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Ergodic Theorems for Time-Dependent Random
Iteration of Functions

. Time-dependent iterated function systems with time de-
pendent probabilities are introduced, generalizing the concept of it-
erated function systems by Barnsley and Demko (1985). A distribu-
tional ergodic theorem including rates of convergence and a law of
large numbers are obtained under the assumptions that the system is
asymptotically average-contractive.

Ergodic theorems, Iterated Function Systems (IFS), Markov chains.
Primary 60B10, 60J05, 60F05; Sec-

ondary 60F15.

Örjan Stenflo

Let ( ) be a complete metric space, a measurable space, and a
probability measure defined on the measurable subsets of . Consider a
measurable function : . For each fixed , we write

( ) := ( ). Following the terminology introduced by Barnsley and
Demko (1985) we call the set ; an iterated function
system (IFS) with probabilities. Let be a sequence of independent
identically distributed (i.i.d.) random variables with values in . We
assume that ( ) = ( ). Specify a starting point . The
stochastic sequence then controls the stochastic dynamical system

( ) , where

( ) := ( ) 1 ( ) = (1.1)

We call this particular type of stochastic dynamical system an IFS con-
trolled by . The sequence ( ) forms a homogeneous Markov
chain.
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Assume that:

: There exists a constant such that

and
: , for some

Then there exists a unique invariant probability measure for the
Markov chain such that for any bounded set there ex-
ists a positive constant such that

Remark 1.

Denote by ( ) = ( ( ) ). For Borel probability measures
and , let denote the Kantorovich distance defined by

( ) = sup ( )

where

= : ( ) ( ) ( )

In Stenflo (1998) the following theorem is proved:

( ) 1

( ( ) ( )) ( )

( ) ( ( ))

( )

sup ( )
1

0 (1.2)

An explicit expression and upper bound for is given by

:= sup ( ( )) ( ( )) + ( + 1) sup ( )

The purpose of this paper is to generalize the above result to the class
of nonhomogeneous Markov chains that are generated by time-dependent
(asymptotically time-independent) iteration of functions. We are also go-
ing to prove a law of large numbers for such processes.

This result also generalizes Theorem 2.2 in Stenflo (1997) where time-
dependent random iteration of functions chosen from a countable family,

, of functions on a compact state space, , is considered.

Formalizing the introduction, we define a time-dependent IFS with
time-dependent probabilities as a set of iterated function systems

; .
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Suppose the conditions (A) and (B) hold. Let be a
bounded set in , be a constant defined by Condition (A), and let

denote the unique invariant probability measure for the Markov chain
(existing due to Theorem 1.1).

(i): Assume that

Then

where is a finite constant.

(ii): Assume that there exists a log-convex sequence of positive
real numbers with , and for each , with the property

Let be a (time-inhomogeneous) Markov chain arising from in-
dependent iteration of functions, choosing a function to iterate in the

( +1):th iteration step from the family of functions accord-
ing to the probability measure .

That is,

( ) = ( ) 1 ( ) = (2.1)

where is an -valued sequence of independent random variables, with

( ) = ( ), for each 0.
For each 0, let denote the probability distribution of ( ),

and let denote the set of probability measures on the measurable
subsets of such that ( ) = ( ) and ( ) = ( ). We may,

without loss of generality, consider and as being defined on the

same probability space with (( ) ) = ( ) for some ,

with ( ) being a sequence of independent random vectors.
Define

= inf sup ( ( ) ( )) 0

(In Section 3 we give some upper bounds for .)
We can now state the main results of this paper. (See Example 3.1 in

Section 3 for an illustration of the theorem below.)

( )

∆ :=

sup ( ) 0

:= ∆ +

0 0

3
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Then

where is a finite constant.

Remark 2.

Remark 3.

Remark 4.

Suppose conditions (A) and (B) hold and that

Then for any uniformly continuous function , with
, and any we have that,

Proofs.

∆ :=

sup ( ) 0

= ∆ + sup

If = 0, and thus ∆ = 0, then should be interpreted as

= + , and if also = 0, for each 0, we should interpret
as = .

Note that Theorem 1.1 corresponds to the case when = 0,
for each 0.

We stress that if 0 essentially faster than we may use
Theorem 2.1(i) and if 0 with slower rates we use Theorem 2.1(ii).

:

( ( ))

Let be an arbitrary fixed sequence of positive real numbers.
Since we are only interested in distributional questions, we may consider

and as being defined on the same probability space such that

( ) is an independent sequence with the property that,

sup ( ( ) ( )) + (2.2)

for all 0. (All expectations with which we will be concerned, will be
with respect to the, by the Ionescu Tulcea’s Theorem, unique probabil-
ity measure generated on the space of infinite sequences of , by
( ) .)

