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Let ( ) be a complete metric space, and let be a measurable space.
Consider a measurable function : . For each fixed ,
we write ( ) := ( ). We call the set ; an iterated
function system (IFS). Let be a stochastic sequence with state
space . Specify a starting point . The stochastic sequence
then controls the stochastic dynamical system ( ) , where

( ) := ( ) 1 ( ) =

1

. We consider Markov chains represented in the form
= ( ), where is a sequence of independent, iden-

tically distributed (i.i.d.) random variables, and where is a measur-
able function. Any Markov chain on a Polish state space may
be represented in this form i.e. can be considered as arising from an
iterated function system (IFS).

A distributional ergodic theorem, including rates of convergence
in the Kantorovich distance is proved for Markov chains under the
condition that an IFS representation is “stochastically contractive”
and “stochastically bounded”.

We apply this result to give upper bounds for distances between
invariant probability measures for iterated function systems.

We also give some examples indicating how ergodic theorems for
Markov chains may be proved by finding contractive IFS representa-
tions. These ideas are applied to some Markov chains arising from
iterated function systems with place dependent probabilities.

Ergodic theorems, Iterated Function Systems (IFS), IFS with place
dependent probabilities, Convergence rates, Markov chains.

Primary 60B10, 60F05, 60J05; Sec-
ondary 58F11.



R

=

∞ ∈

6

n

n

n

n

x X

L
x y

{ }
{ }

{ }

{ }

→
‖ ‖ | | ∞

‖ ‖ | − | ∞

I
I

I

I ,

BL f X
f f x <

f
f x f y

d x, y
< .

2. Ergodic theorems for IFS controlled by i.i.d. sequences

We call this particular type of stochastic dynamical system an IFS con-
trolled by . (Some authors use the name stochastically recursive se-
quence with driver . See e.g. Borovkov and Foss (1994).)

In this paper, we shall consider the model when the controlling sequence
is a sequence of independent, identically distributed (i.i.d.) random

variables. Any homogeneous Markov chains on a complete, separable met-
ric space can be represented in this form with the i.i.d. random variables,

, being uniformly distributed in (0 1), (See e.g. Kifer (1986)). A
representation, however, is not in general unique. In Section 4 we will
describe this in more detail.

In Section 2 we are going to prove a weak ergodic theorem including
rate of convergence for Markov chains under a stochastic boundedness
condition and an average contraction condition posed on a representing
IFS.

A main ingredient in the proof of this theorem is the method of revers-
ing time. This method was introduced by Letac (1986) and has been used
in e.g. Burton and Rösler (1995),  Loskot and Rudnicki (1995), Ambro-
ladze (1997) and Silvestrov and Stenflo (1998) in order to prove ergodic
theorems.

In Section 3 we use the result derived in Section 2 to give estimates
of distances between IFS generated invariant probability measures. A
related result concerning continuity of the invariant measures for iterated
function systems is given in Centore and Vrscay (1994).

The escape from using a continuity condition in our theorems enables
us to give a new approach towards Markov chains generated by iterated
function systems with place dependent probabilities. This is done by rep-
resenting the system by another IFS with place independent probabilities,
i.e. an IFS controlled by a sequence of i.i.d. random variables, and use the
theorem derived in Section 2. An example of this can be found in Sec-
tion 4 as well as a new proof for the classical ergodic theorem for Markov
chains with “splitable” transition kernels.

Let denote the class of bounded continuous functions, : (with
= sup ( ) ) that also satisfy the Lipschitz condition

= sup
( ) ( )

( )

2
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Suppose

(A): There exists a constant such that

for all .

(B): , for some .

Then there exists a unique invariant probability measure for the
Markov chain such that, for any bounded set there exists
a positive constant such that

Remark 1.

Remark 2.

We set = + For Borel probability measures and
we define the metric

( ) = sup ( ) : 1

It is well known see e.g. Shiryaev (1996) that this metric metrizes the
topology of weak convergence of probability measures (on separable metric
spaces).

Consider now the Kantorovich distance defined by

( ) = sup ( ) : 1

It is evident that ( ) ( ). Denote by ( ) = ( ( ) ).
We have the following theorem:

1

( ( ) ( )) ( )

( ( ))

( )

sup ( )
1

0 (2.1)

An explicit expression and upper bound for is given by

:= sup ( ( )) ( ( )) + ( + 1) sup ( )

The limiting probability measure is concentrated in the sense
of a bounded first moment, or to be more precise

( ) ( )
( ( ))

1

where and are defined by the conditions (A) and (B). [See the in-
equalities in (2.2), and (2.6) below.]
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Obviously, we may replace the -distance in (2.1) by the
-distance and thus in particular, we have weak convergence with expo-

nential rate of convergence.
Note that the functions , are not assumed to be continuous

for any . [See the example concerning IFS with place dependent
probabilities given in Section 4.2.] In the case when is countable, how-
ever, continuity is a consequence of condition (A).

