2
and v =

n + a− b

2
, (5)

so that

fn(a, b) =
(

n

h

)
ph qv,

if we define (
n

h

)
= 0

when h is not an integer.
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Problem 11. Use Stirling’s formula

n! ∼
√

2πn nn e−n

to show that, for p = q = 1/2,

a) f2n → 0 when n →∞, b)
∞∑

n=1

f2n = ∞, c) f2n ∼
1√
πn

.

Hint: CLT can be useful!

Problem 12. What is f2n for a symmetric two-dimensional random walk?

4.1 Mirroring

To determine gn introduce the notation

Nn(a, b) = # paths from a to b in n steps,

N 6=0
n (a, b) = # paths from a to b in n steps that do not visit 0,

N0
n(a, b) = # paths from a to b in n steps that visit 0.

Observe that, with h and v as in (5), the following holds

Nn(a, b) =
(

n

h

)
,

Nn(a, b) = N0
n(a, b) + N 6=0

n (a, b),

N 6=0
n (a, b) = 0 if a and b have different signs,

N0
n(a, b) = Nn(a, b) if a and b have different signs.

To compute
g2n = N 6=0

2n (0, 0) · pn · qn

it is sufficient to determine N 6=0
2n (0, 0). Note that

N 6=0
2n (0, 0) = N 6=0

2n−1(1, 0) + N 6=0
2n−1(−1, 0) = 2 ·N 6=0

2n−1(1, 0) = 2 ·N 6=0
2n−2(1, 1).

To determine N 6=0
2n−2(1, 1) we can use the following elegant mirror argument; see Figure 4.

Every path from 1 to 1 that visits 0 can, by mirroring the beginning of the path, up to the first
0-visit, be transformed to a path from −1 to 1 with the same number of steps.
All paths from −1 to 1 must visit 0!

The above argument gives

N0
2n−2(1, 1) = N0

2n−2(−1, 1) = N2n−2(−1, 1),

N 6=0
2n−2(1, 1) = N2n−2(1, 1)−N0

2n−2(1, 1) = N2n−2(1, 1)−N2n−2(−1, 1)

=
(

2n− 2
n− 1

)
−

(
2n− 2

n

)
=

(
2n− 2
n− 1

) (
1− n− 1

n

)
=

1
n

(
2n− 2
n− 1

)
.

This gives

N 6=0
2n (0, 0) = 2 ·N 6=0

2n−2(1, 1) = 2
1
n

(
2n− 2
n− 1

)
=

1
2n− 1

(
2n

n

)
,

so that we have shown
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n
−1

1

Sn

Figure 4: Mirroring

Theorem 6. For n > 0,

g2n =
1

2n− 1
f2n.

The mirroring principle holds in greater generality than what we have used.

Theorem 7. (The mirroring theorem) For a > 0 and b > 0,

N0
n(a, b) = Nn(−a, b),

N 6=0
n (a, b) = Nn(a, b)−Nn(−a, b).

Proof: Shown as above.

Remark 7. The mirroring theorem holds even if n has the wrong parity in relation to a and b
as then all the expressions in the theorem equal 0.

4.2 The Ballot problem

If a = 0 in the mirroring theorem we get

Theorem 8. (The Ballot theorem) For b > 0,

N 6=0
n (0, b) =

b

n
·Nn(0, b).

Proof: Let h = n+b
2 and v = n−b

2 be the number of steps to the right and left that are required
to go from 0 to b in n steps. Then, Nn(0, b) =

(
n
h

)
and

N 6=0
n (0, b) = N 6=0

n−1(1, b) = Nn−1(1, b)−Nn−1(−1, b)

=
(

n− 1
h− 1

)
−

(
n− 1

h

)
=

(
n

h

)
·
(

h

n
− v

n

)
=

(
n

h

)
· b

n
.

The theorem has received its name from the following classical probability problem, The
Ballot Problem:
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Example 5. In an election with two candidates, candidate A receives a total of a votes and
candidate B receives a total of b votes, where a > b. What is the probability that A will be in
the lead during the entire counting of votes?
If we assume that the votes are counted in random order, the answer is given directly by the
Ballot theorem:

P (A is leading all through the counting) =
N 6=0

a+b(0, a− b)
Na+b(0, a− b)

=
a− b

a + b
.

