Ergodic Theorems for Time-Dependent Random Iteration of Functions

Örjan Stenflo

ABSTRACT. Time-dependent iterated function systems with time dependent probabilities are introduced, generalizing the concept of iterated function systems by Barnsley and Demko (1985). A distributional ergodic theorem including rates of convergence and a law of large numbers are obtained under the assumptions that the system is asymptotically average-contractive.

1. Introduction

Let (X, d) be a complete metric space, S a measurable space, and P a probability measure defined on the measurable subsets of S. Consider a measurable function $w : X \times S \to X$. For each fixed $s \in S$, we write $w_s(x) := w(x, s)$. Following the terminology introduced by Barnsley and Demko (1985) we call the set $\{X; w_s, s \in S, P\}$ an iterated function system (IFS) with probabilities. Let $\{I_n\}_{n=0}^{\infty}$ be a sequence of independent identically distributed (i.i.d.) random variables with values in S. We assume that $P(\cdot) = P(I_n \in \cdot)$. Specify a starting point $x \in X$. The stochastic sequence $\{I_n\}$ then controls the stochastic dynamical system $\{Z_n(x)\}_{n=0}^{\infty}$, where

$$Z_n(x) := w_{I_{n-1}} \circ w_{I_{n-2}} \circ \dots \circ w_{I_0}(x), \ n \ge 1, \quad Z_0(x) = x.$$
(1.1)

We call this particular type of stochastic dynamical system an IFS controlled by $\{I_n\}$. The sequence $\{Z_n(x)\}_{n=0}^{\infty}$ forms a homogeneous Markov chain.

Key words: Ergodic theorems, Iterated Function Systems (IFS), Markov chains. 1991 Mathematics Subject Classification: Primary 60B10, 60J05, 60F05; Secondary 60F15.

Denote by $\nu_n^x(\cdot) = P(Z_n(x) \in \cdot)$. For Borel probability measures μ_1 and μ_2 , let d_k denote the Kantorovich distance defined by

$$d_k(\mu_1, \mu_2) = \sup_{f \in Lip_1} \left| \int_X f d(\mu_1 - \mu_2) \right|$$

where

 $Lip_1 = \{f : X \to \mathbb{R}, |f(x) - f(y)| \le d(x, y) \text{ for all } x, y \in X\}.$

In Stenflo (1998) the following theorem is proved:

Theorem 1.1. Assume that:

(A): There exists a constant c < 1 such that $Ed(w_{I_0}(x), w_{I_0}(y)) \leq cd(x, y)$ for all $x, y \in X$, and (B): $Ed(x_0, w_{I_0}(x_0)) < \infty$, for some $x_0 \in X$.

Then there exists a unique invariant probability measure μ for the Markov chain $\{Z_n(x)\}$ such that for any bounded set $K \subseteq X$ there exists a positive constant γ_K such that

$$\sup_{x \in K} d_k(\nu_n^x, \mu) \le \frac{\gamma_K}{1 - c} c^n, \ n \ge 0.$$

$$(1.2)$$

Remark 1. An explicit expression and upper bound for γ_K is given by

$$\gamma_K := \sup_{x \in K} Ed(x, w_{I_0}(x)) \le Ed(x_0, w_{I_0}(x_0)) + (c+1) \sup_{x \in K} d(x_0, x) < \infty.$$

The purpose of this paper is to generalize the above result to the class of nonhomogeneous Markov chains that are generated by time-dependent (asymptotically time-independent) iteration of functions. We are also going to prove a law of large numbers for such processes.

This result also generalizes Theorem 2.2 in Stenflo (1997) where timedependent random iteration of functions chosen from a countable family, $\{w_i\}_{i\in\mathbb{N}}$, of functions on a compact state space, K, is considered.

2. Main theorems

Formalizing the introduction, we define a time-dependent IFS with time-dependent probabilities as a set of iterated function systems $\{X; w_s^{(n)}, s \in S, P_n\}_{n=0}^{\infty}$.

