NEW VERSIONS OF SUEN’S CORRELATION INEQUALITY

SVANTE JANSON

1. INTRODUCTION

Suen [8] found a remarkable correlation inequality, giving estimates for the
probability that a collection of dependent random indicator variables vanish
simultaneously, or in other words, for the probability that none of a collection
of dependent events occurs.

The present author [4, 3] has found similar inequalities for a much more
restricted situation; when applicable, these inequalities are somewhat better
than Suen’s, although the difference is negligible in many cases. (See Section 8
below.) Those inequalities have been used by several different authors for a
variety of problems; there are, however, many situations where they are not
applicable (see [8, 5] for two examples) and then Suen’s inequality is a very
attractive choice.

The purpose of the present note is to present some improvements and mod-
ifications of Suen’s original inequality which (we hope) will be easy to apply
in different situations.

The estimates considered here are exponential (unlike for example Cheby-
shev’s inequality), in the sense that they typically are similar to the estimate
exp(—pu) for the independent case, where f is the expected number of events.
They are thus aimed at the case when the studied probability is very small,
and has to be shown to be very small. In many applications, constants oc-
curing in the estimates, even in the exponents, are immaterial; on the other
hand, there are applications where very precise estimates are desired. For this
reason, and because different versions of the inequality turn out to be useful
in different situations, we will give several different versions of our estimates.

We give several upper bounds to the probability of simultaneous vanishing
of a collection of indicator variables in Section 3; these are perhaps the main
results of the paper. We give some corresponding lower bounds in Section 4,
and in Section 5 an upper bound for the probability that only a few of the
variables are non-zero. Section 6 contains the proofs of the results, while Sec-
tion 7 contains three examples related to the sharpness of the results. Finally,
Section 8 contains a short discussion of the results and some open problems.
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for him generously allowing me to include his proof of Theorem 7.
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2. NOTATION

We will throughout the paper use the following assumptions and notation.
Recall that an indicator (or Bernoulli) random variable is a random variable
taking only the values 0 and 1.

e {I;}ic7 is a finite family of indicator random variables (defined on a com-
mon probability space).

e ' is a dependency graph for {I;};cz, i.e. a graph with vertex set Z such
that if A and B are two disjoint subsets of Z, and I' contains no edge
between A and B, then the families {I;};c4 and {I;};cp are independent.

e S =Y .1 In particular S = 0 if and only if all I; = 0. The expression
P(S = 0) in the theorems below may thus be regarded as shorthand for
P(every I; = 0).

e i ~ j, where i,j € Z, if there is an edge in " between i and j. (In
particular, i ¢ i.)

e i~ A wherei € Zand ACZ, ifi~ jforsomej € A (i € Ais not

excluded.)
o n=ES=5%p.
® i =2 b5
e ) — maX;cz 62
[ ]

A =34 ivieg E(LI}), summing over unordered pairs {i,j}, i.e. over the
edges in . As a sum over ordered pairs we have A =23~ > jmi E(Li).
® Ao = D iyinj PiPi = 3 2 icz Pidi- Note that Ag < A if the variables
are positively correlated, while Ay > A if the variables are negatively
correlated.

® & = MaX;er Pi-

Remark 1. In typical applications, there exists a natural dependency graph,
but it should be observed that in general there is no unique choice, even if it
is required to be minimal.

Remark 2. In the Lovasz local lemma, see e.g. [1], a weaker notion of depen-
dency graph is used, where the independence condition above is required only
when A is a singleton {I;} (but B still is an arbitrary subset). These strong
and weak versions are not equivalent, but we do not know any application
where the difference matters.

We do not know whether the results below hold if I' only is assumed to be
a dependency graph in the weaker sense.

Remark 3. In particular, two variables I; and I; are independent unless there
is an edge in I' between ¢ and j. Note, however, that this weaker condition
(i.e. the condition above when both A and B are restricted to singletons) does
not imply that ' is a dependency graph, and that it is not sufficient for our
results.

For a simple counter example to many of the results below under this weaker
condition, colour the vertices of the complete graph K, at random (indepen-
dently and with equal probabilities) with two colours, and let, for each edge
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iJ, I;; be the indicator that 7 and j have different colours. These (;) indicator

variables are pairwise independent, so we could take I" to be the empty graph
with no edges, and then the upper bounds below are all less than 2_‘3"2, for
some ¢ > 0; on the other hand, clearly S = 0 if and only if all vertices have
the same colour, and thus P(S = 0) = 21",

Remark 4. In several related papers, A is instead defined as a sum over ordered
pairs, yielding twice our value. This should be kept in mind when comparing
results.