Example 6. A variation of the Ballot problem is:
What is the probability, when a ≥ b, that B never leads during the counting?
We need to know

N
6=(−1)
a+b (0, a− b) = N 6=0

a+b(1, a + 1− b).

By the mirroring theorem we have

N 6=0
a+b(1, a + 1− b) = Na+b(1, a + 1− b)−Na+b(−1, a + 1− b)

=
(

a + b

a

)
−

(
a + b

a + 1

)
=

(
a + b

a

)
· (1− b

a + 1
)

=
(

a + b

a

)
· a + 1− b

a + 1
=

a + 1− b

a + 1
·Na+b(0, a− b),

so that

P (B never leads) =
a + 1− b

a + 1
.

In particular we have that, if a = b,

P (B never leads) =
1

a + 1
.

Remark 8. The Ballot problems are purely combinatoric and the answers do not depend on p
(and q). The same holds for random walks if we condition with respect to the end point Sn. In
fact, we can express the Ballot problems as

P (Sk > 0, for k = 1, . . . , a + b− 1|Sa+b = a− b) =
a− b

a + b
,

P (Sk ≥ 0, for k = 1, . . . , a + b− 1|Sa+b = a− b) =
a + 1− b

a + 1
.

4.3 Recurrence

For our next result we need some more notation. As before, we assume that S0 = 0.

N 6=0
n = # paths of length n with Sk 6= 0 for k = 1, . . . , n,

N>0
n = # paths of length n with Sk > 0 for k = 1, . . . , n.
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Theorem 9. For n > 0,

N 6=0
2n = N2n(0, 0) =

(
2n

n

)
.

For the symmetric random walk,

(i) P (Sk 6= 0, k = 1, . . . , 2n) = P (S2n = 0),

(ii) P (Sk > 0, k = 1, . . . , 2n) =
1
2
· P (S2n = 0),

(iii) P (Sk ≥ 0, k = 1, . . . , 2n) = P (S2n = 0).

Proof: A path that never visits 0 is either positive all the time or negative all the time. By
symmetry,

N 6=0
2n = 2 ·N>0

2n = 2 ·
n∑

r=1

N 6=0
2n (0, 2r).

With the same argument as in the proof of the mirroring theorem, for r > 0,

N 6=0
2n (0, 2r) = N2n−1(1, 2r)−N2n−1(−1, 2r) = N2n−1(0, 2r − 1)−N2n−1(0, 2r + 1),

so that
n∑

r=1

N 6=0
2n (0, 2r) = (N2n−1(0, 1)−N2n−1(0, 3)) + (N2n−1(0, 3)−N2n−1(0, 5)) + . . .

+ (N2n−1(0, 2n− 1)−N2n−1(0, 2n + 1))

= N2n−1(0, 1)−N2n−1(0, 2n + 1) = N2n−1(0, 1) =
1
2
·N2n(0, 0).

(i) follows directly from this as, in a symmetric random walk, all paths of length 2n have the
same probability.
(ii) follows from

P (S1 6= 0, . . . , S2n 6= 0) = P (S1 > 0, . . . , S2n > 0) + P (S1 < 0, . . . , S2n < 0)

and that the two cases are equally probable.
To show (iii), we observe that

P (S1 > 0, . . . , S2n > 0) = P (S1 = 1, S2 > 0, . . . , S2n > 0)
= P (S1 = 1) · P (S2 > 0, . . . , S2n > 0|S1 = 1)

=
1
2
· P (S2 − S1 ≥ 0, S3 − S1 ≥ 0, . . . , S2n − S1 ≥ 0)

=
1
2
· P (S1 ≥ 0, . . . , S2n−1 ≥ 0),

but since 2n− 1 is odd,

S2n−1 ≥ 0 ⇒ S2n−1 ≥ 1 ⇒ S2n ≥ 0,

so that, using (ii),

1
2
· f2n = P (S1 > 0, . . . , S2n > 0) =

1
2
· P (S1 ≥ 0, . . . , S2n ≥ 0).
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Remark 9. From the above follows that for a symmetric random walk

P (never returning to 0) = lim
n→∞

P (Sk 6= 0, k = 1, . . . , 2n) = lim
n→∞

P (S2n = 0)

= lim
n→∞

f2n = 0, (see Problem 11).

