Ergodic Theorems for Time-Dependent Random Iteration of Functions

Örjan Stenflo

Abstract

Time-dependent iterated function systems with time dependent probabilities are introduced, generalizing the concept of iterated function systems by Barnsley and Demko (1985). A distributional ergodic theorem including rates of convergence and a law of large numbers are obtained under the assumptions that the system is asymptotically average-contractive.

1. Introduction

Let (X, d) be a complete metric space, S a measurable space, and P a probability measure defined on the measurable subsets of S. Consider a measurable function $w: X \times S \rightarrow X$. For each fixed $s \in S$, we write $w_{s}(x):=w(x, s)$. Following the terminology introduced by Barnsley and Demko (1985) we call the set $\left\{X ; w_{s}, s \in S, P\right\}$ an iterated function system (IFS) with probabilities. Let $\left\{I_{n}\right\}_{n=0}^{\infty}$ be a sequence of independent identically distributed (i.i.d.) random variables with values in S. We assume that $P(\cdot)=P\left(I_{n} \in \cdot\right)$. Specify a starting point $x \in X$. The stochastic sequence $\left\{I_{n}\right\}$ then controls the stochastic dynamical system $\left\{Z_{n}(x)\right\}_{n=0}^{\infty}$, where

$$
\begin{equation*}
Z_{n}(x):=w_{I_{n-1}} \circ w_{I_{n-2}} \circ \cdots \circ w_{I_{0}}(x), n \geq 1, \quad Z_{0}(x)=x . \tag{1.1}
\end{equation*}
$$

We call this particular type of stochastic dynamical system an IFS controlled by $\left\{I_{n}\right\}$. The sequence $\left\{Z_{n}(x)\right\}_{n=0}^{\infty}$ forms a homogeneous Markov chain.

[^0]Denote by $\nu_{n}^{x}(\cdot)=P\left(Z_{n}(x) \in \cdot\right)$. For Borel probability measures μ_{1} and μ_{2}, let d_{k} denote the Kantorovich distance defined by

$$
d_{k}\left(\mu_{1}, \mu_{2}\right)=\sup _{f \in L i p_{1}}\left|\int_{X} f d\left(\mu_{1}-\mu_{2}\right)\right|,
$$

where

$$
\operatorname{Lip}_{1}=\{f: X \rightarrow \mathbb{R},|f(x)-f(y)| \leq d(x, y) \text { for all } x, y \in X\} .
$$

In Stenflo (1998) the following theorem is proved:
Theorem 1.1. Assume that:
(A): There exists a constant $c<1$ such that

$$
E d\left(w_{I_{0}}(x), w_{I_{0}}(y)\right) \leq c d(x, y) \quad \text { for all } x, y \in X
$$

and
$(B): E d\left(x_{0}, w_{I_{0}}\left(x_{0}\right)\right)<\infty$, for some $x_{0} \in X$.
Then there exists a unique invariant probability measure μ for the Markov chain $\left\{Z_{n}(x)\right\}$ such that for any bounded set $K \subseteq X$ there exists a positive constant γ_{K} such that

$$
\begin{equation*}
\sup _{x \in K} d_{k}\left(\nu_{n}^{x}, \mu\right) \leq \frac{\gamma_{K}}{1-c} c^{n}, n \geq 0 . \tag{1.2}
\end{equation*}
$$

Remark 1. An explicit expression and upper bound for γ_{K} is given by

$$
\gamma_{K}:=\sup _{x \in K} E d\left(x, w_{I_{0}}(x)\right) \leq E d\left(x_{0}, w_{I_{0}}\left(x_{0}\right)\right)+(c+1) \sup _{x \in K} d\left(x_{0}, x\right)<\infty
$$

The purpose of this paper is to generalize the above result to the class of nonhomogeneous Markov chains that are generated by time-dependent (asymptotically time-independent) iteration of functions. We are also going to prove a law of large numbers for such processes.

This result also generalizes Theorem 2.2 in Stenflo (1997) where timedependent random iteration of functions chosen from a countable family, $\left\{w_{i}\right\}_{i \in \mathbb{N}}$, of functions on a compact state space, K, is considered.

