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Let be a Polish space with metric , and let be an arbitrary measur-
able space. Consider a measurable function : . Assume that,
for each , the function ( ) := ( ) is continuous with respect
to . The set ; is called an iterated function system (IFS).

Let be a stochastic sequence with state space . Specify a
starting point . The stochastic sequence then controls the
stochastic dynamical system ( ) , where

( ) := ( ) 1 ( ) =

We call this particular type of stochastic dynamical system an IFS con-
trolled by .

Ergodic theorems are one of the main objects of investigation for sto-
chastic dynamical systems.

Barnsley and Demko (1985) and Barrlund, Wallin and Karlsson (1997)
investigated ergodic theorems for the simplest model when is a se-
quence of independent identically distributed (i.i.d.) random variables tak-
ing a finite number of values. They used the term IFS with probabilities.
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Letac (1986) investigated the same model but with an arbitrary state
space of the controlling sequence. Another recent paper related to this
model is Åkerlund-Biström (1997).

Generalizations in the direction of a more general controlling sequence
has been done by Barnsley, Elton and Hardin (1989) to the case of a
controlling homogeneous finite Markov chain (they used the term recurrent
IFS), Elton (1990) to the case of a controlling stationary sequence, and
by Stenflo (1996) to a controlling finite semi-Markov process with discrete
time.

A closely related field of research concerns products of random matrices
which correspond to iterations with affine maps or in the case of 2 2
matrices to Möbius maps. In this field the monograph by Högnäs and
Mukherjea (1995) together with, for instance, the paper by Kaijser (1995)
can serve as an overview. See also the book by Berger (1993). Other
related papers in this context are Mukherjea (1993) and Lu and Mukherjea
(1997).

We would also like to mention works by Elton (1987), Berger and Soner
(1988), and Gadde (1994), related to IFS with place dependent probabili-
ties, the book by Iosifescu and Theodorescu (1969) and papers by Kaijser
[for instance Kaijser (1994)] on the theory of random systems with com-
plete connections, as well as the books by Tong (1990) on non-linear time
series, and Meyn and Tweedie (1993) on the theory of Markov chains with
extensive overviews of dynamical models. Some additional references can
be found in these works.

In this paper, we consider the model when the controlling sequence
is a regenerative process with discrete time and an arbitrary state space.
Iterated function systems controlled by sequences of i.i.d. random variables
or recurrent Markov chains are particular cases of this model. We obtain
ergodic theorems of distributional and law of large numbers types which
are uniform with respect to initial points taken in compact sets. Theorem
2.2, which is the main result in this paper, has also another original feature.
It gives the asymptotical behavior for the distribution of the random vector
( ( ) ) in a mixed form implying weak and full convergence for the
first and second component, respectively.
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2. Distributional ergodic theorems

I
S T < T < . . . < T < . . .

n
σ
I , . . . , I I , I , . . .

I , I , . . .
n

h X X

h
d h x , h y

d x, y
.

ET < .

T

E Z c < c .

E d y , Z y d < y X

I

Z x

Z x

Z x

Z x
µ

Z x µ n x X

Under conditions and , the Markov chain
has a unique stationary probability measure , and the distribution of

converges weakly to as for all .

Let be a discrete time regenerative random process with state space
, and let 0 = denote its regeneration mo-

ments (without loss of generality we exclude the possibility for regenera-
tion moments to coincide). Loosely speaking, we consider a process that
probabilistically restarts at the regeneration moments i.e. for all 0 :
(a) The -algebras of random events generated by the sets of random
variables and are independent, (b) The finite
dimensional distributions of the random sequence do not
depend on . For a more detailed definition, see for example Lindvall
(1992) [Chap. III].

Let us, for a function : , define the generalized norm

= sup
( ( ) ( ))

( )

Assume that

(A):

(B): The distribution of is nonperiodic.

(C): ln = , where 0

(D): ln ( ( )) = , for some .

The conditions (A) and (B) are the standard conditions of ergodicity
for the controlling regenerative sequence . The condition (C) is an
“average contraction” condition and (D) is a type of “stochastic bounded-
ness” condition for the dynamical sequence ( ) in one regeneration
cycle.

