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Iterated function systems (IFSs) are useful for creating fractals, interesting probability
distributions and enable a unifying framework for analysing stochastic processes with
Markovian properties. In this paper, we present a survey of some basic results within
the theory of random iterations of functions from an IFS based on average contraction
conditions.

Keywords: Markov chains; iterated function systems; fractals; coupling from the past

2000 Mathematics Subject Classification: Primary: 60J05; Secondary: 28A80;
37H99; 60F05; 60J10; 65C05

1. Introduction

Let (X, d) be a complete separable metric space. Any homogeneous Markov chain, {Xn},

on X can be represented in the form of a solution of a stochastic difference equation of the

form

Xnþ1 ¼ f ðXn; InÞ; ð1Þ

where f : X £ ½0; 1�! X is a measurable function and {In} is a sequence of independent

and identically distributed (i.i.d.) random variables. The randomness involved for a

(homogeneous) Markov chain is thus nothing more complicated than that of a sequence of

independent (and identically distributed) random variables.

Writing f sðxÞ :¼ f ðx; sÞ, we may express (1) as Xnþ1 ¼ f In ðXnÞ and thus regard {Xn} as

having been generated from random (i.i.d.) iterations of functions. The set of possible

functions to iterate in each step, {fs}, is called an iterated function system (IFS).

In this paper, we will present a survey of some variants of a basic convergence result in

the theory of iterated random functions based on average contraction conditions and some

applications exploiting the simple i.i.d. randomness of Markov chains.

The most well-known survey of iterated random functions with an extensive

bibliography is the paper by Diaconis and Freedman [14]. See also Kaijser [31], the

introduction paper in Stenflo [44] and Iosifescu [24] for other surveys. Limit theory for

stochastic dynamical systems of the form (1) can also be found in many other sources

including books by Borovkov [10], Bhattacharya and Majumdar [9] and Meyn and

Tweedie [36].

This paper complements the above surveys in that it contains a more detailed

discussion of different kinds of average contraction conditions appearing in the literature,
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see Sections 2 and 3. Our basic distributional convergence theorems based on average

contraction conditions (Theorems 1 and 2) are proved in Section 2.

The contraction conditions used in Section 2 are global. In Section 3, we discuss local

average contraction conditions giving rise to equicontinuous Markov chains discussed in

Section 4.

Many interesting probability measures supported, e.g. on fractal sets can be generated

using random iterations, most commonly as stationary probabilities for Markov chains

constructed according to (1), but also by other means. A general framework for describing

fractals and probability measures supported on fractals is presented in Section 5.

Basic courses in finite state space Markov chains traditionally lack discussions of

representations of the form (1) when proving convergence results with the unfortunate

consequence that connections to basic time-series models, e.g. the autoregressive moving

average model, appear vague. Hopefully, Sections 6 and 7 could serve as an introduction

to the present unifying average- contractive- iterated-random-functions framework for

readers missing this piece.

There are many fields of mathematics where IFSs can be used. See for example Stenflo

[46] for a survey of place-dependent random iterations and connections to the Ruelle-

Perron-Frobenius theorem of statistical mechanics, Roberts and Rosenthal [39] for a

survey of Markov Chain Monte Carlo algorithms, Kaijser [30] for connections to the

theory of products of random matrices, Iosifescu and Grigorescu [25] for connections to

the theory of continued fractions, Barnsley [3] and Falconer [18] for more on connections

to the theory to fractals, Jorgensen [29] for connections to representation theory and the

theory of wavelets and Pesin [37] and Keller [32] for connections to the theory of

(deterministic) dynamical systems. Naturally, the above ‘classification’ of topics is rough,

and there is of course a substantial overlap and many areas are not mentioned.

1.1 Preliminaries: iterated function systems and Markov chains

Let (X, d) be a Polish (¼ complete separable metric) space, and let S be a measurable

space. Consider a measurable function f : X £ S! X. For each fixed s [ S, we write

f sðxÞ :¼ f ðx; sÞ. Following the terminology introduced by Barnsley and Demko [5]1, we

call the set {ðX; dÞ; f s; s [ S} an IFS.

Let {In}
1
n¼1 be a sequence of i.i.d. random variables with values in S. Let Pð·Þ ¼

PðI1 [ ·Þ denote their common distribution. We call the set {ðX; dÞ; f s; s [ S;P} an IFS

with probabilities.

Define for each fixed x [ X,

ZnðxÞ :¼ f In+· · · + f I1
ðxÞ; n $ 1; Z0ðxÞ ¼ x:

The sequence {ZnðxÞ} is a Markov chain. Any Markov chain can be generated by an IFS

with probabilities, in this way, see, e.g. Kifer [33]. An IFS representation of a Markov

chain is typically not unique, see, e.g. Stenflo [44] for some simple examples.

Define for g [ CðXÞ, the bounded continuous functions g : X ! R,

T ngðxÞ ¼ EgðZnðxÞÞ; n $ 0:

Let T * denote the adjoint of the operator T. T * satisfies the equation T *nnð·Þ ¼Ð
X
PðZnðxÞ [ ·ÞdnðxÞ, for any n $ 0 and probability measure n.

A probability measure, m, satisfying the equation T *m ¼ m is called an invariant

probability measure. A Markov chain ‘starting’ according to an invariant probability
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measure is a stationary sequence. We therefore also refer to m as a stationary distribution

for the Markov chain.

Stationary distributions exist under mild conditions, see, e.g. Meyn and Tweedie [36]

or Szarek [47].

In this paper, we will discuss average contraction conditions on {ðX; dÞ; f s; s [ S;P}

ensuring the existence of a unique attractive stationary probability measure, m in the sense

that T *nn converges weakly to m, for any probability measure n.

We want the convergence to be as quick as possible. The rate of convergence can be

measured in various ways for instance by metrics metrizing the topology of weak

convergence, see Section 2 below.

An interesting object in our analysis is the reversed iterates

ẐnðxÞ :¼ f I1
+· · ·+ f In ðxÞ; n $ 1; Ẑ0ðxÞ ¼ x: ð2Þ

The random variables ZnðxÞ and ẐnðxÞ are identically distributed for each fixed n $ 0 and

x [ X. We may, therefore, prove distributional limit theorems for ZnðxÞ by instead

studying the pathwise more well-behaved ẐnðxÞ.

Under typical conditions of ergodicity for a Markov chain, an IFS representation may

be chosen such that the limit

Ẑ ¼ lim
n!1

ẐnðxÞ ð3Þ

exists a.s., and the limiting random variable is independent of x.

In particular, if the Markov chain satisfies the Doeblin condition (which is a

generalization of the standard conditions of ergodicity for finite-state-space Markov

chains), then the Markov chain can be generated by an IFS with probabilities having the

property that it actually exists a random positive integer T (finite with probability 1) such

that ẐnðxÞ
� �

n$T
does not depend on x, see Athreya and Stenflo [2]. Propp and Wilson [38]

discovered that this can be used to simulate ‘exact’ samples from the stationary

distribution, m, of the Markov chain since ẐT ðxÞ is then a random variable with distribution

mð·Þ ¼ limn!1PðZnðxÞ [ ·Þ. Details on such a construction in the special case when the

state space is finite are presented in Section 6.

2. Global average contraction conditions for IFSs

In Stenflo [44] and Barnsley et al. [7], we proved the following theorem:

Theorem 1. Suppose

(A) There exists a constant c , 1 such that

sup
x–y

E
dðZ1ðxÞ; Z1ðyÞÞ

dðx; yÞ
# c ðglobal average contractionÞ: ð4Þ

(B) Edðx0; Z1ðx0ÞÞ , 1, for some x0 [ X.

Then there exists a random variable Ẑ such that for any x [ X there exists a constant gx
such that

EdðẐnðxÞ; ẐÞ # gxc
n; n $ 0: ð5Þ

Journal of Difference Equations and Applications 1357
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The constant gx satisfies

gx ¼ Edðx; ẐÞ # dðx; x0Þ þ
Edðx0; Z1ðx0ÞÞ

1 2 c
:

Theorem 2 below is a slightly more notationally involved theorem generalizing

Theorem 1.

