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This paper was written in 1994, but was never published because I had overlooked some
existing papers containing some of the inequalities. Because of some recent interest in one
of the inequalities, which does not seem to be published anywhere else, it has now been
lightly edited and made available here. 2 September, 2016

Abstract. A survey is given of some Chernoff type bounds for the tail probabilities P(X −
EX ≥ a) and P(X − EX ≤ a) when X is a random variable that can be written as a sum
of indicator variables that are either independent or negatively related. Most bounds are

previously known and some comparisons are made.

1. Introduction and conclusions

The purpose of this paper is to give a survey of some simple upper bounds for the
probabilities P(X − EX ≤ −a) and P(X − EX ≥ a), where X is a random variable that
can be written as a sum I1 + · · · + In of 0–1 (indicator) random variables. We consider
both independent and dependent variables Ii (with strong restrictions in the dependent
case). Many of the inequalities extend to sums of more general bounded variables, but we
consider for simplicty only the indicator case.

Most of the bounds are known, see in particular Bennett (1962) and Hoeffding (1963),
but are included for comparison and (partial) completeness. A few versions seem to be
new. Many of the inequalities appear in various places, for example Janson,  Luczak and
Ruciński (2000), Chapter 2. See also the book Boucheron, Lugosi and Massart (2013)
which presents several of these bounds and many extensions to other situation.

Independent identically distributed summands. The simplest case is when the in-
dicator variables Ii are independent and identically distributed, Ii ∼ Be(p), with 0 < p < 1
(avoiding trivial cases); then X has the binomial distribution Bi(n, p). This case has been
studied by many authors, giving bounds or asymptotic results (sometimes in greater gen-
erality); see for example Khintchine (1929), Cramér (1938), Feller (1943), Chernoff (1952),
Bahadur and Rao (1960), Bennett (1962), Hoeffding (1963), Littlewood (1969), and the
further references given in these papers.

We are here interested in explicit bounds for finite n rather than asymptotic results.
One simple but powerful such bound was given by Chernoff (1952); since for every t ≥ 0,

P(X ≥ EX + a) ≤ e−t(EX+a) E etX (1.1)
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and EetX = (1 + p(et− 1))n, we obtain by simple calculus, letting λ = EX and assuming
0 ≤ a ≤ n− λ,

P(X ≥ EX + a) ≤ inf
t≥0

exp
(
−at− npt+ n ln(1 + p(et − 1))

)
= exp

(
−(λ+ a) ln

λ+ a

λ
− (n− λ− a) ln

n− λ− a
n− λ

)
. (1.2)

Similarly, for 0 ≤ a ≤ λ,

P(X ≤ EX − a) ≤ inf
t≥0

exp
(
−at+ npt+ n ln(1 + p(e−t − 1))

)
= exp

(
−(λ− a) ln

λ− a
λ
− (n− λ+ a) ln

n− λ+ a

n− λ

)
. (1.3)

Chernoff (1952) proved also that the estimates (1.2) and (1.3) are asymptotically sharp in
the sense that if n→∞ with a/n and p fixed, then equality holds within factors 1 + o(1)
in the exponent.

Simpler but (slightly) cruder bounds are easily obtained by finding suitable upper
bounds for the right hand sides of (1.2) and (1.3), see for example Alon and Spencer
(1992), Appendix A. We state here some, more or less well-known, such bounds. Proofs
are given in Section 2.

Theorem 1. Suppose that X ∼ Bi(n, p) and let q = 1− p. Then, for every a ≥ 0,

P(X ≥ EX + a) ≤ exp

(
− a2

2(npq + a(q − p)/3)

)
≤ exp

(
− a2

2(npq + a/3)

)
≤ exp

(
− a2

2npq

(
1− a

3npq

))
, (1.4)

P(X ≥ EX + a) ≤ exp

(
−np

((
1 +

a

np

)
ln
(

1 +
a

np

)
− a

np

))
, (1.5)

P(X ≥ EX + a) ≤ exp

(
− a2

2np(1 + a/3np)

)
≤ exp

(
− a2

2np

(
1− a

3np

))
, (1.6)

P(X ≤ EX − a) ≤ exp

(
− a2

2(npq − a(q − p)/3)

)
≤ exp

(
− a2

2(npq + a/3)

)
≤ exp

(
− a2

2npq

(
1− a

3npq

))
, (1.7)

P(X ≤ EX − a) ≤ exp

(
−np

((
1− a

np

)
ln
(

1− a

np

)
+

a

np

))
, (1.8)

P(X ≤ EX − a) ≤ exp
(
− a2

2np

)
. (1.9)

Moreover, if 0 ≤ p ≤ 1/2, then

P(X ≤ EX − a) ≤ exp
(
− a2

2npq

)
. (1.10)

Remark 1. The estimates (1.4) and (1.7) (as well as (1.2) and (1.3)) are obvious “mirror
images” of each other, and are equivalent by the substitution X → n−X. On the other
hand, the remaining estimates in Theorem 1 are asymmetric, and are useful mainly when
p is small.
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Remark 2. Note that (1.5), (1.6), (1.8) and (1.9) use n and p only in the combination
np = λ = EX.