The dynamical system ( ) , when the IFS is controlled by a re-
generative sequence, is not in general a Markov chain, however, the sub-
sequence taken at the regeneration moments ( ) is a homogeneous
Markov chain. For this Markov chain we have the following lemma.

(C) (D) ( )

( )
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Under conditions , for any real-valued bounded
and continuous function on , any measurable set in , and any
compact set
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Proof.
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The proof is given within the proof of the following distributional er-
godic theorem which is the main result of this paper.

(A) (D)

sup ( ( )) ( )
1

( ( )) ( ) ( )

0 (2.1)

In the case when = , (2.1) implies that for an arbitrary point ,
the distribution of ( ) converges weakly to ˜ where

˜( ) :=
1

( ( ) ) ( )

With 1 (2.1) implies that ( ) converges to ( ) =
(1 ) ( ) for any measurable set . That is the
standard ergodic theorem for the regenerative sequence .

We would like to stress that this latter full convergence for , is
stronger than weak convergence for ( ) which concerns sets, , with
˜( ) = 0, where denotes the boundary of .

Thus the relation (2.1) yields a kind of “mixture” of weak convergence
and full convergence for the dynamical sequence ( ) and the control-
ling sequence , respectively.

We shall now prove Theorem 2.2.

Let be an arbitrary sequence in . It is equivalent with (2.1)
to prove that

( ( )) ( )

1
( ( )) ( ) ( ) (2.2)

Let := sup : denote the number of regenerations before
time , and let := be the time since the last regeneration mo-
ment before time . Conditioning on the pair ( ( ) ) and using
the regeneration property of , we obtain the following equalities
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( ( )) ( )

= ( ( ( )) ( ) ( ) = = )

( ( ) = )

= ( ( ( )) ( ) ) ( ( ) = )

=
( ( )) ( )

( )
( ( ) = )

(2.3)

The last series is convergent asymptotically uniformly with respect to
which can be seen from the following inequality and well known results

from renewal theory based on the conditions (A) and (B)

lim lim sup
( ( )) ( )

( )
( ( ) = )

lim lim sup ( ) = lim
1

( ) = 0 (2.4)

where := sup ( )
Thus from (2.4) and since

( ( )) ( ) = ( ( )) ( )

is a bounded and continuous function of for each fixed , (follows from
the continuity of ( ) for each fixed , and from the dominated
convergence theorem), it follows that the theorem will be proved if we can
show that for all and measurable sets, , with ( ) = 0

( ( ) = ) ( )
( )

(2.5)

In order to prove (2.5), we represent ( ) as

( ) = ( ) 1 ( ) = (2.6)

where

:= ( ) and :=
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Under conditions and , there exists a random vari-

able , with values in , such that for any compact set

The distribution of the random variable is also the unique stationary
probability measure of the Markov chain .

Proof.
et al.

a.s.

a.s.

and introduce the random variable

ˆ ( ) := ( ) 1 ˆ ( ) = (2.7)

Since is a regenerative sequence, is a sequence of i.i.d. random
variables with values in the space = . From this fact
and the representations (2.6) and (2.7) it follows that the random vari-

ables ( ) and ˆ ( ) have the same distribution. The motivation

to introduce ˆ ( ) is the following lemma.

(C) (D)
ˆ

sup ( ˆ ( ) ˆ) 0 (2.8)

ˆ

( )

Let be an arbitrary point in satisfying condition (D). We
shall first prove, modifying the method used in Barnsley (1989) that

ˆ ( ) is almost surely ( ) a Cauchy sequence. Using the triangle
inequality and the definition of the generalized norm we obtain, for

,

( ˆ ( ) ˆ ( )) ( ˆ ( ) ˆ ( ))

ˆ ( ( )) (2.9)

Thus a sufficient condition for the sequence ˆ ( ) to be Cauchy
is that the expression in (2.9) converges with probability one to zero as
tends to infinity. Now,

ln ˆ ( ( )) ln ˆ + ln ( ( )) (2.10)

From the definition of the norm, condition (C) and the law of large num-
bers for i.i.d. random variables it follows that

ln ˆ ln
(2.11)

It also follows from condition (D) and the law of large numbers that,

1
ln ( ( )) =

6
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µ
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=
ln ( ( )) ln ( ( ))

0 (2.12)

Using (2.10)-(2.12), we conclude that

lim sup
ln ˆ ( ( ))

(2.13)

Thus with probability one, there exist a random integer such that for
all , ˆ ( ( )) and thus the sum in (2.9) is

majorized by a convergent sum which proves that

lim ˆ ( ( )) = 0 (2.14)

This implies that ˆ ( ) is Cauchy , and therefore converges to, say
ˆ, , i.e.

