
ONE, TWO AND THREE TIMES log n=n FOR PATHS IN ACOMPLETE GRAPH WITH RANDOM WEIGHTSSVANTE JANSONAbstract. Consider the minimal weights of paths between two points ina complete graph Kn with random weights on the edges, the weights beinge.g. uniformly distributed. It is shown that, asymptotically, this is logn=nfor two given points, that the maximum if one point is �xed and the othervaries is 2 logn=n, and that the maximum over all pairs of points is 3 logn=n.Some further related results are given too, including results on asymp-totic distributions and moments, and on the number of edges in the minimalweight paths. 1. IntroductionLet a random weight Tij be assigned to every edge ij of the complete graphKn. (Thus Tji = Tij. We do not de�ne Tij for i = j.) We assume that the�n2� weights Tij, 1 � i < j � n, are independent and identically distributed;moreover we assume that they are non-negative and that their distributionfunction P(Tij � t) = t + o(t) as t& 0; the main examples being the uniformU(0; 1) and the exponential Exp(1) distributions.Let, for two vertices i and j, Xij be the minimal total weight of a pathbetween i and j. Our main theorem is a set of three di�erent asymptoticresults for Xij. (log denotes the natural logarithm.)Theorem 1. Under the assumptions above, as n!1:(i) For any �xed i and j, Xijlogn=n p! 1:(ii) For any �xed i, maxj�nXijlogn=n p! 2:(iii) maxi;j�nXijlogn=n p! 3:Hence, with high probability, Xij is about logn=n for any �xed (or random)pair of vertices, but there are pairs of vertices for which it is larger; up to2 logn=n if i is �xed and up to 3 logn=n globally.Date: December 10, 1997; revised October 1, 1998.1



2 SVANTE JANSONSimilarly, de�ning Yi = maxj�nXij, we see from (ii) and (iii) that Yi typ-ically is about 2 logn=n, but that it is larger for a few vertices with maxi Yibeing about 3 logn=n. A companion result shows that, in contrast, Yi is notsigni�cantly smaller than 2 logn=n for any vertex i.Theorem 2. As n!1, mini�nmaxj�nXijlogn=n p! 2:In other words, interpreting the weights as distances, most pairs of verticesare at a distance of about logn=n, the radius of the graph is about 2 logn=nand the diameter is about 3 logn=n.Remark 1. Theorem 1(i),(ii) may alternatively be stated in terms of �rst-passage percolation on the complete graph (the time to reach a given vertexis about logn=n and the time to reach all is 2 logn=n).For completeness and comparison, we also state the corresponding simple(and well-known) results for the minimal distance from a vertex. In this casethere is less concentration and we obtain convergence (in distribution) to anon-degenerate random variable instead of to a constant.Theorem 3. Let Zi = minj 6=iXij = minj 6=i Tij. As n!1:(i) For any �xed i, nZi d! Exp(1):(ii) n2mini�n Zi = n2 mini;j�nTij d! Exp(2):(iii) maxi�nZilogn=n p! 1:The proofs of (i) and (ii) are simple exercises, while (iii) is, in disguise, thewell-known threshold for existence of isolated vertices in a random graph [1,Exercise III.2]; consider the graph with edges fij : Tij < tg. We leave thedetails to the reader. (Note that if Tij 2 Exp(1), then (n� 1)Yi 2 Exp(1) andn(n� 1)mini Yi 2 Exp(2) exactly.)Using