2. Main theorems

Formalizing the introduction, we define a time-dependent IFS with time-dependent probabilities as a set of iterated function systems $\left\{X ; w_{s}^{(n)}, s \in S, P_{n}\right\}_{n=0}^{\infty}$.

Let $\left\{S_{n}\right\}$ be a (time-inhomogeneous) Markov chain arising from independent iteration of functions, choosing a function to iterate in the $(n+1)$:th iteration step from the family $\left\{w_{s}^{(n)}, s \in S\right\}$ of functions according to the probability measure P_{n}.

That is,

$$
\begin{equation*}
S_{n}(x)=w_{I_{n-1}^{\prime}}^{(n-1)} \circ w_{I_{n-2}^{\prime}}^{(n-2)} \circ \cdots \circ w_{I_{0}^{\prime}}^{(0)}(x), n \geq 1, \quad S_{0}(x)=x, \tag{2.1}
\end{equation*}
$$

where $\left\{I_{n}^{\prime}\right\}$ is an S-valued sequence of independent random variables, with $P\left(I_{n}^{\prime} \in \cdot\right)=P_{n}(\cdot)$, for each $n \geq 0$.

For each $n \geq 0$, let μ_{n}^{x} denote the probability distribution of $S_{n}(x)$, and let $\mathbf{M}_{\mathbf{n}}$ denote the set of probability measures Q_{n} on the measurable subsets of $S \times S$ such that $Q_{n}(\cdot, S)=P(\cdot)$, and $Q_{n}(S, \cdot)=P_{n}(\cdot)$. We may, without loss of generality, consider $\left\{I_{n}\right\}$ and $\left\{I_{n}^{\prime}\right\}$ as being defined on the same probability space with $P\left(\left(I_{n}, I_{n}^{\prime}\right) \in \cdot\right)=Q_{n}(\cdot)$ for some $Q_{n} \in \mathbf{M}_{\mathbf{n}}$, with $\left\{\left(I_{n}, I_{n}^{\prime}\right)\right\}$ being a sequence of independent random vectors.

Define

$$
\delta_{n}=\inf _{Q_{n} \in \mathbf{M}_{\mathbf{n}}} \sup _{x \in X} E_{Q_{n}} d\left(w_{I_{n}}(x), w_{I_{n}^{\prime}}^{(n)}(x)\right), n \geq 0
$$

(In Section 3 we give some upper bounds for δ_{n}.)
We can now state the main results of this paper. (See Example 3.1 in Section 3 for an illustration of the theorem below.)

Theorem 2.1. Suppose the conditions (A) and (B) hold. Let K be a bounded set in X, c be a constant defined by Condition (A), and let μ denote the unique invariant probability measure for the Markov chain $\left\{Z_{n}(x)\right\}$ (existing due to Theorem 1.1).
(i): Assume that

$$
\Delta_{\delta}:=\sum_{n=0}^{\infty} \frac{\delta_{n}}{c^{n}}<\infty .
$$

Then

$$
\sup _{x \in K} d_{k}\left(\mu_{n}^{x}, \mu\right) \leq \alpha_{\delta} c^{n}, n \geq 0
$$

where $\alpha_{\delta}:=\frac{1}{c} \Delta_{\delta}+\frac{\gamma_{K}}{1-c}$ is a finite constant.
(ii): Assume that there exists a log-convex sequence $\left\{q_{n}\right\}_{n=0}^{\infty}$ of positive real numbers with $q_{n} \rightarrow 0$, and $q_{n} \geq \delta_{n}$ for each $n \geq 0$, with the property
that

$$
\Delta_{q}^{\prime}:=\sum_{n=1}^{\infty} \frac{c^{n}}{q_{n}}<\infty .
$$

Then

$$
\sup _{x \in K} d_{k}\left(\mu_{n}^{x}, \mu\right) \leq \beta_{q} q_{n}, \quad n \geq 0
$$

where $\beta_{q}=\frac{q_{0}}{c} \Delta_{q}^{\prime}+\frac{\gamma_{K}}{1-c} \sup _{n \geq 0} \frac{c^{n}}{q_{n}}$ is a finite constant.
Remark 2. If $c=0$, and thus $\Delta_{q}^{\prime}=0$, then β_{q} should be interpreted as $\beta_{q}=\frac{q_{0}}{q_{1}}+\frac{\gamma_{K}}{q_{0}}$, and if also $\delta_{n}=0$, for each $n \geq 0$, we should interpret α_{δ} as $\alpha_{\delta}=\gamma_{K}$.