( ˆ ( ) ˆ) 0 (2.15)

From the definition of the norm and (2.11) we get that

sup ( ˆ ( ) ˆ ( )) ˆ sup ( ) 0 (2.16)

Since

sup ( ˆ ( ) ˆ) sup ( ˆ ( ) ˆ ( )) + ( ˆ ( ) ˆ) (2.17)

it follows from (2.15) and (2.16) used in (2.17) that, (2.8) holds and we
have proved the first part of the lemma.

From this proof it follows that condition (D) can be replaced by
any condition implying that (1 )ln ( ( )) 0

Define the measure ( ) = ( ˆ ) Since ( ) has the same

distribution as ˆ ( ) for all and , it follows from (2.8) that the dis-
tribution of ( ) converges weakly to as for all . Since
this limiting measure does not depend on , and since the Markov chain

( ) has the Feller property, i.e., for any bounded continuous func-
tion : , ( ) ( ) = ( ( )) is a bounded

continuous function with respect to , (follows from the continuity of the
functions ( ), for each fixed , and the dominated convergence the-
orem), it follows that is a unique stationary probability measure for the
Markov chain ( ) . For details see Letac (1986). This completes
the proof of Lemma 2.3 and also proves Lemma 2.1.
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Let us now return to the proof of the theorem. From the representa-
tions (2.6) and (2.7) we obtain the following equality for all and ,

( ( ) = )

= ( ( ) = = )

= ( ( ) = )

= ( ˆ ( ) = )

= ( ˆ ( ) = = )

= ( ˆ ( ) = ) (2.18)

Due to (2.18) we can instead of proving (2.5) complete the proof of The-
orem 2.2 by proving that for all and measurable sets, , with ( ) = 0,

( ˆ ( ) = ) ( ) ( ) (2.19)

where

( ) =
( )

( )
(2.20)

Under conditions (A) and (B), the sequence is an ergodic Markov
chain with stationary probability distribution , where, see for example
Feller (1968) [Chap. XV], is given by (2.20), and ( = = )

( ) as for all and . Therefore, see Rényi (1958), the sequence
is strongly mixing in the sense that ( = ) ( ) ( ), for

an arbitrary random event . Thus,

( ˆ = ) ( ˆ ) ( ) (2.21)

Since are sums of i.i.d. random variables, from renewal theory,

1 (2.22)

Therefore , which together with Lemma 2.3 implies that,

ˆ ( ) ˆ (2.23)
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Suppose the distribution of has period . Under condi-
tions , and , for any real-valued bounded continuous function

on , any measurable set in , any compact set , and any
,

as n

Using (2.23) it follows that for all sets with ( ) = 0,

( ˆ ( ) = ) ( ˆ = )

( ˆ ( ) ∆ ˆ ) 0 (2.24)

From (2.21) and (2.24) it follows that (2.19) holds. This completes the
proof of Theorem 2.2.

We can also give a version of Theorem 2.2 when the regenerative process
is periodic, i.e. condition (B) does not hold.

(A), (C) (D)

0 1 1

sup ( ( )) ( )

( ( )) ( + ) ( ) 0

(2.25)

The proof is analogous with that of Theorem 2.2, but now we need to
take into account the periodicity of the Markov chain , and replace
the limits in (2.4), (2.5), (2.19) and then consequently in (2.1) by the
corresponding subsequential limits.

In this section, we will give some individual ergodic theorems in the case
of a regenerative controlling sequence.