Suppose, for the moment, that {In}
1
n¼21 is (two-sided and) i.i.d. Define for n $ m

ZnjmðxÞ :¼ f In+· · · + f Imþ1
ðxÞ; n . m; ZmjmðxÞ ¼ x:

Thus, ZnjmðxÞ represents the location of a Markov chain at time n ‘starting’ at x [ X at

time m.

Theorem 2. Suppose:

ðA*Þ There exists an integer n0 $ 0 and a constant c , 1 such that

EdðZn0þ1j0ðxÞ; Zn0þ1j0ðyÞÞ # c EdðZn0j0ðxÞ; Zn0j0ðyÞÞ , 1; for any x; y [ X:

ðB*Þ EdðZn0j0ðx0Þ; Zn0j21ðx0ÞÞ , 1, for some x0 [ X.

Then the limits

Znj21 ¼ lim
m!1

Znj2mðxÞ ð6Þ

exist almost surely for any n [ Z, and the a.s. limits are independent of x.

The rate of convergence in (6) is exponential. More precisely, for any x [ X, there

exists a constant gx such that

EdðZnjn2mðxÞ; Znj21Þ # gxc
m; ð7Þ

for any n [ Z and any m $ n0.

If Xn :¼ Znj21, then {Xn}1n¼21 is stationary and ergodic.

Remark 1. Theorems 1 and 2 are essentially equivalent:

Theorem 1 corresponds to the special case when n0 ¼ 0 in Theorem 2. Note that

{Znjn2mðxÞ}
1
m¼0 has the same joint distributions as ẐmðxÞ

� �1
m¼0

for any fixed n and x.

In essence, we obtain Theorem 2 by changing distance in Theorem 1 to

d*ðx; yÞ ¼ EdðZn0
ðxÞ; Zn0

ðyÞÞ, waving hands slightly since this is not necessarily a metric.

The method of changing metric will be discussed more in Section 3.

Proof. (Theorem 2)

The statement of the theorem was inspired by the ‘changing distance in Theorem 1’–

heuristics described in the remark above and the structure of the proof is the same as the

one given in Stenflo [44] (Paper C) corresponding to Theorem 1. For completeness we

give some details;

Let n be an arbitrary fixed integer. From condition ðA*Þ and the i.i.d. assumption of

{In} we have

EdðZnjn2n021ðxÞ; Znjn2n021ðyÞÞ # cEdðZnjn2n0
ðxÞ; Znjn2n0

ðyÞÞ

for any x; y [ X.
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By induction

EdðZnjn2kðxÞ; Znjn2kðyÞÞ # cEdðZnjn2kþ1ðxÞ;Znjn2kþ1ðyÞÞ

# . . . ðrecursionÞ . . .

# ck2n0EdðZnjn2n0
ðxÞ; Znjn2n0

ðyÞÞ

ð8Þ

for any x; y [ X and any k $ n0.

Thus,

X1
k¼m

EdðZnjn2kðxÞ; Znjn2k21ðxÞÞ ¼
X1
k¼m

EdðZnjn2kðxÞ; Znjn2kðf In2k
ðxÞÞÞ

¼
X1
k¼m

ck2n0EdðZnjn2n0
ðxÞ; Znjn2n0

ðf In2k
ðxÞÞÞ

¼
X1
k¼m

ck2n0EdðZn0j0ðxÞ; Zn0j21ðxÞÞ

¼ cm2n0
EdðZn0j0ðxÞ; Zn0j21ðxÞÞ

1 2 c
;

ð9Þ

for any m $ n0.

Therefore, if dmðxÞ :¼
P1

k¼mdðZnjn2kðxÞ; Znjn2k21ðxÞÞ then using condition ðB*Þ we see

that Edmðx0Þ! 0, which by monotonicity and the Chebychev inequality imply that

dmðx0Þ! 0 a.s. as m!1.

Since X is complete it therefore follows that the limit

Znj21 :¼ lim
m!1

Znj2mðx0Þ

exists for any n.

Since from (8) and condition ðA*Þ it follows that dðZnj2mðx0Þ; Znj2mðxÞÞ! 0, as

m!1, for any x [ X, a.s., it follows that Znj21 must be independent of x0.

The convergence rate is quantified by

EdðZnjn2mðxÞ; Znj21Þ ¼ EdðZnjn2mðxÞ; Znjn2mðZn2mj21ÞÞ

# cm2n0EdðZnjn2n0
ðxÞ; Znjn2n0

ðZn2mj21ÞÞ

¼ cm2n0EdðZnjn2n0
ðxÞ; Znjn2n0

ðZn2n0j21ÞÞ

¼ cm2n0EdðZnjn2n0
ðxÞ; Znj21Þ ¼ gxc

m

for any m $ n0, where

gx ¼ c2n0EdðZnjn2n0
ðxÞ; Znj21Þ ¼ c2n0EdðZn0j0ðxÞ; Zn0j21Þ

# c2n0 EdðZn0j0ðxÞ;Zn0j0ðx0ÞÞ þ
EdðZn0j0ðx0Þ; Zn0j21ðx0ÞÞ

1 2 c

� �
, 1;

where the last inequality follows from the triangle inequality and (9). If we define

Xn ¼ Znj21, then Xn is a measurable function of In; In21; . . . and since {In} is a stationary

and ergodic sequence it follows by standard results in ergodic theory that also {Xn} is

stationary and ergodic. This completes the proof of Theorem 2. A
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Remark 2. See Elton [17] for related results in the more general setting when {In} is

assumed to be ‘two-sided’ and stationary. Despite the generality of Theorem 2, we will

restrict our attention to the case when {In} is one-sided and i.i.d. for the rest of this paper,

keeping Remark 1 in mind.

Remark 3. All contraction conditions discussed in this paper can be made weaker by

replacing Z1ðxÞ with Zm0
ðxÞ for some m0 (and similarly the corresponding quantities in the

two-sided case). By considering subsequences {Zkm0
ðxÞ}1k¼0 we see that it is sufficient to

consider the case m0 ¼ 1.

Probability metrics

Let BL denote the class of bounded continuous functions, f : X ! R (with

kfk1 ¼ supx[Xj f ðxÞj , 1Þ, that also satisfy the Lipschitz condition

kfkL ¼ sup
x–y

j f ðxÞ2 f ðyÞj

dðx; yÞ
, 1:

We set kfkBL ¼ kfk1 þ kfkL, and let BL1 denote the set of f [ BL, with kfkBL # 1. Let

MðXÞ denote the set of Borel probability measures on X. For probability measures n1,

n2 [ MðXÞ define the metric

dwðn1; n2Þ ¼ sup
f[BL1

{j

ð
X

fdðn1 2 n2Þj}:

It is well known, see, e.g. Shiryaev [41], that this metric metrizes the topology of weak

convergence of probability measures (on separable metric spaces).

Another metric metrizing the topology of weak convergence of probability measures is

the Prokhorov metric;

For a set A , X and e . 0, let A e ¼ {y [ X : dðx; yÞ , e for some x [ A}. The

Prokhorov distance between two probability measures n1, n2 [ MðXÞ is defined as

rProkhorovðn1; n2Þ ¼ inf{e . 0 j n1ðAÞ # n2ðA
e Þ þ e ; for all Borel sets A # X}:

Remark 4. If we let mx
n and m denote the probability distributions of ZnðxÞ and Ẑ,

respectively, then by definition of the dw-metric

dw mx
n;m

� �
# EdðẐnðxÞ; ẐÞ: ð10Þ

Since

rProkhorov mx
n;m

� �
#

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
dwðmx

n;mÞ

r
;

see Dudley [15], p. 398, Problem 5, it follows from (5) that we have exponential

convergence rates in both the dw and the Prokhorov metric under the conditions of

Theorem 1.

