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Abstract
For any continuous probability measure µ on R we construct an IFS with probabilities having
µ as its unique measure-attractor.
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1. INTRODUCTION

In 1981 Hutchinson1 presented a theory of fractals
and measures supported on fractals based on itera-
tions of functions.

Let {Rd; fi, pi, i = 1, . . . , n} be an iterated func-
tion system with probabilities (IFSp). That is,
fi : Rd → R

d, i = 1, . . . , n, are functions and pi are
associated non-negative numbers with

∑n
i=1 pi =

1. If the maps fi : Rd → R
d are contractions,

i.e. if there exists a constant c < 1 such that
|fi(x) − fi(y)| ≤ c|x − y|, for all x, y ∈ R

d, then

there exists a unique nonempty compact set A sat-
isfying

A =
n⋃

i=1

fi(A)

=
{

lim
k→∞

fi1 ◦ fi2 ◦ · · · ◦ fik(x);

i1i2i3 · · · ∈ {1, . . . , n}N

}
, (1)

for any x ∈ R
d, and a unique probability mea-

sure µ, supported on A, satisfying the invariance
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equation

µ(·) =
n∑

i=1

piµ(f−1
i (·)), (2)

see Hutchinson.1 The set A is sometimes called the
set-attractor, and µ the measure-attractor of the
IFSp.

The set-attractor A will have a self-repeating
“fractal” appearance if all maps fi are similitudes,
and the sets, fi(A), i = 1, . . . , n, do not over-
lap. This leads to the intuition to regard the set-
attractor A in (1) as being built up by n (in general
overlapping and heavily distorted) “copies” of itself,
and the measure-attractor as a “greyscale colour-
ing” of the set-attractor. (Note that the probabili-
ties pi play no role in the definition of A.)

In general we can not expect to have a unique
set-attractor if the IFS-maps are not assumed to
be contractions or more generally if the limits
limk→∞ fi1 ◦ fi2 ◦ · · · ◦ fik(x) do not exist, with the
limit being independent of x, for all i1i2i3 · · · ∈
{1, . . . , n}N, but unique measure-attractors exist if
the limits

ẐF (i1i2 · · ·) := lim
k→∞

fi1 ◦ fi2 ◦ · · · ◦ fik(x) (3)

exist (with the limit being independent of x) for
almost all i1i2i3 · · · ∈ {1, . . . , n}N. (Indeed, if the
limit in (3) exists a.s. then ẐF may be regarded
as a random variable, and its distribution µ(·) :=
P (ẐF ∈ ·), is then the unique solution to (2).)

The theory of IFSp has a long pre-history within
the theory of Markov chains, starting already with
papers in the 30th by Döblin and others. Let
{Xk}∞k=0 be the Markov chain obtained by random
(independent) iterations with the functions, fi, cho-
sen with the corresponding probabilities, pi. That
is, let {Xk} be defined recursively by

Xk+1 = fIk+1
(Xk), k ≥ 0,

where {Ik}∞k=1 is a sequence of independent ran-
dom variables with P (Ik = i) = pi, independent of
X0, where X0 is some given random variable. (It
is well-known that any Markov chain {Xk} (with
values in R

d) can be expressed in the form Xk+1 =
g(Xk, Yk+1) where g : Rd × [0, 1] → R

d is a measur-
able function and {Yk}∞k=1 is a sequence of indepen-
dent random variables uniformly distributed on the
unit interval, see e.g. Kifer.2)

If an IFSp has a unique measure-attractor, µ,
then µ is the unique stationary distribution of {Xk},
i.e. µ is the unique probability measure with the

property that if X0 is µ-distributed, then {Xk}
will be a (strictly) stationary (and ergodic) stochas-
tic process, see e.g. Elton.3 Therefore a unique
measure-attractor can alternatively also be called
a unique stationary distribution.

Under standard average contraction conditions it
follows that (3) holds a.s., and the distribution of
Xk converges weakly to µ (with exponential rate
quantified e.g. by the Prokhorov metric for arbi-
trary distributions of the initial random variable
X0). Moreover the empirical distribution along tra-
jectories of {Xk} converges weakly to µ a.s., and
{Xk} obeys a central limit theorem. See e.g. Barns-
ley et al.,4 Diaconis and Freedman,5 and Stenflo6

for details and further results. These papers also
contains surveys of the literature.

1.1. The Inverse Problem

The inverse problem is to, given a probability mea-
sure µ, find an IFSp having µ as its unique measure-
attractor. This problem is of importance in e.g.
image coding where the image, represented by a
probability measure, can be encoded by the param-
eters in a corresponding IFSp in the affirmative
cases, see e.g. Barnsley.7 For an encoding to be prac-
tically useful it needs to involve few parameters and
the distribution of Xk needs to converge quickly to
equilibrium (a property ensured by average contrac-
tivity properties of the functions in the IFSp) for
arbitrary initial distributions of X0.