Remark 3. It may also be observed that if we replace np by λ, then (1.5), (1.6), (1.8)
and (1.9) are (e.g. by continuity) valid also when X ∼ Po(λ); in fact, (1.5) and (1.8) then
become the Chernoff bounds for the Poisson distribution. These Chernoff bounds too are
asymptotically sharp in the sense, considering for example (1.5), that if c > 0 is fixed and
c1 > (1 + c) ln(1 + c)− c, then P(X ≥ EX + cλ) > exp(−c1λ) for X ∼ Po(λ) with λ large,
and thus also for some X ∼ Bi(n, p) with np large and p small. In particular this implies
that the simple bound (1.9) is not valid for P(X ≥ EX + a). This implies further, by
considering n−X, that (1.10) cannot hold without some restriction on p.

Independent summands with different distributions. The Chernoff bounds given
above for the binomial distribution are easily extended to the case when the 0–1 variables
Ii are independent with different distributions, Ii ∼ Be(pi). In fact, as is well-known
(see for example Alon and Spencer (1992), Appendix A), if λ = EX =

∑n
1 pi, p = λ/n

(the average of p1, . . . , pn), and we let X0 ∼ Bi(n, p) be a binomially distributed random
variable with the same n and expectation as X, then by Jensen’s inequality for the convex
function x 7→ − ln

(
1 + x(et − 1)

)
,

E etX =

n∏
1

(
1 + pi(e

t − 1)
)
≤
(
1 + p(et − 1)

)n
= E etX0 , −∞ < t <∞. (1.11)

Consequently,

P(X ≥ EX + a) ≤ e−ta−tEX E etX ≤ e−ta−tEX0 E etX0 , (1.12)

and thus every Chernoff type bound for the binomial variable X0 derived from (1.1),
applies also to X.

Theorem 2. The bounds (1.2)–(1.10) hold also when X =
∑n

1 Ii where Ii ∼ Be(pi) are
independent indicator variables and p = EX/n, q = 1− p. �

Remark 4. We do not claim that the actual tail probability P(X0 ≥ EX + a) is larger
than P(X ≥ EX + a), and indeed this is in general false as is shown by the example
n = 2, p1 = 1/5, p2 = 3/5, where P(X ≥ 1) = 17/25 while X0 ∼ Bi(2, 2/5) and
P(X0 ≥ 1) = 16/25.

As mentioned above, the bounds (1.2) and (1.3) are asymptotically sharp for the bi-
nomial distribution, but that is no longer generally true when the 0–1 variables have
different distributions. In fact, a Taylor expansion shows that the exponent in (1.2) or

(1.3) is − a2

2np(1−p)
(
1 + o(1)

)
provided a = o

(
np(1 − p)

)
, cf. (1.4) and (1.7). In the bino-

mial case, this equals − a2

2σ2

(
1 + o(1)

)
, with σ2 = VarX, which is what one would expect

from normal approximation heuristics; in general, however, σ2 = VarX may be much
smaller than np(1 − p), and it would be advantageous to have better bounds with expo-

nents − a2

2σ2

(
1 + o(1)

)
for moderately large a. This is achieved by Bennett’s inequality, see

Bennett (1962) and Hoeffding (1963), which we state as (1.13) in the next theorem; the
simple consequence (1.14) is known as Bernstein’s inequality, see Boucheron, Lugosi and
Massart (2013). Note that these inequalitites give bounds depending on a and σ2 only,
with an exponent of the expected order for a = o(σ2). We give a proof in Section 3 using
(1.1) as above, but doing a more careful estimation of E etX than (1.11).
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Theorem 3. Let X be a random variable and suppose that there exist independent 0–1

variables Ii ∼ Be(pi), i = 1, . . . , n, such that X
d
=
∑n

1 Ii. Let λ = EX and σ2 = VarX.
Then

(i) If a ≥ 0, then

P(X ≥ EX + a) ≤ exp

(
−σ2

((
1 +

a

σ2

)
ln
(

1 +
a

σ2

)
− a

σ2

))
(1.13)

(ii) If a ≥ 0, then

P(X ≥ EX + a) ≤ exp

(
− a2

2σ2

/(
1 +

a

3σ2

))
≤ exp

(
− a2

2σ2

(
1− a

3σ2

))
. (1.14)

(iii) If a ≥ cσ2, with c > 0, then

P(X ≥ EX + a) ≤ exp
(
−((1 + c−1) ln(1 + c)− 1)a

)
. (1.15)

The same estimates hold for P(X ≤ EX−a), and thus P(|X−EX| ≥ a) may be estimated
by twice the right hand sides in (1.13)–(1.15).