 $\mathbf{2}$

Let $\{S_n\}$ be a (time-inhomogeneous) Markov chain arising from independent iteration of functions, choosing a function to iterate in the (n+1):th iteration step from the family $\{w_s^{(n)}, s \in S\}$ of functions according to the probability measure P_n .

That is,

$$S_n(x) = w_{I'_{n-1}}^{(n-1)} \circ w_{I'_{n-2}}^{(n-2)} \circ \dots \circ w_{I'_0}^{(0)}(x), \ n \ge 1, \quad S_0(x) = x, \quad (2.1)$$

where $\{I'_n\}$ is an S-valued sequence of independent random variables, with $P(I'_n \in \cdot) = P_n(\cdot)$, for each $n \ge 0$.

For each $n \geq 0$, let μ_n^x denote the probability distribution of $S_n(x)$, and let $\mathbf{M}_{\mathbf{n}}$ denote the set of probability measures Q_n on the measurable subsets of $S \times S$ such that $Q_n(\cdot, S) = P(\cdot)$, and $Q_n(S, \cdot) = P_n(\cdot)$. We may, without loss of generality, consider $\{I_n\}$ and $\{I'_n\}$ as being defined on the same probability space with $P((I_n, I'_n) \in \cdot) = Q_n(\cdot)$ for some $Q_n \in \mathbf{M}_{\mathbf{n}}$, with $\{(I_n, I'_n)\}$ being a sequence of independent random vectors.

Define

$$\delta_n = \inf_{Q_n \in \mathbf{M_n}} \sup_{x \in X} E_{Q_n} d(w_{I_n}(x), w_{I'_n}^{(n)}(x)), \ n \ge 0.$$

(In Section 3 we give some upper bounds for δ_n .)

We can now state the main results of this paper. (See Example 3.1 in Section 3 for an illustration of the theorem below.)

Theorem 2.1. Suppose the conditions (A) and (B) hold. Let K be a bounded set in X, c be a constant defined by Condition (A), and let μ denote the unique invariant probability measure for the Markov chain $\{Z_n(x)\}$ (existing due to Theorem 1.1).

(i): Assume that

$$\Delta_{\delta} := \sum_{n=0}^{\infty} \frac{\delta_n}{c^n} < \infty.$$

Then

$$\sup_{r\in K} d_k(\mu_n^x, \mu) \le \alpha_{\delta} c^n, \ n \ge 0,$$

where $\alpha_{\delta} := \frac{1}{c} \Delta_{\delta} + \frac{\gamma_K}{1-c}$ is a finite constant.

(ii): Assume that there exists a log-convex sequence $\{q_n\}_{n=0}^{\infty}$ of positive real numbers with $q_n \to 0$, and $q_n \ge \delta_n$ for each $n \ge 0$, with the property

that

$$\Delta_q^{'} := \sum_{n=1}^{\infty} \frac{c^n}{q_n} < \infty.$$

Then

$$\sup_{x\in K} d_k(\mu_n^x,\mu) \leq \beta_q q_n, \ n\geq 0,$$

where $\beta_q = \frac{q_0}{c} \Delta'_q + \frac{\gamma_K}{1-c} \sup_{n \ge 0} \frac{c^n}{q_n}$ is a finite constant.

Remark 2. If c = 0, and thus $\Delta'_q = 0$, then β_q should be interpreted as $\beta_q = \frac{q_0}{q_1} + \frac{\gamma_K}{q_0}$, and if also $\delta_n = 0$, for each $n \ge 0$, we should interpret α_δ as $\alpha_\delta = \gamma_K$.

Remark 3. Note that Theorem 1.1 corresponds to the case when $\delta_n = 0$, for each $n \ge 0$.

Remark 4. We stress that if $\delta_n \to 0$ essentially faster than c^n we may use Theorem 2.1(i) and if $\delta_n \to 0$ with slower rates we use Theorem 2.1(ii).