Remark 3. Note that Theorem 1.1 corresponds to the case when $\delta_{n}=0$, for each $n \geq 0$.
Remark 4. We stress that if $\delta_{n} \rightarrow 0$ essentially faster than c^{n} we may use Theorem 2.1(i) and if $\delta_{n} \rightarrow 0$ with slower rates we use Theorem 2.1(ii).
Theorem 2.2. Suppose conditions (A) and (B) hold and that

$$
\sum_{n=0}^{\infty} \delta_{n}<\infty
$$

Then for any uniformly continuous function $f: X \rightarrow \mathbb{R}$, with $\int|f| d \mu<$ ∞, and any $x \in X$ we have that,

$$
\frac{\sum_{k=0}^{n-1} f\left(S_{k}(x)\right)}{n} \stackrel{\text { a.s. }}{\rightarrow} \int f d \mu \quad \text { as } n \rightarrow \infty .
$$

Proofs. Let $\left\{\epsilon_{n}\right\}$ be an arbitrary fixed sequence of positive real numbers. Since we are only interested in distributional questions, we may consider $\left\{I_{n}\right\}$ and $\left\{I_{n}^{\prime}\right\}$ as being defined on the same probability space such that $\left\{\left(I_{n}, I_{n}^{\prime}\right)\right\}$ is an independent sequence with the property that,

$$
\begin{equation*}
\sup _{x \in X} E d\left(w_{I_{n}}(x), w_{I_{n}^{\prime}}^{(n)}(x)\right)<\delta_{n}+\epsilon_{n} \tag{2.2}
\end{equation*}
$$

for all $n \geq 0$. (All expectations with which we will be concerned, will be with respect to the, by the Ionescu Tulcea's Theorem, unique probability measure Q generated on the space of infinite sequences of $S \times S$, by $\left\{\left(I_{n}, I_{n}^{\prime}\right)\right\}$.)

Let x and y be arbitrary points in X. By using the triangle inequality, Condition (A) and (2.2) we see that

$$
\begin{align*}
& E d(\left.Z_{n}(x), S_{n}(y)\right)=E d\left(w_{I_{n-1}}\left(Z_{n-1}(x)\right), w_{I_{n-1}^{\prime}}^{(n-1)}\left(S_{n-1}(y)\right)\right) \\
& \leq E d\left(w_{I_{n-1}}\left(Z_{n-1}(x)\right), w_{I_{n-1}}\left(S_{n-1}(y)\right)\right) \\
& \quad+E d\left(w_{I_{n-1}}\left(S_{n-1}(y)\right), w_{I_{n-1}^{\prime}}^{(n-1)}\left(S_{n-1}(y)\right)\right) \\
& \leq E\left(E\left(d\left(w_{I_{n-1}}\left(Z_{n-1}(x)\right), w_{I_{n-1}}\left(S_{n-1}(y)\right)\right) \mid Z_{n-1}(x), S_{n-1}(y)\right)\right) \\
& \quad+\left(\delta_{n-1}+\epsilon_{n-1}\right) \\
& \leq c E d\left(Z_{n-1}(x), S_{n-1}(y)\right)+\left(\delta_{n-1}+\epsilon_{n-1}\right), \tag{2.3}
\end{align*}
$$

and using (2.3) recursively we obtain the inequality

$$
\begin{equation*}
E d\left(Z_{n}(x), S_{n}(y)\right) \leq c^{n} d(x, y)+\sum_{i=0}^{n-1} c^{n-1-i}\left(\delta_{i}+\epsilon_{i}\right) \tag{2.4}
\end{equation*}
$$