It is common in the literature to assume a log-contraction condition instead of the more

restrictive contraction condition of Theorem 1. This conspicuous improvement is,

however, more of cosmetic nature, since cases when log-contraction conditions are

fulfilled but average contraction conditions are not typically indicates that a change of
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metric is appropriate. For example, if

sup
x–y

E log
dðZ1ðxÞ; Z1ðyÞÞ

dðx; yÞ
, 0; ð11Þ

then there exists a q with 0 , q # 1 such that

sup
x–y

E
dðZ1ðxÞ; Z1ðyÞÞ

dðx; yÞ

� �q

, 1; ð12Þ

provided the left-hand side of (12) is finite for some q . 0. To see this, note that the

function

f ðqÞ :¼ supx–yE
dðZ1ðxÞ; Z1ðyÞÞ

dðx; yÞ

� �q

satisfies f ð0Þ ¼ 1 and f 0ð0Þ , 0, by (11). Since d q is a metric for 0 , q # 1, (12) reduces

to the ordinary average contraction condition in this new metric. By applying Theorem 1,

we obtain the following.

Corollary 1. Suppose:

ð ~AÞ

sup
x–y

E log
dðZ1ðxÞ; Z1ðyÞÞ

dðx; yÞ
, 0 ðglobal log 2 contractionÞ:

ð ~BÞ Edq0ðx0; Z1ðx0ÞÞ , 1, for some x0 [ X and q0 . 0, and

sup
x–y

E
dðZ1ðxÞ; Z1ðyÞÞ

dðx; yÞ

� �q0

, 1:

Then for some c , 1 and q . 0, there exists a random variable Ẑ such that for any

x [ X,

Ed q ẐnðxÞ; Ẑ
� �

# gcn; n $ 0; ð13Þ

for some positive constant g (depending on x). Thus, if mx
n and m denote the probability

distributions of ZnðxÞ and Ẑ, respectively, then rProkhorov mx
n;m

� �
converges to zero with an

exponential rate as n!1.

Remark 5. A variant of Corollary 1, in the special case when

sup
x–y

E log
dðZ1ðxÞ; Z1ðyÞÞ

dðx; yÞ
, 0 ðglobal log 2 contractionÞ

is replaced by the more restrictive condition

E log sup
x–y

dðZ1ðxÞ; Z1ðyÞÞ

dðx; yÞ
, 0; ðglobal log 2 contraction ðstrong senseÞÞ; ð14Þ

was proved in the survey paper by Diaconis and Freedman [14].
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(Note that condition (14) implies that almost all maps, fs, s [ S, are Lipschitz

continuous.)

The paper by Diaconis and Freedman [14] sparked attention on theorems of the same

kind as Theorem 1 and its consequences on other limit theorems, see, e.g. Wu and

Woodroofe [50], Alsmeyer and Fuh [1], Jarner and Tweedie [28], Iosifescu [23], Wu and

Shao [49] and Herkenrath and Iosifescu [20].

See Hutchinson and Rüschendorf [22], Stenflo [45] and Barnsley et al. [7] for results

corresponding to Theorem 1 for random IFSs with probabilities.

Remark 6. Note that the, somewhat ugly, condition (B̃) is fulfilled if the family fs, s [ S, is

a finite collection of Lipschitz continuous maps. This is a natural assumption in the theory

of fractals, see, e.g. Sections 5.1 and 5.2 below.

2.1 Global stability conditions

If we know apriori that an invariant measure exists, then the following global stability

condition is sufficient for uniqueness:

Proposition 1. Suppose a Markov chain with an invariant probability measure, m,

satisfies

lim
n!1

jT ngðxÞ2 T ngðyÞj ¼ 0; ð15Þ

for any x; y [ X, and g [ BL. Then dwðT *nn;mÞ! 0 as n!1, for any probability

measure n.

Proof. By Theorem 11.3.3. on p.395 in Dudley [15], it is sufficient to prove that

ð
X

gdT *nn!

ð
X

gdm;

as n!1, for all g [ BL.

The proof of Proposition 1 is completed by observing that by the invariance of m, (15),

and Lebesgue’s dominated convergence theorem

ð
X

gdT *nn2

ð
X

gdm

����
���� ¼

ð
X

T ngðxÞdnðxÞ2

ð
X

T ngðyÞdmðyÞ

����
����

#

ð
X

ð
X

jT ngðxÞ2 T ngðyÞjdnðxÞdmðyÞ! 0;

as n!1. A

Remark 7. Since

jT ngðxÞ2 T ngðyÞj ¼ jEgðZnðxÞÞ2 EgðZnðyÞÞj # EjgðZnðxÞÞ2 gðZnðyÞÞj

# kgkLEdðZnðxÞ; ZnðyÞÞ

Ö. Stenflo1362

D
ow

nl
oa

de
d 

by
 [

U
pp

sa
la

 u
ni

ve
rs

ite
ts

bi
bl

io
te

k]
 a

t 0
0:

29
 1

6 
A

ug
us

t 2
01

2 



a sufficient condition for (15) is that

lim
n!1

EdðZnðxÞ; ZnðyÞÞ ¼ 0;

for all x; y [ X.

3. Local average contraction conditions for IFSs

There are many ways of expressing the idea of locally contractive Markov chains.

Globally average contractive IFSs are convenient in that they can be analysed by many

different methods including coarse operator-theoretical methods. The analysis of locally

contractive systems requires a more refined analysis, and probabilistic methods usually

play a central role. In this section, we discuss natural local average contraction conditions

for IFSs. Locally average contractive IFSs have been studied by Kaijser [30] and later

independently by Steinsaltz [42], [43] and Carlsson [13]. See also Jarner and Tweedie [28]

and Lagerås and Stenflo [34]. Such systems generate equicontinuous Markov chains,

discussed in Section 4.

Definition 1. Let e . 0 be a fixed constant. We say that an IFS is e-local (average)

contractive if

sup
0,dðx;yÞ,e

E
dðZ1ðxÞ; Z1ðyÞÞ

dðx; yÞ
# c; ð16Þ

for some constant c , 1.

Definition 2. We say that an IFS is locally contractive in the weak sense, if

sup
x[X

lim sup
y!x

E
dðZ1ðxÞ; Z1ðyÞÞ

dðx; yÞ

� �
# c; ð17Þ

for some constant c , 1.

Among these conditions, local contraction in the weak sense is clearly a less restrictive

condition.

Remark 8. We will not discuss local log-average contraction conditions in detail since we

can typically reduce such conditions to the above conditions via a change of metric, c.f. the

arguments preceding Corollary 1.

3.1 Spaces without differences between local and global contraction conditions

Local contraction conditions are of course weaker than the corresponding global

contraction conditions. It is a natural question to ask if local contractivity is indeed

equivalent to global contractivity. In some cases, there is no difference:

Definition 3. We say that (X, d) is a geodesically convex metric space if for any two

points x and y in X there exists a geodesic curve g between x and y, i.e. a continuous

function g : ½0; 1�! X with gð0Þ ¼ x and gð1Þ ¼ y, such that

dðx; yÞ ¼ sup
Xn21

i¼0

dðgðtiÞ; gðtiþ1ÞÞ : n [ N and 0 ¼ t0 , t1 , · · · , tn ¼ 1

( )
:
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Lemma 1. Let (X, d) be a geodesically convex metric space. Then a locally contractive IFS

in the weak sense (17) is also globally contractive.

Proof. (Lemma 1) Fix a real number c * with c , c* , 1. Consider two arbitrary points

x and y in X, and let g(t) be a geodesic curve between x and y parametrized by the

unit interval with the property that gð0Þ ¼ x and gð1Þ ¼ y. Let {ti}
n
i¼0 be an increasing

sequence in [0, 1], with t0 ¼ 0 and tn ¼ 1 such that EdðZ1ðgðtiÞÞ; Z1ðgðtiþ1ÞÞ=
dðgðtiÞ; gðtiþ1ÞÞ # c*, for all i ¼ 0; . . . ; n2 1. Such a sequence exists by the compactness

of [0,1].