(iv) Moreover, if a ≥ 0 and σ2 ≥ λ/2, then

P(X ≤ EX − a) ≤ exp
(
− a2

2σ2

)
. (1.16)

Remark 5. The estimates (1.13) and (1.14) are very similar to (1.5) and (1.6); the only
difference is that np = λ is replaced by σ2 < λ. It is easily seen that this always improves
the bound in (1.5) and the first bound in (1.6). On the other hand, the bounds for
P(X ≤ EX−a) (except (1.16)) are somewhat different from the corresponding bounds in
Theorem 1, because of the symmetry of the bounds in Theorem 3.

Remark 6. It is easily seen (by approximating a Poisson distribution) that the constant
in (iii) is best possible. In particular, it follows that (1.16) cannot hold without restriction.

Much more precise estimates of the tail probabilities for sums of independent, but not
necessarily identically distributed, random variables were obtained by Feller (1943) using
different methods (conjugated distributions as in Cramér (1938) together with a Berry–
Esseen estimate), and it is interesting to compare our result with Feller’s. Feller’s result
(for our case, using λn = 1/σ in Feller (1943)) is, for 0 < a < σ2/12,

P(X ≥ EX + a) = e−
x2

2 Q(x)
(

1− Φ(x) +
θ(x)

σ
e−x

2/2
)
, (1.17)

where x = a/σ, |θ(x)| < 9, Φ is the normal distribution function and

Q(x) =

∞∑
ν=1

qνx
ν , (1.18)

where qν depends on the first ν + 2 moments of X and

|qν | <
1

7

(12

σ

)ν
. (1.19)
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If, say, σ ≤ a ≤ σ2/24, this yields, using 1− Φ(x) ≤ (2π)−1/2x−1e−x
2/2 for x > 0,

P(X ≥ EX + a) < exp
(
−x

2

2

(
1 +Q(x)

))
= exp

(
− a2

2σ2

(
1 +Q

( a
σ

)))
< exp

(
− a2

2σ2

(
1− 24

7

a

σ2

))
. (1.20)

For P(X ≤ EX − a) we have the same estimates if we replace Q(x) by Q(−x) (and θ(x)
by some θ′(x)); this follows by considering n−X.

The bound (1.20) is similar to the ones given in Theorem 3, in particular (1.14). It is
somewhat inferior to (1.14) since the constant in the second order term in the exponent is
worse, and the range of a is restricted, but for applications they are essentially equivalent.

Note also that Feller’s result has other advantages. First, (1.17) is an equality (although
the exact value of θ(x) is unspecified), and it leads also to a lower bound similar to (1.20)
and to asymptotic results. In particular, simple asymptotic results follow when a/σ2 → 0
and thus Q(x) → 0. Secondly, Feller (1943) describes how the coefficients qν may be
explicitly expressed in terms of the semi-invariants κj of X (and thus in terms of the
moments); for example (the sign seems to be wrong in Feller (1943), (2.18)–(2.19)),

q1 = − κ3

3σ3
, (1.21)

q2 = − κ4

12σ4
+

1

4σ6
κ2
3 . (1.22)

(Thus, q1 = − 1
3γ1 and q2 = − 1

12γ2 + 1
4γ

2
1 , where γ1 and γ2 are the skewness and excess of

X, respectively.) For example, using (1.21) for q1 and (1.19) for qν , ν ≥ 2, we obtain for
σ ≤ a ≤ σ2/24, instead of (1.20),

P(X ≥ EX + a) ≤ exp

(
− a2

2σ2

(
1− 288

7

a2

σ4
− aκ3

3σ4

))
, (1.23)

which yields an improvement in cases when κ3 = E(X−EX)3 is known and either negative
or not to large positive.

Dependent summands.
Let us now consider the case of dependent 0–1 variables Ii. Of course any bounded

non-negative integer valued random variable X can be written as a sum of dependent 0–1
variables, so nothing can be said in general. We will here consider only 0–1 variables that
are negatively related in the following sense, cf. Barbour, Holst and Janson (1992).

(Note that large deviation bounds for a class of sums of positively related indicators are
given in Janson (1990) and Barbour, Holst and Janson (1992), Theorem 2.S. In this case
only the lower tail probabilities P(X ≤ EX − a) have nice upper bounds.)

Definition. The indicator random variables (Ii)
n
i=1 (defined on the same probability

space) are negatively related if for each j ≤ n there exist further random variables (Jij)
n
i=1,

defined on the same probability space (or an extension of it), such that the distribution
of the random vector (Jij)

n
i=1 equals the conditional distribution of (Ii)

n
i=1 given Ij = 1,

and, moreover, for every i with i 6= j, J iij ≤ Ii.

