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MARKOV CHAINS IN RANDOM ENVIRONMENTS AND
RANDOM ITERATED FUNCTION SYSTEMS

ÖRJAN STENFLO

Abstract. We consider random iterated function systems giving rise to
Markov chains in random (stationary) environments. Conditions ensuring
unique ergodicity and a “pure type” characterization of the limiting “randomly
invariant” probability measure are provided. We also give a dimension formula
and an algorithm for simulating exact samples from the limiting probability
measure.

1. Introduction

In this paper, we are going to consider random iteration of functions where the
function to iterate is chosen independently in each iteration step at random from
a random probability distribution selected according to a stationary and ergodic
sequence. This procedure generates Markov chains in random (stationary) envi-
ronments and generalizes the situation known as iterated function systems with
probabilities (see e.g. Barnsley and Demko [1]) where the probability distribution,
deciding which function to iterate in each step, is nonrandom.

We can interpret the random object constructed in two different ways depending
on if we consider the whole process as random or not. That is, we can think
of the random object as a random non-homogeneous Markov chain (as we will
mainly do here) or (deterministically) as one Markov chain with random transition
probabilities. The latter interpretation corresponds to iteration of functions, where
the choice of function to iterate in each step, is determined by a stationary sequence
of random variables which is a special case of recursive chains (Borovkov [3]).

Random iterations according to a stationary sequence has been considered e.g.
by Elton [9] and Borovkov and Foss [4]. The special structure of our controlling
stationary sequence, e.g. the two possible interpretations of the dynamics presented
above, enables a more refined ergodic analysis which makes the theory of Markov
chains in (stationary) random environments to more than a simple particular case
of the stationary iteration model. A feature worth bringing to the readers attention
is that the model of random iteration according to some stochastic sequence defined
on the index space of some pre-described set of functions slightly differs from the
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above model in general. See Silvestrov and Stenflo [20] for ergodic results in the
case of iteration according to a regenerative stochastic sequence.

The theory of Markov chains in random environments in the countable state
space case was developed in papers by Cogburn [5],[6],[7] and Orey [15]. In the
general case, Seppäläinen [18] and Kifer [11] proved large deviation theorems. In
Kifer [12] also a central limit theorem and a law of iterated logarithms were proved.
(For other convergence theorems, see also Lu and Mukherjea [14].)

The present paper is organized as follows. In Section 2 we will adapt the principle
by Letac [13] studying reversed iterations to prove ergodic theorems for homoge-
neous Markov chains to our more general non-homogeneous situation. In the paper
by Propp and Wilson [17] this method was used as a basis for their, in the theory of
Markov Chain Monte Carlo (MCMC), already classical algorithm for exact simula-
tion of random samples from the invariant probability measure of a homogeneous
Markov chain. Below we show that this algorithm can be extended to an algorithm
for exact sampling from the limiting probability distribution for Markov chains in
random environments. Our basic distributional convergence theorem in Section 2
can be considered as a non-homogeneous generalization of a theorem in Stenflo
[21]. This theorem is proved under contractivity assumptions. The paper by Kifer
[11] is another main related reference here. In Section 3 we analyze the invariant
probability regime generalizing a result in the homogeneous case by Dubins and
Freedman [8]. This analysis is done under additional discreteness conditions posed
on the family of functions. In Section 4 we change slightly the setup. We consider
the unit interval as state space and give a dimension formula under further smooth-
ness and separation conditions. A different feature from the previous sections is
that no contractivity assumptions are made here. Section 4 is self-contained and
may thus be read separately.

Let (X, d) be a complete separable metric space, and let (R,B) denote the set of
real numbers with its Borel σ-field. Consider a measurable function w : X×R→ X .
For each fixed s ∈ R, we write ws(x) := w(x, s). We call the set {(X, d); ws, s ∈ R}
an iterated function system (IFS). Let (Ω,F , P ) be a probability space with an
invertible P -preserving ergodic transformation θ : Ω → Ω. For each ω ∈ Ω let
Pω be a probability measure on R. Assume Pω(A) is measurable in ω for each
fixed A ∈ B. Let {In} be a sequence of independent, identically distributed (i.i.d.)
random variables with values uniformly distributed in (0, 1). Let for each ω ∈ Ω,
Iωn := inf{y : Pω((−∞, y]) ≥ In}. Then for each ω ∈ Ω we have that Iωn is
distributed according to Pω. Define for each fixed x ∈ X and ω ∈ Ω,

Zωn (x) := w
Iθ
n−1ω
n−1

◦ · · · ◦ wIω0 (x), n ≥ 1, Zω0 (x) = x,

and the reversed iterates

Ẑωn (x) := w
Iθ
n−1ω

0
◦ · · · ◦ wIωn−1

(x), n ≥ 1, Ẑω0 (x) = x.

Note that the random variables Zωn (x) and Ẑωn (x) are identically distributed for
each fixed x ∈ X and ω ∈ Ω.