The previous theorem gave an expression for P (S1 6= 0, . . . , Sn 6= 0) for a symmetric
random walk. In the general case we have

Theorem 10. (i) For k > 0,

P (S1 > 0, . . . , Sn−1 > 0, Sn = k) =
k

n
· P (Sn = k).

(ii) For k 6= 0,

P (S1 6= 0, . . . , Sn−1 6= 0, Sn = k) =
|k|
n
· P (Sn = k).

(iii)

P (S1 6= 0, . . . , Sn 6= 0) =
E(|Sn|)

n
.

Proof: Both (i) and (ii) are trivially true if P (Sn = k) = 0. Therefore we may suppose that k
is such that

P (Sn = k) = Nn(0, k) · ph · qv > 0, where

h =
n + k

2
and

v =
n− k

2
are integers.

Then (i) follows immediately from the Ballot theorem after multiplication with ph · qv and (ii)
follows by symmetry, as

N 6=0
n (0, k) = N 6=0

n (0,−k) and

Nn(0, k) = Nn(0,−k).

Summing of (ii) over all k 6= 0 gives (iii).
Theorem 9 can also be used to give an alternative expression for the first passage probability

g2n = P (T0 = 2n), where T0 = “the time of the first revisit to 0” = min{n ≥ 1 : Sn = 0}.

Theorem 11. For a symmetric random walk,

g2n = f2n−2 − f2n.

Proof: Theorem 9 says that

P (T0 > 2n) = P (Sk 6= 0, k = 1, . . . , 2n) = P (S2n = 0) = f2n,

which gives

g2n = P (T0 = 2n) = P (T0 > 2n− 2)− P (T0 > 2n) = f2n−2 − f2n.
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Remark 10. As f0 = 1 and f2n → 0 when n → ∞, from the theorem follows that, for the
symmetric random walk,

P (ever returning to 0) =
∞∑

n=1

g2n =
∞∑

n=1

(f2n−2 − f2n)

= (f0 − f2) + (f2 − f4) + · · · = f0 = 1.

Another connection between {fn} and {gn} is given by

Theorem 12. For an arbitrary random walk,

f2n =
n∑

r=1

g2r · f2n−2r.

Proof: Condition with respect to the time of the first return to 0, T0.

f2n = P (S2n = 0) =
n∑

r=1

P (T0 = 2r) · P (S2n = 0|T0 = 2r)

=
n∑

r=1

g2r · P (S2n − S2r = 0|T0 = 2r)

=
n∑

r=1

g2r · P (S2n−2r = 0) =
n∑

r=1

g2r · f2n−2r.

Another useful trick for analyzing random walks is time reversal.
As {Xk} are i.i.d., the vector (X1, X2, . . . , Xn) has the same distribution as the vector
(Xn, Xn−1, . . . , X1) and thus (S1, S2, . . . , Sn) has the same distribution as
(Xn, Xn + Xn−1, . . . , Xn + · · ·+ X1) = (Sn − Sn−1, Sn − Sn−2, . . . , Sn).

Let Tb = “time of the first visit in b” = min{n ≥ 1 : Sn = b}.

Theorem 13. For b > 0,

P (Tb = n) =
b

n
· P (Sn = b), for n = b, b + 1, . . .

Proof: Using time reversal gives

P (Tb = n) = P (S1 < b, S2 < b, . . . , Sn−1 < b, Sn = b)
= P (Sn > S1, Sn > S2, . . . , Sn > Sn−1, Sn = b)
= P (Sn − Sn−1 > 0, . . . , Sn − S1 > 0, Sn = b)

= P (S1 > 0, . . . , Sn−1 > 0, Sn = b) =
b

n
· P (Sn = b),

by Theorem 10 (i).
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Remark 11. With the help of the theorem we can compute

P (Tb > n) =
∞∑

k=n+1

P (Tb = k) =
∞∑

k=n+1

b

k
· P (Sk = b)

and through that

E(Tb) =
∞∑

n=0

P (Tb > n).