Theorem 3(iii), we can give a simple informal explanation of the dis-crepancy between the three parts of Theorem 1 as follows, interpreting theweights as travel times: Most vertices are connected by e�cient highways,which take you to almost any other vertex within about logn=n (but rarelymuch quicker). Some vertices, however, are remote villages (like Oberwolfach),from which it takes up to logn=n to get to any other vertex at all. Hence,starting at a typical vertex, most travel times are about logn=n, but it takesan extra logn=n (just for the �nal step in the path) to reach a few remote ver-tices. Similarly, if we start at one of the very remote vertices, it takes about



ONE, TWO AND THREE TIMES log n=n 3logn=n to get to any other vertex at all, 2 logn=n to get to most other verticesand 3 logn=n to get to the other very remote vertices.Some further results on asymptotic distributions and moments are given inSection 3. The lengths of the minimum weight paths are studied in Section 4.Acknowledgements. Most of this work was done during the meeting Ran-dom Graphs and Combinatorial Structures at Oberwolfach, September{Octo-ber 1997; I thank several participants, in particular Jim Fill and Johan H�astad,for their helpful comments and questions. The proof of the main theorem wascompleted a few weeks later, while I tried to get my daughter So�e back tosleep one night; I thank her for giving me this opportunity.2. ProofsWe �rst observe that the distribution of Tij does not a�ect the results, aslong as it satis�es the condition above. This is seen by the following standardcoupling argument, which we include for completeness.Let F�1 : [0; 1)! [0;1) be the inverse function of the distribution functionF (t) = P(Tij � t) of Tij. If Uij 2 U(0; 1) are independent uniform randomvariables, then F�1(Uij) has the same distribution as Tij, so we may withoutloss of generality assume that Tij = F�1(Uij). By assumption, F (t)=t ! 1as t & 0, and thus also F�1(t)=t ! 1. Let " > 0. If Xij < 10 logn=n,say, for some i and j, then Tkl = F�1(Ukl) < 10 logn=n for each edge kl inthe minimum weight path from i to j, and thus, provided n is large enough,1� " < Tkl=Ukl < 1+ ". Consequently, the sum of the Ukl for the same path isat most (1� ")�1Xij, and thus, using X 0ij to denote the minimal path weightde�ned by fUijg, X 0ij � (1 � ")�1Xij. Conversely, by the same argument, ifX 0ij < 10 logn=n then Xij < (1+")X 0ij. If follows that if either Xij < 9 logn=nor X 0ij < 9 logn=n, and n is large enough, then both Xij < 10 logn=n andX 0ij < 10 logn=n hold, and moreover (1 � ")X 0ij < Xij < (1 + ")X 0ij. It nowfollows immediately that if any part of Theorem 1 or 2 holds either for Tijor for the uniform Uij, then it holds for both. In particular, a proof of theseresults for any distribution with F (t)=t! 1 as t& 0 implies the same resultsfor U(0; 1), and then for any other such distribution.We may thus choose a convenient distribution of Tij; we use the exponentialdistribution because of its excellent Markov properties. Hence, in the sequelwe assume that Tij 2 Exp(1).Proof of Theorem 1. For parts (i) and (ii), we may assume that i = 1. Weadopt the �rst-passage percolation viewpoint (see Remark 1), so we regardvertex 1 as initially infected, and assume that the infection spreads along eachedge with an Exp(1)-distributed waiting time. We �rst study when the othervertices get infected, considering them in order of infection and ignoring theirlabels.Since there are n� 1 neighbours of the initially infected vertex, the time V1until the second vertex is infected is exponentially distributed with expectation1=(n� 1). More generally, when k < n vertices have been infected, there are



4 SVANTE JANSONk(n � k) edges connecting the infected and non-infected vertices, and thusthe time Vk until the next vertex is infected is Exp�1=(k(n � k)�; moreover,this time is independent of V1; : : : ; Vk�1. In other words, the time Sm until mvertices have become infected can be writtenSm = m�1X1 Vkwhere V1; : : : ; Vn�1 are independent with Vk 2 Exp�1=(k(n� k)�.The times fSmgnm=2 are just the minimal path weights fX1jgnj=2, arrangedin increasing order. In particular,Y1 = maxj�2 X1j = Sn = n�1X1 Vk: (1)Hence E Y1 = n�1X1 E Vk = n�1X1 1k(n� k) = 1n n�1X1 �1k + 1n� k� = 2n n�1X1 1k= 2lognn +O�1n� (2)and similarlyVarY1 = n�1X1 VarVk = n�1X1 � 1k(n� k)�2 � 2 n=2X1 1k2(n� k)2� 8n2 n=2X1 1k2 = O(n�2): (3)(ii) now follows by Chebyshev's inequality.For (i), �x further j = 2. Observe that ifN is the number of vertices infectedbefore vertex 2, then X12 = SN+1 = NX1 Vk; (4)where, by symmetry, N is uniformly distributed over 1; : : : ; n � 1 and inde-pendent of V1; : : : ; Vn�1. We rewrite this equation as X12 =Pn�11 1[N � k]Vk,using indicator functions to eliminate the random summation limit. Hence,E X12 = n�1X1 E (1[N � k]Vk) = n�1X1 P(N � k) E Vk= n�1X1 n� kn� 1 1k(n� k) = n�1X1 1k(n� 1)= lognn +O� 1n�: (5)



ONE, TWO AND THREE TIMES log n=n 5In order to estimate the variance, we further rewrite the sum asX12 = NX1 (Vk � E Vk) + NX1 1n�1k + 1n� k�= NX1 (Vk � E Vk) + 1n�logN + logn� log(n�N)� +O�1n�: (6)We consider the three terms on the right hand side separately. Since N; V1; : : : ;Vn�1 are independent,Var� NX1 (Vk � E Vk)� = E � NX1 (Vk � E Vk)�2 = E � NX1 VarVk�� n�1X1 VarVk = n�1X1 1k2(n� k)2� n=2X1 4k2n2 + n�1Xn=2 4n2(n� k)2 = O� 1n2�:For the second term, we observe thatE �logN � log(n� 1)�2 = E �log Nn� 1�2 ! Z 10 (logx)2 dx <1as n !1. Hence Var(logN) = Var�log(n� N)� = O(1), and it follows thatthe variance of the second term in (6) also is O(n�2). The same is triviallytrue for the third term.Consequently, VarX12 = O(n�2), which together with (5) yields (i).The proof of (iii) is divided into two parts, considering upper and lowerbounds separately. First, by (1), for �1 � t < 1� 1=n,E etnY1 = n�1Y1 E entVk = n�1Y1 �1� ntk(n� k)��1: (7)Hence, for every a > 0, choosing t = 1� 1= logn (n � 3),P(Y1 > a logn=n) � E etnY1�ta log n = e�ta log n n�1Y1 �1� ntk(n� k)��1= �1� ntn� 1��2 exp��ta logn + n�2X2 � log�1� ntk(n� k)��� �1� ntn� 1��2 exp��ta logn+ n�2X2 � ntk(n� k) + � ntk(n� k)�2��= �1� t+O(n�1)��2 exp��ta logn + 2t logn+O(1)� = O�n2�a log2 n�:(8)