We are going to give conditions implying that, for each fixed ω ∈ Ω, there exists
a random variable Ẑω, such that

Ẑθ
−nω
n (x) = w

Iθ
−1ω

0
◦ · · · ◦ w

Iθ
−nω
n−1

(x) a.s.→ Ẑω as n→∞,(1)
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where the limit is independent of x ∈ X . If we then define µω to be the probability
distribution of Ẑω and the “random transition kernels” are Feller continuous, then
{µω}ω∈Ω will satisfy an invariance equation (see (4) below).

The following principle for exact sampling can thus be formulated.
Principle (exact sampling): Let ω ∈ Ω be fixed. Suppose there exist a random

integer N with N <∞ a.s. such that, Ẑθ
−Nω
N (x) does not depend on x ∈ X . Then

Ẑθ
−Nω
N (x) is distributed according to µω .

Remark 1. The case when |Ω| = 1 is the coupling from the past (CFTP) algorithm
by Propp and Wilson [17].

2. Convergence results

2.1. Statements. Let BL denote the class of bounded continuous functions, f :
X → R (with ‖f‖∞ = supx∈X |f(x)| <∞) that also satisfy the Lipschitz condition

‖f‖L = sup
x 6=y

|f(x)− f(y)|
d(x, y)

<∞.

We set ‖f‖BL = ‖f‖∞+ ‖f‖L. For Borel probability measures ν1 and ν2 we define
the metric

dw(ν1, ν2) = sup
f∈BL

{|
∫
X

fd(ν1 − ν2)| : ‖f‖BL ≤ 1}.

It is well known see e.g. Shiryaev [19] that this metric metrizes the topology of weak
convergence of probability measures (on separable metric spaces).

Denote by µω,xn the probability distribution of Zωn (x).
We have the following theorem:

Theorem 1. Suppose
(A) There exists a constant c < 1 such that

Ed(wIω0 (x), wIω0 (y)) ≤ cd(x, y),

for all x, y ∈ X and all ω ∈ Ω.
(B) supω∈ΩEd(x0, wIω0 (x0)) <∞, for some x0 ∈ X.
Let K ⊆ X be a bounded set. Then there exists a positive constant γK and for

all ω ∈ Ω, random variables Ẑω such that

sup
x∈K

Ed(Ẑθ
−nω
n (x), Ẑω) ≤ γK

1− cc
n, n ≥ 0.(2)

For the random Markov chain, we obtain the following theorem.

Theorem 2. Under the assumptions (A) and (B) above, for any bounded set K ⊆
X, there exists a positive constant γK , such that for each ω ∈ Ω there exist a
probability measure µω such that

sup
x∈K

dw(µθ
−nω,x
n , µω) ≤ γK

1− cc
n, n ≥ 0.(3)

The family {µω}ω∈Ω satisfies the invariance equation

µθω =
∫
µω ◦ w−1

s dPω(s),(4)
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and are uniformly concentrated in the sense of a bounded first moment i.e. for any
point x? ∈ X there exists a finite constant B (depending on x? but not on ω) such
that ∫

X

d(x?, x)dµω(x) < B.(5)

Furthermore, the family is unique satisfying (4) and (5).

Remark 2. If we consider the the whole process as one random sequence i.e. if we
define Zn(x) to be Zωn (x) with probability density P (dω), and let

µ(·) :=
∫

Ω

µω(·)dP (ω),

we have that the distribution of Zn(x) converges weakly to µ. The principle from
the section above may be used for exact sampling from µ. That is, define Ẑn(x) to
be Ẑθ

−nω
n (x) with probability density P (dω). Suppose there exist a random integer

N with N < ∞ a.s. such that, ẐN (x) does not depend on x ∈ X . Then ẐN(x) is
distributed according to µ.

Remark 3. An explicit expression and upper bound for γK is given by

γK := sup
x∈K

sup
ω∈Ω

Ed(x,wIω0 (x))

≤ sup
ω∈Ω

Ed(x0, wIω0 (x0)) + (c+ 1) sup
x∈K

d(x, x0) <∞.

Remark 4. Note that the functions ws, are not assumed to be continuous for any
s ∈ R. For an example when all maps are discontinuous but the theorem applies
(in the case when |Ω| = 1), see Stenflo [21].

Remark 5. If assumption (A) is relaxed to hold for P a.a. ω ∈ Ω, then the state-
ments in Theorems 1 and 2 will be reduced to P a.s. statements.

2.2. Proofs.

Proof (Theorems 1 and 2). We start by observing that if there exists a family
{µω}ω∈Ω such that (for all ω ∈ Ω)

sup
x∈K
|Eg(Zθ

−nω
n (x)) −

∫
X

gdµω| → 0, as n→∞(6)

for any bounded and continuous function g : X → R, and the family also satisfies
(4) and (5), then this family must be unique satisfying these two equations.