For a function : define, for 0

:= sup
( ( ) ( ))

( )

Obviously is nondecreasing in , and lim = .
Assume that

(E): max ln for some 0.
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Using the definition of the generalized norm, condition (C), (2.6)
and the law of large numbers we obtain,

lim sup
ln

lim sup
ln

= (3.2)

Let us fix 0 and let 0 be a fixed number such that condition (E)
is satisfied. From (3.2) it follows that there exists a random integer ,
finite with probability one, such that if . Since

, there exists a random integer , finite with probability one, such
that, if then and thus . Therefore, for

,

sup ( ( ) ( )) sup ( ) (3.3)

and thus for

= sup
( ( ( )) ( ( )))

( ( ) ( ))

( ( ) ( ))

( )

(3.4)

(We interpret as 1 if , and the left-hand side of the
inequality as 0 for those points for which ( ( ) ( )) = 0.)
Taking logs we obtain, for ,

ln ln + ln (3.5)

and thus,

lim sup
ln

lim sup
ln

+ lim sup
ln

lim sup
∆

+ lim sup
ln

(3.6)

10
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Corollary 3.2.
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−

→∞ →∞
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→∞

→∞
∈

∈

n n
j Tn

n n

Nn Nn

n TNn
Nn

‖ ◦ · · · ◦ ‖

{ }

− →

→∞

→

‖ ‖ ‖ ‖ · ≤ −

‖ ‖ ∞

‖ ‖ ≤ −

‖ ‖ ≤ ‖ ◦ · · · ◦ ‖ · ‖ ‖

⊆

≤ −

→

n
T j<T

I I r

n

n
n
i i

n
i i

n

N N

n

n

n

T

n

T

n

n

k<T k

n

n

n I I T

n

x,y K n n

x,y K
n n

a s

Remark.

Under conditions , and , for any compact set
,

In particular it follows from that

w w .

n n n
a.s.

N . .

n N

N

n
a.s.

Z

n

Z

N

N

n

c

ET
a.s.

E Z < .

Z

n

c

ET
< a.s.

n

Z w w Z .

K X

d Z x ,Z y

n

c

ET
< a.s.

d Z x ,Z y a.s.

where

∆ := max ln

Since ∆ is a sequence of i.i.d. random variables, it follows from condi-
tion (E) and the law of large numbers that

∆
=

∆ ∆
0 (3.7)

From (2.22), (which implies that ), and (3.7) we obtain that

∆
=

∆
0 (3.8)

In the same way as in (3.8) it follows from (3.2) and (2.22) that

lim sup
ln

= lim sup
ln

(3.9)

Using (3.8) and (3.9) in (3.6) completes the proof of the lemma.

If we replace condition (E) in Lemma 3.1 by the stronger condi-
tion

(E ): max ln

we can sharpen (3.1) to

lim sup
ln

0

In this case (3.4) is replaced by the following inequality which holds for
all

The rest of the proof follows in analogy with the previous proof.

(A) (C) (E)

lim sup
ln(sup ( ( ) ( )))

0 (3.10)

(3.10)

sup ( ( ) ( )) 0 (3.11)

11
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Theorem 3.3.

( )

∫ ∑

∫ ∑

∑

∑ ∑
∑ ∑

∑

≤

≤ ‖ ‖ ≤ −

× →

| | ∞

∈

{ }

| |

→

∈

→∞
∈

→∞ ∈ 6

→∞ →∞
∈

−

−

→∞

−

−

−

=

1

1
=0

1

1

=0

1

=0

0

0

=0
1

=
1

= =

=1

Proof.

Under conditions , and there exists a set
with such that for all ,

Proof.

x,y K

n

x,y K n n

n x,y K,x y

n n

n

n q

n

x,y K

X
T
k k k

f
X

T

k

k k

n

n

k

k k f

n n n

n
n
k k k n

T
k T k k n

T
k T k k n

n
k T k k

n

n

N

k

k n

n
f

q > d x, y

d Z x ,Z y

n

n

d Z x ,Z y

d x, y
d x, y

Z

n

d x, y

n

c

ET
a.s.

f X S R

E f Z y , I µ dy <

m
ET

E f Z y , I µ dy .

B µ B x B

n
f Z x , I m a.s.