Now observe that

$$
\begin{align*}
d_{k}\left(\nu_{n}^{x}, \mu_{n}^{x}\right) & =\sup _{f \in L i p_{1}}\left|\int f d\left(\nu_{n}^{x}-\mu_{n}^{x}\right)\right|=\sup _{f \in L i p_{1}}\left|E\left(f\left(Z_{n}(x)\right)-f\left(S_{n}(x)\right)\right)\right| \\
& \leq \sup _{f \in L i p_{1}} E\left|f\left(Z_{n}(x)\right)-f\left(S_{n}(x)\right)\right| \leq E d\left(Z_{n}(x), S_{n}(x)\right), \tag{2.5}
\end{align*}
$$

and combining this with (2.4) (with $x=y$) we find that

$$
d_{k}\left(\nu_{n}^{x}, \mu_{n}^{x}\right) \leq \sum_{i=0}^{n-1} c^{n-1-i}\left(\delta_{i}+\epsilon_{i}\right)
$$

Since $\left\{\epsilon_{n}\right\}$ is arbitrary we obtain

$$
\begin{equation*}
d_{k}\left(\nu_{n}^{x}, \mu_{n}^{x}\right) \leq \sum_{i=0}^{n-1} c^{n-1-i} \delta_{i} \tag{2.6}
\end{equation*}
$$

From Theorem 1.1, condition (A) and (B) implies the existence of a probability measure μ (invariant for $\left\{Z_{n}(x)\right\}$) such that

$$
\begin{equation*}
\sup _{x \in K} d_{k}\left(\nu_{n}^{x}, \mu\right) \leq \frac{\gamma_{K}}{1-c} c^{n}, n \geq 0 \tag{2.7}
\end{equation*}
$$

By the triangle inequality (2.6) and (2.7) we obtain that

$$
\begin{align*}
\sup _{x \in K} d_{k}\left(\mu_{n}^{x}, \mu\right) & \leq \sup _{x \in K} d_{k}\left(\mu_{n}^{x}, \nu_{n}^{x}\right)+\sup _{x \in K} d_{k}\left(\nu_{n}^{x}, \mu\right) \\
& \leq \sum_{i=0}^{n-1} c^{n-1-i} \delta_{i}+\frac{\gamma_{K}}{1-c} c^{n} . \tag{2.8}
\end{align*}
$$

Consequently, if $\Delta_{\delta}=\sum_{i=0}^{\infty} \frac{\delta_{i}}{c^{i}}<\infty,(c>0)$

$$
\frac{\sup _{x \in K} d_{k}\left(\mu_{n}^{x}, \mu\right)}{c^{n}} \leq \frac{1}{c} \sum_{i=0}^{n-1} \frac{\delta_{i}}{c^{i}}+\frac{\gamma_{K}}{1-c} \leq \alpha_{\delta},
$$

where $\alpha_{\delta}:=\frac{1}{c} \Delta_{\delta}+\frac{\gamma_{K}}{1-c}$ is (by assumption) a finite constant. (If $c=0$ we see from (2.8) that $\sup _{x \in K} d_{k}\left(\mu_{n}^{x}, \mu\right) \leq \delta_{n-1}$, for $n \geq 1$, and $\left.\sup _{x \in K} d_{k}\left(\mu_{0}^{x}, \mu\right)=\gamma_{K}\right)$. This completes the proof of Theorem 2.1 (i).

To prove Theorem 2.1 (ii), let $\left\{q_{n}\right\}_{n=0}^{\infty}$ be the positive sequence with $q_{n} \geq \delta_{n}$ for each $n \geq 0$ existing by assumption. Using (2.8) we obtain that

$$
\begin{equation*}
\frac{\sup _{x \in K} d_{k}\left(\mu_{n}^{x}, \mu\right)}{q_{n}} \leq \sum_{i=0}^{n-1} \frac{c^{n-1-i} q_{i}}{q_{n}}+\frac{\gamma_{K}}{1-c} \frac{c^{n}}{q_{n}} . \tag{2.9}
\end{equation*}
$$

