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SVANTE JANSON

Abstract. We give a survey of several methods to obtain sharp concen-
tration results, typically with exponentially small error probabilities, for
random variables occuring in combinatorial probability.

Introduction

In probabilistic combinatorics, it is often important to show that a random
variable is sharply concentrated about its mean. A well-known, simple, but
rather weak result of this type is Chebyshev’s inequality

P(|X − EX| ≥ t) ≤ Var(X)/t2,

which holds for any random variable X with finite variance and any t > 0.
This inequality is very general (and very useful), but is in many cases too
weak. The purpose of this paper is to give a survey of some more or less recent
stronger inequalities, which under suitable assumptions yield estimates that
decrease exponentially as t→∞.

1. Sums of independent variables

An important case is when the variable X can be written as a sum
∑n

1 Xi

of independent random variables. We consider here only the case when each
Xi is an indicator variable; thus Xi ∈ Be(pi) where pi = P(Xi = 1) = EXi.
(The results hold more generally, assuming only that 0 ≤ Xi ≤ 1.) Let
λ = EX =

∑n
1 pi.

Consider first the case of a binomially distributed variable X ∈ Bi(n, p);
this is of the type above with all pi = p, and thus λ = np. Applying Markov’s
inequality to euX , one finds

P(X ≥ λ+ t) ≤ e−u(λ+t) E euX = e−u(λ+t)(1− p+ peu)n, u ≥ 0. (1)

The right hand side attains its minimum at eu = (λ + t)(1− p)/(n− λ− t)p,
assuming 0 < λ+ t < n, which yields

P(X ≥ EX + t) ≤
( λ

λ+ t

)λ+t( n− λ
n− λ− t

)n−λ−t
, 0 ≤ t ≤ n− λ; (2)

for t > n − λ the probability is 0. This bound is implicit in Chernoff [8] and
appears explicitly in Okamoto [19]. For applications, it is usually convenient to
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replace the right hand side of (2) by a larger but simpler bound. Our favourites
are the following, which follow from (2) by some calculus.

Theorem 1. If X ∈ Bi(n, p) and λ = np, then

P(X ≥ EX + t) ≤ exp
(
− t2

2(λ+ t/3)

)
, t ≥ 0; (3)

P(X ≤ EX − t) ≤ exp
(
− t

2

2λ

)
, t ≥ 0. (4)

Remark. The inequality (3) would not hold in general without the term t/3 in
the denominator.

We now return to the case when Xi ∈ Be(pi) with different pi. Using
Jensen’s inequality, it is easily seen that (1) holds in this case too, with p =
λ/n =

∑
pi/n. Consequently, the following generalization of Theorem 1 holds.

Theorem 2. If Xi ∈ Be(pi), i = 1, . . . , n, are independent and X =
∑n

1 Xi,
then (2), (3) and (4) hold, with λ = EX.

Many other similar bounds, often sharper than (3) and (4), have been proved
under these, or more general, assumptions by the same method (which goes
back at least to Bernstein [4]); see e.g. [3], [11] and [1, Appendix A].

Remark. Much more precise estimates of the tail probabilities for sums of
independent, but not necessarily identically distributed, random variables were
obtained by Feller [10] using different methods. Feller’s result implies, for the
cases above and with σ2 = VarX,

P(X ≥ EX + t) = eθ1
t
σ2 x

2(
1− Φ(x) +

θ2

σ
e−x

2/2
)
, 0 < t < σ2/12,

where x = t/σ, Φ is the normal distribution function, |θ1| ≤ 6/7(1 − 12t/σ2)
and |θ2| < 9.

Very precise asymptotic results for the binomial distribution are given by
Littlewood [16].

Some related distributions. The Poisson distribution Po(λ) is a limit of
binomial distributions, and thus Theorem 1 implies the same bounds for the
Poisson case.

Theorem 3. If X ∈ Po(λ), then (3) and (4) hold.

Furthermore, as a special case of a result in [22], a hypergeometric distri-
bution is the distribution of a certain sum of independent indicator variables.
(The proof is algebraic; there is no known probabilistic interpretation of these
indicators, which in general have irrational expectations.) Consequently we
can apply Theorem 2.

Theorem 4. Let X have a hypergeometric distribution with parameters N , n
and m. Then (3) and (4) hold, with λ = EX = mn/N .