Example 1. (Hypergeometric distribution.) Let m, n and N be given positive integers
with max(m,n) ≤ N . Given N urns, labelled 1, . . . , N , and m balls, put the balls at
random into m different urns (drawing without replacement), and let X be the total
number of balls in urns 1, . . . , n. Clearly X =

∑n
1 Ii, where Ii equals 1 if urn i contains
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a ball. In this case it is easy to show that the indicators Ii are negatively related by
explicitly construction Ji, as follows. After randomly distributing the balls as above, and
recording Ii, we ensure that there is a ball in urn j by “cheating”: if urn j is empty we
select one of the balls at random and move it to urn j. Let Jij = 1 if urn i now contains
a ball. It is clear that (Jij) has the right distribution, and that Jij ≤ Ii for i 6= j.

Example 2. Distribute m balls into n urns, but this time put the balls one by one at
random, independently of the other choices of urn (drawing with replacement). Let X be
the number of empty urns. Clearly X =

∑n
1 Ii, where Ii = 1 if urn i is empty. These

indicators are negativlely related; this follow by a construction very similar to the one
in Example 1, removing all balls (if any) in urn i and redistributing them (repeating if
necessary).

Further examples of negatively related variables are given in Barbour, Holst and Janson
(1992), where also some general results are established. In particular, it is proven (a special
case of Corollary 2.D.1) that the variables Ii, i = 1, . . . , n, are negatively related if and
only if Ij and φ(I1, . . . , Ij−1, Ij+1, . . . , In) are negatively correlated for every j and every
indicator function φ that is increasing in each variable. (Pairwise negative correlation of
the Ii is not enough.) It follows immediately that the variables (1− Ii)ni=1 are negatively
related if (Ii)

n
i=1 are. It follows also that variables are negatively related if they are

negatively associated in the sense of Joag-Dev and Proschan (1983).

Theorem 4. Suppose that X
d
=
∑n

1 Ii, where Ii ∼ Be(pi) are negatively related indicator

variables. Let Ĩi, i = 1, . . . , n, be independent indicator variables with Ĩi ∼ Be(pi), and

put X̃ =
∑n

1 Ĩi. Then, for every real t,

E etX ≤ E etX̃ .

Consequently, any Chernoff type bound for X̃ applies also to X. In particular, (1.2)–(1.10)
hold with p = EX/n and q = 1− p; for example, with λ = EX,

P(X ≥ EX + a) ≤ exp

(
− a2

2λ(1 + a/3λ)

)
≤ exp

(
− a

2

2λ

(
1− a

3λ

))
,

P(X ≤ EX − a) ≤ exp

(
− a

2

2λ

)
.

Of course, also the bounds in Theorem 3 (applied to X̃) apply to X. The problem is

that we have to use σ2 = Var(X̃) instead of Var(X), which may be much smaller. In fact,
the bounds in Theorem 3 are in general false with σ2 = VarX in the dependent case;
the following theorem implies that it is impossible to have a general bound that is, say,
exp(−a2/3σ2) when a = 4σ.

Theorem 5. Let α > 0, 0 < c < 1/e and A < ∞. There exists a random variable X
which is a finite sum of negatively related indicators such that σ2 = VarX > A and, with
a = ασ,

P(X > EX + a) > ce−a/σ. (1.24)

Nevertheless, there are cases where it is possible to do better. A striking example is
based on the result by Vatutin and Mikhailov (1982) that certain random variables that
occur in some occupancy problems, and have natural representations as sums of nega-
tively related indicators (with the same expectation), also can be represented as sums of
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independent indicators with different expectations. (The proof is algebraic, and based on
showing that the probability generating function has only real roots; there is no (known)
probabilistic interpretation of these indicators, which in general have irrational expecta-
tions.) Their result includes the variables in Examples 1 and 2 (using in their notation
s1 = N − n, s2 = N −m for Example 1 and s1 = · · · = sm = 1 for Example 2).

Consequently, the variables in Examples 1 and 2 actually satisfy the hypothesis of
Theorem 3 (although we do not know the pi explicitly). Hence we can apply Theorem 3;
note that the bounds in Theorem 3 involve only σ2 and possibly λ, and not the unknown
pi. (In fact, this application was one of the motivations for finding bounds of the form
given in Theorem 3.)

Theorem 6. Let X be either hypergeometric as in Example 1, or as in Example 2. Then
the conclusions of Theorem 3 hold, with λ = EX and σ2 = VarX. �

Example 2, cont. For the occupancy problem described above,

λ = EX = n
(

1− 1

n

)m
,

σ2 = VarX = n
(

1− 1

n

)m
+ n(n− 1)

(
1− 2

n

)m
− n2

(
1− 1

n

)2m
;

estimates of the tail probabilities are obtained by using these values in any of the formulas
(1.2)–(1.16), letting p = EX/n and q = 1− n.

For asymptotical results in the case m/n→ r > 0, we easily find

λ = EX ∼ ne−r,
σ2 = VarX ∼ n

(
e−r − (1 + r)e−2r

)
= ne−2r(er − 1− r).

The asymptotics for the tail probabilites in this case have been studied in detail by Ka-
math, Motwani, Palem and Spirakis (1994).