We have

EdðZ1ðxÞ; Z1ðyÞÞ #
Xn21

i¼0

E
dðZ1ðgðtiÞÞ; Z1ðgðtiþ1ÞÞ

dðgðtiÞ; gðtiþ1ÞÞ
dðgðtiÞ; gðtiþ1ÞÞ

# c*
Xn21

i¼0

dðgðtiÞ;gðtiþ1ÞÞ # c*dðx; yÞ

and thus the IFS is globally average contractive. A

As a consequence of Lemma 1, we may apply Theorem 1 for locally contractive IFSs

in the weak sense (17) on a geodesically convex metric space:

Theorem 3. If a locally contractive IFS in the weak sense (17) on a geodesically convex

metric space satisfies condition (B), then the conclusion of Theorem 1 holds, and thus in

particular, there is a unique stationary probability measure m, and the n-th step

probability distributions converge to m with exponential rate in the dw-metric.

Remark 9. Theorem 3 is not true if we replace condition (17) by local log-contractivity.

The following example was considered by Carlsson [13]. Consider the IFS with

probabilities, {½0; 1�; f 1; f 2;P}, where f 1ðxÞ ¼ ðxþ x2Þ=2 and f 2ðxÞ ¼ log 3ð1 þ 2xÞ,

Pð1Þ ¼ 1=2, Pð2Þ ¼ 1=2. This system is easily checked to be e-locally log-contractive, i.e.

E log sup
0,dðx;yÞ,e

dðZ1ðxÞ; Z1ðyÞÞ

dðx; yÞ
, 0;

for some e . 0, but has more than one invariant probability measure (since x ¼ 0 and

x ¼ 1 are fixed points for both f1 and f2).

The geodesic convexity assumption of Theorem 3 implies that (X, d) is connected.

The following example illustrates the necessity of that property in Theorem 3:

Example 1. Consider the function w : ½0; 1�< ½2; 3�! ½0; 1�< ½2; 3� defined by wðxÞ ¼ 0,

if x # 1 and wðxÞ ¼ 3 if x $ 2. This trivial ‘system’ is clearly locally contractive. Observe

that any probability measure of the form m ¼ ad0 þ ð1 2 aÞd3, where 0 # a # 1 and

where dx denotes the Dirac probability measure concentrated at x [ {0; 3}, is a stationary

probability measure, and thus there is not necessarily a unique stationary probability

measure for a locally contractive system.

In general, we need to add some ‘blending’ condition in order to prove uniqueness in

invariant probability measures for locally contractive systems, see Section 4.
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3.2 Making weighted local contraction conditions non-weighted via a change of
metric

Steinsaltz [42] and Carlsson [13] considered weighted local-contraction conditions in

cases when (X, d) is Euclidean. In this section, we will extend their results and show how

we can reduce these conditions to non-weighted ones via a change of metric.

Suppose (X, d) is geodesically convex and for any two points x and y in X we may

express d(x, y) as

dðx; yÞ ¼ inf
g[G

ð1

0

jg 0ðtÞjdt;

where jg 0ðtÞj ¼ lim supd!0dðgðt þ dÞ; gðtÞÞ=jdj, and the infimum is taken over the set G of

all curves g : ½0; 1�! X between x and y.

If f : X ! ð0;1Þ is a continuous function with infx[XfðxÞ . 0, then we can define a

new metric d̂ by

d̂ðx; yÞ ¼ inf
g[G

ð1

0

fðgðtÞÞjg 0ðtÞjdt: ð18Þ

For any curve g between x and y, �gðtÞ :¼ Z1ðgðtÞÞ is a curve between Z1ðxÞ and Z1ðyÞ

(provided Z1 is continuous). Therefore, by (18),

d̂ðZ1ðxÞ; Z1ðyÞÞ #

ð1

0

fð �gðtÞÞj �g 0ðtÞjdt; ð19Þ

where

j �g 0ðtÞj # lim sup
d!0

dðZ1ðgðt þ dÞÞ; Z1ðgðtÞÞÞ

dðgðt þ dÞ; gðtÞÞ
jg 0ðtÞj: ð20Þ

Thus, from (19) and (20), we see that

Ed̂ðZ1ðxÞ;Z1ðyÞÞ# inf
g

ð1

0

jg 0ðtÞjE fðZ1ðgðtÞÞÞlimsup
d!0

dðZ1ðgðtþdÞÞ;Z1ðgðtÞÞÞ

dðgðtþdÞ;gðtÞÞ

� �
dt

# inf
g

sup
t
E

fðZ1ðgðtÞÞÞ

fðgðtÞÞ
limsup

d!0

dðZ1ðgðtþdÞÞ;Z1ðgðtÞÞÞ

dðgðtþdÞ;gðtÞÞ

� �ð1

0

fðgðtÞÞjg 0ðtÞjdt

# sup
g

sup
t
E

fðZ1ðgðtÞÞÞ

fðgðtÞÞ
limsup

d!0

dðZ1ðgðtþdÞÞ;Z1ðgðtÞÞÞ

dðgðtþdÞ;gðtÞÞ

� �
d̂ðx;yÞ

# sup
x
E

fðZ1ðxÞÞ

fðxÞ
limsup

y!x

dðZ1ðxÞ;Z1ðyÞÞ

dðx;yÞ

� �
d̂ðx;yÞ

Therefore, in particular, if

sup
x
E

fðZ1ðxÞÞ

fðxÞ
lim sup

y!x

dðZ1ðxÞ; Z1ðyÞÞ

dðx; yÞ

� �
, 1; ð21Þ

then ðX; d̂Þ is globally contractive (4), and we may apply Theorem 1.

Conversely, if F : X ! X is 1 2 1 and (X, d) is a metric space, then we can define

another metric d̂ on X by d̂ðx; yÞ :¼ dðFðxÞ;FðyÞÞ.
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Since

E
d̂ðZ1ðxÞ; Z1ðyÞÞ

d̂ðx; yÞ
¼ E

dðFðZ1ðxÞÞ;FðZ1ðyÞÞÞ

dðFðxÞ;FðyÞÞ

¼ E
dðFðZ1ðxÞÞ;FðZ1ðyÞÞÞ

dðZ1ðxÞ; Z1ðyÞÞ

dðZ1ðxÞ; Z1ðyÞÞ

dðx; yÞ

dðx; yÞ

dðFðxÞ;FðyÞÞ
;

we can express global contraction in the d̂ -metric without explicitly referring to it as

sup
x–y

E
dðFðZ1ðxÞÞ;FðZ1ðyÞÞÞ

dðZ1ðxÞ; Z1ðyÞÞ

dðZ1ðxÞ; Z1ðyÞÞ

dðx; yÞ

dðx; yÞ

dðFðxÞ;FðyÞÞ
, 1: ð22Þ

Remark 10. Condition (21) is the local contraction condition corresponding to (22) we

would obtain if fðxÞ :¼ limy!xdðFðxÞ;FðyÞÞ=dðx; yÞ exists for each x [ X. The existence

of this limit is in general a very strong assumption.

Remark 11. Suppose we have an IFS which is not average contractive with respect to the

original metric after one step but where we believe we have exponential convergence

towards an equilibrium. Suppose for simplicity that X ¼ R, d is the Euclidean metric, all

IFS maps are smooth and EZ 0
nþ1ðxÞ , cEZ 0

nðxÞ, for some constant c , 1 and all x [ R, for

some n. If we let fðxÞ ¼ EZ 0
nðxÞ, then it follows that (21) holds. Therefore, we may change

the metric to d̂ (defined like in (18)) and obtain average contraction w.r.t. d̂ .