3. UPPER BOUNDS

As explained in the introduction, we will in this section give several dif-
ferent upper bounds for P(S = 0), suitable for different (present or future)
applications.

We begin with a slight improvement of Suen’s original inequality [8], essen-
tially following (but sharpening) the original proof. (Suen [8] has 2(E(I;I;) +
pip;) instead of E(1;1;) below; the p;p; is really needed only for his lower bound,
see Section 4, while the factor 2 is removed by a more careful estimate in the
proof.) For convenience, all proofs are given in Section 6.

Theorem 1. Let {I;}icr be a finite family of indicator random variables hav-
ing a dependency graph I'. Then, with notations as above,

P(S = 0) < exp( Y EGn) [ G —pk)_1> [0 - p)-
{5} i k~{i,j} leT
Large products are often less convenient than large sums. For example, it is
often convenient to use the standard estimate [](1—p;) < exp(— Y. p;) = e7*.
In a similar spirit, the estimate in Theorem 1 can be modified as follows, often
without significant loss.

Theorem 2. With assumptions as in Theorem 1,

P(S=0) < exp(—u + Z E(1;1;) exp( Z pk>> < e HHAeT
{35} i k~{i,5}

Theorems 1 and 2 are useful, and often quite sharp, when A < p and § is
small. If A > p, Theorem 2 (and typically Theorem 1 too) is worthless, since
the right hand side becomes greater than 1. In this case, the following version
becomes useful.

Theorem 3. With assumptions as in Theorem 1,

— —mi “_2 HOENY _—u?/ max(8A,24,65u)
P(S—O)Sexp( mm<8A’65’2)>_6 )

The numerical constants in the exponents can be improved, but there is
(with our proof, at least) a trade off between the different constants, and the
optimal choice depends on the relations between p, A and §. The version
given here is a compromise trying to be both simple and reasonably sharp.
In an application where constant factors in the exponent are important, it is
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probably better to use the proof below, in particular (8), and choose ¢ there
according to the situation at hand.

Of the three quantities in the exponents in Theorem 3, the one involving
0 is typically the least important. If we do not care about the constants, we
can always replace it by a term involving A, which in many applications is
dominated by A. (Again, the constants given here are not optimal.)

Theorem 4. With assumptions as in Theorem 1,

IP’(S — 0) < 6—u2/max(32A,48A0,4u).

Theorem 5. With assumptions as in Theorem 1, if furthermore the variables
{L;} are positively correlated,

]P)(S — 0) < 67u2/max(48A,4u)_

We do not know whether the terms involving § really are needed in the
estimates above, cf. Section 8. In most applications they are harmless, but in
at least one [5] they affect the final result significantly. For that reason, we
give two slightly stronger versions of Theorems 1 and 2, where this term is
reduced as much as we have been able to achieve.

Define

1 _
et —et +1 e"—-1+4+z
(@) /0 ‘ 2 ‘ x?/2

T
and observe that 1 < ¢y (2) < e” for 2 > 0. Forsmall z, ¢y (z) = 1+22+0(2?).

Theorem 6. With assumptions as in Theorem 1,

P(s=0) <exp(§ S BEL)(1-p) Yo (X m/(0-m)))

i i k~o{i,j}, ki,
X H(l — pl)
ez

< exp(A(l —e) i (26/(1 - 5))) H(l — )

ler

and
P(S =0) < exp(—p + € p1(2e°0)A).

Joel Spencer [6] has found a different proof of this type of inequalities, using
only elementary probability calculations. This proof yields the following result,
which sometimes is better than Theorem 6; when ¢ is negligible, Theorem 7
is better when 0 < ¢ < 0.225... while Theorem 6 is better for larger 6. (This
strongly suggests that neither is the best possible, and that there is room for
future improvements of these results.)

Define py(x), 0 <z < e !, to be the smallest root of

pa(a) = "), (1)
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It is well known that ¢, is well defined in [0, e!], with the Taylor series

o0

1 n—1
o) = 3 N pcace
n.
0

in particular, ps(z) =1+ z + O(2?).