Theorem 2.2. Suppose conditions (A) and (B) hold and that

$$\sum_{n=0}^{\infty} \delta_n < \infty.$$

Then for any uniformly continuous function $f: X \to \mathbb{R}$, with $\int |f| d\mu < \infty$, and any $x \in X$ we have that,

$$rac{\sum_{k=0}^{n-1}f(S_k(x))}{n} \stackrel{a.s.}{
ightarrow} \int f d\mu \quad as \ n
ightarrow \infty.$$

Proofs. Let $\{\epsilon_n\}$ be an arbitrary fixed sequence of positive real numbers. Since we are only interested in distributional questions, we may consider $\{I_n\}$ and $\{I'_n\}$ as being defined on the same probability space such that $\{(I_n, I'_n)\}$ is an independent sequence with the property that,

$$\sup_{x \in X} Ed(w_{I_n}(x), w_{I'_n}^{(n)}(x)) < \delta_n + \epsilon_n,$$
(2.2)

for all $n \geq 0$. (All expectations with which we will be concerned, will be with respect to the, by the Ionescu Tulcea's Theorem, unique probability measure Q generated on the space of infinite sequences of $S \times S$, by $\{(I_n, I'_n)\}.$)

Let x and y be arbitrary points in X. By using the triangle inequality, Condition (A) and (2.2) we see that

$$Ed(Z_{n}(x), S_{n}(y)) = Ed(w_{I_{n-1}}(Z_{n-1}(x)), w_{I'_{n-1}}^{(n-1)}(S_{n-1}(y)))$$

$$\leq Ed(w_{I_{n-1}}(Z_{n-1}(x)), w_{I_{n-1}}(S_{n-1}(y)))$$

$$+Ed(w_{I_{n-1}}(S_{n-1}(y)), w_{I'_{n-1}}^{(n-1)}(S_{n-1}(y)))$$

$$\leq E(E(d(w_{I_{n-1}}(Z_{n-1}(x)), w_{I_{n-1}}(S_{n-1}(y)))|Z_{n-1}(x), S_{n-1}(y)))$$

$$+(\delta_{n-1} + \epsilon_{n-1})$$

$$\leq cEd(Z_{n-1}(x), S_{n-1}(y)) + (\delta_{n-1} + \epsilon_{n-1}), \qquad (2.3)$$

and using (2.3) recursively we obtain the inequality

$$Ed(Z_n(x), S_n(y)) \le c^n d(x, y) + \sum_{i=0}^{n-1} c^{n-1-i} (\delta_i + \epsilon_i).$$
 (2.4)

Now observe that

$$d_k(\nu_n^x, \mu_n^x) = \sup_{f \in Lip_1} \left| \int f d(\nu_n^x - \mu_n^x) \right| = \sup_{f \in Lip_1} \left| E(f(Z_n(x)) - f(S_n(x))) \right|$$

$$\leq \sup_{f \in Lip_1} E|f(Z_n(x)) - f(S_n(x))| \leq Ed(Z_n(x), S_n(x)), \quad (2.5)$$

and combining this with (2.4) (with x = y) we find that

$$d_k(\nu_n^x, \mu_n^x) \le \sum_{i=0}^{n-1} c^{n-1-i} (\delta_i + \epsilon_i).$$

Since $\{\epsilon_n\}$ is arbitrary we obtain

$$d_k(\nu_n^x, \mu_n^x) \le \sum_{i=0}^{n-1} c^{n-1-i} \delta_i.$$
(2.6)

From Theorem 1.1, condition (A) and (B) implies the existence of a probability measure μ (invariant for $\{Z_n(x)\}$) such that

5

$$\sup_{x \in K} d_k(\nu_n^x, \mu) \le \frac{\gamma_K}{1 - c} c^n, \ n \ge 0.$$
(2.7)

By the triangle inequality (2.6) and (2.7) we obtain that

$$\sup_{x \in K} d_k(\mu_n^x, \mu) \leq \sup_{x \in K} d_k(\mu_n^x, \nu_n^x) + \sup_{x \in K} d_k(\nu_n^x, \mu) \\
\leq \sum_{i=0}^{n-1} c^{n-1-i} \delta_i + \frac{\gamma_K}{1-c} c^n.$$
(2.8)