We know from before that E(Tb) = b · E(T1), so it is enough to compute E(T1).

4.4 Maximum

What is the distribution of Mn = max(S0, S1, . . . , Sn)?

Lemma 1. For a symmetric random walk,

P (Mn ≥ r, Sn = b) =

{
P (Sn = b) if b ≥ r,

P (Sn = 2r − b) if b < r.

Proof: The first part follows directly from Mn ≥ Sn. Suppose that b < r. By mirroring the end
part of the path, from the last visit in r, in the line y = r, we see that “# paths of length n with
Mn = r and Sn = b” equals “# paths of length n with Sn = 2r − b”; see Figure 5. The lemma
follows since all paths of length n have the same probability for a symmetric random walk.

n

Sn

r

2r−b

b

Figure 5: Mirroring for maximum

Theorem 14. For a symmetric random walk, for r ≥ 1,

P (Mn ≥ r) = P (Sn = r) + 2P (Sn > r),
P (Mn = r) = P (Sn = r) + P (Sn = r + 1) = max(P (Sn = r), P (Sn = r + 1)).
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Proof: By the lemma,

P (Mn ≥ r) =
∑

b

P (Mn ≥ r, Sn = b) =
∑
b≥r

P (Sn = b) +
∑
b<r

P (Sn = 2r − b)

= P (Sn ≥ r) +
∑
k>r

P (Sn = k) = P (Sn ≥ r) + P (Sn > r)

= P (Sn = r) + 2P (Sn > r).

Further,

P (Mn = r) = P (Mn ≥ r)− P (Mn ≥ r + 1)
= P (Sn = r) + 2P (Sn > r)− (P (Sn = r + 1) + 2P (Sn > r + 1))
= P (Sn = r) + 2P (Sn = r + 1)− P (Sn = r + 1)
= P (Sn = r) + P (Sn = r + 1) = max(P (Sn = r), P (Sn = r + 1)),

since only one of P (Sn = r) and P (Sn = r + 1) can be non-zero.

4.5 The Arcsine law

We will show that two stochastic variables with connection to symmetric random walks have
the same distribution, the so called arcsine distribution.

Consider a symmetric random walk {Sn} with S0 = 0.
Let as before fn = P (Sn = 0).
Define Y2n = max(k ≤ 2n : Sk = 0), which is well defined as S0 = 0, and
α2n(2k) = P (Y2n = 2k). Then,

Theorem 15. For 0 ≤ k ≤ n,

α2n(2k) = P (Y2n = 2k) = f2k · f2n−2k.

Proof:

P (Y2n = 2k) = P (S2k = 0, S2k+1 6= 0, . . . , S2n 6= 0)
= P (S2k = 0) · P (S2k+1 6= 0, . . . , S2n 6= 0|S2k = 0)
= P (S2k = 0) · P (S1 6= 0, . . . , S2n−2k 6= 0)
= P (S2k = 0) · P (S2n−2k = 0) (Theorem 9 (i))

= f2k · f2n−2k.

Remark 12. The name arcsine distribution is used as

P (Y2n ≤ 2xn) ∼ 2
π
· arcsin

√
x, when n →∞.

To see this we can use Stirling’s formula

n! ∼ nn · e−n
√

2πn,

to show that, for large k,

f2k ∼
1√
πk

, (See Problem 11c.)
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and that thus
α2n(2k) ∼ 1

n
· f(

k

n
),

where
f(x) =

1
π
√

x(1− x)
, 0 < x < 1.

This gives,

P (Y2n ≤ 2xn) =
∑

k≤xn

α2n(2k) ∼ 1
n
·

∑
k/n≤x

f(
k

n
) ∼

∫ x

0
f(t) dt =

2
π
· arcsin

√
x.

The density function f(x) = 1

π
√

x(1−x)
is plotted in Figure 6.

0

1

2

3

4

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

Figure 6: Plot of f(x) = 1

π
√

x(1−x)
.