Theorem 7 (Spencer [6]). With assumptions as in Theorem 1, if furthermore
d+e<el

P(S = ()) < eDw2(0+e) H(l _ pk) < o ht+Ap2(0+e)
keT

O

Remark 5. As is seen from the proof of Theorem 7, further improvements
are possible if the dependency graph is such that the neighourhoods of two
adjacent vertices overlap significantly; cf. Theorem 6, where such an effect can
be seen in the first upper bound.

4. LOWER BOUNDS

Suen [8] gave also a lower bound to P(S = 0) corresponding to his upper
bound. Although the lower bound seems to have less applications, we for
completeness give an improvement of it too corresponding to Theorem 1. (We
ignore further improvements corresponding to Theorem 6.)

Theorem 8. With assumptions as in Theorem 1, let

A= Y EWL) [ -,

{ig}iing k~{i,j}
As= Y pp; [ —pe)
{ig}ing k~{i,j}

Then
P(S =0) > (1 - Agexp(a)) [T - pi)

kel

> (1 — Age?079) exp (Aew/(l*))) H(l — Dk)-

kel

Remark 6. The careful reader may observe from the proof that the factor
exp(A*) can be replaced by the somewhat smaller p3(A*), where @3(x) =
(e* —1)/x. (We do not know whether this factor depending on A* really is
needed at all, or whether it is an artefact of our proof.)

Moreover, since Aj exp(A*) < exp(Aj+A*) —exp(A*) < exp(Af+A*) -1,
the factor 1 — A} exp(A*) may be replaced by the smaller 2 — exp(A* + A});
Suen [8] has 2 — exp(2A* 4 2Aj).

Theorem 8 is useful only when Ay < 1 and A is small, but even then it
is often surpassed by the following quantitative version of the Lovész local
lemma, cf. [1, Chapter 5].
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Theorem 9. With assumptions as in Theorem 1, suppose further that § +¢ <
e '. Then, with @, defined by (1),

P(S = 0) > exp(—ppa(0 + ).

5. TAIL ESTIMATES

It is also possible to obtain exponential upper bounds for the lower tails
P(S < A), A < p, of the distribution of S, similar to the bounds given above for
P(S = 0). (There are no similar general bounds for the upper tails P(S > \),
A > p, see [3, Example 2].)

Theorem 10. With assumptions as in Theorem 1, and 0 < a <1,
2

P(S <ap) < exp(— min((l - a)Qdm, (1-— a)%))
Note that the special case a = 0 yields the corollary

P(S =0) < 6—u2/maX(8A+2u,65u),
which is only slightly weaker than Theorem 3.

Remark 7. The tail bounds given in [3] for a special case are of the same type
as Theorem 10 but somewhat better; there 8A is replaced by 4A and there is
no term with §.

6. PROOFS

We define for each index i € 7 a partition Z = {i} U N; U U; of the index
set, with N; = {j € Z: j ~ i} (the neighbours of i in I') and thus U; = {j #
i:j ovi}; hence I; is independent of {I; : j € U;}.

Proof of Theorem 1. Define, for 0 < ¢t < 1, the random function
Pty =] - pi — tT: - py)).
i€T
Thus F(0) = [[,(1 —p;) and F(1) = [[,(1 = L;), so EF(1) = P(S = 0). We
thus want to compare E F(1) and E F(0) = F(0). (Note that in the case of
independent indicators I;, E F'(t) is independent of ¢.)

We differentiate and obtain, introducing the notation F4(t) = [T, , (1 —pi—

F'(t) ==Y (L—p) [[(0L=p; = t(I; = p))) = =D _(Li = pi) Py (1)

] VE= )

= - Z(Iz - pi)FNi (t)FUi (t) (2)

Note that, for 0 < ¢ <1 and each 7,
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Hence, for any set A C Z,
0 <[]0 =pj+1tp;) = Falt) < I, (4)
jeA jEA
and thus, considering the cases I; = 0 and I; = 1 separately,
(I; — p;) (H(1 —p; +tp;) — FA(t)) <Yt (5)
jEA jEA
Choosing A = N;, this and (2) yield
F'l(t) < =Y Fo,(0Ti—p) [T —pj+tp)) + > Fo,(OL >t
i JEN; i JEN;
Since, by the definition of a dependency graph, I; and Fy, (t) are independent,