(This was proved more directly by Hoeffding [11].)
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2. Sums of dependent variables

In this section we discuss random variables of the type X =
∑

α∈A Iα, where
Iα ∈ Be(pα) are indicator variables as above, but now they may be dependent.
(However, the inequalities below are useful only in cases when “most” variables
are independent.) In order to quantify the dependence, we say that a graph Γ
is a dependency graph for the family {Iα}α∈A if the vertex set V (Γ) = A and
two subfamilies {Iα}α∈A and {Iα}α∈B are independent whenever A and B are
two disjoint subsets of A such that there is no edge in Γ connecting A and B.

Remark. A slightly weaker definition of dependency graph is commonly used
for the Lovasz local lemma [1].

We concentrate for simplicity on bounds for P(X = 0), i.e., on the prob-
ability that Iα = 0 for every α ∈ A. Similar bounds exist for the lower tail
probabilities P(X ≤ EX − t), t ≥ 0, but not for the upper tail [12, 13].

A special case, which has had many applications in the last decade, is when
there is an underlying family {Jj}j∈J of independent random indicator vari-
ables, each index α is a (nonempty) subset of J and Iα =

∏
j∈α Jj. In other

words, if W denotes the random set {j ∈ J : Jj = 1}, then Iα is the indicator
of the event α ⊆ W , where α ∈ A, an arbitrary family of nonempty subsets
of J . In this case, we define a dependency graph Γ by taking V (Γ) = A and
letting the edge set consist of the edges αβ for all pairs α, β ∈ A with α 6= β
and α ∩ β 6= ∅.

We fix a dependency graph Γ for {Iα} and write α ∼ β if α, β ∈ A and there
is an edge in Γ between α and β. (In particular, then α 6= β.) We further
write α ∼ {β, γ} if α ∼ β or α ∼ γ, and define

• λ = EX =
∑

α∈A pα
• ∆ =

∑
{α,β}:α∼β E(IαIβ), summing over unordered pairs {α, β}, i.e.

over the edges in Γ. As a sum over ordered pairs, ∆ = 1
2

∑
α∈A

∑
β∼α E(IαIβ).

• δα =
∑

β∼α pβ.
• δ = maxα∈A δα.
• ε = maxα∈A pα.

In the special case we thus have ∆ = 1
2

∑∑
α 6=β, α∩β 6=∅ E(IαIβ). Then, the

following bounds hold [14].

Theorem 5. In the special case, with X =
∑
IA, λ = EX and ∆ as above,

P(X = 0) ≤ exp(−λ+ ∆); (5)

P(X = 0) ≤ exp
(
− λ2

λ+ 2∆

)
= exp

(
− λ2∑∑

α∩β 6=∅ E(IαIβ)

)
. (6)

The first bound is best for ∆ ≤ λ/2, while the second is better for larger ∆.

Remark. Boppana and Spencer [6] proved a slightly different version of (5),
viz.

P(X = 0) ≤ e∆/(1−ε)
∏
α∈A

(1− pα), (7)
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which has the advantage of being exact when ∆ = 0 (i.e. when the variables Iα
are independent), but otherwise seems slightly less convenient for applications.
Although the upper bounds (5) and (7) are quite close when ε = max pα is
small, neither of them dominates the other. It is intriguing to note that the
conceivable common improvement e∆

∏
α(1 − pα) fails to be an upper bound

to P(X = 0); this is seen by the simple example where X = I1 + I2 with
I1 = I2 ∈ Be(p), for which ∆ = p and P(X = 0) = 1− p > ep(1− p)2, cf. [13].

Note also that in the special case, by the FKG inequality, we have the lower
bound

P(X = 0) ≥
∏
A∈A

(1− pA) ≥ exp
(
− λ

1− ε

)
,

which shows that the bounds above are quite sharp when ∆ and ε are small.
The inequalities (5)–(7) have been widely used, although they apply only

to the sum of indicator variables with a very special structure. For example,
they apply to the number of copies of a given graph in G(n, p), but they do
not apply to the number of induced copies.

In a paper which has too long been neglected, Suen [20] proved, at about
the same time as [14, 6] and independently of them, a similar inequality for
the general case. The Suen inequality and later versions of it [13] yield almost
as good bounds as (5)–(7), but are thus much more widely applicable.