Typically, it is hard to exactly compute EZ 0
nðxÞ. Locally estimated Lyapunov-

exponents might, however, give a good guess what a weight function f(x) giving global

average contractivity w.r.t. the metric d̂ could be.

See Steinsaltz [42], [43] and Carlsson [13] for further details and interesting

applications, e.g. in the analysis of random logistic maps.

4. Equicontinuous Markov chains

Equicontinuity is a local stability condition for Markov chains satisfied for locally

contractive systems. The first systematic studies of equicontinuous Markov chains

originate from the 60th and papers by Jamison, Rosenblatt and others, see, e.g. [26], [27]

and [40]. A survey is given in the book by Meyn and Tweedie [36], where it is assumed

that the state space ðX; dÞ is a locally compact metric space.

The following definition is taken from [36].

Definition 4. Let CcðXÞ denote the set of compactly supported continuous g : X ! R. We

say that the Markov chain {ZnðxÞ} is an e-chain if {T ng} is equicontinuous on compact sets

for any g [ CcðXÞ.

Consider the average over time of the n-step transition probabilities

�mx
nð·Þ :¼ ð1=nÞ

Xn21

j¼0

PðZjðxÞ [ ·Þ: ð23Þ

If an e-chain {ZnðxÞ} is bounded in probability on average, i.e. if for any e . 0 and x [ X

there exists a compact set K, such that

�mx
nðKÞ $ 1 2 e ; for all n $ 0; ð24Þ
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then it is proved in [36] that �mx
nð·Þ converges weakly to a stationary distribution m x for any

x [ X, and the map LgðxÞ ¼
Ð
gdm x is continuous for any g [ CcðXÞ.

Basic tools in the proofs are the Ascoli theorem, the Prokhorov theorem and the

separability of CcðXÞ (which is a consequence of the local compactness assumption of

(X, d) used in [36]).

In order to prove uniqueness in stationary distributions, we also need that the Markov

chain satisfies some ‘blending’ assumptions. (Examples of Markov chains with non-

unique stationary probabilities are easily constructed by, e.g. letting the Markov chain

have two or more disjoint absorbing sets, see, e.g. Remark 9. Such Markov chains have the

property that there exist non-communicating states.)

If we for any fixed g [ CcðXÞ and x [ X define

Mn ¼ Mnðg; xÞ ¼

ð
X

gdmZnðxÞ; ð25Þ

then it is straightforward to check that {Mn} is a bounded martingale w.r.t. {ZnðxÞ}.

This property enables a powerful Martingale technique for proving uniqueness in

stationary distributions originating from [27] illustrated in Theorem 4 below.

Definition 5. We say that the Markov chain {ZnðxÞ} is asymptotically irreducible if for

any x; y [ X, there exists a compact set K , X such that

lim
n!1

inf
ðj;kÞ[JnðKÞ

dðZjðxÞ; ZkðyÞÞ ¼ 0; a:s:; ð26Þ

where JnðKÞ ¼ {ðj; kÞ : j $ n; k $ n; ZjðxÞ [ K; ZkðyÞ [ K}.

Theorem 4. If an e-chain is bounded in probability on average and asymptotically

irreducible, then there exists a unique stationary probability measure m, and

lim
n!1

dw �mx
n;m

� �
¼ 0;

for any x [ X.

Proof. Fix g [ CcðXÞ and x [ X. Since {Mn} defined as in (25) is a bounded martingale, it

follows from the Martingale convergence theorem that there exists a random variable

M ¼ Mðg; xÞ such that

lim
n!1

ð
X

gdmZnðxÞ ¼ M; a:s:;

and EðMÞ ¼ E
Ð
X
gdmZnðxÞ ¼

Ð
X
gdm x.

Since
Ð
X
gdm x is continuous as function of x for any g [ CcðXÞ, it follows from

assumption (26) that

lim
n!1

inf
j;k$n

ð
X

gdmZjðxÞ 2

ð
X

gdmZkðyÞ

����
����

� �
¼ 0; a:s:

Thus,

Mðg; xÞ ¼ Mðg; yÞ a:s:
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It follows that ð
X

gdm x ¼ EðMÞ ¼

ð
X

gdm y;

and thus m x ¼ m y. If we fix x0 [ X, it thus follows that m :¼ m x0 ¼ m x for any x [ X, and

m is uniquely invariant, since if n is an arbitrary invariant probability measure, and

g [ CcðXÞ, then

ð
gdn ¼

ð Pn21
j¼0 T

jg

n

 !
dn!

ð ð
gdmdn ¼

ð
gdm;

and thus n ¼ m. A

Remark 12. A sufficient condition for a Markov chain {ZnðxÞ} to be asymptotically

irreducible is that it has a reachable recurrent point x* [ X in the sense that for any x [ X,

lim inf
n!1

dðZnðxÞ; x*Þ ¼ 0 a:s:; ð27Þ

i.e. every open neighbourhood of x* is visited infinitely often by {ZnðxÞ} a.s. for any

x [ X.

Remark 13. Sufficient conditions for a Markov chain to be bounded in probability on

average can be found in Meyn and Tweedie [36]. See also Szarek [47] who considers the

general case when ðX; dÞ is a Polish ( ¼ complete and separable metric) space. Under

further aperiodicity conditions (in addition to the assumptions of Theorem 4), it can be

proved that the non-averaged sequence mx
nð·Þ :¼ PðZnðxÞ [ ·Þ converges weakly to m,

see [36] for details.

Equicontinuity can be expressed w.r.t. many different classes of functions. The theory

described in [36] demonstrates the suitability of the definition of e-chains above in the case

when the state space (X, d) is a locally compact metric space.

There are many alternative useful definitions in the case when (X, d) is a Polish space,

see, e.g. Szarek [47]. For our purpose of analysing locally average contractive IFSs, the

following definition is convenient.

Definition 6. We say that the Markov chain {ZnðxÞ} is (uniformly) equicontinuous if

{T ng} is uniformly equicontinuous for any bounded Lipschitz-continuous function g.

Proposition 2. An e-local contractive IFS, (16), generates an equicontinuous Markov

chain.

The proof relies on the following lemma telling that the probability of ever leaving the

‘contractive zone’ can be made arbitrarily close to zero provided we start sufficiently deep

into the zone.

Lemma 2. Suppose e-local contractivity (16). Then for any positive e 0 # e and r , 1,

sup
x;y; dðx;yÞ#re 0

PðdðZnðxÞ;ZnðyÞÞ . e 0; for some nÞ #
c

ð1 2 cÞ
r: ð28Þ
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Proof. By e-local contractivity, we obtain recursively

EðdðZnðxÞ; ZnðyÞÞ j dðZkðxÞ; ZkðyÞÞ , e ; for all k # n2 1Þ

# cEðdðZn21ðxÞ; Zn21ðyÞÞ j dðZkðxÞ; ZkðyÞÞ , e ; for all k # n2 1Þ

# cEðdðZn21ðxÞ; Zn21ðyÞÞ j dðZkðxÞ; ZkðyÞÞ , e ; for all k # n2 2Þ

# · · · # cndðx; yÞ:

By the Chebyshev inequality, we therefore have

PðdðZnðxÞ; ZnðyÞÞ . e 0 j dðZkðxÞ; ZkðyÞÞ , e ; for all k # n2 1Þ #
cndðx; yÞ

e 0
:

Thus, if dðx; yÞ # re 0,

PðdðZnðxÞ; ZnðyÞÞ . e 0; for some nÞ

#
X1
n¼1

PðdðZnðxÞ; ZnðyÞÞ . e 0 j dðZkðxÞ; ZkðyÞÞ , e ; for all k # n2 1Þ

#
X1
n¼1

rcn ¼
c

1 2 c
r:

A

Proof. (Proposition 2)

Let g [ BL and dðx; yÞ # re 0, where 0 , r , 1 and 0 , e 0 # e . By Lemma 2, we

obtain

jEgðZnðxÞÞ2 EgðZnðyÞÞj # 2kgk1PðdðZnðxÞ; ZnðyÞÞ . e 0; for some nÞ

þ e 0kgkLPðdðZnðxÞ; ZnðyÞÞ # e 0; for all nÞ

# 2kgk1
c

1 2 c
r þ e 0kgkL:

ð29Þ

This completes the proof of Proposition 2 since the right-hand side of (29) can be made

arbitrarily small by choosing r and e 0 sufficiently small. A

For d . 0, define

N
x;y
d :¼ inf{n : dðZnðxÞ; ZnðyÞÞ , d}:

Definition 7. We say that an IFS is centre recurrent if for any d . 0,

P N
x;y
d , 1

� �
¼ 1;

for any x; y [ X.