Since q_{n} is \log-convex, i.e. $q_{n+1} q_{n-1}-q_{n}^{2} \geq 0$ for each $n \geq 1$, it follows that $\frac{q_{i}}{q_{n}} \leq \frac{q_{0}}{q_{n-i}}$ for each $n \geq i \geq 0$. Substituting this in (2.9) we obtain

$$
\begin{align*}
\frac{\sup _{x \in K} d_{k}\left(\mu_{n}^{x}, \mu\right)}{q_{n}} & \leq \sum_{i=0}^{n-1} \frac{c^{n-1-i} q_{0}}{q_{n-i}}+\frac{\gamma_{K}}{1-c} \frac{c^{n}}{q_{n}} \\
& \leq \sum_{j=0}^{n-1} \frac{c^{j} q_{0}}{q_{j+1}}+\frac{\gamma_{K}}{1-c} \frac{c^{n}}{q_{n}} \tag{2.10}
\end{align*}
$$

Thus, if $c>0$,

$$
\frac{\sup _{x \in K} d_{k}\left(\mu_{n}^{x}, \mu\right)}{q_{n}} \leq \beta_{q}
$$

where $\beta_{q}=\frac{q_{0}}{c} \Delta_{q}^{\prime}+\frac{\gamma_{K}}{1-c} \sup _{n \geq 0} \frac{c^{n}}{q_{n}}$ is a finite constant since by assumption $\Delta_{q}^{\prime}=\sum_{n=1}^{\infty} \frac{c^{n}}{q_{n}}<\infty$. (If $c=0$, we see from (2.10) that we may choose $\beta_{q}=\frac{q_{0}}{q_{1}}+\frac{\gamma_{K}}{q_{0}}$.) This completes the proof of Theorem 2.1 (ii).

In order to prove Theorem 2.2, let x and y be two arbitrary points in X. From (2.4) it follows that

$$
\sum_{n=0}^{\infty} E d\left(Z_{n}(x), S_{n}(y)\right) \leq \sum_{n=0}^{\infty}\left(c^{n} d(x, y)+\sum_{i=0}^{n-1} c^{n-1-i}\left(\delta_{i}+\epsilon_{i}\right)\right)
$$

$$
\begin{align*}
& \leq \frac{1}{1-c} d(x, y)+\lim _{n \rightarrow \infty} \sum_{i=0}^{n}\left(\delta_{i}+\epsilon_{i}\right) \frac{1-c^{n+1-i}}{1-c} \\
& \leq \frac{1}{1-c} d(x, y)+\frac{1}{1-c} \sum_{i=0}^{\infty}\left(\delta_{i}+\epsilon_{i}\right) \tag{2.11}
\end{align*}
$$

and thus, since by assumption $\sum_{i=0}^{\infty} \delta_{i}<\infty$, and since $\left\{\epsilon_{n}\right\}$ is arbitrary, it follows that we may assume that

$$
\sum_{n=0}^{\infty} E d\left(Z_{n}(x), S_{n}(y)\right)<\infty
$$

Thus $d\left(Z_{n}(x), S_{n}(y)\right) \xrightarrow{\text { a.s. }} 0$ by the Chebyshev inequality and the BorelCantelli lemma, and consequently for any uniformly continuous f, we have

$$
\begin{equation*}
\left|f\left(Z_{n}(x)\right)-f\left(S_{n}(y)\right)\right| \xrightarrow{\text { a.s. }} 0 . \tag{2.12}
\end{equation*}
$$

From conditions (A) and (B) it follows by Theorem 1.1 (see Stenflo (1998) for details) that the Markov Chain $\left\{Z_{n}(x)\right\}$ has a unique invariant probability measure μ.

Thus, if Z_{0} is chosen to have probability distribution μ and being independent of $\left\{I_{n}\right\}_{n=0}^{\infty}$, then $\left\{Z_{n}\left(Z_{0}\right)\right\}$ will form a stationary ergodic (see Elton (1987)) sequence and in particular, by Birkhoff's theorem, there exist a point $y_{0} \in X$ such that

$$
\left|\frac{\sum_{k=0}^{n-1} f\left(Z_{k}\left(y_{0}\right)\right)}{n}-\int f d \mu\right| \xrightarrow{\text { a.s. }} 0 .
$$

Using (2.12) and the fact that convergence implies convergence in the Cesaro sense, we see that, for any $x \in X$,

$$
\begin{gathered}
\left|\frac{\sum_{k=0}^{n-1} f\left(S_{k}(x)\right)}{n}-\int f d \mu\right| \\
\leq \frac{\sum_{k=0}^{n-1}\left|f\left(S_{k}(x)\right)-f\left(Z_{k}\left(y_{0}\right)\right)\right|}{n}+\left|\frac{\sum_{k=0}^{n-1} f\left(Z_{k}\left(y_{0}\right)\right)}{n}-\int f d \mu\right| \xrightarrow{\text { a.s. }} 0 .
\end{gathered}
$$

Thus, for any $x \in X$,

$$
\frac{\sum_{k=0}^{n-1} f\left(S_{k}(x)\right)}{n} \xrightarrow{\text { a.s. }} \int f d \mu,
$$

and this completes the proof of Theorem 2.2.