6 SVANTE JANSONThis evidently impliesP�maxi Yi > a logn=n� � nP�Y1 > a logn=n� = O�n3�a log2 n�;which tends to 0 as n!1 for every �xed a > 3.For the lower bound, let " > 0 be small. Partition the vertex set f1; : : : ; ng ofKn into the sets A = f1; : : : ; nAg and B = fnA+1; : : : ; ng, where nA = dn1�"e.Let nB = jBj = n� nA.For i 2 A, let Ui = minj2B Tij. Then the random variables Ui, i 2 A, areindependent with Ui 2 Exp(1=nB). In particular,P�Ui > (1� 2") logn=n� = exp��(1� 2")nBn logn�� exp��(1� 2") logn� = n2"�1and thusP�Ui � (1� 2") logn=n for every i 2 A� � �1� n2"�1�n1�" < e�n": (9)Let, for k 2 A, Ek be the event that Uk > (1 � 2") logn=n but Ui � (1 �2") logn=n for i � k. Then the events Ek are disjoint and, by (9),Xk2A P(Ek) = P�[k2A Ek� > 1� e�n" : (10)The idea of the proof is to show that conditioned on Ek, Yk is with high prob-ability close to 3 logn=n; in fact, as is shown in detail below, conditioning onUk > (1� 2") logn=n typically increases Yk (which usually is about 2 logn=n)by (1�2") logn=n, while conditioning on Ui � (1�2") logn=n for i � k hardlya�ects the result.We will use the following lemma.Lemma 1. Suppose that �, b > 0 and X 2 Exp(�), and de�nef(x) = �� log�e�b=� + (1� eb=�)e�x=��:(i) The distribution of f(X) equals the conditional distribution of X givenX � b.(ii) If further 0 � � < 1 and b=� � �(1 � log�)=(1 � �), then f(x) � �xwhen 0 � x � ��1b� �. Consequently,P(f(X) < �X) � P(X > ��1b� �) = e1���1b=�:Proof. We may for simplicity, by homogeneity, assume that � = 1. Then e�Xis uniformly distributed on [0; 1], and thus for 0 � t � b,P�f(X) � t� = P�e�b + (1� e�b)e�X � e�t� = P�e�X � e�t � e�b1� e�b �= 1� e�t1� e�b = P(X � t j X � b);which proves (i).For (ii) we observe that (when � = 1) f(x) � �x if and only ife�b + (1� e�b)e�x � e��x: (11)



ONE, TWO AND THREE TIMES log n=n 7Letting y = e�x, the left hand side of (11) is a linear function of y, while theright hand side y� is concave; hence, in order to verify (11) for the interval0 � x � ��1b� 1, it su�ces to verify it for the endpoints.For x = 0, (11) is a trivial identity, while for x = ��1b� 1, it ise�b + (1� e�b)e���1b+1 � e�b+�: (12)Now, by assumption, ��1b = b + b(1� �)��1 � b + 1� log�, and thuse�b + e���1b+1 � e�b + e�b+log � = (1 + �)e�b � e�e�b;this implies (12), which completes the proof of the lemma.Continuing with the proof of Theorem 1(iii), let k 2 A be �xed, let f be asin Lemma 1 with � = 1=nB and b = (1� 2") logn=n, and de�neU 0i = 8><>:f(Ui); i < k;Ui + b; i = k;Ui; i > k:Then, by Lemma 1(i) for i < k and the standard lack-of-memory property ofexponential distributions for i = k, the distribution of U 0i equals the conditionaldistribution of Ui given Ek for every i 2 A; moreover, by our independence as-sumptions, this extends to the joint distribution. Furthermore, by the samelack-of-memory property, the family of random variables fTij � Uigj2B is in-dependent of Ui, for each i 2 A separately and thus for all i 2 A jointly too;hence the joint distribution of fTij�Uigi2A; j2B is not a�ected by conditioningon Ek. It follows that if we de�ne T 0ij for 1 � i < j � n byT 0ij = (Tij � Ui + U 0i ; i 2 A and j 2 B;Tij; otherwise; (13)and let T 0ji = T 0ij for j > i, then the family fT 0ijg has the same distribution asthe conditional distribution of fTijg given Ek. Note in particular