For , define the reversed iterates

ˆ ( ) := ( ) 1 ˆ ( ) =

The random variables ˆ ( ) and ( ) are identically distributed. We are

first going to prove that there exists a random variable ˆ, such that ˆ ( )

converges almost surely ( ) to ˆ. If we then define by ( ) = ( ˆ ),
we have the following sequence of inequalities:

( ) = sup ( ) : 1

= sup ( ( ˆ ( )) ( ˆ)) : 1

sup ( ˆ ( )) ( ˆ) : 1

( ˆ ( ) ˆ) = lim ( ˆ ( ) ˆ ( ))

lim ( ˆ ( ) ˆ ( ))

= ( ˆ ( ) ˆ ( )) (2.2)

We shall prove the existence of ˆ by first proving that ˆ ( ) is
a Cauchy sequence, which converges since is complete, and then prove
that the limit is independent of .

For we have,

( ˆ ( ) ˆ ( )) ( ˆ ( ) ˆ ( )) (2.3)

Thus if we prove that

( ˆ ( ) ˆ ( )) 0 (2.4)
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then

( ˆ ( ) ˆ ( )) 0 (2.5)

and from (2.3) and (2.5) we conclude that ˆ ( ) forms a Cauchy
sequence.

Now, by recursively using condition (A) we obtain that,

( ˆ ( ) ˆ ( )) = ( ˆ ( ) ˆ ( ))

= ( ( ( ˆ ( ) ˆ ( )) ))

= ( ( ( ( ( ))

( ( ))) ))

( ( ) ( ))

( ( )) =
1

( ( ))

(2.6)

Since using condition (A) and (B),

( ( )) ( ) + ( ( )) + ( ( ) ( ))

( ( )) + ( + 1) ( ) (2.7)

it follows that (2.4) holds and thus ˆ ( ) converges to some ran-

dom element ˆ( ) for each . It remains to prove that the limit is
independent of .
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By the Chebyshev inequality, and by a recursive use of condition (A),
for any two points and in , and for any 0,

( ( ˆ ( ) ˆ ( )) )
( ˆ ( ) ˆ ( ))

1
( ( ( ˆ ( ) ˆ ( )) ))

( ( ) ( ))

( )

Thus

( ( ˆ ( ) ˆ ( )) ) ( )

and it follows (see e.g. Shiryaev (1996)) that

( ˆ ( ) ˆ ( )) 0 (2.8)

Define ˆ = ˆ( ). From (2.8), the triangle inequality, and the fact of

almost sure convergence of ˆ ( ) to ˆ, it follows that for any ,

( ˆ ( ) ˆ) 0 as establishing the a.s. independence of .
Combining (2.2) and (2.6) we see that

( )
1

( ( )) 0

Thus,

sup ( )
1

0

where := sup ( ( )) is a finite constant, since, by taking
supremums in (2.7)

( ( )) + ( + 1) sup ( ) (2.9)

It remains to prove that the probability measure is invariant and
unique with this property. To do this, we prove that the Markov chain

( ) has the (weak) Feller property which in our terminology means
that : being a bounded and continuous function implies that the
mapping

( ( )) (2.10)
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is continuous. It is well known that the limiting probability measure of
an ergodic Markov chain with the Feller property is invariant. To be self-
contained, we explain why before proving that our Markov chain has this
property.

Since

( ( )) = ( ( )) ( ( ) ) (2.11)

the invariance equation

= ( )

will then follow by taking limits in (2.11) justified by using the continuity
in (2.10).

We shall now prove that our Markov chain has the Feller property. Let
be a sequence in with lim = . Since, for fixed 0, by

the Chebyshev inequality, and from condition (A),

( ( ( ) ( )) )
( ( ) ( )) ( )

0

as , we have proved that ( ) converges in probability to ( ).
Thus for any bounded and continuous function

lim ( ( )) = ( ( ))

and the Feller property is established. Thus is invariant.
The uniqueness follows since if is another invariant measure, we obtain

by using the Lebesgue’s convergence theorem, that

= ( ( )) ( ) = = ( ( )) ( )

=

for bounded and continuous functions , and thus and coincides. (See
e.g. Billingsley (1968).) This completes the proof of Theorem 2.1.
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We will now turn to a theorem proving that under uniform contractiv-
ity and stochastic boundedness assumptions, (condition (C) and (D) be-
low), we can give upper bounds for -distances between IFS generated
probability measures and in particular prove that the limiting probability
measure depends “continuously” on the parameters in the system.