Remark 13. The exact distribution, α2n(2k), is called the discrete arcsine distribution. It is, as
is the continuous, symmetric around the midpoint, k = n/2, where it also takes its minimum.
The maximum is attained for k = 0 and k = n.

Remark 14. A perhaps surprising property of the symmetric random walk, that is implied by
the arcsine law, is that if we have tossed a coin 2n times and are interested in when we last had
equally many heads and tails, it is most likely that it happened either very recently, or just at the
start.
If, for example, n = 1000, i.e. we have tossed 2000 times,

P (Y2000 ≤ 200) ∼ 2
π
· arcsin

√
0.1 = 0.205,

P (Y2000 ≤ 20) ∼ 2
π
· arcsin

√
0.01 = 0.064.

21



There is also an arcsine law for occupancy times. We say that the random walk is positive
in the time interval (k, k + 1) if Sk > 0 or Sk+1 > 0. (Natural; see Figure 3.)
Let Zn = “# positive time intervals between 0 and 2n”. Then Z2n always takes an even value
and

Theorem 16. For 0 ≤ k ≤ n,

P (Z2n = 2k) = α2n(2k) = f2k · f2n−2k.

Proof: Let b2n(2k) = P (Z2n = 2k).
We want to show that b2n(2k) = α2n(2k) for all n and 0 ≤ k ≤ n.
By Theorem 9 (iii)

b2n(2n) = P (Sk ≥ 0, k = 1, . . . , 2n) = f2n = f2n · f0,

so that the theorem holds for k = n. By symmetry,

b2n(0) = P (Sk ≤ 0, k = 1, . . . , 2n) = f2n,

so that it also holds for k = 0.
It remains to prove that

b2n(2k) = α2n(2k)(= f2k · f2n−2k) for all n and 0 < k < n. (6)

If Z2n = 2k, where 1 ≤ k ≤ n − 1, we must have S2r = 0 for some r, 1 ≤ r ≤ n − 1, i.e.
T0 < 2n. The time up to T0 is with equal probability spent on the positive and negative side.
Conditioning on T0 gives, for 1 ≤ k ≤ n− 1,

b2n(2k) =
n−1∑
r=1

P (T0 = 2r) · P (Z2n = 2k|T0 = 2r)

=
n−1∑
r=1

g2r ·
1
2
· P (Z2n−2r = 2k) +

n−1∑
r=1

g2r ·
1
2
· P (Z2n−2r = 2k − 2r)

=
1
2
·

n−1∑
r=1

g2r · b2n−2r(2k) +
1
2
·

n−1∑
r=1

g2r · b2n−2r(2k − 2r).

Observe that b2n−2r(2k) = 0 if k > n− r and that b2n−2r(2k − 2r) = 0 if k < r, so that

b2n(2k) =
1
2
·

n−k∑
r=1

g2r · b2n−2r(2k) +
1
2
·

k∑
r=1

g2r · b2n−2r(2k − 2r). (7)

We will use (7) to show (6) by induction. For n = 1 (6) holds trivially. suppose that (6) holds
for n < m. Then

b2m(2k) =
1
2
·

m−k∑
r=1

g2r · b2m−2r(2k) +
1
2
·

k∑
r=1

g2r · b2m−2r(2k − 2r)

=
1
2
·

m−k∑
r=1

g2r · f2k · f2m−2r−2k +
1
2
·

k∑
r=1

g2r · f2k−2r · f2m−2k

=
1
2
· f2k ·

m−k∑
r=1

g2r · f2m−2r−2k +
1
2
· f2m−2k ·

k∑
r=1

g2r · f2k−2r.
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By Theorem 12,

k∑
r=1

g2r · f2k−2r = f2k,

m−k∑
r=1

g2r · f2(m−k)−2r = f2m−2k,

so that

b2m(2k) =
1
2
· f2k · f2m−2k +

1
2
· f2m−2k · f2k = f2k · f2m−2k = α2m(2k).