that T 0kj =Tkj + b when j 2 B.Suppose that fTijg are such thatU 0i � (1� 2")Ui for every i 2 A; (14)Tik � 3lognn for every i 2 A (15)and Yk � (2� ") lognn : (16)We observe �rst that, by (13) and (14), thenT 0ij � (1� 2")Tij for every i and j 6= i: (17)Now consider the minimal path weights X 0ij de�ned by the edge weightsT 0ij and the corresponding Y 0i = maxj X 0ij. By (16), there exists a vertexl such that every path i0 = k; i1; : : : ; im = l from k to l has weight W =



8 SVANTE JANSONPm1 Tis�1is � (2 � ") logn=n. Consider such a path and the correspondingweight W 0 = Pm1 T 0is�1is. Either i1 2 A, and then, by (13) and (15), W 0 �T 0ki1 = Tki1 � 3 logn=n, or i1 2 B, and then T 0ki1 = Tki1 + b, which togetherwith (17) yieldsW 0 � b + (1� 2")W � (1� 2") lognn + (1� 2")(2� ") lognn � (3� 7") lognn :Hence W 0 � (3 � 7") logn=n for every path from k to l, and thus X 0kl �(3� 7") logn=n and �nally Y 0k � X 0kl � (3� 7") logn=n.We have shown that if (14){(16) hold, then Y 0k � (3 � 7") logn=n. Conse-quently, P�Yk � (3� 7") logn=n j Ek� = P�Y 0k � (3� 7") logn=n�� P((14){(16) hold):Let q denote the probability that (14){(16) hold. We have so far kept k�xed, but q is independent of k, and summing over k we obtainP�maxi Yi � (3� 7") logn=n� �Xk2A P�Yk � (3� 7") logn=n j Ek�P(Ek)� qXk2A P(Ek): (18)Now, by Lemma 1(ii) with � = 1� 2", if n is large enough,P�(14) fails� �Xi2A P�U 0i < (1� 2")Ui� � nAe1�nB log n=n= O�n1�"n�1� = o(1):Similarly, P�(15) fails� �Xi2A P�Tik < 3lognn � � 3nA lognn = o(1);while P�(16) fails� = o(1) by the already proven part (ii) of the theorem.Consequently, q = 1 � o(1), which by (18) and (10) yields P�maxi Yi �(3� 7") logn=n�! 1 as n!1. This completes the proof of (iii).



ONE, TWO AND THREE TIMES log n=n 9Proof of Theorem 2. We use (7), replacing t by �t, and obtain for every a andt > 0P(Y1 < a logn=n) � E eta log n�tnY1 � eta log n n�1Y1 �1 + ntk(n� k)��1= exp�ta logn + n�1X1 � log�1 + ntk(n� k)��� exp�ta logn+ n�1X1 �� ntk(n� k) + 12� ntk(n� k)�2��= exp�at logn� 2t logn +O(t) +O(t2)�:If 0 < a < 2, we thus obtain for any constant tP(mini Yi < a logn=n) � nP(Y1 < a logn=n) = O�n1+(a�2)t�;which is o(1) provided t > 1=(2�a). On the other hand, Theorem 1(ii) impliesP�mini Yi > (2 + ") logn=n� � P�Y1 > (2 + ") logn=n�! 0for every " > 0, and the proof is complete.3. Asymptotic distributions and momentsThe method above also yields the asymptotic distributions of Xij and Yi;these are not normal. More precisely, we have the following result. (We have toimpose a slightly stronger condition on the distribution of the Tij; the conditionis satis�ed for the exponential and uniform distributions.)Theorem 4. Suppose that the distribution function P(Tij � t) = t+o(t=j log tj)as t& 0. Then, as n!1,nXij � logn�  d! 1X1 1k(�k � 1) + � (19)and nYi � 2 logn� 2 d! 1X1 1k (�k � 1) + 1X1 1k (�0k � 1); (20)where  is Euler's constant, and the random variables �k; �0k, k � 1, and � areindependent with �k; �0k 2 Exp(1) while � has the logistic distribution P(� �x) = ex=(1 + ex).Proof. By a slight modi�cation of the coupling argument in the proof of The-orem 1, it su�ces to consider the case Tij 2 Exp(1); we omit the details.