3. Upper bounds for δ_{n}

In this section we are going to give some upper bounds for δ_{n}. Recall that

$$
\delta_{n}=\inf _{Q_{n} \in \mathbf{M}_{\mathbf{n}}} \sup _{x \in X} E_{Q_{n}} d\left(w_{I_{n}}(x), w_{I_{n}^{\prime}}^{(n)}(x)\right), n \geq 0,
$$

where $\mathbf{M}_{\mathbf{n}}$ denotes the set of probability measures Q_{n} on the measurable subsets of $S \times S$ such that $Q_{n}(\cdot, S)=P(\cdot)$, and $Q_{n}(S, \cdot)=P_{n}(\cdot)$, and $\left(I_{n}, I_{n}^{\prime}\right)$ are independent Q_{n} distributed random variables. In order to separate distributional perturbations and perturbations in the functions, define, for $n \geq 0$,

$$
\begin{aligned}
\delta_{n}^{1} & :=\inf _{Q_{n} \in \mathbf{M}_{\mathbf{n}}} \sup _{x \in X} E_{Q_{n}} d\left(w_{I_{n}}(x), w_{I_{n}^{\prime}}(x)\right), \\
\delta_{n}^{2} & :=\sup _{x \in X} E d\left(w_{I_{n}^{\prime}}(x), w_{I_{n}^{\prime}}^{(n)}(x)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\delta_{n}^{(1)} & :=\inf _{Q_{n} \in \mathbf{M}_{\mathbf{n}}} \sup _{x \in X} E_{Q_{n}} d\left(w_{I_{n}}^{(n)}(x), w_{I_{n}^{\prime}}^{(n)}(x)\right), \\
\delta_{n}^{(2)} & :=\sup _{x \in X} E d\left(w_{I_{n}}(x), w_{I_{n}}^{(n)}(x)\right) .
\end{aligned}
$$

By the triangle inequality, $\delta_{n} \leq \delta_{n}^{1}+\delta_{n}^{2}$, and $\delta_{n} \leq \delta_{n}^{(1)}+\delta_{n}^{(2)}$.
Note also that $\delta_{n}^{1}=\delta_{n}^{(1)}=0$ if $P_{n}=P$. (This is obvious since in this case the infimum is attained for $I_{n}=I_{n}^{\prime}$, for each $n \geq 0$.)

It is known (see Dobrushin (1970)) that for each $n \geq 0$, there exists $Q_{n^{-}}$ distributed random vectors $\left(I_{n}, I_{n}^{\prime}\right)$, with $Q_{n} \in \mathbf{M}_{\mathbf{n}}$ such that $Q_{n}\left(I_{n} \neq\right.$ $\left.I_{n}^{\prime}\right)=\left\|P_{n}-P\right\|$, where $\left\|P_{n}-P\right\|$ denotes the total variation distance between P_{n} and P.

Suppose all maps have the boundedness property that

$$
B_{w}:=\sup _{x \in X} \sup _{s, t \in S} d\left(w_{s}(x), w_{t}(x)\right)<\infty
$$

Note that $B_{w}<\infty$ if X is bounded. From the result by Dobrushin (1970) we see that $\delta_{n}^{1} \leq B_{w}\left\|P_{n}-P\right\|$.

Define

$$
d\left(w, w^{(n)}\right):=\sup _{s \in S} \sup _{x \in X} d\left(w_{s}(x), w_{s}^{(n)}(x)\right) .
$$

It is evident that $\delta_{n}^{2} \leq d\left(w, w^{(n)}\right)$ and $\delta_{n}^{(2)} \leq d\left(w, w^{(n)}\right)$.
We conclude this paper with an example illustrating the Theorems of the previous section.