Z µ
I Z Z Z ,

n , , . . . ξ f Z , I α f Z , I δ

f Z , I β f Z , I

ξ

ξ α β , n , , . . . .

ξ

n
m a.s.

This follows from Lemma 3.1 since for sup ( )

lim sup
ln(sup ( ( ) ( )))

1
lim sup ln sup

( ( ) ( ))

( )
( )

lim sup
ln

+ lim sup
ln(sup ( ))

Let us consider a measurable function : , such that

(F): ( ( ) ) ( ) .

Define

:=
1

( ( ) ) ( )

(A), (C), (D) (F)
( ) = 1

lim
1

( ( ) ) = (3.12)

Let be a random variable with distribution which is inde-
pendent of the regenerative sequence , and define := ( )

= 1 2 . Let := ( ), := ( ), :=

( ) , and := ( ). Using this notation,

we can represent the process as

= + = 0 1 (3.13)

We shall show, repeating the way in Silvestrov (1981), that

(3.14)
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1
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=1
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=1
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0

n n
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n
k k

n
k k

n N

n N N

n

n

n

n

k

k

n

n

n

N

k

k n
n

N

k

k

n

n

n

N

k

k f

n

T n n

T n T

n x

T

T n

y T n

α δ

δ

n

δ

n

δ

n
a.s.

β δ

β

n

δ

n

δ

N

N

n
a.s.

n
α Eα a.s.,

ξ

n n
α β

n
α

N

n N
α

Eα

ET
m a.s.

α

Z , α

P Z B,α D Z
x, α s P B,D

Z
µ Z ,α

π B,D
P B,D µ dy Z µ Z ,α

σ

Using arguments identical as for below, we see that is a station-
ary sequence. Due to condition (F) we can use Birkhoff’s ergodic theorem
to obtain,

= 0 (3.15)

Since, we get from (2.22) and (3.15) that

=
+ 1

+ 1
0 (3.16)

If we can prove that,

lim
1

= (3.17)

then (3.14) follows. This can be seen since from (3.13), (3.16), (3.17) and
(2.22) we get

lim = lim
1

+ = lim
1

= lim
1

= =

So it remains to prove that the sequence is ergodic in the sense of
relation (3.17). In order to prove this, we consider the sequence

. This sequence is a Markov renewal process, i.e., a ho-
mogeneous two component Markov chain with transition probabilities not
depending on the second component ( ( =

= ) = ( )).
According to Lemma 2.1, the Markov chain has the unique invari-

ant probability measure . As is easily verified this implies that
has the unique invariant probability measure given by ( ) =

( ) ( ). Since has distribution , the Markov chain
forms a stationary sequence.

A stationary Markov chain with a unique invariant probability measure
is ergodic in the sense of a trivial tail -algebra, see for example Elton
(1987). Thus we obtain, using Birkhoff’s ergodic theorem, that for every

13
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)
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1

=1

1

1

1
=0

1
=0

1
=0

1

1

=0

1 2

1 2

1
=0

0

1
=0 0

T

n

k

T n T

n f

n

n
k k

f

X n

n
k k

f

X
T
k k

f
X

T

k

k

n x K

n
k k

f

n
k k

f

g X R R E g Z ,α <

n
g Z , α Eg Z ,α a.s.

g x, s s
ξ /n m a.s.

P
f Z

n
m

P
f Z y

n
m µ dy .

y µ

f
f x, y f x

E f Z y µ dy <

m
ET

E f Z y µ dy fdµ.

X
f X R f f f
f f

K X

f Z x

n
m a.s.

x X

f Z x

n
m a.s.

Suppose that is a locally compact Polish space and that
is a function which can be represented as , where

is uniformly continuous and is bounded and continuous. Under
conditions and , for any compact set ,

Proof.

measurable function : satisfying ( ) ,

1
( ) ( ) (3.18)

So in particular with ( ) = we obtain using condition (F) that (3.17)
and thus (3.14) holds. Obviously (3.14) implies that
and therefore

1 = lim
( )

=

= lim
( ( ))

= ( )

From this it follows that the probabilities under the integral sign equal
1 for almost all with respect to . This completes the proof of the
theorem.