Let and be arbitrary points in . By using the triangle inequality,
Condition ( ) and (2.2) we see that
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( ( ) ( )) = ( ( ( )) ( ( )))

( ( ( )) ( ( )))

+ ( ( ( )) ( ( )))

( ( ( ( ( )) ( ( ))) ( ) ( )))

+( + )

( ( ) ( )) + ( + ) (2.3)

and using (2.3) recursively we obtain the inequality

( ( ) ( )) ( ) + ( + ) (2.4)

Now observe that

( ) = sup ( ) = sup ( ( ( )) ( ( )))

sup ( ( )) ( ( )) ( ( ) ( )) (2.5)

and combining this with (2.4) (with = ) we find that

( ) ( + )

Since is arbitrary we obtain

( ) (2.6)

From Theorem 1.1, condition ( ) and ( ) implies the existence of a
probability measure (invariant for ( ) ) such that

sup ( )
1

0 (2.7)

By the triangle inequality (2.6) and (2.7) we obtain that

sup ( ) sup ( ) + sup ( )

+
1

(2.8)
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Consequently, if ∆ = , ( 0)

sup ( ) 1
+

1

where := ∆ + is (by assumption) a finite constant. (If = 0

we see from (2.8) that sup ( ) , for 1, and
sup ( ) = ). This completes the proof of Theorem 2.1 (i).

To prove Theorem 2.1 (ii), let be the positive sequence with
for each 0 existing by assumption. Using (2.8) we obtain that

sup ( )
+

1
(2.9)

Since is log-convex, i.e. 0 for each 1, it follows
that for each 0. Substituting this in (2.9) we obtain

sup ( )
+

1

+
1

(2.10)

Thus, if 0,

sup ( )

where = ∆ + sup is a finite constant since by assumption

∆ = . (If = 0, we see from (2.10) that we may choose

= + .) This completes the proof of Theorem 2.1 (ii).

In order to prove Theorem 2.2, let and be two arbitrary points in
. From (2.4) it follows that

( ( ) ( )) ( ( ) + ( + ))
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and thus, since by assumption , and since is arbitrary,
it follows that we may assume that

( ( ) ( ))

Thus ( ( ) ( )) 0 by the Chebyshev inequality and the Borel–
Cantelli lemma, and consequently for any uniformly continuous , we have

( ( )) ( ( )) 0 (2.12)

From conditions ( ) and ( ) it follows by Theorem 1.1 (see Stenflo (1998)
for details) that the Markov Chain ( ) has a unique invariant prob-
ability measure .

Thus, if is chosen to have probability distribution and being in-
dependent of , then ( ) will form a stationary ergodic (see
Elton (1987)) sequence and in particular, by Birkhoff’s theorem, there
exist a point such that

( ( ))
0

Using (2.12) and the fact that convergence implies convergence in the
Cesaro sense, we see that, for any ,

( ( ))

( ( )) ( ( ))
+

( ( ))
0

Thus, for any ,

( ( ))

and this completes the proof of Theorem 2.2.
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In this section we are going to give some upper bounds for . Recall that

= inf sup ( ( ) ( )) 0

where denotes the set of probability measures on the measurable
subsets of such that ( ) = ( ) and ( ) = ( ), and

( ) are independent distributed random variables. In order to
separate distributional perturbations and perturbations in the functions,
define, for 0,

:= inf sup ( ( ) ( ))

:= sup ( ( ) ( ))

and

:= inf sup ( ( ) ( ))

:= sup ( ( ) ( ))

By the triangle inequality, + , and + .

Note also that = = 0 if = . (This is obvious since in this

case the infimum is attained for = , for each 0.)
It is known (see Dobrushin (1970)) that for each 0, there exists -

distributed random vectors ( ), with such that ( =

) = , where denotes the total variation distance
between and .

Suppose all maps have the boundedness property that

:= sup sup ( ( ) ( ))

Note that if is bounded. From the result by Dobrushin (1970)
we see that .

Define
( ) := sup sup ( ( ) ( ))

It is evident that ( ) and ( )
We conclude this paper with an example illustrating the Theorems of

the previous section.
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:

Consider the time-dependent IFS with time-dependent

probabilities ; = 1 2 , with

( )=
+ if 1
+ + if 1

( )=
+ + if 1

+ if 1

(1) = 1 2 + (1 2) , and (2) = 1 2 (1 2) , for 1. This
system generates, see (2.1), a nonhomogeneous Markov chain ( ) .

Let denote the unique invariant probability measure for the homo-
geneous Markov chain ( ) , defined in (1.1), generated by the IFS

; = 1 2 , with

( ) =
if 1

+ if 1
( ) =

+ if 1
if 1

(1) = 1 2, and (2) = 1 2. (The existence of this probability measure
follows from Theorem 1.1.)

It is evident that = and = (1 2) and thus (1 2) ,

and it also directly follows that . Thus (1 2) + , and
it follows from Theorem 2.1 that the distribution , of ( ), converges
in the Kantorovich distance (and thus weakly, see Shiryaev (1996)) to
uniformly on finite subsets of , with a rate of order (1 ). From
Theorem 2.2 we also obtain (since ) a law of large numbers for

( ) .

9