Consequently, if $\Delta_{\delta} = \sum_{i=0}^{\infty} \frac{\delta_i}{c^i} < \infty$, (c > 0)

$$\frac{\sup_{x \in K} d_k(\mu_n^x, \mu)}{c^n} \le \frac{1}{c} \sum_{i=0}^{n-1} \frac{\delta_i}{c^i} + \frac{\gamma_K}{1-c} \le \alpha_\delta,$$

where $\alpha_{\delta} := \frac{1}{c} \Delta_{\delta} + \frac{\gamma_K}{1-c}$ is (by assumption) a finite constant. (If c = 0 we see from (2.8) that $\sup_{x \in K} d_k(\mu_n^x, \mu) \leq \delta_{n-1}$, for $n \geq 1$, and $\sup_{x \in K} d_k(\mu_0^x, \mu) = \gamma_K$). This completes the proof of Theorem 2.1 (i).

To prove Theorem 2.1 (ii), let $\{q_n\}_{n=0}^{\infty}$ be the positive sequence with $q_n \geq \delta_n$ for each $n \geq 0$ existing by assumption. Using (2.8) we obtain that

$$\frac{\sup_{x \in K} d_k(\mu_n^x, \mu)}{q_n} \le \sum_{i=0}^{n-1} \frac{c^{n-1-i}q_i}{q_n} + \frac{\gamma_K}{1-c} \frac{c^n}{q_n}.$$
 (2.9)

Since q_n is log-convex, i.e. $q_{n+1}q_{n-1} - q_n^2 \ge 0$ for each $n \ge 1$, it follows that $\frac{q_i}{q_n} \le \frac{q_0}{q_{n-i}}$ for each $n \ge i \ge 0$. Substituting this in (2.9) we obtain

$$\frac{\sup_{x \in K} d_k(\mu_n^x, \mu)}{q_n} \le \sum_{i=0}^{n-1} \frac{c^{n-1-i}q_0}{q_{n-i}} + \frac{\gamma_K}{1-c} \frac{c^n}{q_n} \le \sum_{j=0}^{n-1} \frac{c^j q_0}{q_{j+1}} + \frac{\gamma_K}{1-c} \frac{c^n}{q_n}.$$
(2.10)

Thus, if c > 0,

$$\frac{\sup_{x \in K} d_k(\mu_n^x, \mu)}{q_n} \le \beta_q,$$

where $\beta_q = \frac{q_0}{c} \Delta'_q + \frac{\gamma_K}{1-c} \sup_{n\geq 0} \frac{c^n}{q_n}$ is a finite constant since by assumption $\Delta'_q = \sum_{n=1}^{\infty} \frac{c^n}{q_n} < \infty$. (If c = 0, we see from (2.10) that we may choose $\beta_q = \frac{q_0}{q_1} + \frac{\gamma_K}{q_0}$.) This completes the proof of Theorem 2.1 (ii). In order to prove Theorem 2.2, let x and y be two arbitrary points in $X = \sum_{n=1}^{\infty} \frac{c^n}{q_n} + \frac{c^n}{q_n}$

X. From (2.4) it follows that

$$\sum_{n=0}^{\infty} Ed(Z_n(x), S_n(y)) \le \sum_{n=0}^{\infty} (c^n d(x, y) + \sum_{i=0}^{n-1} c^{n-1-i} (\delta_i + \epsilon_i))$$

$$\leq \frac{1}{1-c}d(x,y) + \lim_{n \to \infty} \sum_{i=0}^{n} (\delta_{i} + \epsilon_{i}) \frac{1-c^{n+1-i}}{1-c}$$
$$\leq \frac{1}{1-c}d(x,y) + \frac{1}{1-c} \sum_{i=0}^{\infty} (\delta_{i} + \epsilon_{i})$$
(2.11)

and thus, since by assumption $\sum_{i=0}^{\infty} \delta_i < \infty$, and since $\{\epsilon_n\}$ is arbitrary, it follows that we may assume that

$$\sum_{n=0}^{\infty} Ed(Z_n(x), S_n(y)) < \infty.$$

Thus $d(Z_n(x), S_n(y)) \xrightarrow{\text{a.s.}} 0$ by the Chebyshev inequality and the Borel– Cantelli lemma, and consequently for any uniformly continuous f, we have

$$|f(Z_n(x)) - f(S_n(y))| \stackrel{\text{a.s.}}{\to} 0.$$
(2.12)

From conditions (A) and (B) it follows by Theorem 1.1 (see Stenflo (1998) for details) that the Markov Chain $\{Z_n(x)\}$ has a unique invariant probability measure μ .