Example 3.1. Consider the time-dependent IFS with time-dependent probabilities $\left\{\mathbb{R}_{+} ; w_{i}^{(n)}, i \in S=\{1,2\}, P_{n}\right\}_{n=0}^{\infty}$, with
$w_{1}^{(n-1)}(x)=\left\{\begin{array}{ll}\frac{3 x}{2}+\frac{1}{n^{2}} & \text { if } x \leq 1 \\ \sqrt{x}+\frac{1}{2}+\frac{1}{n^{2}} \text { if } x>1\end{array}, w_{2}^{(n-1)}(x)=\left\{\begin{array}{ll}\frac{x}{4}+\frac{3}{4}+\frac{1}{n^{3}} & \text { if } x \leq 1 \\ \sqrt{x}+\frac{1}{n^{3}} & \text { if } x>1\end{array}\right.\right.$, $P_{n-1}(1)=1 / 2+(1 / 2)^{n}$, and $P_{n-1}(2)=1 / 2-(1 / 2)^{n}$, for $n \geq 1$. This system generates, see (2.1), a nonhomogeneous Markov chain $\left\{S_{n}(x)\right\}$.

Let μ denote the unique invariant probability measure for the homogeneous Markov chain $\left\{Z_{n}(x)\right\}$, defined in (1.1), generated by the IFS $\left\{\mathbb{R}_{+} ; w_{i}, i \in S=\{1,2\}, P\right\}$, with

$$
w_{1}(x)=\left\{\begin{array}{ll}
\frac{3 x}{2} & \text { if } x \leq 1 \\
\sqrt{x}+\frac{1}{2} & \text { if } x>1
\end{array}, w_{2}(x)= \begin{cases}\frac{x}{4}+\frac{3}{4} & \text { if } x \leq 1 \\
\sqrt{x} & \text { if } x>1\end{cases}\right.
$$

$P(1)=1 / 2$, and $P(2)=1 / 2$. (The existence of this probability measure follows from Theorem 1.1.)

It is evident that $B_{w}=\frac{3}{4}$ and $\left\|P_{n}-P\right\|=(1 / 2)^{n}$ and thus $\delta_{n}^{1} \leq \frac{3}{4}(1 / 2)^{n}$, and it also directly follows that $\delta_{n}^{2} \leq \frac{1}{n^{2}}$. Thus $\delta_{n} \leq \frac{3}{4}(1 / 2)^{n}+\frac{1}{n^{2}}$, and it follows from Theorem 2.1 that the distribution μ_{n}^{x}, of $S_{n}(x)$, converges in the Kantorovich distance (and thus weakly, see Shiryaev (1996)) to μ uniformly on finite subsets of \mathbb{R}_{+}, with a rate of order $O\left(1 / n^{2}\right)$. From Theorem 2.2 we also obtain (since $\sum \delta_{n}<\infty$) a law of large numbers for $\left\{S_{n}(x)\right\}$.

References

[1] Barnsley, M. F. and Demko, S. (1985) Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A, 399, 243-275.
[2] Dobrushin, R. L. (1970) Prescribing a system of random variables by conditional distributions, Theory Probab. Appl., 15, 458-486.
[3] Elton, J. H. (1987) An ergodic theorem for iterated maps, Ergodic Theory Dynam. Systems, 7, 481-488.
[4] Shiryaev, A. N. (1996) Probability, second edition, Springer-Verlag, New York.
[5] Stenflo, Ö. (1997) Ergodic theorems for iterated function systems with time dependent probabilities, Research reports No 18, Dept. of Mathematics, Umeå University. [To appear in Theory Stoch. Process.]
[6] Stenflo, Ö. (1998) Ergodic theorems for Markov chains represented by iterated function systems, Research reports No 2, Dept. of Mathematics, Umeå University.

[^1]
[^0]: Key words: Ergodic theorems, Iterated Function Systems (IFS), Markov chains.
 1991 Mathematics Subject Classification: Primary 60B10, 60J05, 60F05; Secondary 60F15.

[^1]: E-mail address: stenflo@math.umu.se