Remark 7. A comparison of Theorems 3 and 5 shows that not every random variable
that is a sum of negatively related indicators can be represented as a sum of independent
indicators; the Vatutin–Mikhailov result depends on some further structure. The first
example of such a variable was found by Andrew Barbour (personal communication): Let

P(X = 3) = 4/13, P(X = 4) = 5/13, P(X = 5) = 4/13. Then X =
∑5

1 Ii, with Ii
indicators and the distribution of (I1, . . . , I5) uniform given X; and these Ii are easily
verified to be negatively related. On the other hand, it is easily seen that X is not the
sum of any number of independent indicators, since the probability generating function
has non-real roots.

Acknowledgements. This research has been inspired by discussions with Andrew Bar-
bour, Carl-Gustav Esseen, Rajeev Motwani, Joel Spencer, Andrew Thomason, and possi-
bly others.

2. Proof of Theorem 1

The first inequality in (1.4) is trivial for a > nq. For 0 ≤ a ≤ nq, let x = a/n ∈ [0, q].
Then the bound (1.2) may be written

P(X ≥ EX + a) ≤ exp

(
−np

(
1 +

x

p

)
ln
(

1 +
x

p

)
− nq

(
1− x

q

)
ln
(

1− x

q

))
. (2.1)
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Let, for 0 ≤ x ≤ q,

f(x) = p
(

1 +
x

p

)
ln
(

1 +
x

p

)
+ q
(

1− x

q

)
ln
(

1− x

q

)
− x2

2
(
pq + x(q − p)/3

) .
Then f(0) = f ′(0) = 0, and an elementary calculation yields

f ′′(x) =
1

x+ p
+

1

q − x
− p2q2(

pq + x(q − p)/3
)3

=
1
3pq(q − p)

2x2 + 1
27 (q − p)3x3 + p2q2x2

(x+ p)(q − x)
(
pq + x(q − p)/3

)3 ≥ 0

for 0 ≤ x ≤ q. Hence f(x) ≥ 0 in this interval, and thus

P(X ≥ EX + a) ≤ exp

(
−n x2

2
(
pq + x(q − p)/3

)).
This proves the first inequality in (1.4). The second follows from q − p ≤ 1 and the third
from

1

1 + a/3npq
≥ 1− a

3npq
.

Inequality (1.5) follows directly from (2.1) and

−nq
(

1− x

q

)
ln
(

1− x

q

)
= n(q − x) ln

(
1 +

x

q − x

)
≤ nx. (2.2)

The inequalities (1.6) follow from (1.4) and

− 1

npq + a/3
≤ − 1

np(1 + a/3np)
≤ − 1

np

(
1− a

3np

)
;

alternatively, they follow easily from (1.5), cf. (3.10).
The inequalities (1.7) follow from (1.3) by an argument similar to the one given above

for (1.4), or (simpler) by applying (1.4) to n−X ∼ Bi(n, q); (1.8) follows from (1.3), using
(2.2) with x = −a/n ≤ 0; (1.9) follows from (1.7) and, assuming (as we may) a ≤ np,
npq− a(q− p)/3 ≤ npq+ ap/3 ≤ npq+np2/3 ≤ np. Finally, also (1.10) follows from (1.7)
since we now assume a(q − p)/3 ≥ 0. �

3. Proof of Theorem 3

We may assume that X =
∑n

1 Ii where Ii ∼ Be(pi) are independent. Note that

λ = EX =

n∑
1

pi

σ2 = VarX =

n∑
1

pi(1− pi) = λ−
n∑
1

p2i

and thus
n∑
1

p2i = λ− σ2.

We assume, to avoid trivialities, that at least one pi 6= 0, 1. Thus 0 < λ < n and
0 < σ2 < λ.

We begin with a real analysis lemma. It is an analogue of Jensen’s inequality but with
a condition on the sign of the third derivative instead of the second.
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Lemma 1. Suppose that µ is a finite positive measure on [0, 1], and define

m = µ([0, 1]),

x0 =

∫ 1

0

x2dµ

/∫ 1

0

x dµ,

α0 =

(∫ 1

0

x dµ

)2/∫ 1

0

x2dµ,

x1 = 1−
∫ 1

0

(1− x)2dµ

/∫ 1

0

(1− x)dµ,

α1 =

(∫ 1

0

(1− x)dµ

)2/∫ 1

0

(1− x)2dµ.

(We here let 0/0 = 0; this occurs in the degenerate cases where µ is a point mass at 0 or
1.) If f is a three times continuously differentiable real function on [0, 1] with f ′′′ ≥ 0,
then

(m− α0)f(0) + α0f(x0) ≤
∫ 1

0

f dµ ≤ (m− α1)f(1) + α1f(x1). (3.1)

If instead f ′′′ ≤ 0 on [0, 1], then these inequalities are reversed.

Proof. We will show the left inequality of (3.1); the right inequality then follows by sym-

metry, considering the function f̃(x) = −f(1−x), which satisfies f̃ ′′′(x) = f ′′′(1−x) ≥ 0,
and the similarly reflected measure µ̃(A) = µ({1 − x : x ∈ A}). Similarly, the statement
for f ′′′ ≤ 0 follows by considering −f .