Thus, if Z_0 is chosen to have probability distribution μ and being independent of $\{I_n\}_{n=0}^{\infty}$, then $\{Z_n(Z_0)\}$ will form a stationary ergodic (see Elton (1987)) sequence and in particular, by Birkhoff's theorem, there exist a point $y_0 \in X$ such that

$$\left|\frac{\sum_{k=0}^{n-1} f(Z_k(y_0))}{n} - \int f d\mu \right| \stackrel{a.s.}{\to} 0.$$

Using (2.12) and the fact that convergence implies convergence in the Cesaro sense, we see that, for any $x \in X$,

$$\begin{aligned} \left| \frac{\sum_{k=0}^{n-1} f(S_k(x))}{n} - \int f d\mu \right| \\ &\leq \frac{\sum_{k=0}^{n-1} |f(S_k(x)) - f(Z_k(y_0))|}{n} + \left| \frac{\sum_{k=0}^{n-1} f(Z_k(y_0))}{n} - \int f d\mu \right| \stackrel{a.s.}{\to} 0. \end{aligned}$$

Thus, for any $x \in X$,

$$\frac{\sum_{k=0}^{n-1} f(S_k(x))}{n} \stackrel{a.s.}{\to} \int f d\mu,$$

and this completes the proof of Theorem 2.2.

3. Upper bounds for δ_n

In this section we are going to give some upper bounds for δ_n . Recall that

$$\delta_n = \inf_{Q_n \in \mathbf{M_n}} \sup_{x \in X} E_{Q_n} d(w_{I_n}(x), w_{I'_n}^{(n)}(x)), \ n \ge 0,$$

where $\mathbf{M}_{\mathbf{n}}$ denotes the set of probability measures Q_n on the measurable subsets of $S \times S$ such that $Q_n(\cdot, S) = P(\cdot)$, and $Q_n(S, \cdot) = P_n(\cdot)$, and (I_n, I'_n) are independent Q_n distributed random variables. In order to separate distributional perturbations and perturbations in the functions, define, for $n \geq 0$,

$$\begin{split} \delta_n^1 &:= \inf_{Q_n \in \mathbf{M}_n} \sup_{x \in X} E_{Q_n} d(w_{I_n}(x), w_{I'_n}(x)), \\ \delta_n^2 &:= \sup_{x \in X} Ed(w_{I'_n}(x), w_{I'_n}^{(n)}(x)), \end{split}$$

and

$$\begin{split} \delta_n^{(1)} &:= \inf_{Q_n \in \mathbf{M_n}} \sup_{x \in X} E_{Q_n} d(w_{I_n}^{(n)}(x), w_{I'_n}^{(n)}(x)) \\ \delta_n^{(2)} &:= \sup_{x \in X} Ed(w_{I_n}(x), w_{I_n}^{(n)}(x)). \end{split}$$

By the triangle inequality, $\delta_n \leq \delta_n^1 + \delta_n^2$, and $\delta_n \leq \delta_n^{(1)} + \delta_n^{(2)}$.

Note also that $\delta_n^1 = \delta_n^{(1)} = 0$ if $P_n = P$. (This is obvious since in this case the infimum is attained for $I_n = I'_n$, for each $n \ge 0$.)

It is known (see Dobrushin (1970)) that for each $n \ge 0$, there exists Q_n distributed random vectors (I_n, I'_n) , with $Q_n \in \mathbf{M_n}$ such that $Q_n(I_n \ne I'_n) = ||P_n - P||$, where $||P_n - P||$ denotes the total variation distance between P_n and P.