In order to allow an arbitrary initial point we must impose some addi-
tional restrictions on the function . For simplicity let us consider func-
tions only depending on the first variable, ( ) = ( ). The condition
(F) now takes the form

(F): ( ( )) ( )

and

:=
1

( ( )) ( ) = ˜

: = +

(A) (C) (F)

lim sup
( ( ))

= 0 (3.19)

From Theorem 3.3 it follows that there exists a point, such
that

( ( ))
(3.20)
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n x K
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n x K
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k k k
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x K

n
k k

x K

n
k k

f

f Z x

n
m

f Z x f Z x

n

f Z x

n
m

f Z x f Z x

n
a.s.

f

f Z x f Z x a.s.

f Z x f Z x

n
a.s.

f
f

ε > f
f f x C

µ C ε/ , ε/ f X

g C C g x x C
g x x C

f Z x

n
m

f y g y µ dy m
f g Z x

n

f g Z x

n
f y g y µ dy .

Suppose is uniformly continuous. First note, by (3.20) that

lim sup sup
( ( ))

lim sup sup
( ( )) ( ( ))

+ lim sup
( ( ))

= lim sup sup
( ( )) ( ( ))

(3.21)

From Corollary 3.2 and since is uniformly continuous we obtain that

lim sup(sup ( ( )) ( ( )) ) = 0 (3.22)

This implies that

lim sup sup
( ( )) ( ( ))

= 0 (3.23)

(since convergence of a sequence implies convergence in a Cesaro sense)
and we have completed the proof if is uniformly continuous.

The idea of the proof with being bounded and continuous originates
from Elton (1987). Let 0 be given and let be a bounded continuous
function, with := sup ( ) . Let be a compact set such that
˜( ) max(1 2 1 (2 )). (Recall that is a locally compact
Polish space.) By Urysohn’s lemma, there exists a continuous function

with compact support, , such that ( ) = 1 for and
0 ( ) 1 for .

We shall use the following inequality

sup
( ( ))

( ) ( )˜( ) + sup
(1 )( ( ))

+ sup
( ( ))

( ) ( )˜( ) (3.24)
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− | | − ≤

·

· −
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∈

∣∣∣
∫ ∣∣∣

∫

( ∣∣∣
∑ ∣∣∣

)

( ∑ )

[ ( ∣∣∣
∑ ∫ ∣∣∣

)

∫ ] ∫

( ∣∣∣
∑ ∫ ∣∣∣

)

( ∣∣∣
∑ ∣∣∣

)

f y g y µ dy m f g y µ dy

f µ C ε/ .

g g

f g Z x

n

f
g Z x

n

f
g Z x

n
g y µ dy

g y µ dy f g y µ dy ε/ a.s.

f g

C

f g Z x

n
f y g y µ dy a.s.

f Z x

n
m ε a.s.

ε >

E Z <
w , s S

Now,

( ) ( )˜( ) (1 ( ))˜( )

(1 ˜( )) 2 (3.25)

Since and so 1 are bounded they also satisfy condition (F) due to
condition (A). These functions are also uniformly continuous and thus
from the first part of this proof it follows that

lim sup sup
(1 )( ( ))

lim sup sup
(1 )( ( ))

lim sup sup
(1 )( ( ))

(1 ( ))˜( )

+ (1 ( ))˜( ) = (1 ( ))˜( ) 2 (3.26)

Since is bounded it follows from condition (A) that (F) holds for
this function. This function is also continuous and has support within the
compact set . Therefore it is uniformly continuous and we obtain from
the first part of this proof that

lim sup sup
( ( ))

( ) ( )˜( ) = 0

(3.27)

It follows from (3.25), (3.26), and (3.27) used in (3.24) that

lim sup sup
( ( ))

(3.28)

for an arbitrary 0. This completes the proof of the theorem.

Here we give some sufficient conditions for the conditions used in this
paper.

(C): An application of Jensen’s inequality shows that (C ): 1
is sufficient for condition (C). The requirement that all functions

16
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5. IFS controlled by a sequence of i.i.d. random variables

ρ ρ <

Ed y ,Z y < ,
y X

x X Ed x,Z x Ed x, y
Ed y , Z y Ed Z y ,Z x <

X
w

a s S
k Z a r E Z ET a

r < .
f

Z w

d y,Z y d Z y ,Z y Z

w

I

I
I
T nn , n , , . . .

n

E Z c <

are contractions with contraction coefficients 1, implies that
condition (C ) is satisfied.