10 SVANTE JANSONWe write An � Bn to mean that E (An � Bn)2 = o(1) as n ! 1. In theexponential case, (4) and (1) imply thatnX12 d= NX1 nk(n� k)�k = NX1 nk(n� k)(�k � 1) + NX1 �1k + 1n� k�� NX1 1k (�k � 1) + logN +  + logn� log(n�N)� 1X1 1k (�k � 1) + log N=n1�N=n + logn+ ;and nY1 d= n�1X1 nk(n� k)�k = n�1X1 nk(n� k)(�k � 1) + 2 n�1X1 1k� bn=2cX1 1k (�k � 1) + n�1Xbn=2c+1 1n� k (�k � 1) + 2 logn+ 2d= bn=2cX1 1k (�k � 1) + dn=2e�1X1 1k (�0k � 1) + 2 logn+ 2:The result follows, since N=n d! �, where � 2 U(0; 1), and � = log��=(1� �)�has the logistic distribution.Since the moment generating function E et�k of �k equals (1� t)�1, Re t < 1,it follows that the moment generating function of P 1k (�k � 1) is1Yk=1(1� t=k)�1e�t=k = limn!1 nYk=1 kk � te�tPnk=1 1k= limn!1 �(n+ 1)�(1� t)�(n+ 1� t) e�t log n�t+o(1)= �(1� t)e�t ; Re t < 1;hence the moment generating function ofW =P 1k(�k�1)+ equals �(1� t),Re t < 1. Now, if T 2 Exp(1), then � logT has the moment generatingfunction E e�t log T = E T�t = R10 x�te�x dx = �(1 � t) too. Thus W d=� logT . (Recall that the restriction of the moment generating function tothe imaginary axis yields the characteristic function, which determines thedistribution.) Hence,P(W � x) = P(logT � �x) = P(T � e�x) = e�e�x; �1 < x <1; (21)which is one of the standard extreme value distributions [2].Consequently, the right hand side of (20) can be writtenW+W 0�2, whereW and W 0 are independent random variables with the distribution (21).



ONE, TWO AND THREE TIMES log n=n 11Moreover, the logistic distribution has the moment generating function, forjRe tj < 1, with � 2 U(0; 1) as above,E et log(�=(1��)) = Z 10 xt(1� x)�t dx = B(1 + t; 1� t) = �(1 + t)�(1� t);which equals the moment generating function of the symmetrization W �W 0.Thus � d= W �W 0.We can now restate Theorem 4 as follows.Theorem 5. Suppose that the distribution function P(Tij � t) = t+o(t=j log tj)as t& 0. Then, as n!1,nXij � logn d! W1 +W2 �W3 (22)and nYi � 2 logn d!W1 +W2; (23)where W1;W2;W3 are independent random variables with the same extremevalue distribution P(Wi � x) = e�e�x.The variables on the right hand sides of (22) and (23) have the momentgenerating functions �(1 � t)2�(1 + t), jRe tj < 1, and �(1 � t)2, Re t < 1,respectively, and thus the characteristic functions �(1� it)2�(1+ it) and �(1�it)2. The limit W1 +W2 in (23) has a density function that can be expressedusing modi�ed Bessel functions as 2e�xK0(2e�x=2), cf. e.g. [3, (5.10.23)]. Wedo not know any simple expression for the density function of W1 +W2 �W3.Using the fact that the variance of the logistic distribution is �2=3 (whichfollows from its moment generating function �(1 + t)�(1 � t) = �t= sin�t,jRe tj < 1, or from the representation W �W 0 above), it is easily seen that thelimiting variables in (19) and (20) have expectations 0 and variancesP11 k�2+�2=3 = �2=2 and 2P11 k�2 = �2=3, respectively. Since all approximations andlimits in the proof hold in L2 sense, we obtain that these are the limits of theexpectations and variances of the left hand sides in (19) and (20) too, providedTij 2 Exp(1). This carries over to other distributions as well, in particular tothe uniform distribution; we have the following theorem.Theorem 6. Suppose that the distribution function P(Tij � t) = t+o(t=j log tj)as t & 0, and that E T pij <1 for some p > 0. Then all moments converge in(19), (20), (22) and (23); in particular,E Xij = lognn + n + o� 1n�;E Yi = 2lognn + 2n + o� 1n�;VarXij � �22n2 ;VarYi � �23n2 :