We have the following uniqueness theorem for centre recurrent equicontinuous

Markov chains.

Theorem 5. If a centre recurrent (in sense of Definition 7 above) equicontinuous Markov

chain on a Polish space ðX; dÞ has a stationary distribution, m, then this measure is

attractive, i.e. (PðZnðxÞ [ ·Þ converges weakly to mð·Þ, for any x [ X), and thus m is

necessarily uniquely stationary.
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Since average contractive IFSs generate weak Feller Markov chains, i.e. the transfer

operator T maps CðXÞ into itself, see, e.g. [44], and weak Feller chains on compact metric

spaces always possess stationary distributions, see, e.g. [36], Proposition 2 gives the

following Corollary.

Corollary 2. An e-local contractive IFS, (16), on a compact metric space that generates

a centre recurrent Markov chain (in sense of Definition 7 above) has an attractive, and

thus necessarily unique, stationary probability measure.

Remark 14. See Kaijser [30] for a closely related result.

Proof. (Theorem 5) From the equicontinuity assumption, it follows that for any g [ BL

and any d1 . 0, there exists a d2 . 0, such that

jEðgðZnðxÞÞ2 gðZnðyÞÞÞj # d1; ð30Þ

(uniformly in n) whenever dðx; yÞ , d2.

Thus, for any g [ BL, using the Markov property, we obtain

jEðgðZnðxÞÞ2 gðZnðyÞÞÞj #
Xn
k¼0

E gðZnðxÞÞ2 gðZnðyÞÞ jN
x;y
d2

¼ k
	 
��� ���P N

x;y
d2

¼ k
	 


þ jE gðZnðxÞÞ2 gðZnðyÞÞ jN
x;y
d2

. n
	 


jP N
x;y
d2
Þ . n

	 

# d1 þ 2sup

x[X

j gðxÞ jP N
x;y
d2

. n
	 


:

Since d1 can be chosen arbitrarily small, and PðN
x;y
d . nÞ! 0, as n!1, for any

d . 0, it, therefore, follows that

lim
n!1

jEðgðZnðxÞÞ2 gðZnðyÞÞÞj ¼ 0;

for any x; y [ X and g [ BL, and we may thus apply Proposition 1 (with m being the, by

assumption existing, invariant measure, and n being Dirac measure concentrated in x) to

obtain that dw mx
n;m

� �
! 0, as n ! 1. A

5. Generating probability distributions and fractals using IFSs

5.1 IFS attractors

The concept of fractals was coined by Mandelbrot in 1975 for certain types of ‘fractured’

sets possessing self-similarity properties. The word fractal was derived from the latin

fractus meaning ‘broken’ or ‘fractured’.

In [21], Hutchinson developed a theory for fractal sets and probability measures

supported on these sets and showed that a big class of fractals can be described in terms of

reversed iterations of functions as the attractor of an IFS.

Consider an IFS {ðX; dÞ; f s; s [ S}, where S is a finite set and fs are strict contractions,

i.e. functions f s : X ! X, satisfying dðf sðxÞ; f sðyÞÞ # cdðx; yÞ, for some constant c , 1.

From the contractivity assumption, it follows that the map

ẐðiÞ ¼ lim
n!1

f i1 + f i2 + · · · + f inðx0Þ ð31Þ
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exists for any i ¼ i1i2 . . . : [ SN and the limit is independent of x0 [ X. The set of all limit

points

F ¼ {ẐðiÞ : i [ SN} # X ð32Þ

is called the (set-)attractor of the IFS.

Remark 15. In fractal geometry, X is most commonly assumed to be some Euclidean space.

Properties such as self-similarity of F are inherited from the properties of {fs}. Barnsley

[3] called i an address of the point ẐðiÞ on the attractor F. The set F will typically have a

‘fractal’ appearance in cases when the maps are affine and the address function has simple

properties such as being 1 2 1.

5.2 Probability measures on IFS attractors

A simple way to construct a probability measure on a set F being the attractor of an IFS

{ðX; dÞ; f s; s [ S} is to use a probability measure P on S. The measure attractor of the IFS

with probabilities {ðX; dÞ; f s; s [ S;P} is the unique stationary probability measure, m, of

the Markov chain, {ZnðxÞ}, obtained from random (independent) iterations where the

functions f s are chosen at random according to the probability measure P in each step, i.e.

the stationary distribution of the Markov chain defined as

ZnðxÞ ¼ f In + f In21
+ · · · + f I1

ðxÞ; Z0ðxÞ ¼ x;

for any x [ X, where {In} is a sequence of independent random variables with

PðIn [ ·Þ ¼ Pð·Þ for any n.

We can regard the function Ẑ : SN ! X defined in (31) as a m-distributed random

variable if we equip S N with the (Bernoulli) probability measure P* generated by the

probability measure P on S. Thus, m can alternatively be defined as the push-forward of P*

via Ẑ, i.e. mð·Þ ¼ P*ði [ SN : ẐðiÞ [ ·Þ.

Remark 16. One important question in fractal geometry is the problem of calculating

various notions of dimensions of F and m, see, e.g. Falconer [18].

When studying such local properties, it substantially simplifies if every point in F has a

unique or special form of address and the maps are non-singular. It is common to assume

that fs belongs to some particular class of affine maps.

Remark 17. Note that an IFS with a finite number of strict contractions satisfies the

conditions of Theorem 1 regardless of what probability measure P we take.

The strict contraction assumption guarantees the existence of the limit ẐðiÞ in (31) for

any i. For average contractive systems, Theorem 1 only guarantees the existence of this

limit for almost all i, and the set attractor may, therefore, not in general be well defined for

such systems. The measure attractor m of an average contractive IFS with probabilities is,

however, still uniquely defined as the unique stationary distribution of the associated

Markov chain.

Remark 18. A simple way to approximate the unique stationary distribution, m, is simply to

run the Markov chain from an arbitrary fixed initial state, and the proportion of ‘time’

spent in a set, B, converges to m(B) a.s., provided the boundary of B has zero m-measure,

see, e.g. Breiman [11], Elton [16] or Barnsley et al. [7].
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This theorem forms the theoretical bases of Barnsley’s ‘chaos game algorithm’ saying

that we can draw a picture of an IFS attractor by successively plotting a realization of a

random trajectory of the associated Markov chain starting at some arbitrary given point on

the set attractor.

Example 2. Sierpinski triangle.

Pick three points with coordinates A, B and C in the plane building the vertices of a

triangle. Consider a Markov chain starting at X0 ¼ A where, in each step, if Xn ¼ x we let

Xnþ1 ¼ f AðXnÞ ¼ the point obtained by moving x half the distance towards A

¼ xþ
1

2
ðA2 xÞ ¼

x

2
þ

A

2
;

with probability 1/3,

Xnþ1 ¼ f BðXnÞ ¼ the point obtained by moving x half the distance towards B

¼ xþ
1

2
ðB2 xÞ ¼

x

2
þ

B

2
;

with probability1/3,

Xnþ1 ¼ f CðXnÞ ¼ the point obtained by moving x half the distance towards C

¼ xþ
1

2
ðC 2 xÞ ¼

x

2
þ

C

2
;

with probability 1/3.