We do not give Suen’s original inequality [20] here, but rather a slight im-
provement of it (8) followed by two consequences of it [13], which are more
convenient for applications and closely resemble (5) and (6) for the special case
above.

Theorem 6. Let X =
∑

α Iα, where {Iα}α∈A is a finite family of Bernoulli
random variables having a dependency graph Γ. Then, with the notation above,

P(X = 0) ≤ exp
( ∑
{α,β}:α∼β

E(IαIβ)
∏

γ∼{α,β}

(1− pγ)−1
)∏
ν∈A

(1− pν); (8)

P(X = 0) ≤ exp(−λ+ ∆e2δ); (9)

P(X = 0) ≤ exp

(
−min

( λ2

8∆
,
λ

2
,
λ

6δ

))
= e−λ

2/max(8∆,2λ,6δλ). (10)

The bounds (9) and (10) are similar to the ones in (5) and (6), but with
extra terms involving δ and somewhat worse constants in (10). In applications,
δ is usually small and the bounds (9) and (10) are often as useful as (5) and
(6). Nevertheless, in at least one application (a recent bound for the 3-SAT
problem by Kirousis, Kranakis, Krizanc and Stamatiou [15], where δ ≈ 0.089),
the extra factor e2δ in (9) affects the final result significantly, and it is desirable
to reduce it as much as possible. It is shown in [13], using a proof by Spencer
(personal communication), that if 0 ≤ δ+ ε, this factor e2δ can be replaced by
the smallest root ϕ of ϕ = e(δ+ε)ϕ; this is the version used in [15].

It is an open problem whether the factor e2δ in (9) can be eliminated com-
pletely, i.e. whether (5) (or (6), (7)) holds in the general case too.
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3. Azuma’s inequality

The final inequalitites that we consider apply to random variables of the form
X = f(Z1, . . . , ZN), where Z1, . . . , ZN are independent random variables; here
the underlying random variables Zk can take values in arbitrary (and possibly
different) spaces Λk. Our basic assumption is the following Lipschitz condition,
for some numbers c1, . . . , cN . (In most applications, ck = 1.)

(L) If the vectors z, z′ ∈
∏N

1 Λi differ only in the kth coordinate, then
|f(z)− f(z′)| ≤ ck, k = 1, . . . , N .

In combinatorial applications, one often considers a random subset W of a
set A = {a1, . . . , aN}, and sets Zk = 1[ak ∈ W ], the indicator variable of the
event {ak ∈ W}.

More generally, we may partition the ground set A into blocks Bk and let Zk
be the vector of the indicator variables (1[ai ∈ W ])i∈Bk (thus Zk takes values in
the product space {0, 1}Bk). A common instance of this construction is “vertex
exposure” for a random graph G(n, p), where A = {{i, j} : 1 ≤ i < j ≤ n}
and Bk = {{i, k} : 1 ≤ i < k}, k = 1, . . . , n.

The first result for this situation is based on the following martingale in-
equality, known as Azuma’s inequality [2], although it was earlier proved by
Hoeffding [11].

Theorem 7. If (Xk)
N
0 is a martingale, and there exist constants ck ≥ 0 such

that |Xk −Xk−1| ≤ ck, k = 1, . . . , N , then

P(XN ≥ X0 + t) ≤ exp
(
−t2/2

N∑
1

c2
k

)
, t ≥ 0.

For applications to our situation, let Xk = E(X | Z1, . . . , Zk); then the
assumptions of Theorem 7 are satisfied, and thus

P(X ≥ EX + t) ≤ exp
(
−t2/2

N∑
1

c2
k

)
.

In fact, the exponent here (but not in Theorem 7) may be improved by a
factor 4 [17].

Theorem 8. Let Z1, . . . , ZN be independent random variables, with Zk taking
values in a set Λk. Assume that a (measurable) function f : Λ1 × Λ2 × · · · ×
ΛN → R satisfies the Lipschitz condition (L). Then, the random variable X =
f(Z1, . . . , ZN) satisfies, for any t ≥ 0,

P(X ≥ EX + t) ≤ exp
(
−2t2

/ N∑
1

c2
k

)
, (11)

P(X ≤ EX − t) ≤ exp
(
−2t2

/ N∑
1

c2
k

)
. (12)
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For further related results, including an extension to unbounded martingale
differences, see the survey by Bollobás [5]. For another extension (weakening
(L) by a truncation), see [7].