For probability measures and defined on the same measurable
space, (M ), let denote the total variation distance defined by

( ) = sup ( ) ( )

= ; [0 ] 0

( ) := ( ) 1 ( ) =

0 1

( ( ) ( )) ( ) [0 ]

:= sup ( ( ))

∆ : [0 ]

sup sup ( ( ) ( )) ∆( ) [0 ]

: [0 ]

( ) ( ) [0 ]

( ) := ( )
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Let denote the limiting invariant probability distribution for the
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(these measures exist due to Theorem 2.1). Then there exist constants
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If ( ) = 0 we interpret (3.1) as ( ) ∆( ).

Before we turn to the proof of Theorem 3.1, we illustrate the theorem
with an example.

Consider the family of iterated function systems =
[0 1] ( ) = (1 2 ) ( ) = (1 2 ) + 1 2 + , 0 1 2,

with ( = ) = 1 2, (i.e. independent of ) for = 1 2. Applying
the above theorem, with = 1 2, ∆( ) = , and ( ) = 0, shows that

( ) 2 and thus as 0 weakly which at first glance
may be somewhat conspicuous since we know that the supports of , for
0 1 2, are sets of Cantor type, while is Lebesgue measure on
[0 1].

We now turn to the proof of Theorem 3.1.

Define ( ) := ( ( ) ), for , and let be the point
defined in condition (D). By the triangle inequality we have that

( ) ( ) + ( ) + ( ) (3.2)

From Theorem 2.1 using conditions (C) and (D) it follows that

( )
1

0 [0 ] (3.3)

Define, for ,

˜ ( ) := ( ) 1 ˜ ( ) =

Let for each fixed and , denote the probability distribution of

the random vector . ( = )
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We have the following inequalities,

( ) = sup ( ) : 1

= sup ( ( )) ( ( )) : 1

sup ( ( )) ( ˜ ( )) : 1

+ sup ( ˜ ( )) ( ( )) : 1

2 ( ) + ( ˜ ( ) ( )) (3.4)

We may, (see Dobrushin (1970)), for any fixed and assume that
and are defined on the same probability space with ( = ) =
( ). It can also be assumed that ( ) is a sequence of i.i.d.

random variables. Thus

( ) (( ) = ( ))

= ( = ) ( = )

= ( ) ( ) (3.5)

Studying the other term appearing in (3.4), we obtain that,

( ˜ ( ) ( )) ( ( ˜ ( )) ( ( )))

( ( ˜ ( )) ( ˜ ( )))

+ ( ( ˜ ( )) ( ( )))

sup sup ( ( ) ( ))

+ ( ( ( ( ˜ ( )) ( ( ))) ˜ ( ) ( )))

∆( ) + ( ˜ ( ) ( )) (3.6)
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and thus by a recursive use of (3.6), we see that

( ˜ ( ) ( )) ∆( ) ∆( )
1

1
(3.7)

By inserting (3.5) and (3.7) in (3.4) we obtain that

( ) 2 ( ) + ∆( )
1

1
(3.8)

and thus from (3.2), (3.3), and (3.8) we see that

( ) min
2

1
+ 2 ( ) + ∆( )

1

1
(3.9)

In order to give a more explicit expression for the right hand side of
(3.9) we investigate the function ( ) = + 0, where
0 0 1 Suppose that ln . Then attains its minimum

(ln + ln( ) 1) at = ln + ln( ) 0.

Let denote the smallest real number with ln( ) such that

+ is an integer. We have that

ln

ln
+

ln

ln
+

1

ln
ln(

1

ln
) + 1 + ( )

=
1

ln
ln +

ln
ln(

ln
) 1

Thus, using this, with = 2 ( ) and = , in (3.9), we see that

( ) ∆( ) + ( ) ln ( ) + ( ) (3.10)

where = , = , and

=
2

ln
ln

(1 )

2 ln
+ ln 2 1

This completes the proof of the theorem.

In this section, we are going to describe how a Markov chain, with
state space , may be represented as an IFS controlled by a sequence
of i.i.d. random variables. (We shall call such a representation an IFS
representation.)
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Our aim is to prepare for sections 4.1 and 4.2 where we apply the
ergodic theorem for IFS controlled by i.i.d. sequences (developed in Section
2) to prove ergodic theorems for Markov chains by finding suitable IFS
representations.