In fact, suppose {µω? } is another family of probability measures satisfying (4)
and (5). Then by a repeated use of (4), which equivalently can be formulated as
(17) (see below), we see that for any for bounded and continuous function g,

|
∫
X

gdµω? −
∫
X

gdµω| = |
∫
X

(Eg(Zθ
−nω
n (x)) −

∫
X

gdµω)dµθ
−nω
? (x)|

≤
∫
X

|Eg(Zθ
−nω
n (x)) −

∫
X

gdµω|dµθ
−nω
? (x)

and, by writing X = (X\K)∪K for a sufficiently large bounded set K and using (5)
and (6) respectively on the two parts,we see that the the last sequence of integrals
tends to 0 as n → ∞. Thus for all bounded and continuous functions g we have
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that
∫
X
gdµω? =

∫
X
gdµω, for all ω ∈ Ω, and consequently, see e.g. Billingsley [2],

µω and µω? coincide.
We will prove that (6) holds true by proving the stronger statement that there

exist a family of random variables Ẑω such that for any sequence {xn} in K and
any ω ∈ Ω, {Ẑθ−nωn (xn)} is a.s. a Cauchy sequence which converges since X is
complete. We then prove that the limit is independent of the sequence {xn}.

For N ≤ n ≤ m we have

d(Ẑθ
−nω
n (xn), Ẑθ

−mω
m (xm)) ≤

∞∑
i=N

d(Ẑθ
−iω
i (xi), Ẑθ

−(i+1)ω
i+1 (xi+1)).(7)

Thus if we prove that

E

∞∑
i=N

d(Ẑθ
−iω
i (xi), Ẑθ

−(i+1)ω
i+1 (xi+1)) <∞,(8)

then

∞∑
i=N

d(Ẑθ
−iω
i (xi), Ẑθ

−(i+1)ω
i+1 (xi+1)) <∞ a.s.,(9)

and from (7) and (9) we conclude that {Ẑθ−nωn (xn)} a.s. forms a Cauchy sequence.
Now by recursively using assumption (A) we obtain that

E

∞∑
i=N

d(Ẑθ
−iω
i (xi), Ẑθ

−(i+1)ω
i+1 (xi+1))

=
∞∑
i=N

Ed(Ẑθ
−iω
i (xi), Ẑθ

−(i+1)ω
i+1 (xi+1))

=
∞∑
i=N

E(E(d(Ẑθ
−iω
i (xi), Ẑθ

−(i+1)ω
i+1 (xi+1))|w

Iθ
−2ω

1
, . . . , w

Iθ
−(i+1)ω
i

))

=
∞∑
i=N

(
E(E(d(w

Iθ
−1ω

0
(w

Iθ
−2ω

1
◦ · · · ◦ w

Iθ
−iω
i−1

(xi)),

w
Iθ
−1ω

0
(w

Iθ
−2ω

1
◦ · · · ◦ w

Iθ
−(i+1)ω
i

(xi+1)))|w
Iθ
−2ω

1
, . . . , w

Iθ
−(i+1)ω
i

))
)

≤
∞∑
i=N

cEd(w
Iθ
−2ω

1
◦ · · · ◦w

Iθ
−iω
i−1

(xi), wIθ−2ω
1

◦ · · · ◦ w
Iθ
−(i+1)ω
i

(xi+1))

≤
∞∑
i=N

ciEd(xi, wIθ−(i+1)ω
i

(xi+1)).

(10)

We consequently have that

E

∞∑
i=N

d(Ẑθ
−iω
i (xi), Ẑθ

−(i+1)ω
i+1 (xi+1)) ≤

supx,y∈K supω∈ΩEd(x,wIω0 (y))
1− c cN ,
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and since by using assumptions (A) and (B),

sup
x,y∈K

sup
ω∈Ω

Ed(x,wIω0 (y))

≤ sup
x∈K

d(x, x0) + sup
ω∈Ω

Ed(x0, wIω0 (x0)) + sup
y∈K

sup
ω∈Ω

Ed(wIω0 (x0), wIω0 (y))

≤ sup
ω∈Ω

Ed(x0, wIω0 (x0)) + (c+ 1) sup
x∈K

d(x, x0) <∞,(11)

we see that (8) holds. Thus {Ẑθ−nωn (xn)} is a.s. a Cauchy sequence and converges
since X is complete. Let us call the limit Ẑω({xn}).

It remains to prove that the limit is independent of the sequence {xn}. Let us
define Ẑω := Ẑω({x0}). By the Chebyshev inequality, and by a recursive use of
assumption (A), we see that for any ε > 0,

Pr(d(Ẑθ
−nω
n (xn), Ẑθ

−nω
n (x0)) > ε)

≤ Ed(Ẑθ
−nω
n (xn), Ẑθ

−nω
n (x0))

ε

≤ 1
ε
E(E(d(Ẑθ

−nω
n (xn), Ẑθ

−nω
n (x0))|w

Iθ
−2ω

1
, . . . , w

Iθ
−nω
n−1

))

≤ c

ε
Ed(w

Iθ
−2ω

1
◦ · · · ◦ w

Iθ
−nω
n−1

(xn), w
Iθ
−2ω

1
◦ · · · ◦ w

Iθ
−nω
n−1

(x0))

≤ . . . ≤ cn

ε
d(xn, x0).