4. Talagrand’s inequality

Talagrand [21] has given several inequalities on concentration of measure,
with various applications. We will here treat one of his inequalities only; it
yields results similar to those obtained by Azuma’s inequality, although often
much stronger, and it has already had important combinatorial applications.

Remark. The interested reader should study also the other inequalities by
Talagrand in [21] and subsequent papers; it seems reasonable to guess that
some of them too will be useful in combinatorial applications. Moreover, there
are other proofs of the results below, with extensions in different directions,
by Marton [18] and Dembo [9].

We continue with the assumptions of the preceding section, in particular
condition (L), and assume furthermore the following, for some function ψ and
the same ck as in (L).

(C) If z = (zk)
N
1 ∈

∏N
1 Λk and r ∈ R with f(z) ≥ r, then there exists a set

J ⊆ {1, . . . , N} with
∑

k∈J c
2
k ≤ ψ(r), such that for all y = (yk)

N
1 ∈∏N

1 Λk with yk = zk when k ∈ J , we have f(y) ≥ r.

In other words, there exists a vector (zk)k∈J (called a certificate), which
forces f ≥ r, such that the index set J is not too large. (The set J generally
depends on z and r.)

Every function f trivially satisfies (C) with ψ(r) =
∑N

1 c
2
k for all r; just take

J = {1, . . . , N}. This choice of ψ in the theorem below yields an inequality
similar to the one in Theorem 8, but generally somewhat weaker. In many
interesting applications, however, (C) holds with a much smaller ψ; this leads
to stronger estimates that significantly surpass Azuma’s inequality. (It is im-
material that we obtain inequalities for the deviation from the median instead
of the mean.)

Example. Let X be the order of the largest independent set in the random
graph G(n, p). Then, using vertex exposure as described above, (L) holds with
ck = 1, and (C) holds with ψ(r) = dre for r ≥ 0; the certificate is just any
independent set of order dre.

Talagrand’s inequality may then be stated as follows.

Theorem 9. Suppose that Z1, . . . , ZN are independent random variables taking
their values in some sets Λ1, . . . ,ΛN , respectively. Suppose further that X =
f(Z1, . . . , ZN), where f : Λ1 × · · · × ΛN → R is a (measurable) function such
that (L) and (C) hold for some constants ck, k = 1, . . . , N , and some function
ψ. Then, for every r ∈ R and t ≥ 0,

P(X ≤ r − t) P(X ≥ r) ≤ e−t
2/4ψ(r). (13)
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In particular, if m is a median of X, then for every t ≥ 0,

P(X ≤ m− t) ≤ 2e−t
2/4ψ(m) (14)

and

P(X ≥ m+ t) ≤ 2e−t
2/4ψ(m+t). (15)

Actually, the theorem above is a simple corollary of the following more
general inequality due to Talagrand [21].

Theorem 10. Suppose that A and B are two (measurable) subsets of
∏N

1 Λk

such that for some t ≥ 0 the following separation condition holds: for every
z ∈ B, there exists a non-zero vector α = (αi)

N
1 ∈ RN such that for every

y ∈ A, ∑
i:yi 6=zi

αi ≥ t
( N∑

1

α2
i

)1/2

.

Then

P(A) P(B) ≤ e−t
2/4.

Remark. Talagrand [21, Corollary 4.2.5] further showed that the conclusion of
Theorem 10 can be improved to√

log(1/P(A)) +
√

log(1/P(B)) ≥ t/
√

2,

which implies for example that (14) can be improved to the smaller, but more
complicated, bound

P(X ≤ m− t) ≤ exp
(
− 1

2ψ(m)

(
t−
√

2 log 2ψ(m)
)2)

, t ≥
√

2 log 2ψ(m).
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thank these my coauthors for helpful discussions, which have contributed to
this paper too.

References

[1] N. Alon & J. Spencer, The Probabilistic Method. Wiley, New York 1992.
[2] K. Azuma, Weighted sums of certain dependent variables. Tôhoku Math. J. 3 (1967),
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