We shall start with an example where the state space is as simple
(non-trivial) as possible.

One purpose of this example is to illustrate the non-uniqueness of an
IFS representation of a given Markov chain.

Consider a time homogeneous Markov chain with
state space = 0 1 and transition matrix

=

To find all IFS representations of this Markov chain, we take the four
possible functions ( ) = ( ) = 0 ( ) = 1 ( ) = 1 and
let be i.i.d. with ( = ) = for = 1 4. We obtain the
following system of linear equations:

+ =
+ =
+ + + = 1

0 1

Solving this system for = 1 4, we finally get

=

0

1 ( + )

+

1
1
1
1

max(0 + 1) min( )

In this example we made a total investigation finding all representing
iterated function systems. In Section 2 we proved a theorem for iterated
function systems based on contraction conditions of the involved functions.
Therefore we see that the representation above with parameter as small
as possible is the best representation provided that we want to choose
the contractive functions ( and in the above example) with as high
probability as possible.

When the state space is larger however, e.g. , we can no longer make
this type of total investigation for representing iterated function systems.
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4.1. Recurrent Markov chains.

Corollary 4.2.
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φ M M x X x X
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T Tf x P x, dy f y ,
x
x X P x, X

Z
X P

one

Suppose is a homogeneous Markov chain with Pol-
ish state space and with a transition kernel which has the splitting

Therefore we will be pleased if we can find an algorithm constructing
“contractive” IFS from a given Markov chain.

If is a Markov chain on (a subset of) with transition kernel
( ), then we can define a representing IFS with,

( ) = inf : ( ( ])

and with being an independent sequence of random variables with
values uniformly distributed on (0 1). This representation corresponds
to the “most contractive” IFS in the above example. Note however that
this is not a general statement for larger state spaces since the above
construction depends on the natural ordering of .

The above algorithm for creating a representing IFS can be generalized
if the state space, , is Borel measurably isomorphic to a Borel subset of
the real line, , satisfied for instance if is a Polish space.

In fact (see e.g. Kifer (1986)), suppose there exists a one-to-one Borel
map : such that = ( ) is a Borel subset of and :

is also Borel measurable. Suppose that : equals
on and maps on some point . For each

define a probability measure on the Borel -field ( ) of by ˜( ) =
( ( )), for ( ), and for each and (0 1) let

( ) = inf : ˜( ( ]) . If we for each (0 1) let =
then the construction is completed.

To know whether or not there exists a representing IFS with continu-
ous functions, one sufficient condition is given in Blumenthal and Corson
(1972). Their condition is that the state space is a connected and locally
connected compact metric space, the transition kernel has the (weak)
Feller property, (i.e. the operator defined by ( ) := ( ) ( )
for all , maps bounded and continuous functions to itself), and for each
fixed , the support of ( ) is all of . See also Quas (1991) for
further results.

We shall now give a corollary of The-
orem 2.1. The result is well known, see e.g. Loève (1978), but the proof is
non-standard and shows how classical ergodic theorems for exponentially
ergodic Markov chains can be embedded within the theory of iterated
function systems.
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property that

for some , transition kernel and probability measure , where
. Then there exists a unique invariant probability measure for

, such that

where denotes the class of Borel sets in , and denotes the
Markov Chain with initial distribution concentrated at .

Proof.

( ) = ( ) + (1 ) ( )

1
0 1

sup sup ( ( ) ) ( )
1

(4.1)

( ) ( )

It is sufficient to prove this theorem for the case = 1, since we
can consider subsequences , and if the Markov chain
satisfies (4.1) then for = 0 1 2 1 we observe that

sup sup ( ( ) ) ( )

sup sup ( ( ( ) ) ( )) ( )

sup sup ( ( ) ) ( ) ( )
1

and the conclusion of the theorem will then hold.
Using the algorithm described in Section 4, let (0 1) be a set of

functions representing a Markov chain with transition kernel together
with a sequence of i.i.d. random variables with values in (0 1). Fur-
thermore, let (0 1) be a set of functions representing a Markov
chain with transition kernel (measure) (together with ). Let
be another (independent) such i.i.d. sequence.

Then , with = ( ) forms an independent sequence uniformly
distributed in (0 1) (0 1). If we define = for 0 and
otherwise, we obtain that

= ( ) + ( )

where denotes the indicator function.
Let denote the discrete metric. The space ( ) then constitutes a

complete metric space.
Since (0 1) will all be constant maps, it follows that

( ( ) ( ))
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4.2. Iterated function systems with place dependent probabil-
ities.