It is possible to construct solutions to the inverse
problem in some very particular cases using Barns-
ley’s “collage theorem”, see Barnsley7 containing
exciting examples of e.g. ferns and clouds (inter-
preted as probability measures on R

2) and their
IFSp encodings, but typically it is very hard to even
find approximate solutions to the inverse problem
for general probability measures on R

d.
In this paper we present a (strikingly simple)

solution to the inverse problem for continuous prob-
ability measures on R.

2. MAIN RESULT

In order to present our solution to the inverse prob-
lem for continuous probability measures on R, recall
the following basic facts used in the theory of ran-
dom number generation;

Let µ be a probability measure on R, and let
F (x) = µ((−∞, x]) denote its distribution func-
tion. The generalized inverse distribution function
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is defined by

F−1(u) = inf
x∈R

{F (x) ≥ u}, 0 ≤ u ≤ 1,

and satisfies F−1(F (x)) ≤ x and F (F−1(u)) ≥ u
and therefore

F−1(u) ≤ x if and only if u ≤ F (x).

From this it follows that if U ∈ U(0, 1), i.e. if U
is a random variable uniformly distributed on the
unit interval, then F−1(U) is a µ-distributed ran-
dom variable. This basic property reduces the prob-
lem of simulating from an arbitrary distribution on
R, to the problem of simulating uniform random
numbers on the unit interval.

We say that µ is continuous if F is continuous.
Note that µ({x}) = 0 for any x ∈ R for continuous
probability measures in contrast with discrete prob-
ability measures where

∑
x∈S µ({x}) = 1 for some

countable set S.
If µ is continuous then F (F−1(u)) = u, for 0 <

u < 1. This property is crucial for the following
theorem;

Theorem 1. A continuous distribution, µ, on
R with distribution function, F, is the measure-
attractor of the IFS with monotone maps fi(x) :=
F−1 ◦ui ◦F (x), for any x with F (x) > 0, and prob-
abilities pi = 1/n, where ui(u) = u/n + (i − 1)/n,
0 ≤ u ≤ 1, i = 1, 2, . . . , n, for any n ≥ 2.

Proof. The Markov chain generated by ui(x) =
x/n + (i − 1)/n, i = 1, 2, . . . , n, chosen with
equal probabilities has the uniform distribution on
the unit interval as its unique stationary distri-
bution. That is, if {Ik}k≥1 is a sequence of inde-
pendent random variables, uniformly distributed on
{1, 2, . . . , n}, then

ZU
k (x) = uIk

◦ · · · ◦ uI1(x), ZU
0 (x) = x (4)

is a Markov chain starting at x ∈ [0, 1] having the
uniform distribution as its unique stationary distri-
bution. This can be seen by observing that ZU

k (x)
has the same distribution as the reversed iterates

ẐU
k (x) = uI1 ◦ · · · ◦ uIk

(x), ẐU
0 (x) = x, (5)

for any fixed k, and the reversed iterates ẐU
k (x) con-

verges almost surely to the U(0, 1)-distributed ran-
dom variable, ẐU , where the kth digit in the base
n expansion of ẐU is given by Ik − 1.

If ẐF denotes the limit of the reversed iterates
of the system with fi chosen with probability 1/n,

then

ẐF := lim
k→∞

ẐF
k (x) := lim

k→∞
fI1 ◦ · · · ◦ fIk

(x)

= lim
k→∞

F−1 ◦ uI1 ◦ F ◦ F−1 ◦ uI2 ◦ F ◦ · · ·

· · · ◦ F−1 ◦ uIk
◦ F (x)

= lim
k→∞

F−1(ẐU
k (F (x))) = F−1(ẐU ) a.s., (6)

where the last equality holds since F−1(x) is non-
decreasing, and since a monotone function can have
at most a countable set of discontinuity points in its
domain, it follows that F−1(x) is continuous for a.a.
x ∈ [0, 1] w.r.t. to the Lebesgue measure.

From the above it follows that

P (ẐF ≤ y) = P (F−1(ẐU) ≤ y)

= P (ẐU ≤ F (y))

= F (y).

Remark 1. If X is a continuous µ-distributed ran-
dom variable, then F (F−1(u)) = u, so F (X) ∈
U(0, 1). This contrasts the case when X is dis-
crete where F (X) will also be discrete, so we can-
not expect Theorem 1 to generalize to discrete
distributions.

If an IFS {R, fi, pi, i = 1, . . . , n}, has a contin-
uous measure-attractor µ being the distribution of
the a.s. limit of the reversed iterates, and the dis-
tribution function F of µ satisfies F−1(F (x)) =
x, for any x ∈ R, with 0 < F (x) < 1, then,
similarly, the IFS {[0, 1], ui, pi, i = 1, . . . , n}, with
ui(u) := F ◦fi ◦F−1(u), 0 < u < 1, has the U(0, 1)-
distribution as its unique stationary distribution.
This is the case for absolutely continuous probabil-
ity distributions µ if F is strictly increasing.

Remark 2. From Theorem 1 it follows that any
continuous probability distribution on R can be
approximated by the empirical distribution of a
Markov chain {Xk} on R generated by an IFSp with
trivial “randomness” generated e.g. by a coin or a
dice.