12 SVANTE JANSONProof. It su�ces to prove that E (nXij�logn)m = O(1) and E (nYi�2 logn)m =O(1) for every even integer m and n large enough, since this implies conver-gence of all moments of order< m by a standard result on uniform integrability.When Tij is exponentially distributed, this can be done as for the case m = 2in the proof of Theorem 1; we omit the details.In general, we let a and b be two constants, to be chosen later, and split theexpectation into three parts. (We treat only Xij; the same argument appliesto Yi.)First, E �(nXij � logn)m1[Xij � a logn=n]� = O(1) by comparison with theexponential case, using the coupling argument as in earlier proofs.Secondly, E �(nXij)m1[a logn=n < Xij � b]� � bmnm P(Xij > a logn=n) =O(nm+2�a log2 n) by (8); choosing a = m + 3 this becomes bounded.Finally, considering only the n� 2 paths of length 2 between i and j, we seethat P(Xij > x) � P(Tik > x=2 or Tjk > x=2 for every k 6= i; j)� �2P(Tij > x=2)�n�2:Now, if E T pij < 1, then xp P(Tij > x) ! 0 as x ! 1; it follows that if b islarge enough, then 2P(Tij > x=2) < x�p when x � b, and thusP(Xij > x) � x�(n�2)p; x � b:Consequently,E �(nXij)m1[Xij > b]� = nmbm P(Xij > m) + nm Z 1b mxm�1 P(Xij > x) dx= O(nmb�np) = O(1);provided n > 2 +m=p.Combining these estimates we �nd E (nXij� logn)m = O(1) as required.Remark 2. The asymptotic variances can also be obtained by re�ning the es-timates used in the proof of Theorem 1.Remark 3. The condition that E T pij < 1 for some p > 0 is necessary too; ifit fails then Xij has no �nite moment for any n. In fact, suppose that e.g.E Xij <1 for some n; then P(Xij > t) < 1=t for large t. Since P(Xij > t) �P(Tik > t for every k 6= i) = P(Tij > t)n�1, this yields P(Tij > t) < t�1=(n�1) (tlarge), and thus for example E T 1=nij <1.We do not know any similar results for maxi;j Xij.Problem 1. What is the asymptotic distribution of maxi;jXij? (Presumingthat some exists.)Problem 2. What is the order of Var(maxi;j Xij)? Is it � c=n2? If so, whatis the constant c?



ONE, TWO AND THREE TIMES log n=n 134. Lengths of minimal pathsWe have so far studied the weights of the minimal paths, but one might alsoask how long they are, disregarding their weights, i.e., how many edges theycontain. Let Lij be the length of the path between i and j that has minimalweight.For the case of exponentially distributed Tij, these lengths can be studiedby observing that the proof of Theorem 1 shows that the collection of minimalweight paths from a given vertex, 1 say, form a tree (rooted at 1) which canbe constructed as follows: Begin with a single root and add n� 1 vertices oneby one, each time joining the new vertex to a (uniformly) randomly chosen oldvertex. This type of random tree is known as a random recursive tree, and itis known that if Dk is the depth of the kth vertex, then Dn= logn p! 1 [4] andmaxk�nDk= logn p! e [5] as n!1; see also the survey [6].This leads to the following result; our condition on the distribution of Tij ispresumably much stronger than really required.Theorem 7. Suppose that Tij has a density function f(t) = 1+O(t) for t > 0.Then, as n!1:(i) For any �xed i and j, Lijlogn p! 1:(ii) For any �xed i, maxj�n Lijlogn p! e:Proof. The case when Tij 2 Exp(1) follows from the discussion before thetheorem; we have Lij = DN , where N is uniformly distributed over 2; : : : ; n,and maxj�n Lij = maxk�nDk.In general, we �rst observe that we may, for a given n, modify the distri-bution of Tij on the interval t � 5 logn=n without a�ecting the result, since,by Theorem 1, edges with such large weights hardly ever are used. Hencewe may assume that its density function is 1 + O(logn=n) times the densityfunction e�t of the exponential distribution, uniformly for all t > 0. It isnow easy to see that the minimum weight paths from i = 1 form a randomtree, obtained by adding vertices one by one as above, with the modi�cationthat the probability that the kth vertex (in order of insertion) is joined to thelth, for l < k, may depend on the previous history of the tree but always is(1 + O(logn=n))=(k � 1). We may couple this random tree growing processwith the one with equal probabilities 1=(k � 1) in such a way that the proba-bility that a vertex k is joined to di�erent preceding vertices in the two treesis O(logn=n), even if we condition on the previous history. It follows that ifwe �x the end vertex j, the path from i = 1 to j is the same in both treeswith probability 1�O(log2 n=n), which, by the result for the exponential case,implies (i) for a general distribution.



