
Hook lengths in a skew Young diagramSvante JansonDepartment of Mathematics, Uppsala UniversityPO Box 480, S-751 06 Uppsala, Swedensvante.janson@math.uu.seSubmitted: October 15, 1997; Accepted: October 20, 1997AbstractRegev and Vershik (Electronic J. Combinatorics 4 (1997), #R22) have obtained someproperties of the set of hook lengths for certain skew Young diagrams, using asymptoticcalculations of character degrees. They also conjectured a stronger form of one of theirresults.We give a simple inductive proof of this conjecture.Very recently, Regev and Zeilberger (Annals of Combinatorics, to appear) have inde-pendently proved this conjecture.1 IntroductionRegev and Vershik [1] have recently obtained some properties of the set of hook lengths forcertain skew Young diagrams. They prove the results using asymptotic calculations of thedegrees of certain sequences of characters of the symmetric group, and note that they donot know a direct \�nite" proof of their results.The purpose of the present note is to present such a proof for one of their results, viz.their Theorem 1.2.2. Moreover, Regev and Vershik's Theorem 1.2.2 states that two di�erentsets of hook lengths have the same product, and the authors conjecture that in fact thesetwo sets are equal. (More precisely, the sets in question should be regarded as multisets,i.e. the elements may have multiplicities.) We prove this conjecture.Very recently, Regev and Zeilberger [2] have independently proved this conjecture.



22 NotationIf n1 � n2 � � � � � nm � 0 are integers, with m � 1, let D = D(n1; : : : ; nm) be the Youngdiagram with rows of lengths n1; : : : ; nm. Following (and slightly extending) Regev andVershik [1], we introduce the following de�nitions, see the examples in Figures 1 and 2.R = R(m;n) is an m� n rectangle, i.e. a Young diagram with m rows of equal lengthn. We assume that n � n1 and that R and D are positioned such that their top left cornerscoincide. Then D � R. (Regev and Vershik consider only the case when R is the smallestrectangle containing D, i.e. when n = n1 and nm � 1. We �nd it convenient to treat aslightly more general situation.)D� is obtained by rotating D a half turn about the center of R; thus D� � R and RnD�is a Young diagram with rows of lengths n� nm, n� nm�1, : : : , n� n1.SQ = SQ(n1; : : : ; nm;n) is obtained from R nD� by adding two copies of D�, one alongthe left edge and one along the top edge of R.We will use a coordinate system with the x-axis directed upwards and the y-axis directedto the left. (Note that thus rows are numbered from the bottom to the top and columnsfrom the right to the left.) We may then describe the skew diagrams as follows.R(m;n) = f(i; j) : 1 � i � m; 1 � j � ngD�(n1; : : : ; nm) = f(i; j) : 1 � i � m; 1 � j � nigSQ(n1; : : : ; nm;n) = f(i; j) : 1 � i � m; ni + 1 � j � ni + ng[ f(i; j) : m+ 1 � i � 2m; 1 � j � ni�mg:The hook length hA(x) of an element x of a (skew) diagram A is, as usual, the numberof elements of A directly below or to the right of x, including x itself. We de�ne H(A) tobe the multiset fhA(x) : x 2 Ag. �� �� � � �� � � � 0� � � � 0 0� � � � 0 0 0 0Figure 1: D�(4; 2; 1) marked with 0; SQ(4; 2; 1; 4) marked with �



334 26 5 3 16 4 3 15 4 2 14 3 2 1 6 5 4 35 4 3 24 3 2 1 6 4 2 13 11Figure 2: SQ(4; 2; 1; 4), R(3; 4) and D(4; 2; 1) with hook lengths3 ResultTheorem. Let n � n1 � n2 � � � � � nm � 0 (m � 1) be integers. We then have theequality of multisets of hook lengthsH�SQ(n1; : : : ; nm;n)� = H�R(m;n)� [H�D(n1; : : : ; nm)�: (1)Proof. We say that (n; n1; : : : ; nm) is good if (1) holds. The result follows by double induc-tion, in m and nm, from the following three claims.(i) If n � n1 � 0, then (n; n1) is good.(ii) If (n; n1; : : : ; nm) is good, then (n; n1; : : : ; nm; 0) is good.(iii) If (n; n1; : : : ; nm) is good and nm�1 > nm, then (n; n1; : : : ; nm�1; nm + 1) is good.(i) is trivial: SQ(n1;n) consists of two rows with n and n1 elements, positioned suchthat their hook lengths are 1; : : : ; n and 1; : : : ; n1, respectively, corresponding to the hooklengths of R(1; n) and D(n1).For (ii), note that SQ0 = SQ(n1; : : : ; nm; 0;n) is obtained from SQ = SQ(n1; : : : ; nm;n)by inserting a new row (m+ 1; 1); : : : ; (m+ 1; n), moving up all elements (i; j) with i � m;equivalently, SQ0 is obtained from SQ by adding a new element on top of each column1; : : : ; n. Each of these new top elements has m elements beneath it, and thus their hooklengths are m+ 1; : : : ;m+ n. Moreover, all elements in SQ keep the same hook length inSQ0; consequently H(SQ0) = H(SQ) [ fm+ 1; : : : ;m+ ng, see Figure 3.For the right hand side of (1), we observe that adding a new row of length 0 does notchange D, while R = R(m;n) is changed to R0 = R(m + 1; n), which equals R with anadditional top row having hook lengths m + 1; : : : ;m + n. Thus H(R0) = H(R) [ fm +1; : : : ;m + ng. Consequently, if H(SQ) = H(R) [ H(D), then H(SQ0) = H(R0) [ H(D)too, which proves (ii).For (iii) we let SQ0 = SQ(n1; : : : ; nm + 1;n) and D0 = D(n1; : : : ; nm + 1) (this timeR = R(m;n) stays the same), and argue similarly. SQ0 di�ers from SQ in three places: the



445 37 6 4 26 5 3 16 4 3 15 4 2 14 3 2 1 7 6 5 46 5 4 35 4 3 24 3 2 1Figure 3: Hook lengths in SQ(4; 2; 1; 0; 4) and R(4; 4)=4 34=3 26 5 3=2 1=6 6=5 4=3 3=2 1=5 4 2 14 3 2 1 6 4=5 2 13 1=21=2 =1Figure 4: Hook lengths in SQ(4; 2; 1; 4)=SQ(4; 2; 2; 4) and D(4; 2; 1)=D(4; 2; 2)element (m;nm + 1) is removed while two new elements (m;nm + n+ 1) and (2m;nm + 1)are added. This a�ects only the hook lengths in row m and in column nm+1, see Figure 4.The hook length hSQ(m; j) of an element in row m in SQ is j � nm +m � k if nk <j � nk�1 with 1 < k � m, and j � nm + m � 1 if n1 < j � n + nm; consequently thehook lengths in row m in SQ are the numbers 1; : : : ; n+m� 1 except the m� 1 numbersnk � nm +m� k, k = 1; : : : ;m� 1.The hook lengths in row m in SQ0 are similarly (by substituting nm + 1 for nm) thenumbers 1; : : : ; n+m� 1 except nk � nm� 1+m� k, k = 1; : : : ;m� 1. The contributionsfrom this row to the di�erence between H(SQ) and H(SQ0) is thus equivalent to adding thenumbers nk� nm+m� k and removing the numbers nk �nm+m� k� 1, 1 � k � m� 1.The hook lengths in column nm + 1 in SQ, not counting (m;nm + 1) which is alreadytaken care of, are nm + 2; : : : ; nm +m, while the hook lengths in the same column in SQ0(which lies entirely above row m) are nm + 1; : : : ; nm +m. The net e�ect of the changes inthis column is thus an addition of the number nm +1. Consequently, combining the e�ectsin the row and the column,H(SQ0) = H(SQ) [ fnm + 1g [ fnk � nm +m� kgm�1k=1n fnk � nm +m� k � 1gm�1k=1 : (2)



5For the right hand side of (1), we observe that D0 di�ers from D in that a new elementis added to the last row. The hook lengths in this row in D are 1; : : : ; nm, while in D0 theyare 1; : : : ; nm + 1, a net addition of nm + 1.The element above the new element in the kth row from top has hook length in Dnk � nm +m� k � 1, while its hook length in D0 is increased by 1 to nk � nm +m� k.No other hook lengths are a�ected, and consequently,H(D0) = H(D) [ fnm + 1g [ fnk � nm +m� kgm�1k=1 n fnk � nm +m� k � 1gm�1k=1 :Comparing this with (2), we see that if H(SQ) = H(R) [H(D), then H(SQ0) = H(R) [H(D0) too. This completes the proof of (iii), and thus of the theorem.References[1] A. Regev and A. Vershik, Asymptotics of Young diagrams and hook numbers. Electron.J. Combin. 4 (1997), #R22, 12pp.[2] A. Regev and D. Zeilberger, Proof of a conjecture on multisets of hook numbers. Ann.Combin., to appear.