If {In} is a sequence of independent random variables uniformly distributed on

{A;B;C}, then Xnþ1 ¼ f InðXnÞ. The only reachable points are points on the Sierpinski

triangle. A random trajectory will, with probability 1, ‘draw’ the Sierpinski triangle with

vertices in A, B and C (Figure 1).

Example 3. Cantor set: X ¼ ½0; 1�

The Markov chain {Xn} generated by independent random iterations with the functions

f 1ðxÞ ¼ x=3 and f 2ðxÞ ¼ x=3 þ 2=3 chosen with equal probabilities (starting at, e.g.

Figure 1. Sierpinski triangle.
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X0 ¼ 0) generates points on the middle-third Cantor set. A random trajectory will, with

probability 1, ‘draw’ the Cantor set (Figure 2).

Remark 19. Hutchinson [21] studied fractals and probability measures on fractals via

reversed iterations of functions.

The idea of regarding probability distributions on fractals as unique stationary

distributions of Markov chains generated by random iterations seems to have been first

explored by Barnsley and Demko [5].

In the theory of random processes, the historical order was reversed in the sense that

‘reversed’ random iterations were introduced as a tool to prove distributional theorems

for ‘forward’ random iterations. This tool, which has been ‘folklore’ in the probabilistic

literature the last 50 years, was formulated as a principle in [35].

The above formalism for describing certain types of sets and measures as attractors of

an IFS or an IFS with probabilities can be generalized in various ways. The conditions of S

being finite and the IFS maps being contractive are clearly far from being necessary.

We will keep these assumptions also in the next sub-section here in order not to blur

the basic ideas and instead look at an interesting class of fractals that can be constructed

using more than one IFS.

5.3 Code-tree fractals

Let F ¼ {ðX; dÞ; f ls ; s [ S}l[L be in indexed family of IFSs, where S ¼ {1; 2; . . . ;M}, for

some M , 1, and L is a finite set, and suppose the maps f ls are uniformly contractive.

Consider a function v : <1
k¼0{1; . . . ;M}k ! F. We call v a code tree corresponding to F.

A code tree can be identified with a labelled M-ary tree with nodes labelled with an index

of an IFS.

Define

ẐvðiÞ ¼ lim
k!1

f vðYÞi1
+ f vði1Þi2

+ . . . + f vði1 ... ik21Þ
ik

ðx0Þ; for i ¼ i1i2 . . . [ SN;

and

F v ¼ {ẐvðiÞ; i [ SN};

for some fixed x0 [ X. (It does not matter which x0 we choose, since the limit is, as before,

independent of x0.)

We call F v the attractor or the code-tree fractal corresponding to the code tree v and F.

Figure 2. The first five sets approximating the limiting Cantor set. If {Xn} is a Markov chain on
X ¼ ½0; 1� generated by i.i.d. iterations with the maps f 1ðxÞ ¼ x=3 and f 2ðxÞ ¼ x=3 þ 2=3, then the
value of Xn can be found in the n : th approximating set of the Cantor set.
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5.3.1 V-variable fractals

The sub-code trees of a code tree v corresponding to a node i1 . . . ik is the code tree vi1 ... ik

defined by vi1 ... ik ðj1j2 . . . jnÞ :¼ vði1 . . . ikj1 . . . jnÞ, for any n $ 0 and j1 . . . jn [ Sn.

Let V $ 1 be a positive integer. We call a code-tree V-variable if for any k the set of

code trees vi1 ... ik ; i1 . . . ik [ Sk
� �

contains at most V distinct elements.

A code-tree fractal F v is said to be V-variable if v is a V-variable code tree.

A V-variable fractal is intuitively a fractal having at most V distinct ‘forms’ or ‘shapes’

at any level of magnification.

All IFS attractors can be regarded as being 1-variable. See, e.g. Barnsley [4] and

Barnsley et al. [6], [7] and [8] for more on the theory of V-variable fractals.

5.4 Random (code-tree) fractals

If the code tree v of a code-tree fractal is chosen at random, then the map v 7! F v will be

a random fractal. A code tree can be identified with a labelled M-ary tree with nodes

labelled with an IFS. We can thus generate random fractals if we choose labels of nodes at

random. The case when nodes are chosen in an i.i.d. manner gives ‘standard random

fractals’. ‘Random homogeneous fractals/or random 1-variable’ are obtained if we choose

labels of nodes at different levels in an i.i.d. manner, but let all nodes within a level be the

same. The natural way of choosing random V-variable fractals for V $ 2 requires a more

involved (non-Markovian) dependence structure between the random choices of nodes,

see, e.g. [8] for details (Figure 3).

Remark 20. Generalizations of the above setting includes average contractive systems,

different (possibly infinite) number of maps in the defining IFSs and more general types of

‘transformations’, see, e.g. [4], [7] and [8].
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Figure 3. Four examples of realizations of random 1-variable Sierpinski-triangles generated by two
IFSs. 1-variable fractals have only one shape at any level of magnification.
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6. The convergence theorem for finite Markov chains and the Propp–Wilson

perfect sampling algorithm

In this section, we will present a proof of the Markov chain convergence theorem for finite

Markov chains based on iterated random functions. One substantial advantage of this

proof in comparison with other proofs not involving iterated random functions, in addition

to being simple, is that it gives a method for sampling from the unique stationary

distribution ‘for free’. This method is known as the Propp–Wilson perfect sampling (or

coupling from the past (CFTP)) method.

Consider a Markov chain with state space X ¼ {1; 2; . . . ; nX} and transition matrix

P ¼ ðpijÞ, 1 # i; j # nX , where nX ¼ jXj , 1. Let f be an IFS representation of P, i.e. a

measurable function f : X £ ½0; 1�! X, such that if U is a random variable, uniformly

distributed on the unit interval, then

Pðf ði;UÞ ¼ jÞ ¼ pij;

for any 1 # i; j # nX . If {In}
1
n¼1 is a sequence of independent random variables uniformly

distributed in the unit interval, and f sðxÞ :¼ f ðx; sÞ, then it follows by induction that

Pðf I1
+ f I2

+ · · · + f In ðiÞ ¼ jÞ ¼ pðnÞij ;

where pðnÞij denotes the element on row i and column j in the matrix P n.

If pij . 0 for any i and j, then it is possible to choose f, such that

d ¼ Pðf ði;UÞ does not depend on iÞ . 0;

i.e. a Markov chain with a strictly positive transition matrix can be generated by iterated

random maps where constant maps are chosen with positive probability. (One simple

representation is f ði; sÞ ¼ inf k :
Pk

j¼1pij $ s
n o

, but we typically get a better

representation (larger d) if we base our representation on the fact that P can be expressed

as P ¼ dP̂þ ð1 2 dÞ ~P for some d . 0, and some transition matrices P̂ and ~P, where P̂ has

rank 1, see Athreya and Stenflo [2].)

If constant maps are chosen with positive probability, then it follows that the random

maps

ẐnðiÞ :¼ f I1
+ f I2

+ · · · + f In ðiÞ;

will not depend on i (i.e. will be constant) for all n $ T, where

T ¼ inf{n : ẐnðiÞ does not depend on i} ð33Þ

is the random first time when the mapping ẐnðiÞ does not depend on i. Note, by

construction, that T is dominated by a geometrically distributed random variable.

Thus, Ẑ :¼ f I1
+ f I2

+ · · · + f IT ðiÞ is a random variable with distribution m ¼ ðmiÞ
nX
i¼1 being

the unique stationary distribution of the Markov chain described by the common row

vector of limn!1P
n. An upper bound for the convergence rate (in total variation norm)
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follows from the inequality

XnX
j¼1

pðnÞij 2 mj

��� ��� ¼XnX
j¼1

P ẐnðiÞ ¼ j
� �

2 PðẐ ¼ jÞ
�� �� # 2PðT . nÞ # 2ð1 2 dÞn:

Since Ẑ ¼ ẐT is m-distributed, we have derived the Propp–Wilson [38] algorithm for

simulating from m: generate realizations i1, i2, . . . iT of uniformly distributed random

variables I1, I2, . . . ,IT until the corresponding realization of ẐT is a constant. Then that

realization is a realization of a m-distributed random variable.