Let ν be the measure (m−α0)δ0 +α0δx0 ; thus the sought inequality is
∫
f dν ≤

∫
f dµ,

while the choice of α0 and x0 yields
∫

1 dν = m =
∫

1 dµ,
∫
x dν = α0x0 =

∫
x dµ,

and
∫
x2dµ = α0x

2
0 =

∫
x2dµ. (In fact, it is easily seen that ν is the unique measure

concentrated on a two-point set {0, x} for some x ∈ [0, 1], such that
∫
xkdν =

∫
xkdµ for

k = 0, 1, 2.)
We now use Taylor’s formula

f(x) = f(0) + f ′(0)x+ 1
2f
′′(0)x2 + 1

2

∫ x

0

(x− t)2f ′′′(t) dt (3.2)

and integrate against the signed measure µ− ν. Since as we just have shown,∫ 1

0

xkd(µ− ν) = 0, k = 0, 1, 2, (3.3)

we obtain from (3.2) and Fubini’s theorem,∫ 1

0

f(x) d(µ− ν) =

∫ 1

0

∫ x

0

1
2 (x− t)2f ′′′(t) dt d(µ− ν)(x)

=

∫ 1

0

∫ 1

t

1
2 (x− t)2d(µ− ν)(x)f ′′′(t) dt

=

∫ 1

0

ϕ(t)f ′′′(t)dt, (3.4)

where

ϕ(t) = 1
2

∫ 1

t

(x− t)2d(µ− ν)(x).
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We claim that ϕ(t) ≥ 0 on [0,1]; this implies
∫ 1

0
f(x)d(µ − ν) ≥ 0 by (3.4) which is the

required result. Note that ϕ(1) = 0 and ϕ(0) = 1
2

∫ 1

0
x2d(µ− ν) = 0. Moreover, again by

(3.3),
∫ 1

0
(x− t)2d(µ− ν)(x) = 0 and thus

ϕ(t) = −1

2

∫ t

0

(x− t)2d(µ− ν)(x).

Using Fubini again, and letting F (x) = µ([0, x])− ν([0, x]),

ϕ(t) = −
∫∫∫

0≤x≤y≤z≤t
dy dz d(µ− ν)(x) = −

∫ t

0

∫ z

0

F (y) dy dz,

and thus ϕ is continuously differentiable with

ϕ′(z) = −
∫ z

0

F (y) dy. (3.5)

In particular ϕ′(0) = 0 and, using Fubini a last time,

ϕ′(1) = −
∫ 1

0

F (y) dy = −
∫ 1

0

∫ y

0

d(µ− ν)(x) dy = −
∫ 1

0

(1− x) d(µ− ν)(x) = 0.

On the interval [0, x0), ν([0, x]) is constant m − α0, and thus F (x) is increasing; hence
there exists x2 ∈ [0, x0] such that F (x) ≤ 0 on (0, x2) and F (x) ≥ 0 on (x2, x0). It follows
by (3.5) that ϕ′ is increasing and thus ϕ is convex on [0, x2], while ϕ is concave on [x2, x0].
Since ϕ(0) = ϕ′(0) = 0, this implies that ϕ ≥ 0 on [0, x2]. Similarly, on the interval [x0, 1],
we have ν([0, x]) = m and thus

F (x) = µ([0, x])− ν([0, x]) = µ([0, x])−m ≤ 0,

which implies that ϕ is convex on [x0, 1]. Moreover, ϕ(1) = ϕ′(1) = 0 and thus ϕ ≥ 0 on
[x0, 1]. Finally, on the interval [x2, x0], ϕ is concave so it attains it minimum at one of the
endpoints, but we have already shown ϕ(x2), ϕ(x0) ≥ 0 and thus ϕ ≥ 0 also on [x2, x0],
which completes the proof. �

We apply this lemma to estimate the moment generating function of X.

Lemma 2. Let X be as above. If 0 ≤ t ≤ 1, then

E(1− t)X ≤
(

1− t
(

1− σ2

λ

))λ2/(λ−σ2)

or

ln E(1− t)X ≤ λ2

λ− σ2
ln

(
1− t

(
1− σ2

λ

))
. (3.6)

Proof. Since the Ii are independent, and E(1− t)Ii = 1− pi + pi(1− t) = 1− pit,

E(1− t)X = E

n∏
i=1

(1− t)Ii =

n∏
i=1

E(1− t)Ii =

n∏
i=1

(1− pit),
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and thus

ln E(1− t)X =

n∑
i=1

ln(1− pit) =

∫ 1

0

ln(1− tx) dµ(x),

where µ is the measure
∑n

1 δpi consisting of n point masses at the (possibly coinciding)
points pi. Note that ∫ 1

0

x dµ =

n∑
i=1

pi = λ

and ∫ 1

0

x2dµ =

n∑
i=1

p2i = λ− σ2.