Remark 15. Consider two players, A and B, who are playing a fair game, where both can
win one krona from the other with probability 1/2. Many probably interpret The Law of Large
Numbers intuitively as that in the long run both players will be in the lead about half of the
time. This is not correct!
The Arcsine law for occupancy times gives that, after many rounds,

P (A leads at least the proportion x of the time) =
2
π
· arcsin

√
1− x,

P (A leads at least 80% of the time) =
2
π
· arcsin

√
0.2 = 0.295,

P (someone leads at least 80% of the time) = 2 · 2
π
· arcsin

√
0.2 = 0.59,

P (someone leads at least 90% of the time) = 2 · 2
π
· arcsin

√
0.1 = 0.41,

P (someone leads at least 95% of the time) = 2 · 2
π
· arcsin

√
0.05 = 0.29,

P (someone leads at least 99% of the time) = 2 · 2
π
· arcsin

√
0.01 = 0.13,

5 Mixed problems

Problem 13. Consider a random walk with p < 1/2, that at time k is in position a < m.
Calculate the conditional probability that it at time k + 1 is in position a + 1 (or in a− 1) given
that it will visit position m in the future.

Problem 14. Let T0a be defined as in Section 2.2, and p > 1/2.
a) Show that

Var(T01) =
4pq

(p− q)3
.

Hint: Study E(T 2
01) and condition.

b) What is Var(T0a) for a > 0?

Problem 15. Consider a player, with probability p of winning a round, who starts with a kronor
against an infinitely rich opponent. What is the probability that it takes a+2k rounds before he
is ruined?
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Problem 16. Show that there are exactly as many paths (x, y), that end in (2n + 2, 0) and for
which y > 0 for 0 < x < 2n + 2, as there are paths that end in (2n, 0) and for which y ≥ 0 for
0 ≤ x ≤ 2n. Show also that this, for a symmetric random walk, implies that

P (S1 ≥ 0, . . . , S2n−1 ≥ 0, S2n = 0) = 2 · g2n+2.

Problem 17. Show that the probability that a symmetric random walk before time 2n returns
exactly r times to 0 is the same as the probability that S2n = 0 and that it before that has
returned at least r times to 0.

Problem 18. A particle moves either two steps to the right, with probability p, or one step to
the left, with probability q = 1− p. Different steps are independent of each other.
a) If it starts in z > 0, what is the probability, az , that it ever reaches 0?
b) Show that a1 is the probability that, in a sequence of Bernoulli trials that succeed with
probability p, the number of failed trials ever exceeds twice the number of successful trials.
c) Show that, when p = q,

a1 =
√

5− 1
2

.

Problem 19. Show that, for a symmetric random walk starting in 0, the probability that the first
visit in S2n happens in step 2k is P (S2k = 0) · P (S2n−2k = 0).

Problem 20. (Banach’s match stick problem)
A person has in each of his two pockets a match box with n matches in each. When he needs a
match he randomly chooses one of the boxes, until he encounters an empty box. Let, when this
happens, R = # matches in the other box.
a) Calculate E(R).
b) If a) is too difficult; estimate E(R) for n = 50 by simulation.

Problem 21. Let, in a two-dimensional symmetric random walk, starting in the origin, D2
n =

x2
n + y2

n, where (xn, yn) is the position of the particle after n steps.
Show that E(D2

n) = n.
Hint: Study E(D2

n −D2
n−1).

Problem 22. Show that a symmetric random walk in d dimensions, with probability 1 will
return to an already visited position.
(With probability 1 this happens infinitely many times.)
Hint: In each step the probability of reaching a new point is at most (2d− 1)/(2d).

6 Literature

A goldmine if you want to read more on random walks is
Feller, W., An Introduction to Probability Theory and Its Applications, Vol. 1, Third edition,
Wiley 1968.
Many of the examples and results are obtained from Feller’s book, in particular from Chapter
III, but also from Chapter XIV.
Some examples are from
Grimmett, G.R. & Stirzaker, D.R., Probability and Random Processes, Second edition, Oxford
Science Publications, 1992.
A nice description of many classical probability problems, e.g. random walks, is given in
Blom, G., Holst, L. & Sandell, D., Problems and Snapshots from the World of Probability.
Springer 1994.
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