Thus
∞∑
n=0

Pr(d(Ẑθ
−nω
n (xn), Ẑθ

−nω
n (x0)) > ε) ≤

∞∑
n=0

cn

ε
d(xn, x0) <∞,

and it follows (see e.g. Shiryaev [19]) that

d(Ẑθ
−nω
n (xn), Ẑθ

−nω
n (x0))→ 0 a.s.(12)

From (12), the triangle inequality, and the fact of almost sure convergence of
Ẑθ
−nω
n (x0) to Ẑω, it follows that d(Ẑθ

−nω
n (xn), Ẑω) a.s.→ 0 as n→∞ establishing the

a.s. independence of {xn}. Thus (6) holds true.
For any x ∈ X , we have the following sequence of inequalities:

Ed(Ẑθ
−nω
n (x), Ẑω) = E lim

m→∞
d(Ẑθ

−nω
n (x), Ẑθ

−mω
m (x))

≤ E lim
m→∞

m−1∑
k=n

d(Ẑθ
−kω
k (x), Ẑθ

−(k+1)ω
k+1 (x))

= E

∞∑
k=n

d(Ẑθ
−kω
k (x), Ẑθ

−(k+1)ω
k+1 (x)).(13)

Thus if we define

γK := sup
x∈K

sup
ω∈Ω

Ed(x,wIω0 (x)),

which by (11) is a finite constant, we obtain from (13) and (10) (with xi = x), that

sup
x∈K

Ed(Ẑθ
−nω
n (x), Ẑω) ≤ cn

1− cγK , n ≥ 0,

and Theorem 1 is proved.
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Proof (Theorem 2:(3)). Define µω(·) = Pr(Ẑω ∈ ·). Since

dw(µθ
−nω,x
n , µω) = sup{|

∫
X

fd(µθ
−nω,x
n − µω)| : ‖f‖BL ≤ 1}

= sup{|E(f(Ẑθ
−nω
n (x))− f(Ẑω))| : ‖f‖BL ≤ 1}

≤ sup{E|f(Ẑθ
−nω
n (x)) − f(Ẑω)| : ‖f‖BL ≤ 1}

≤ Ed(Ẑθ
−nω
n (x), Ẑω),(14)

we see that Theorem 2:(3) is an immediate consequence of Theorem 1.

Proof (Theorem 2:(4)). We shall prove that the probability measures {µω} satisfy
the invariance equation (4). To do this, we prove that the random Markov chains
{Zωn (x)} has Feller continuous kernels which in our terminology means that g :
X → R being a bounded and continuous function implies that the mapping

x 7→ Eg(wIω0 (x))(15)

is continuous (for each fixed ω ∈ Ω). It is well known that the limiting probability
measure of an ergodic homogeneous Markov chain with the Feller property is invari-
ant. An analogous statement holds also in our more general situation for Markov
chains satisfying property (15). To be self-contained, we explain why before proving
that this property is satisfied.

Since

Eg(Zθ
−n(θω)
n (x)) =

∫
X

Eg(wIω0 (y))Pr(Zθ
−(n−1)ω
n−1 (x) ∈ dy),(16)

the invariance equation ∫
X

gdµθω =
∫
X

Eg(wIω0 )dµω(17)

will follow by taking limits in (16) justified by using the continuity in (15) and the
bounded convergence theorem.

To prove (15), let {yn} be a sequence in X with limn→∞ yn = y. Since, for fixed
ε > 0, by the Chebyshev inequality, and from assumption (A),

Pr(d(wIω0 (yn), wIω0 (y)) > ε) ≤
Ed(wIω0 (yn), wIω0 (y))

ε
≤ cd(yn, y)

ε
→ 0

as n→∞, we have proved that wIω0 (yn) converges in probability to wIω0 (y) for any
fixed ω ∈ Ω. Thus for any bounded and continuous function g

lim
n→∞

Eg(wIω0 (yn)) = Eg(wIω0 (y)),

and (15) is established. Thus (17), which equivalently can be expressed as (4),
holds true and Theorem 2:(4) is proved.

Proof (Theorem 2:(5)). The validity of (5) is an immediate consequence of (2) in
the case n = 0.

This completes the proofs of Theorems 1 and 2.
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3. The invariant probability regime

In this section we will show, that in the case of a countable set of m to 1
maps, there is a generic structure of the family of probability measures obtained in
Theorem 2. In the paper by Dubins and Freedman [8], the case corresponding to
when Ω consists of one point was considered. We shall prove here, as suggested in
Kifer [11], that their ideas can be extended also to give results in our setting.