We may assume that t < 1 (the case t = 1 follows then by continuity); then the function
f(x) = ln(1 − tx) is infinitely differentiable on [0, 1] with f ′′′(x) = −2t3/(1 − tx)3 ≤ 0.
Hence Lemma 1 yields

ln E(1− t)X =

∫ 1

0

ln(1− tx) dµ(x) ≤ (m− α0)f(0) + α0f(x0) = α0 ln(1− tx0),

where m = n, α0 = λ2/(λ−σ2) and x0 = (λ−σ2)/λ, which is the required estimate. �

Remark 8. For t ≥ 0, a similar argument yields

ln E(1 + t)X ≤ (n− α1) ln(1 + t) + α1 ln(1 + tx1)

=
nλ− λ2 − nσ2

n− λ− σ2
ln(1 + t) +

(n− λ)2

n− λ− σ2
ln
(

1 + t
σ2

n− λ

)
. (3.7)

This inequality could be used instead of (3.6) below, giving the same results. We prefer
to use (3.6), which does not involve n explicitly.

Remark 9. Estimates of E esX are, of course, obtained by substituting t = 1−es in (3.6)
for s ≤ 0 and t = es − 1 in (3.7) for s ≥ 0.

We can now obtain our basic estimate.

Lemma 3. Let X be as above. If 0 ≤ a ≤ λ, then

ln P(X ≤ λ− a) ≤ − λ

λ− σ2
(a+ σ2 − aσ2/λ) ln

(
1 +

a

σ2
− a

λ

)
− (λ− a) ln

(
1− a

λ

)
. (3.8)

(When a = λ, we define (λ− a) ln(1− a/λ) = 0.)

Proof. For any t with 0 ≤ t ≤ 1,

E(1− t)X ≥ (1− t)λ−a P(X ≤ λ− a),

and thus, using Lemma 2,

ln P(X ≤ λ− a) ≤ ln E(1− t)X − (λ− a) ln(1− t)

≤ λ2

λ− σ2
ln

(
1− t

(
1− σ2

λ

))
− (λ− a) ln(1− t).
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Choosing

t =
a

a+ σ2 − aσ2/λ

(which minimizes the right hand side), this yields

ln P(X ≤ λ− a) ≤ λ2

λ− σ2
ln

σ2

a+ σ2 − aσ2/λ
− (λ− a) ln

σ2(1− a/λ)

a+ σ2 − aσ2/λ

=
( λ2

λ− σ2
− λ+ a

)
ln

σ2

a+ σ2 − aσ2/λ
− (λ− a) ln

(
1− a

λ

)
= −λσ

2 + λa− aσ2

λ− σ2
ln
σ2 + a− aσ2/λ

σ2
− (λ− a) ln

(
1− a

λ

)
,

which yields the sought result. �

While the estimate in Lemma 3 may be useful for numerical evaluation in applications,
it is too complicated to be of much other direct use. Hence we will use it to derive the
simpler (but slightly weaker) estimates in Theorem 3.

For notational convenience, let σ2 = xλ and a = yσ2 = xyλ, where 0 < x < 1 and
0 ≤ y ≤ 1/x. Then (3.8) may be written

ln P(X ≤ λ− a) ≤ −σ2g(x, y), (3.9)

where

g(x, y) =
1

1− x
(1 + y − xy) ln(1 + y − xy) +

1

x
(1− xy) ln(1− xy).

Lemma 4. g(x, y) is an increasing function of x in the region

U = {(x, y) : 0 < x < 1, 0 ≤ y ≤ 1/x}.

Proof. We want to show that ∂g/∂x ≥ 0 in the region {(x, y) : 0 < x < 1, 0 ≤ y < 1/x};
note that g is well-defined and infinitely differentiable in the larger region V = {(x, y) :
0 < x < 1, −1/(1− x) < y < 1/x}, and continuous on V̄ ∩ {(x, y) : 0 < x < 1} ⊃ U .

Instead of estimating ∂g/∂x directly, we first compute

∂g

∂y
= ln(1 + y − xy)− ln(1− xy)

and
∂2g

∂x∂y
=

∂2g

∂y∂x
=

−y
1 + y − xy

− −y
1− xy

=
y2

(1 + y − xy)(1− xy)
≥ 0.

Hence ∂g/∂x is an increasing function of y. Moreover, taking y = 0, we find g(x, 0) = 0
and thus

∂g

∂x
(x, 0) = 0, 0 < x < 1.