Remark 3. Theorem 1 may be used to repre-
sent a continuous probability measure µ on R by
the functions suggested in the theorem. Note that
there exist many iterated function systems with
probabilities generating the same Markov chain,
see e.g. Stenflo,8 so in particular it follows that
an IFSp representation of a continuous probabil-
ity measure on R is not unique. The given IFSp
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representation suggested by Theorem 1 (for a given
n ≥ 2) is good in the sense that the generated
Markov chain converges quickly to the given equilib-
rium making it possible to quickly simulate it. If the
suggested IFSp representation cannot be described
in terms of few parameters then it might make
sense to consider an approximate representation
by approximating the IFS functions with functions
described by few parameters e.g. by using Taylor
expansions.

Remark 4. From Theorem 1 it follows that if µ
is a continuous probability measure on R being the
measure-attractor of {R; fi, pi, i = 1, . . . , n}, with
pi �= 1/n for some n, then there exists another IFSp
with uniform probabilities having µ as its measure-
attractor.

Example 1. Suppose F is a distribution function
satisfying

F (1 − x) = 1 − F (x),

and

F (x)/2 = F (ax + b), for all 0 ≤ x ≤ 1,

where 0 ≤ b ≤ 1/2, 0 ≤ a + b ≤ 1/2, and a �= 0.
Then

F (x)/2 + 1/2 = 1 − F (1 − x)/2

= 1 − F (a(1 − x) + b)

= F (ax + 1 − a − b).

Thus random iterations with the maps f1(x) =
ax + b, and f2(x) = ax + 1 − a − b chosen
with equal probabilities generates a Markov chain
with stationary distribution µ having distribution
function F .

The case a = 1/3 and b = 0 corresponds to F
being the distribution function of the uniform prob-
ability measure on the middle-third Cantor set (the
Devil’s staircase), see Fig. 1.

Example 2. Let µ be the probability measure with
triangular density function

d(x) =

{
x 0 ≤ x ≤ 1

2 − x 1 ≤ x ≤ 2
.

Then µ is the unique stationary distribution of the
Markov chain generated by random iteration with

The middle−third Cantor set

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Devils staircase

Fig. 1 The Cantor set is the set-attractor of the IFSp
{R; f1(x) = x/3, f2(x) = x/3 + 2/3, p1 = 1/2, p2 = 1/2} and
the distribution function of its measure-attractor (the uni-
form distribution on the Cantor set) is an increasing contin-
uous function with zero derivative almost everywhere, with
F (0) = 0 and F (1) = 1 popularly known as the “Devil’s
staircase”.

the functions

f1(x) =


x√
2

0 ≤ x ≤ 1

√
2x − x2

2
− 1 1 ≤ x ≤ 2 ,

and

f2(x) =


2 −

√
1 − x2

2
0 ≤ x ≤ 1

2 −
√

2 − 2x +
x2

2
1 ≤ x ≤ 2,

,

chosen uniformly at random (Fig. 2).

Example 3. The distribution function for the
exponential distribution with expected value µ =
λ−1, λ > 0, satisfies F (x) = 1 − e−λx, x ≥ 0.
A Markov chain generated by random iterations
with the two maps f1 = fµ

1 and f2 = fµ
2 defined

as in Theorem 1 has the exponential distribution
with expected value µ as its stationary distribution.
We can construct interesting “new” distributions by
altering such Markov chains in various ways, e.g. by
altering the application of two IFSs corresponding
to different parameter values. A result of such a
construction is shown in Fig. 3.
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Fig. 2 Histograms of the first n points in a simulated random trajectory of the Markov chain in Example 2. The empirical
distribution along a trajectory converges weakly to the stationary triangular-distribution with probability one.
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Fig. 3 The upper figures are histograms of the first 200 000 points in simulations of a trajectory of a Markov chain generated
by random iterations with the two maps f1 = fµ

1 and f2 = fµ
2 defined as in Theorem 1 corresponding to the choices µ = 1 in the

left-hand figure and µ = 2 in the right-hand figure respectively. The lower figures are histograms corresponding to trajectories
of Markov chains formed by random iterations with the maps g1(x) = f2

1 (f1
1 (x)), g2(x) = f2

1 (f1
2 (x)), g3(x) = f2

2 (f1
1 (x)),

g4(x) = f2
2 (f1

2 (x)) and h1(x) = f1
1 (f2

1 (x)), h2(x) = f1
1 (f2

2 (x)), h3(x) = f1
2 (f2

1 (x)), h4(x) = f1
2 (f2

2 (x)) respectively, where in
both cases the functions are chosen uniformly at random.
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Remark 5. The distributions constructed in the
lower figures in Fig. 3 are 1-variable mixtures of the
exponential distributions with expected values µ =
1, and µ = 2 respectively. We can, more generally,
for any integer V ≥ 1, generate V -variable mix-
tures between continuous distributions. See Barns-
ley et al.4,9 for more on the theory of V -variable
sets and measures.
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