The result described above generalizes in a straightforward manner to Markov chains

on general state spaces satisfying the so-called ‘Doeblin condition’, see Athreya and

Stenflo [2] for details.

Remark 21. A standard result within the theory of finite Markov chains states that an

irreducible and aperiodic Markov chain with transition matrix P has the property that Pm0

has only positive elements for some m0 . 0, see, e.g. Häggström [19]. The above result

could, therefore, be applied to prove the convergence theorem for Markov chains under the

standard conditions of irreducibility and aperiodicity, c.f. Remark 3.

Remark 22. The algorithm by Propp and Wilson [38] for simulating non-biased (perfect)

samples from p is also referred to as the Propp–Wilson coupling from the past (CFTP)

algorithm. See Wilson [48] for related literature.

An explanation of the name CFTP requires a notation with {In} being two-sided, as in

Theorem 2. c.f. Remark 1.

It is not important to stop simulating exactly at time T defined as in (33) since Ẑn ¼ ẐT ,

for any n $ T . In practice, it is common to take some fixed increasing sequence of times

t1 , t2 , t3 , . . . , and stop simulating at time tk when the simulated realization of Ẑtk is

constant.

It can be hard to check if a realization of the random function ẐnðxÞ is constant if the

state space is large. Substantial computational simplifications are obtained in case the

maps fs are monotone.

7. Time series

The goal of time series analysis is to draw conclusions about the data observed at different

times. In a time series model, we interpret the data as observations from a stochastic

process. As always in stochastic modelling a useful model should be simple, have a well

developed theory and describe the observed data well. For a model of the form (1), this

could mean that the function f can be described with few parameters, that there is a well-

developed theory for estimating these parameters and that the process {Xn} has a well

behaved long-run dynamics.

A classical simple class of time series models is the AR( p)-processes (autoregressive

process of order p) being stationary solutions {Un} to equations of the form

Un 2 f1Un21 2 . . . 2 fpUn2p ¼ Wn; ð34Þ

where f1, . . . ,fp are real valued constants and {Wn} are i.i.d. random variables with mean

zero and finite variance.

The AR( p) process, {Un}, is said to be causal (or future-independent) if it can be

expressed in the form Un ¼
P1

i¼0ciWn2i, for some constants ci with
P1

i¼0jcij , 1. The
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condition

fðzÞ ¼ 1 2 f1z2 . . .fpz
p – 0; for all jzj # 1; ð35Þ

is a well-known necessary and sufficient condition for causality for an AR( p)-process, see

Brockwell and Davis [12].

If we define the p £ 1-vectors Xn ¼ ðUn2pþ1;Un2pþ2; . . . ;UnÞ
0, then

Xnþ1 ¼

0 1 0 · · 0

0 0 1 0 · 0

· · · · · ·

0 0 · · 0 1

fp fp21 fp22 · · f1

0
BBBBBBBB@

1
CCCCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
VA

Xn þ

0

0

·

0

Wnþ1

0
BBBBBBBB@

1
CCCCCCCCA

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
VIn

; ð36Þ

and we may thus study AR( p)-processes via random iterations on X ¼ Rp with affine maps

of the form f sðxÞ ¼ Axþ s, where the translation vector s is chosen at random.

It can be proved that all eigenvalues of A have absolute values strictly less than 1 if

(35) holds, see Brockwell and Davis [12], p.311, exercise 8.3 and therefore (e.g. by using

Theorem 2) it follows that the limit

Xn ¼ lim
m!21

f In + · · · + f Imþ1
ðxÞ ¼

X1
k¼0

AkIn2ðkþ1Þ ¼ In21 þ AIn22 þ A2In23 þ . . . ;

is the unique solution to (36), if (35) holds.

More generally, consider an ARMAðp; qÞ-process, i.e. a stationary process {Yn}

satisfying the (autoregressive moving-average) equation

Yn 2 f1Yn21 2 . . . 2 fpYn2p ¼ Wn þ u1Wn21 þ . . . þ uqWn2q; ð37Þ

where f1;f2; . . . ;fp and u1; u2; . . . ; uq are constants, and {Wn} is i.i.d. with mean zero

and finite variance. Suppose the AR-coefficients satisfy (35), and let {Un} be the causal

AR( p)-process satisfying (34). Let r ¼ maxðp; qþ 1Þ. We may regard {Un} as a causal

AR(r)-process if we let fj ¼ 0, for j . p. Let Xn ¼ ðUn2rþ1;Un2rþ2; . . . ;UnÞ
0. The

Markov chain {Xn} can (as before) be analysed via iterated random functions, but the

r £ 1-state vector Xn is now typically ‘unobservable’.

It is straightforward to check that Yn ¼ Un þ u1Un21 þ · · · þ uqUn2q is a solution

to (37).

Thus, if we define uj ¼ 0, for j . q, then the ‘observations’ Yn satisfy the ‘observation

equation’

Yn ¼ BXn; ð38Þ

where B ¼ ½ur21; ur22; . . . ; u1; 1�. The above expresses the ARMAðp; qÞ-process {Yn} in

the form of a hidden Markov chain, where the ‘observed state’ Yn is a function of the

hidden ‘true’ state Xn, where {Xn} is a Markov chain that can be expressed in the form of

an average contractive IFS.

The above model with ‘state equation’ (36) and ‘observation equation’ (38) is a

particular kind of a stable linear state space model. A useful tool in the analysis of such
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models is Kalman recursions, which can be used both for parameter estimation and for

prediction in models that can be expressed in this form. See Brockwell and Davis [12] for

further reading.

The name ‘state space model’ originates from control engineering where the main

problem is to use the ‘observation’ sequence {Yn} to control/predict the hidden ‘state’ Xn.

The convergence results discussed in this paper could be used within the theory of

nonlinear state space models.
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Note

1. Barnsley and Demko [5] used the word IFS for a finite family of contractive maps. This is the
standard use of the term IFS in the theory of fractals since this condition ensures the existence of
an attractor of the IFS, see Section 5.1.
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[8] M.F. Barnsley, J.E. Hutchinson, and Ö. Stenflo, V-variable fractals: Dimension results,

Forum Math, DOI: 10.1515/FORM.2011.075.
[9] R. Bhattacharya and M. Majumdar, Random Dynamical Systems: Theory and Applications,

Cambridge University Press, Cambridge, 2007.
[10] A.A. Borovkov, Ergodicity and Stability of Stochastic Processes, Wiley, Chichester, 1998.
[11] L. Breiman, The strong law of large numbers for a class of Markov chains, Ann. Math. Statist.

31 (1960), pp. 801–803.
[12] P.J. Brockwell and R.A. Davis, Introduction to Time Series and Forecasting, Springer-Verlag,

New York, 2002.
[13] N. Carlsson, A contractivity condition for iterated function systems, J. Theoret. Probab. 15(3)

(2002), pp. 613–630.
[14] P. Diaconis and D. Freedman, Iterated random functions, SIAM Rev. 41(1) (1999), pp. 45–76

(electronic).
[15] R.M. Dudley, Real Analysis and Probability, Revised reprint of the 1989 original.

Cambridge Studies in Advanced Mathematics, 74, Cambridge University Press, Cambridge,
2002.

[16] J.H. Elton, An ergodic theorem for iterated maps, Ergodic Theory Dynam. Systems 7 (1987),
pp. 481–488.

[17] J.H. Elton, A multiplicative ergodic theorem for Lipschitz maps, Stochastic Process. Appl.
34(1) (1990), pp. 39–47.

[18] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 2nd ed.,
Wiley, Hoboken, NJ, 2003.
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