E(Fy,(t)(I; — p;)) = 0. Moreover, using (3), Fy,(t) < Fy,nu,(t), which is
independent of I;I;. Hence, for 0 <t <1,

EF'(t) <Y Y tE(LLFy, (1) <Y 0> tE(LLFya,(t)

A Y P Y1
—¢ Z Z E(LI;) E Fy,no, (1) (6)
R 1o

Now, let y;j = E(Lil) [Trop (1 — p) tand A* = > iy~ Yij- We claim
that

EF(t) <™ [ -p), 0<t<1. (7)
keT
In fact, we may by induction over |Z|, the number of variables, assume that the
corresponding inequality holds for E F4(t) for every proper subset A of Z. Since
the corresponding values yff) for a subset A (and i,j € A) satisfy yl(jA) < Yij,
it then follows from (6) that, using also that when ¢ ~ j, Z\ (U; N U;) =
N; UNj = {k ko~ {Z,]}},

EF () <tY Y B T Q=) =t>) wye > T — )

[ I keU;NU; 1 Jei kel

2p- d pa-
= 2tA*e A H(l —Pr) = Eet A H(l — Dk)-

kel kel

The estimate (7) now follows by integration, since it holds (with equality) for
t=0.
The theorem follows by choosing ¢t =1 in (7). O

Remark 8. If all p; are equal, p; = p say, then F(t) = (1 —p +pt)Fle=*5, with
u =1In((1 —p+tp)/(1 — p)(1 —t)); hence estimating EF(t), 0 < ¢ < 1, is
equivalent to estimating the Laplace transform Ee~"%, u > 0. In general, with
unequal p;, E F(¢) is not equivalent to the Laplace transform; nevertheless,
E e~ may be estimated by arguments similar to the ones above, which leads
to results similar to the ones given here. It seems, however, that estimates of
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F (as in Suen’s paper [8]) lead to slightly stronger results. For applications
of the Laplace transform, see the proof of Theorem 10 below, and also [4, 3]
where it is used advantageously in a special case.

We derive Theorems 2-5 as corollaries to Theorem 1 by performing a random
thinning of the family {Z;}. (This idea is used by Alon and Spencer [1] for a
related inequality.) Let ¢; € [0,1] and let J; ~ Be(g;) be Bernoulli variables
that are independent of each other and of {I;}. Define I! = I,J; and S’ =
Y ez li. Clearly, S' < S and thus P(S = 0) < P(S" = 0). Moreover, I' is a
dependency graph for {I/} too. Consequently, we may apply our estimates to
the family {I]} and obtain new estimates for P(S = 0); with suitable choices
of ¢;, this may improve the original estimate.

Let p; =EI] = p;q;, thus 0 < p, < p;.

Proof of Theorem 2. If we choose ¢; = (1 — e Pi)/p;, and thus p; = 1 — e Pi,
then Theorem 1 applied to {I!} yields

P(S=0)<P(S'=0) < exp( Z ¢.q; E(L;1;) H epk) H P
{35} i k~{iyi} ez
which implies the first inequality.
The final estimate follows because ZkN{i’j} pr < 0 +6; < 20. O

Proof of Theorem 3. Using a new thinning {I}, this time choosing all ¢; = ¢
for some ¢ € [0, 1], we obtain from Theorem 2 applied to {I/}
P(S = 0) < P(S' = 0) < e~ wta*0e™”, (8)
We choose ¢ = min(u/4A,1/36,1); then ¢A < p/4 and €?? < €2/3 < 2, and
consequently (8) yields
P(S=0)<e —aptgan _ o un
which is the desired result. O

Proof of Theorem 4. This time we use a deterministic thinning {7;};c 7, where
T ={ieT:8 <40 /ul.

We let p/, A" and ¢’ denote the quantities for our subfamily {I;};cs corre-
sponding to x, A and 4. By our choice of 7,

>on<n Zm = =5
¢ T
and thus
Mlzzpz—zpz sz M___g'
ieT i€T i¢T

Moreover, clearly ' < 4Aqy/p and A" < A.