A finite non-negative measure λ is called continuous if λ({x}) = 0 for each x ∈ X
and discrete if

∑
x∈X λ({x}) = λ(X). (We interpret the latter sum as a sum over

the (at most countable) set of x ∈ X such that λ({x}) > 0.)
We have the following theorem.

Theorem 3. Suppose that
(C) For each map ws and x ∈ X, w−1

s {x} is at most a countable set.
(D) The family of maps is at most countable.
Then the family of measures {µω}, obtained in Theorem 2 either contains only

discrete or only continuous probability measures.

Proof. For each ω ∈ Ω, let µωdisk (the discrete part of µω) denote µω restricted to
the set of x ∈ X with µω({x}) > 0, and µωcont (the continuous part of µω) denote
µω restricted to the remaining part of X . For each ω ∈ Ω, we can thus write
µω = µωdisk + µωcont.

Let us for non-negative measures λ on X define the operators Tωλ :=∫
λ ◦ w−1

s dPω(s). The invariance equation (4) may then be expressed as

µθω = Tωµω.

Since by definition, (4) and assumption (C), for any x ∈ X ,

µθωdisk({x}) = µθω({x}) = Tωµω({x}) = Tωµωdisk({x}),

and since, following from assumption (D), Tµωdisk is a discrete measure, we have
that µθωdisk = Tµωdisk. Thus the family of measures {µωdisk} and consequently also the
family {µωcont} satisfy the invariance equation (4). From the uniqueness of {µω}
satisfying (4) and (5) (see Theorem 2 above), this implies that {µω} consist of
probability measures of pure type, and the theorem is proved.

4. Dimensions

In this section, we are going to consider the local behavior of the limiting family
of probability measures and give a dimension formula. To obtain this, we need to
consider a particular setup.

Our setup is the following: Let (Ω,F , P ) be a probability space with an invertible
P -preserving ergodic transformation θ : Ω → Ω. For each ω ∈ Ω, let Fω =
{wω1 , ..., wωm(ω)}, be a family of C1 maps of [0, 1] into itself with continuous first
order derivatives satisfying 0 < |(wωi )′(x)| < ∞ (for all x ∈ [0, 1] and all i, 1 ≤
i ≤ m(ω), where m = m(ω) ≥ 2 is an integer-valued random variable). Let
{pω1 , ..., pωm(ω)} be associated probabilities i.e. non-negative real numbers such that

for each ω ∈ Ω,
∑m(ω)

i=1 pωi = 1, and assume the functions pωj and (wωj )′(x) are
measurable in ω. Define the function i : [0, 1)× Ω→ {1, ...,m(ω)} as i(x, ω) = j if∑j−1
q=1 p

ω
q ≤ x <

∑j
q=1 p

ω
q , and for a sequence i = i1i2i3 . . . ∈ [0, 1)N let



MARKOV CHAINS IN RANDOM ENVIRONMENTS 3555

Ŝωn (i) = wθ
−1ω
i(i1,θ−1ω) ◦ · · · ◦ wθ

−nω
i(in,θ−nω), n ≥ 1, Ŝω0 (i) = id,

where id denotes the identity map.
We will make the following assumptions.
(E) For any ω ∈ Ω,

wωi ((0, 1)) ∩ wωj ((0, 1)) = ∅, 1 ≤ i, j ≤ m(ω), i 6= j.

(F ) There exists a constant c0 such that,

pmax := sup
ω∈Ω

max
1≤i≤m(ω)

pωi < c0 < 1

and ∫
Ω

m(ω)∑
i=1

pωi log pωi dP (ω) > −∞.

(G)
∫

Ω
log min1≤i≤m(ω) infx∈[0,1] |(wωi )′(x)|dP (ω) > −∞

and
∫

Ω

∑m(ω)
i=1 pωi log+ supx∈[0,1] |(wωi )′(x)|dP (ω) <∞.

Denote by ν, by the Kolmogorov extension theorem, the unique probability
measure on Σ := [0, 1]N generated by the finite dimensional Lebesgue measures.
For a bounded set K, let diam(K) denotes its diameter (in the usual Euclidean
metric).

We have the following lemma.

Lemma 1. Assumptions (E) and (F ) imply that for all ω ∈ Ω,

lim sup
n→∞

c−n0 diam(Ŝωn (i)([0, 1])) ≤ 1, for ν a.a. i.

(The proof of Lemma 1 is given later in this section.)
Using this lemma, we can, for ν-almost all sequences i = i1i2i3 . . . ∈ Σ and all

ω ∈ Ω, define

Ẑω(i) := lim
n→∞

wθ
−1ω
i(i1,θ−1ω) ◦ · · · ◦ wθ

−nω
i(in ,θ−nω)(x),

where x ∈ [0, 1] can be chosen arbitrary since the limit does not depend on x.
Define, for all ω ∈ Ω, µω(·) := ν(i : Ẑω(i) ∈ ·). Note that

µω(wθ
−1ω
i1 ◦ wθ−2ω

i2 ◦ · · · ◦ wθ−nωin ([0, 1])) = pθ
−1ω
i1 pθ

−2ω
i2 · · · pθ−nωin ,

for any possible index sequence i1, ..., in, and any n.
Let B(x, r) denote a ball centered in x of radius r (in Euclidean metric which

we will denote here by d).
We have the following theorem.