(D): A sufficient condition for (D) is (D ): ( ( )) for
some . If condition (C ) also holds, (D ) can only hold for all

simultaneously. This follows since ( ( )) ( ) +
( ( )) + ( ( ) ( )) . Condition (D ) is satisfied

when is a compact set.
(E): If all maps are Lipschitz continuous with the same Lipschitz

constant , for all , then (A) is sufficient for (E). This follows since
for every , , and thus max ln ln +
ln

(F): If is bounded then condition (A) is sufficient for (F).
We would also like to note that all conditions (A), and (C) (F) can be

replaced by some sufficient conditions which require the existence of expec-
tations for some functional of additive type accumulated in one regenera-
tion cycle. Condition (A) and (F) are of this type. The following inequal-
ities can be used for the other conditions: ln ln ;

( ( )) ( ( ) ( )); and max ln

ln .
Conditions based on expectations of such kind of additive functionals

can be effectively checked for various classes of regenerative processes.
Finally we would also like to note that all theorems and lemmas for-

mulated here can be generalized to the case of a controlling regenerative
process with delay. The only change we need to do is to replace all
quantities in condition (A) (F) calculated for the first regeneration cycle
(now delayed) by the corresponding quantities calculated for the second
(standard) regeneration cycle.

We shall here consider the model with the controlling sequence being
a sequence of i.i.d. random variables. Obviously can be considered as
a regenerative sequence with regeneration moments = = 0 1
for any fixed integer 1. Condition (A) then obviously holds, and the
other conditions simplify to

(C ): ln = 0.
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6. IFS controlled by a Markov chain
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f dµ < .

Z x
µ
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g X

K X

Eg Z x gdµ .

X f
X R f f f
f f

n
K X

f Z x

n
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I

T

I

I

I I I , I

Suppose the conditions and hold for some .
Then for any real-valued bounded continuous function on and any
compact set ,

as n

Suppose that is a locally compact Polish space,
is a function which can be represented as , where

is uniformly continuous and is bounded and continuous and that
there exist an such that the conditions hold. Then for any
compact set ,

(D ): ln ( ( )) , for some .

(E ): ln , for = 1 2 1.

(F ):

In this case it can be easily shown that under conditions (C ) and (D ),
( ) is a Markov chain with a unique stationary probability measure

coinciding with the unique stationary probability measure of the Markov
chain ( ) .

As corollaries of Theorems 2.4 and Theorem 3.4 we obtain the following
ergodic theorems.

(C ) (D )

sup ( ( )) 0 (5.1)

:
= +

(C ) (F )

lim sup
( ( ))

= 0 (5.2)

If is an ergodic Markov chain with finite or countable state space, it
can be considered as a regenerative sequence with regeneration moments

which are return times to some fixed state. The theorems which we
obtain in this case however differ from similar theorems in previous papers
in that our conditions are of “cyclic” type.

The results in this paper can also be translated to the model in which
is a Harris recurrent Markov chain with a general state space. Here

the method of artificial regeneration, developed by Kovalenko (1977),
Athreya and Ney (1978), and Nummelin (1978) can be used. According
to this method, the Markov chain can be “embedded” in a two-

component Markov chain ˜ , (where ˜ = ( ) and the random
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and attractors on the real line, , , 1–12.

[6] Berger, M. A. (1993) ,
Springer-Verlag, New York.

[7] Berger, M. A. and Soner, H. M. (1988) Random walks generated by affine mappings,
, , 239–254.

[8] Elton, J. H. (1987) An ergodic theorem for iterated maps,
, , 481–488.

[9] Elton, J. H. (1990) A multiplicative ergodic theorem for Lipschitz maps,
, , 39–47.

[10] Feller, W. (1968) , Vol.
I, third edition, John Wiley, New York.

[11] Gadde, E. (1994) Stable IFSs with probabilities. An ergodic theorem,
, Dept. of Mathematics, Ume̊a University.
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