Consequently, Theorem 3 applied to S" =>"._ . I; yields

1eJ

12 l . 2
P(S = 0) < B(S' = 0) < ¢ ™t ) < o min(dmamdirnt).
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Proof of Theorem 5. When the variables are positively correlated, E(7;1;) >
pip; and thus A > A,. O

Proof of Theorem 6. We follow the proof of Theorem 1, improving some esti-
mates. We define, for A C Z, B4(t) = [[;,c4(1 — pi + tp;). Using (3), we can
improve (4) to

L1 =pj+1p)) = Falt) <D tIiBavg(t)
JEA JEA
and then (5) to
(1 =) ([T = s + 1) = Fat)) < L0 =) 3 LBy (1) (9)
jeA jeA
Moreover, Fy,(t) < Fy,nu, (t)Bu,\v, (t), which together with (9) yields as an
improved version of (6), for 0 <¢ <1,
EF(t) <ty > E(LL)E Fuoo, (01 =)y (Dua, (). (10)
A Y
We now define, when i ~ j, N;; = (N; \ {j}) U(U; \U;) = N; UN; \ {7,7},

=ty Y EGLL)1—p) "t [T (1 +toe/(1—pi))

7 jN’i kENi]‘

=/Otw(s)ds

It then follows from (10) by induction as in the proof of Theorem 1 that

EF(t) <e'OTJ(1—pe), 0<t<L (11)

kel

and

The first claim in the theorem now follows by choosing ¢ = 1 in (11), ob-
serving that

() <Y BLL) 1 —p) exp( Y o/ (1= i)
i i kEN;
and thus
/w Jdt <Y E(LI)(1 - pj) Qsol(Zpk/l—pk)
1%} kGNZJ

The second inequality in the theorem is immediate.
For the final estimate, we perform a random thinning with p} =1 — e as
in the proof of Theorem 2; we leave the details to the reader. O

For Theorem 7 we use the following form of the Lovész local lemma, which is
easily proved by induction, see [1, Lemma 5.1.1 and its proof]. Let, for A C Z,

SA - ZieAIi'
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Lemma 1. With assumptions as in Theorem 1, suppose further that x;, 1 € Z,
are real numbers such that 0 < x; <1 and

jrvi
Then, for any two subsets A,B CZL, P(Sxy=0]Sp=0)>[[;cs(l —x;). O
We will employ Lemma 1 with the following choice of x;.

Lemma 2. With assumptions as in Theorem 1, suppose further that § + ¢ <
e L. Let ¢ = po(0 + ), where @y is defined by (1), and let z; = 1 — e #Pi,
i € Z. Then (12) holds and, for any two subsets A, B C T,

P(Sa=0|Sp=0)>[](1 —z;) = e #xiears,
icA
Proof of Lemma 2. By (1), 9% = ¢, and thus

7 H(1 _ l‘j) — (1 _ e*@m)e*@& — (6@“ _ 1)6*(5i+m)@ > Sppie*(‘prf)@ = ;.

i
Consequently (12) holds, and the final inequality follows by Lemma 1. O

Proof of Theorem 7 (after Spencer [6]). The main idea is to estimate the con-
ditional probability P(I; = 0 | Sp\q3 = 0). Recall that Sp\ ;3 = Sw, + Sy, and
that I, and Sy, are independent; furthermore, note the elementary identity
P(El | E2 and E3) = ]P)(El and EQ | Eg)/P(EQ | Eg) for any three events El,
E5, E5. Consequently, we have the estimate
P(Il =1 and SNi =0 | SUi = 0)

P(Sy, =0| Sy, =0)
—P(l; =1] Sy, = 0) —P(U{Iizlj —1}| Sy :0)

i

>P(L;i=1)-> P(Li=1=1|S;=0).

j~i

(13)
Similarly, when j ~ i € Z, since {I;, I;} and Sy,np, are independent,
P(Il = Ij =1 and SUian =0 | SUiﬂUj = 0)
]P(SUiﬂNj =0 | SUiﬂU]‘ = 0)
- IEI)(‘S(Uiﬁ]\f]‘ = 0 | SUiﬂUj - 0) IEI)(‘S(Uiﬁ]\f]‘ - 0 | SUiﬂUj - 0)

Applying Lemma 2, we thus obtain

P(I; =I; =1 | Sy, = 0) < P(I; = I; = 1)e* Zrevinn; Pt (14)
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(N;NU;)U{i} = N; \ N; provided i ~ j. By combining (13) and (14) we thus
obtain the sought estimate