Suppose all maps have the boundedness property that

$$B_w := \sup_{x \in X} \sup_{s,t \in S} d(w_s(x), w_t(x)) < \infty.$$

Note that $B_w < \infty$ if X is bounded. From the result by Dobrushin (1970) we see that $\delta_n^1 \leq B_w ||P_n - P||$.

Define

$$d(w, w^{(n)}) := \sup_{s \in S} \sup_{x \in X} d(w_s(x), w_s^{(n)}(x)).$$

It is evident that $\delta_n^2 \leq d(w, w^{(n)})$ and $\delta_n^{(2)} \leq d(w, w^{(n)})$.

We conclude this paper with an example illustrating the Theorems of the previous section.

Example 3.1. Consider the time-dependent IFS with time-dependent probabilities $\{\mathbb{R}_+; w_i^{(n)}, i \in S = \{1, 2\}, P_n\}_{n=0}^{\infty}$, with

$$w_1^{(n-1)}(x) = \begin{cases} \frac{3x}{2} + \frac{1}{n^2} & \text{if } x \le 1\\ \sqrt{x} + \frac{1}{2} + \frac{1}{n^2} & \text{if } x > 1 \end{cases}, \ w_2^{(n-1)}(x) = \begin{cases} \frac{x}{4} + \frac{3}{4} + \frac{1}{n^3} & \text{if } x \le 1\\ \sqrt{x} + \frac{1}{n^3} & \text{if } x > 1 \end{cases},$$

 $P_{n-1}(1) = 1/2 + (1/2)^n$, and $P_{n-1}(2) = 1/2 - (1/2)^n$, for $n \ge 1$. This system generates, see (2.1), a nonhomogeneous Markov chain $\{S_n(x)\}$.

Let μ denote the unique invariant probability measure for the homogeneous Markov chain $\{Z_n(x)\}$, defined in (1.1), generated by the IFS $\{\mathbb{R}_+; w_i, i \in S = \{1, 2\}, P\}$, with

$$w_1(x) = \begin{cases} \frac{3x}{2} & \text{if } x \le 1\\ \sqrt{x} + \frac{1}{2} & \text{if } x > 1 \end{cases}, \ w_2(x) = \begin{cases} \frac{x}{4} + \frac{3}{4} & \text{if } x \le 1\\ \sqrt{x} & \text{if } x > 1 \end{cases}$$

P(1) = 1/2, and P(2) = 1/2. (The existence of this probability measure follows from Theorem 1.1.)

It is evident that $B_w = \frac{3}{4}$ and $||P_n - P|| = (1/2)^n$ and thus $\delta_n^1 \leq \frac{3}{4}(1/2)^n$, and it also directly follows that $\delta_n^2 \leq \frac{1}{n^2}$. Thus $\delta_n \leq \frac{3}{4}(1/2)^n + \frac{1}{n^2}$, and it follows from Theorem 2.1 that the distribution μ_n^x , of $S_n(x)$, converges in the Kantorovich distance (and thus weakly, see Shiryaev (1996)) to μ uniformly on finite subsets of \mathbb{R}_+ , with a rate of order $O(1/n^2)$. From Theorem 2.2 we also obtain (since $\sum \delta_n < \infty$) a law of large numbers for $\{S_n(x)\}$.

References

- Barnsley, M. F. and Demko, S. (1985) Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A, 399, 243–275.
- [2] Dobrushin, R. L. (1970) Prescribing a system of random variables by conditional distributions, *Theory Probab. Appl.*, 15, 458–486.
- [3] Elton, J. H. (1987) An ergodic theorem for iterated maps, Ergodic Theory Dynam. Systems, 7, 481–488.
- [4] Shiryaev, A. N. (1996) Probability, second edition, Springer-Verlag, New York.
- [5] Stenflo, Ö. (1997) Ergodic theorems for iterated function systems with time dependent probabilities, *Research reports No 18*, Dept. of Mathematics, Umeå University.
 [To appear in *Theory Stoch. Process.*]
- [6] Stenflo, Ö. (1998) Ergodic theorems for Markov chains represented by iterated function systems, *Research reports No 2*, Dept. of Mathematics, Umeå University.

E-mail address: stenflo@math.umu.se