Hence ∂g
∂x (x, y) ≥ 0 for all (x, y) ∈ V with y ≥ 0. �

Proof of Theorem 3. If x↘ 0 and y ≥ 0 is fixed, then, as is easily seen,

g(x, y)→ (1 + y) ln(1 + y)− y.
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Lemma 4 thus yields, for 0 < x < 1 and 0 ≤ y ≤ 1/x,

g(x, y) ≥ (1 + y) ln(1 + y)− y,

and thus by (3.9), for 0 ≤ a ≤ λ,

ln P(X ≤ λ− a) ≤ −σ2
(
(1 + y) ln(1 + y)− y

)
,

with y = a/σ2, which is the analogue of (1.13) for P(X ≤ EX − a); note that this
estimate trivially holds for a > λ. In order to obtain (1.13), we consider the variable

X∗ = n−X d
=
∑n

1 (1− Ii), and observe that P(X ≥ EX + a) = P(X∗ ≤ EX∗ − a) and
Var(X∗) = VarX. The estimates (1.14) and (1.15) and their analogues for P(X ≤ EX−a)
now follow from the elementary estimates, defining h(y) = (1 + y) ln(1 + y)− y,

h(y) ≥ y2

2(1 + y/3)
≥ y2

2
(1− y/3), y ≥ 0, (3.10)

and

h(y) ≥ yh(c)/c, y ≥ c. (3.11)

The estimate (3.10) may be verified by observing that h(y)−y2/2(1+y/3) vanishes together
with its first derivative at 0, while the second derivative equals (9y2+y3)/(1+y)(3+y)3 ≥ 0.
Similarly, (3.11) follows by the convexity of h. We omit the details.

Finally, if σ2 ≥ λ/2, then x ≥ 1/2 and thus by Lemma 4 (assuming as we may that
a ≤ λ),

g(x, y) ≥ g( 1
2 , y) = (2 + y) ln(1 + y

2 ) + (2− y) ln(1− y
2 ) ≥ 1

2y
2,

which together with (3.9) yields (1.16). �

4. Proof of Theorem 4.

Let Y =
∑n

2 Ii and Z =
∑n

2 Ji1, where (Ji1)ni=1 are as in the definition of negatively

related variables. Then X = I1 + Y and (Y | I1 = 1)
d
=Z. Moreover, since Ji1 ≤ Ii for

i ≥ 2, we have Z ≤ Y . Consequently, for any real t,

E etX − E etY = E(etI1 − 1)etY = E(et − 1)I1e
tY

= (et − 1)p1 E(etY | I1 = 1)

= (et − 1)p1 E etZ

≤ (et − 1)p1 E etY

= E(etI1 − 1) E etY

and thus

E etX ≤ E etI1 E etY .

Induction yields

E etX ≤
n∏
1

etIi = E etX̃ . �
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5. Proof of Theorem 5.

Given n, p, k, with 1 ≤ k ≤ n and 0 < p < 1, let U ∼ Bi(n, p) and let Xnpk be the
random variable U conditioned on U ≥ k. Since U =

∑n
1 Ii, with Ii ∼ Be(p) independent,

Xnpk =
∑n

1 (Ii |
∑n

1 Ii ≥ k), and it follows from Barbour, Holst and Janson (1992)
Proposition 2.2.10 and Theorem 2.I that Xnpk is a sum of negatively related indicators.
We claim that, for any α, c, A as in Theorem 5, some variable Xnpk satisfies (1.24).

Suppose not. Then for each n, p, k either Var(Xnpk) ≤ A or

P(Xnpk − EXnpk > ασ) ≤ ce−α. (5.1)

Fix p ∈ (0, 1), let q = 1 − p, choose ε with 0 < ε < q, take k = bn(p + ε)c + 1, and let
n→∞. Then, for fixed i ≥ 0, with r = p(q − ε)/(p+ ε)q < 1,

P(Xnpk = k + i+ 1)

P(Xnpk = k + i)
=
p

q
· n− k − i
k + i+ 1

→ p

q
· q − ε
p+ ε

= r as n→∞, (5.2)

and
P(Xnpk = k + i) ≤ ri P(Xnpk = k) ≤ ri. (5.3)

It follows that Xnpk − k converges in distribution to a random variable Yr with geomet-
ric distribution Ge(1 − r): P(Yr = i) = (1 − r)ri, i ≥ 0. Moreover, by (5.3), every
moment E(Xnpk − k)m stays bounded, which implies that the moments converge to the
corresponding moments of Yr.

The variance of Yr equals r/(1 − r)2. If Var(Yr) > A, then also Var(Xnpk) > A for
large n, so by our assumption (5.1) holds and taking the limit as n→∞ we obtain

P(Yr − EYr > α
√

VarYr) ≤ ce−α. (5.4)

Now, let ε → 0 (keeping p fixed). Then r → 1 and Var(Yr) = r/(1 − r)2 → ∞, so
(5.4) holds when r is close to 1. Moreover, it is easily seen that as r → 1, (1 − r)Yr
converges in distribution to an exponential variable Z ∼ Exp(1), again with convergence
of all moments. Consequently we may take the limit again and obtain from (5.4)

P(Z − EZ > α
√

VarZ) ≤ ce−α. (5.5)

But EZ = VarZ = 1, so the left hand side of (5.5) equals P(Z > 1 +α) = e−1−α > ce−α,
and we have obtained a contradiction. �
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