P =0|Snm=0)<1—pi+ Y P(Li=1=1]|Sy =0)

Note that p; < x; by (12), and thus 1 = (1 —x;)e??" < (1 — p;)e?Pi; moreover

j~t
<1l-—p+ (1 — pi)etﬂpi ZP(IZ' — Ij — l)e‘PZkeUiﬂNj Pk
gt
= (1= po) (1 4+ D B(LL)ef Zemnn)
gt
< (1= p) exp( 3o B(LL)ef Zren ),
gt

(15)

For the final step, we may assume that the index set Z = {1,...,n}. We
apply (15) to the subset {1,...,i} of Z and obtain, fori =1,...,n,

PLi=0[L=-=L.,=0)<(1-p) exp( Z E([ifj)ewzkENf\Ni pk)
iy i <i
< (1 —pi)exp< Z E(Iilj)e‘p‘;J').
iy i <i
The result follows by multiplying these inequalities for 2 = 1,...,n, and using
ecij < 6(5+5)cp = . 0

Proof of Theorem 8. We follow the proof of Theorem 1. The main idea is that
there is a lower bound corresponding to (5), viz.

(Li — pi) (H(1 —pj +tp;) — FA(t)) > =D Ztlj-
jeA jeA
The same arguments that led to (6) then yield (we leave the details to the
reader), for 0 <t <1,

i jei
We now use the upper bound to E Fy,~r, (t) proved in (7) and obtain
E F'(t) > —tZ Zpipj€t2N H (1= px)
i i kEU;NU;

= —2tApe" A [T = pi) = —2tA5e* T](1 - pi)-
keT keT
Integrating this for 0 < ¢ < 1, we obtain
F(1) = F(0) > =A5¢® [T —pw).

kel
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Since P(S = 0) = F(1) and F(0) = [ [,c7(1—px), this yields the first inequality
in the statement. The second follows by the estimate (1—pjy) " < exp(pi/(1—

pr)) < exp(pr/(1 —¢)). O
Proof of Theorem 9. This is just the special case A = Z and B = () of Lemma, 2.
O

Proof of Theorem 10. We use the standard method of first estimating the
Laplace transform E e~** and then applying Markov’s inequality. As remarked
above, it is possible to estimate the Laplace transform directly by the method
of the proof of Theorem 1. For simplicity, and to avoid repetitions, we will,
however, instead use the results above together with another thinning.

Define thinned variables I/ = J;I; as above with ¢; = 1 —e " for every i € Z.
Since the thinned sum S’ equals 0 if and only if J;I; equals 0 for all 4, i.e., if
and only if J; = 0 for the S indices ¢ with I; = 1, the conditional probability
P(S"=0|S)=e" and thus

P(S"=0) =Ee '

Now, for the thinned family {I'}, ¢/ = (1 — e )u > (t — %)Ma A= (1-
e ')2A < t?A and ¢ = (1 — e7*)d < td. Consequently, Theorem 2 yields

Ee™ =P(S'=0) < A < e_t”+t2(%“+m2t5)

Y

and thus by Markov’s inequality, for any ¢ > 0,
]P)(S < au) < Eetau—tS < 6—t(1—a)u+t2(%u+Ae2t5). (16)

We choose here ¢ = min((1 — a)u/(4A + ), 1/30); then e*? < e?/3 < 2, and
thus
(50 + Ae*?) < 83 (p+4A) < 5t(1 - a)p.
Consequently, (16) yields
P(S < au) < eft(lfa)M/Q,

which is the claimed result. O

7. EXAMPLES

We give three examples showing that the estimates above are of the right
order, and that no dramatic improvements are possible in general. We begin
with two simple examples.

Example 1 (positive correlations, upper bounds). Let m,n > 1 and 0 < p <
1, and consider mn Be(p) variables consisting of n groups of m variables each,
such that different groups are independent while the m variables in each group
are identical. Let I be the obvious dependency graph consisting of n disjoint
copies of the complete graph K,,. Then y = mnp, A = (’;)np, § = (m—1)p,
e=p,and P(S =0)=(1—p)".