Theorem 4. Under assumptions (E)-(G) above, for P a.a. ω ∈ Ω, we have that
µω is exact dimensional, and the pointwise dimension is given by

dim(µ) :=

∫
Ω

∑m(ω)
i=1 pωi log pωi dP (ω)∫

Ω

∑m(ω)
i=1 pωi

∫
[0,1]

log |(wωi )′(x)|dµω(x)dP (ω)

i.e. limr→0
logµω(B(x,r))

log r exists, does not depend on x or ω and is equal to the above
expression for µω a.a. x ∈ [0, 1] for P a.a. ω ∈ Ω.
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Remark 6. Theorem 4 implies that the Hausdorff and entropy (or Rényi) dimen-
sions exist and coincide with dim(µ). For a proof of this and further correspon-
dences between different notions of dimension, see Young [23].

Remark 7. A related result in the case |Ω| = 1 can be found in Strichartz [22]. Note
that we make no contractivity assumptions here except the implicit contraction
condition provided by assumption (E).

Remark 8. Assumption (E) is the key for convenient local characterizations of µω.
Even in the case of two affine maps and |Ω| = 1 a relaxation of (E) to allow overlaps
leads to very hard local estimation problems. For an overview of an interesting
particular case of this corresponding to Bernoulli convolutions, see Peres et al. [16].

Remark 9. Theorem 4 implies results about the frequency of digits in random base
expansions. For more on this topic and related results, see Kifer [10].

Proof (Theorem 4). Consider a fixed ω ∈ Ω and an i ∈ Σ for which Ẑω(i) is well
defined. For such i’s define the functions,

dωn(i) = d(Ẑω(i), ∂Ŝωn (i)([0, 1])) := min{d(Ẑω(i), Ŝωn (i)(0)), d(Ẑω(i), Ŝωn (i)(1))},
(18)

where ∂Ŝωn (i)([0, 1]) denotes the boundary of the set Ŝωn (i)([0, 1]).
Letting φ : Σ → Σ denote the shift operator, i.e. φ(i1i2 . . . ) = i2i3 . . . , we see

from the definitions that for any n,

Ẑω(i) = Ŝωn (i)(Ẑθ
−nω(φn(i))).

Consequently, by the mean value theorem and the monotonicity assumptions,

inf
x∈[0,1]

|(Ŝωn (i))′(x)|dθ
−nω

0 (φn(i)) ≤ dωn(i) ≤ sup
x∈[0,1]

|(Ŝωn (i))′(x)|.(19)

Since dωn is (uniformly) non-increasing in n and tends to 0 by Lemma 1, we have
that for each 0 < r < dω0 (i), there exists an integer n(r)(ω, i) such that

dωn(r)(ω,i)+1(i) ≤ r < dωn(r)(ω,i)(i),

and thus B(Ẑω(i), r) ⊆ Ŝωn(r)(i)([0, 1]). (For notational convenience we will some-
times drop the (ω, i) in what follows.)

It follows that, if x = Ẑω,

logµω(B(x, r))
log r

≥
logµω(Ŝωn(r)([0, 1]))

log r

≥
logµω(Ŝωn(r)([0, 1]))

log dωn(r)+1

≥
logµω(Ŝωn(r)([0, 1]))

n(r)
n(r)

log dωn(r)+1

.(20)
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Define Rn = Rn(ω, i) by Rn(ω, i) := diam(Ŝωn (i)([0, 1])). By definition Ŝωn ([0, 1])
⊆ B(Ẑω, Rn). It follows that, if x = Ẑω

log µω(B(x,Rn))
logRn

≤ logµω(Ŝωn ([0, 1]))
logRn

≤ logµω(Ŝωn ([0, 1]))
n

n

logRn
.(21)

We will see that the proof of Theorem 4 will follow from (20) and (21) and the
following three lemmas:

Lemma 2 (The entropy). Assumptions (E)-(F ) imply that

lim
n→∞

logµω(Ŝωn ([0, 1]))
n

=
∫

Ω

m(ω)∑
i=1

pωi log pωi dP (ω), P × ν a.s.

Lemma 3 (The Lyapunov exponent). Assumptions (E)-(G) imply that

lim
n→∞

log supx∈[0,1] |(Ŝωn )′(x)|
n

= lim
n→∞

log infx∈[0,1] |(Ŝωn )′(x)|
n

=
∫

Ω

m(ω)∑
i=1

pωi

∫
[0,1]

log |(wωi )′(x)|dµω(x)dP (ω), P × ν a.s.