14 SVANTE JANSONFor (ii) we observe that if Dk is the depth of the kth vertex (in orderof insertion) in the tree, and �Dk is the depth in the random recursive treewith uniformly chosen ancestors, then, by the above, Dk = �Dk for everyk � n1 = n= log2 n with probability 1 � O(n1 logn=n) = 1 � O(1= logn).Since maxk�n1 �Dk= logn1 p! e by the result quoted above [5], it follows thatfor every " > 0, with probability 1� o(1),maxk�n Dk � maxk�n1 Dk = maxk�n1 �Dk � (e� ") logn1 = �e� "� o(1)� logn;which by maxj�n Lij = maxk�nDk proves one half of the result.For the opposite half, de�ne the generating functionsFm(t) = E mXk=1 tDkand �Fm(t) = E mXk=1 t �DkThe recursive de�nition of the tree yields E t �Dm+1 = tm �Fm(t) and thus�Fm+1(t) = �1 + tm� �Fm(t);which together with �D1 = 0 yields�Fm(t) = �(m+ t)�(m)�(1 + t) :Choosing t = e we obtain, for every a > e,P(maxk�n �Dk � a logn) � P� nXk=1 e �Dk � na� � n�a �Fn(e) � n�a+e=�(e+ 1)which tends to 0 as n!1.For Dk we similarly obtain the inequalities, for some C <1 and all t > 0,E tDm+1 � tm�1 + C lognn �Fm(t);Fm+1(t) � �1 + tm�1 + C lognn ��Fm(t);and thus Fm(t) � �Fm�t�1 + C lognn ��:which yields, similarly as above,P(maxk�n Dk � a logn) � n�aFn(e) � n�a �Fn(e+ Ce logn=n) � n�a+e=�(e+ 1)which tends to 0 as n!1 for a > e.Problem 3. How large is maxi;j Lij?



ONE, TWO AND THREE TIMES log n=n 15We can show that, if � � 3:591 is de�ned by � log� � � = 1, then forevery " > 0, P(e � " < maxi;j Lij= logn < � + ") ! 1. Hence it is naturalto conjecture that maxi;j Lij= logn converges in probability to a constant in[e; �]. Which? References[1] B. Bollob�as, Random Graphs. Academic Press, London 1985.[2] M.R. Leadbetter, G. Lindgren and H. Rootz�en, Extremes and Related Properties of Ran-dom Sequences and Processes. Springer-Verlag, New York 1983.[3] N.N. Lebedev, Special Functions and their Applications. Dover, New York, 1972. (Trans-lated from Russian.)[4] J. Moon, The distance between nodes in recursive trees. In Combinatorics (British Com-binatorial Conference, Aberystwyth, 1973), London Math. Soc. Lecture Note 13, Cam-bridge Univ. Press, London 1974, pp. 125{132.[5] B. Pittel, Note on the heights of random recursive trees and random m-ary search trees.Random Struct. Alg. 5 (1994), 337{347.[6] R.T. Smythe and H. Mahmoud, A survey of recursive trees. Theory Probab. Math. Statist.51 (1995), 1{27.Department of Mathematics, Uppsala University, PO Box 480, S-751 06 Upp-sala, SwedenE-mail address : svante.janson@math.uu.se