Consider first the case m = 2, and thus p = 2np, A = np. Theorem 1 yields

P(S =0) < exp(np(1 —p)~?)(1 - p)*;
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the ratio between the right and left hand sides is (for p < 1/2, say)
exp(np(1 —p)~*) (1 = p)" = exp(np(1 + 2p + O(p*)) — n(p + 50 + O ("))
= exp(Znp® + O(np?)).

Note that the leading terms np in the exponent cancels, which shows that
the estimate is quite sharp. Note also that the term [T, . (1 — pr)”" in the
exponent in Theorem 1 cannot be eliminated completely; in this example

P(S = 0) > exp(d) [[(1 - 0. (17)
leT
Theorem 2 yields the slightly weaker
P(S = 0) < exp(—2np + npe™) = exp(3np® + O(np®)) P(S = 0).
The improved bound in Theorem 6 is
exp(np(1 —p) ") (1 = p)™ = exp(5np” + O(np”)) P(S = 0),
while Theorem 7 in this example yields (for p < 1/2e) the weaker

exp(npp2(2p)) (1 — p)*" = exp(3np* + O(np®)) P(S = 0).
Let us now consider m > 3. Then A > u, and the bounds in Theorems 1
and 2 are > 1. For any m > 2, and p < 2/3, Theorem 3 yields

P(S =0) < exp(—p?/8A) = exp(— m

m”p> )

which for small p is off by a constant factor in the exponent. Theorems 4 and 5
yield similar results with even worse constants in the exponent.

Example 2 (negative correlations, lower bounds). Let m,n > 1 and 0 < p <

1/m, and consider again mn Be(p) variables consisting of n independent groups

of m variables each, this time assuming that the m variables in each group are

such that never more than one of them equals 1. Then with I' as in the

preceding example, I;I; = 0 whenever ¢ ~ j, and thus A = 0; moreover,

i =mnp, Ao = (7)np*, § = (m — 1)p, e = p, and P(S = 0) = (1 — mp)™.
Theorem 8 yields

P(S =0)> (1 — <ZL> np?(1 — p)7m> (L—p)™

where the ratio between the right and left hand sides is (for mp < 1/2 and
nm?p? <1, say)

exp <_ <T;> np? (14 O(mp + nm?p?)) — mn(p + 5p° + O(p*))
+n(mp + Imp” + 0(m3p3))>

= exp (O(nm3p3 + n2m4p4)).
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This is quite sharp for small mp provided n is not too large, but fails utterly
when nm(m — 1)p? > 2, and thus Ay > 1.
Theorem 9 yields, for mp < 1/2e,

P(S=0)> exp(—mnp<p2 (mp)) = exp(—mnp — nm?p? + O(nm3p3))
= exp(—inm’p” + O(nm’p?)) P(S = 0).

This too is quite sharp when mp is small. It performs better than Theorem 9
when n is large, but is not as good when both mp and nm?2p? are small.

Example 3 (negative correlations, lower bound). This more complicated ex-
ample is due to Shearer [7], to which we refer for further details; it shows that
the condition § + & < e ! in Theorem 9 is best possible. (We make a mi-
nor modification since Shearer only considers the weak version of dependency
graphs, cf. Remark 2.) More precisely:

Claim. If a > e !, then there exists a finite family {I;};cr having a depen-
dency graph T such that § + & < a and P(S =0) = 0.

Shearer’s construction as is follows. Given a graph I' and 0 < p < 1, let V
be the vertex set of I', say that a subset of V' is dependent if it contains both
endpoints of some edge in ' (and independent otherwise), and define a signed
measure ur, on 2V, the space of all subsets of V, such that for each A CV

pl4l A is independent,

ECV.:EDAl=
prp{E C 2 A} {0 A is dependent.

It is easily seen that this defines a unique measure pr ,, since ur,({A}) may be
expressed by inclusion-exclusion for every A C V. pup, may assume negative
values, but if it is a positive measure, i.e. if pur,({A4}) > 0 for every A C V,
then pr, is a probability measure on 2V, and it is easily seen that with this
measure, the indicators I; = 1(i € F), i € V, form a family of random indicator
variables with dependency graph I'; moreover, then p; = E I; = p for each i,
and E(L;I;) = 0 whenever i ~ j.

Let ap, = (m+2)m™/(m +1)"*!. Then a,, — e ! as m — oo, and we may
thus fix m > 1 such that a,, < a.