Lemma 4. Assumptions (E)-(G) imply that

lim
n→∞

log dθ
−nω

0 (φn(i))
n

= 0 for P × ν a.a. (ω, i).

In fact, from (20), (19), Lemma 2, Lemma 3 and Lemma 4 we see that

lim inf
r→0

logµω(B(x, r))
log r

≥ lim inf
r→0

logµω(Ŝωn(r)(i)([0, 1]))

n(r)
n(r)

log dωn(r)+1(i)

≥ lim inf
r→0

[
logµω(Ŝωn(r)(i)([0, 1]))

n(r)

× n(r)
log infx∈[0,1] |(Ŝωn(r)+1(i))′(x)| + log dθ−(n(r)+1)ω

0 (φn(r)+1(i))

]
= dim(µ), P × ν a.s.(22)

(Note, as a consequence of Lemma 4, that n(r)→∞ as r → 0, P × ν a.s.)
From the mean value theorem and monotonicity of the maps, we see that

inf
x∈[0,1]

|(Ŝωn )′(x)| ≤ Rn ≤ sup
x∈[0,1]

|(Ŝωn )′(x)|.
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By Lemma 3 this implies that

lim
n→∞

log diam(Ŝωn ([0, 1]))
n

= lim
n→∞

logRn
n

=
∫

Ω

m(ω)∑
i=1

pωi

∫
[0,1]

log |(wωi )′(x)|dµω(x)dP (ω) < 0,(23)

P × ν a.s.,

where the last inequality is a consequence of Lemma 1. Since {Rn} is non-increasing
in n and tends to 0 a.s., we obtain that for any (small) r there is a.s. an n such
that Rn+1 ≤ r ≤ Rn.

Thus

logµω(B(x, r))
log r

≤ logµω(B(x,Rn+1))
logRn

,

and this combined with (21), (23) and Lemma 2 implies that

lim sup
r→0

logµω(B(x, r))
log r

≤ dim(µ), P × ν a.s.(24)

From (22) and (24) we therefore see that to complete the proof it remains to
prove the lemmata.

Proof (Lemma 1). Since (trivially) the number of disjoint “iterated intervals” of
diameter> x can be at most 1/x, we have using assumptions (E) and (F ) that

ν(
∞⋃
n=1

{i : diam(Ŝωn (i)([0, 1])) > cn0}) ≤
∞∑
n=1

c−n0 pnmax <∞.

By the Borel-Cantelli lemma this proves Lemma 1.

Proof (Lemma 2). Since by assumption (E),

µω(Ŝωn (i)([0, 1])) = pθ
−1ω
i(i1,θ−1ω)p

θ−2ω
i(i2,θ−2ω) · · · pθ

−nω
i(in,θ−nω),(25)

we obtain from assumption (F ) and Birkhoff’s ergodic theorem that

lim
n→∞

logµω(Ŝωn (i)([0, 1]))
n

= lim
n→∞

∑n
j=1 log pθ

−jω
i(ij ,θ−jω)

n

=
∫

Ω

m(ω)∑
i=1

pωi log pωi dP (ω) for P × ν a.a. (ω, i).

Proof (Lemma 3). Since by the chain rule,

(Ŝωn (i))′(x) = (wθ
−1ω
i(i1,θ−1ω))

′(wθ
−2ω
i(i2,θ−2ω) ◦ · · · ◦ wθ

−nω
i(in,θ−nω)(x))

·(wθ−2ω
i(i2,θ−2ω))

′(wθ
−3ω
i(i3,θ−3ω) ◦ · · · ◦ wθ

−nω
i(in,θ−nω)(x))

· · · (wθ−nωi(in,θ−nω))
′(x),
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it follows that for any fixed m,

log sup
x∈[0,1]

|(Ŝωn (i))′(x)| ≤
n∑
k=1

log sup
x∈Ŝθ−kωn−k (φki)([0,1])

|(wθ−kωi(ik ,θ−kω))
′(x)|

≤
n−m∑
k=1

log sup
x∈Ŝθ−kωm (φki)([0,1])

|(wθ
−kω
i(ik ,θ−kω))

′(x)|

+
n∑

k=n−m+1

log sup
x∈[0,1]

|(wθ
−kω
i(ik ,θ−kω))

′(x)|(26)

where in the last inequality we used the fact that the sets Ŝωn (i)([0, 1]) are nested
and non-increasing in n.