Example 4.3.

βEd f x , f y β Ed g x , g y βd x, y

X, d ,w , s, t , , I
P

f X f χ χ
γ

P Z x A µ A fdµ fdµ

fdµ fdµ f
β

β
,

x X
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i S p X ,
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X w , p x , i S

x X
Z x Z x x Z x

w Z x p Z x n

X w x , p x , i , w i ,
X f , s ,

f x
w x , x x X p x s
w x ,

,

,

( ( ) ( )) + (1 ) ( ( ) ( )) ( )

Thus ( ) ( ) (0 1) (0 1) together with forms a con-
tractive IFS representing the transition kernel and Theorem 2.1 can be
used. In fact, if = : ; = for some indicator function
then from Theorem 2.1, [using that 1],

sup ( ( ) ) ( ) = sup

sup : 1
1

and the above inequality holds uniformly for all . This completes
the proof of the theorem.

If we have an IFS with = 1 , for some 1, and
to each we have associated probability weights : [0 1],

( ) 0 and ( ) = 1, for each , we call the set
; ( ) an IFS with place dependent probabilities.

Specify a point . Using this system we can construct a Markov
chain ( ) in the following way: Put ( ) := , and let ( ) :=

( ( )) with probability ( ( )), for each 1.
Some papers considering this model are Barnsley (1988), Kaijser

(1994), and Lasota and Yorke (1994).
For any IFS with place dependent probabilities, there is an IFS with

place probability weights (i.e. an IFS controlled by an i.i.d.
sequence) generating the same Markov chain. (We call iterated function
systems generating the same Markov chain equivalent.)

We illustrate this with the following example.

Consider the IFS with place dependent probabilities
; ( ) ( ) 1 2 , with , = 1 2, being continuous.

The IFS ; (0 1) with

( ) =
( ) if ; ( )
( ) otherwise

controlled by a sequence of independent random variables, uniformly dis-
tributed in (0 1), is equivalent with the above system. It is more well
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Corollary 4.5.
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Let and be bounded contractions i.e. functions sat-
isfying the Lipschitz conditions , , for all

, and , with .
Suppose, for some and all ,

Then there exists a unique invariant probability measure for the Markov
chain such that, for any bounded set there exists a positive
constant such that

where .

Proof.

Consider the functions and
, with , on a compact subset of (together with the Euclidean

metric).

behaved in the sense that it has place independent probabilities but the
loss is that it generally has a denumerable set of discontinuous functions.

As corollaries of Theorem 2.1 we obtain:

( ( ) ( )) ( ) 1
= 1 2 := sup ( ( ) ( ))

1

( ) ( )
1

( )

( )

sup ( ) ( +
1

)

( ) := ( ( ) )

Take the representing IFS ; (0 1) constructed as in
Example 4.3 above. We are going to use Theorem 2.1. We thus have to
check condition (A). (Condition (B) trivially holds.)

Now, for we may suppose that ( ) ( ) and thus

( ( ) ( )) ( ) ( ( ) ( ))

+( ( ) ( )) ( ( ) ( )) + (1 ( )) ( ( ) ( ))

( )( ( ) +
1

+ (1 ( )))

( )( ( ( ) + 1 ( )) +
1

) ( +
1

) ( )

The conditions in Theorem 2.1 are satisfied and thus there exists a prob-
ability measure such that, for any bounded set there exists a
positive constant such that

sup ( ) ( +
1

)

( ) = + ( ) = +
1
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Suppose, the probability weights are affine i.e. , for
some constants and . Denote by . If then
there exists a unique invariant probability measure for the Markov chain

and a positive constant such that

where .

Proof.
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Convergence of Probability Measures

Proc. 6th Berkely Sympos. on Math. Stat. and Prob.

Acta Appl. Math.

J. Appl. Probab.

Canad. Math. Bull.

( ) = +
:= + 1
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Take the representing IFS ; (0 1) constructed as in
Example 4.3 above. We are going to use Theorem 2.1. We thus have to
check condition (A). (Condition (B) trivially holds.)

Now, (for ( ) ( ))

( ) ( ) ( ) + ( ( ) ( ))( + ( + ))

+(1 ( ))

(1 ( ( ) ( )))

+( ( ) ( ))( + )

= + ( ( ) ( ))

( + ) =

The conditions in Theorem 2.1 are satisfied and thus the conclusion
follows.
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