Let b =a/(m +2) > m™/(m + 1)™*"!. Shearer [7] showed that this implies
that there exists an m-ary tree G such that ugp(0) < 0. We fix such a G
note that the root of G' has degree m, the leaves degree 1 and all other vertices
degree m + 1.

On the other hand, it is easily seen that if p is small enough, then puq,
is a probability measure. (Indeed, if p < m™/(m + 1)™*!, there is a simple
probabilistic construction of y1g,: Add external edges to the root and leaves
of G such that every vertex has m + 1 edges, 1 going ‘down’ and m going ‘up’;
colour all edges black or white independently at random with P(white) = g,
where ¢(1 — ¢)™ = p; define I; = 1 if the edge going down from vertex i is
white and the m edges going up are black.)

By continuity of p — min{pe,({A}) : A C V is independent }, and the fact
that g ,({A}) = 0 whenever A is dependent, it follows that for some p with
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0 < p < b we have pg,({A}) > 0 for each A, and thus pg, is a probability
measure, but pg,({A}) = 0 for at least one independent set A.

Fix such p and A, and let T" be the (induced) subgraph of G obtained by
deleting all vertices in A together with all their neighbours. (In fact, it seems
likely that A = (), and thus I' = G, but we have not verified this.) By a simple
calculation [7], for every B C V(T'), ur»({B}) = pap,({AUB})/pl; thus pr,
is a probability measure with pr,(0) = 0.

Let the indicators I; be defined as above. For this family of indicators then
P(S =0) = urp(@) =0and 6+ < (m+ 1)p+p < (m + 2)b = a, which
verifies the claim.

8. DISCUSSION

We may compare the upper bounds given in this paper with the results
previously obtained in the special case when the indicators I; all are of the
type [[;cq, Jj» where {J;};cq is a family of independent indicator variables
and the Q; are (arbitrary) subsets of the index set (). In this case, using our
notation, [4, 3] give the bounds

P(S =0) < exp(—u+A) (18)
and
P(S = 0) < exp(—p?/(2A + p)); (19)

Boppana and Spencer [2, 1] give, using a different proof and under somewhat
more general conditions,

P(S=0)<exp(A/(1—¢)) [](1—p) <exp(—p+A/1-2)).  (20)
i€T
(Alon and Spencer [1] also give, under the same conditions and provided 2A >
(1 —¢), the bound exp(—p*(1 —e)/4A); this is similar to but larger than the
bound in (19).)

The bounds given here in Section 3 (for a much more general situation) are
of a similar nature, but somewhat larger. The main difference is that ¢ plays
no role in the bounds in the special case; for example, the bound in Theorem 2
differs from (18) only by the factor €2 multiplying A.

Furthermore, the constants in the exponent in the bounds in Theorems 3-5
are not as good as in (19) for the special case.

Example 1 shows that the A in the exponent in Theorem 2 and (18) is quite
sharp; for example, it cannot in general be multiplied by a constant less than 1.
However, we do not know whether the factor e?* multiplying A in Theorem 2
really is needed. As remarked above, the incomparable estimates in Theorems
6 and 7, which represent two different attempts to reduce this factor, suggest
that none of the these results is the best possible. Indeed, it seems possible
that the result (18) known for the special case above holds generally. (Recall,
however, from Example 1 that the corresponding factor HkN{Z.’j}(l —pe)” ! in
Theorem 1 cannot be completely eliminated, see (17). Similarly, by the same
example, the factor 1/(1 —¢) cannot be removed from the first bound in (20).)
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Similarly, there seems to be room for improvements of the constants in
Theorems 3-5. Example 1 shows that the best one could hope for is something
like (19); for example, the constants in front of A and p there are the best
possible.

This leads to the following open problem.

Problem 1. Do (18), (19) and (20) hold under the assumptions of this paper?
There are also other questions suggested by the results above.

Problem 2. [3] gives a tail estimate similar to Theorem 10, but also a cor-
responding lower bound. Is there similar lower bound under the conditions of
the present paper?

As remarked in Remark 2, the Lovédsz local lemma (and our Theorem 9)
requires only a weaker version of our condition that I' is a dependency graph.

Problem 3. Do the results of this paper hold if I' only is assumed to be a
dependency graph in the weaker sense?
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