We obtain similarly, that

log inf
x∈[0,1]

|(Ŝωn (i))′(x)| ≥
n∑
k=1

log inf
x∈Ŝθ−kωn−k (φki)([0,1])

|(wθkωi(ik ,θ−kω))
′(x)|

≥
n−m∑
k=1

log inf
x∈Ŝθ−kωm (φki)([0,1])

|(wθ−kωi(ik ,θ−kω))
′(x)|

+
n∑

k=n−m+1

log inf
x∈[0,1]

|(wθ−kωi(ik ,θ−kω))
′(x)|.(27)

It follows from (26), assumption (G) and Birkhoff’s ergodic theorem, that

lim sup
n→∞

log supx∈[0,1] |(Ŝωn (i))′(x)|
n

≤ lim sup
n→∞

∑n−m
k=1 log supx∈Ŝθ−kωm (φki)([0,1]) |(wθ

−kω
i(ik ,θ−kω))

′(x)|
n−m

n−m
n

+ lim sup
n→∞

∑n
k=n−m+1 log supx∈[0,1] |(wθ

−kω
i(ik ,θ−kω))

′(x)|
n

=
∫

Ω

∫
Σ

m(ω)∑
i=1

pωi log sup
x∈Ŝωm(i)([0,1])

|(wωi )′(x)|dν(i)dP (ω) for P × ν a.a. (ω, i).

(28)

Similarly from (27), assumption (G) and Birkhoff’s ergodic theorem it follows that

lim inf
n→∞

log infx∈[0,1] |(Ŝωn )′(x)|
n

≥
∫

Ω

∫
Σ

m(ω)∑
i=1

pωi log inf
x∈Ŝωm(i)([0,1])

|(wωi )′(x)|dν(i)dP (ω), P × ν a.s.(29)
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From (28) and the monotone convergence theorem (using Lemma 1 and the fact
that all maps have continuous derivatives) it follows that

lim sup
n→∞

log supx∈[0,1] |(Ŝωn (i))′(x)|
n

≤ lim
n→∞

∫
Ω

∫
Σ

m(ω)∑
i=1

pωi log sup
x∈Ŝωn(i)([0,1])

|(wωi )′(x)|dν(i)dP (ω)

=
∫

Ω

∫
Σ

m(ω)∑
i=1

pωi log |(wωi )′(Ẑω(i))|dν(i)dP (ω) for P × ν a.a. (ω, i)

and similarly from (29),

lim inf
n→∞

log infx∈[0,1] |(Ŝωn )′(x)|
n

≥ lim
n→∞

∫
Ω

∫
Σ

m(ω)∑
i=1

pωi log inf
x∈Ŝωn(i)([0,1])

|(wωi )′(x)|dν(i)dP (ω)

=
∫

Ω

∫
Σ

m(ω)∑
i=1

pωi log |(wωi )′(Ẑω(i))|dν(i)dP (ω), P × ν a.s.

Since by a change of variables∫
Ω

∫
Σ

m(ω)∑
i=1

pωi log |(wωi )′(Ẑω(i))|dν(i)dP (ω)

=
∫

Ω

m(ω)∑
i=1

∫
[0,1]

pωi log |(wωi )′(x)|dµω(x)dP (ω),

we see that the proof of Lemma 3 is completed.

Proof (Lemma 4). We need to show that

lim
n→∞

log dθ
−nω

0 (φn(i))
n

= 0 for P × ν a.a. (ω, i).

Define for each fixed ω ∈ Ω, cω := min1≤i≤m(ω) infx∈[0,1] |(wωi )′(x)|. Let

Aωn = {i : dθ
−nω

0 (φn(i)) < cθ
−(n+1)ωcθ

−(n+2)ω · · · cθ−(n+b
√
nc)ω},

or equivalently expressed

Aωn =
{

i :
∣∣∣ log dθ

−nω
0 (φn(i))
n

∣∣∣ > ∣∣∣∑n+b√nc
k=n+1 log cθ

−kω

n

∣∣∣}.(30)

(Recall the definition of dωn in equation (18).) Since i = i1i2 . . . belonging to
Aωn forces Sθ

−nω
b
√
nc (φn(i)) to assume at most two values (corresponding to the two

intervals closest to the endpoints of [0, 1]), we obtain from (25) that

ν(Aωn) ≤ 2pb
√
nc

max .
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From assumption (F ) it follows that
∑∞

n=1 ν(Aωn) <∞, which by the Borel-Cantelli
lemma implies that ν(Aωn i.o.) = 0. Thus

lim sup
n→∞

∣∣∣ log dθ
−nω

0 (φn(i))
n

∣∣∣ ≤ lim sup
n→∞

∣∣∣∑n+b
√
nc

k=n+1 log cθ
−kω

n

∣∣∣,(31)

for ν a.a. i.
Now since by using assumption (G) and Birkhoff’s ergodic theorem,

lim
n→∞

∑n+b√nc
k=n+1 log cθ

−kω

n
= lim
n→∞

∑n+b√nc
k=1 log cθ

−kω

n+ b
√
nc

(n+ b
√
nc)

n

− lim
n→∞

∑n
k=1 log cθ

−kω

n
= 0, P a.s.,(32)

we see from (31) and (32) that

lim
n→∞

∣∣∣ log dθ
−nω

0 (φn(i))
n

∣∣∣ = 0 for P × ν a.a. (ω, i),

which completes the proof of Lemma 4.

Theorem 4 is proved.
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