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Abstract. We present a new method to show concentration of the upper
tail of random variables that can be written as sums of variables with plenty
of independence. The method is formally different from a recent method
by Kim and Vu, but in many cases it leads to the same results.

Several applications to random graphs are given. In particular, for
XK4 being the number of copies of K4 in the random graph G(n, p), with
p ≤ n1/2, we almost precisely determine the asymptotics of ln P(XK4 ≥
2 E XK4).

1. Introduction

Kim and Vu [6] and Vu [12, 14, 15] have developed a very interesting new
method to show concentration of certain random variables, i.e. to obtain upper
bounds (typically exponentially small) of the probabilities P(X ≤ µ − t) and
P(X ≥ µ + t), where X is the random variable, µ = E X and t > 0; see also
the further references with various applications given in these papers. Two
key features of their method are that a basic martingale inequality is used
inductively, and that, when applied to a function of some underlying indepen-
dent random variables, the obtained estimates use the average influence of one
or several of the underlying variables, in contrast to e.g. Azuma’s inequality
where the maximum influence appears; the latter improvement is crucial for
many applications.

In the present paper, we introduce another method, based on ideas by Rödl
and Ruciński [8], to obtain bounds for the upper tail P(X ≥ µ + t). The new
method, which we call the deletion method, see Remark 2.10, is formally quite
different from the method of Kim and Vu; it is based on different ideas and the
basic estimate differs from their results. Nevertheless, in many situations both
methods naturally lead to induction yielding very similar estimates. Indeed, in
the applications we have tried so far, we obtain, up to the values of inessential
numerical constants, the same results as by the method of Kim and Vu. The
only exception is Example 6.7 which gives a new and essentially sharp bound
on the probability of having e.g. twice as many copies of K4 as expected in a
random graph, improving an earlier bound by Vu [14], but we guess that the
new bound could be derived using Kim and Vu’s method too.

There are several reasons for presenting the new method, even if we cannot
claim that it produces new results. First, in some applications, although the
methods yield the same final result, our method may be somewhat easier to
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apply. In other applications, the required estimates are the same, and we invite
the reader to form his or her own opinion by comparing the two methods on
the examples in Section 6.

Secondly, the new method is stated in a different and more general setting
than Kim and Vu’s method, at least in current versions. Kim and Vu generally
study variables that can be expressed as polynomials in independent random
variables; we have no need for this constraint and instead use certain inde-
pendence assumptions. Hence it is conceivable that applications will emerge
where only the new method can be applied.

Thirdly, applications may emerge where the numerical constants in the re-
sults are important. In such cases, we do not know which of the methods can
be trimmed to yield the best result.

Fourthly, we want to stimulate more research into these methods. Neither
of the methods seems yet to be fully developed and in a final version, and
it is likely that further versions will appear and turn out to be important
for applications. It would be most interesting to find formal relations and
implications between Kim and Vu’s method and our new method, possibly
by finding a third approach that encompasses both methods. Conversely, it
would also be very interesting and illuminating to find applications where the
methods yield different results.

Of course, our method has the drawback that it applies to the upper tail
only, but this is not serious, since bounds for the lower tail easily are obtained
by other well-known methods, see Janson [1], Suen [11] and Janson [2], or the
survey in [3, Chapter 2]. As a complement to our estimates for the upper
tail, we give in Section 7 as an appendix a new version of Suen’s inequality
that applies in the setting of our basic theorem. Note that the bounds for the
lower tail obtained by these methods often are much better (i.e. show faster
decay) than the bounds obtained for the upper tail by the deletion method.
Indeed, it seems that in many applications, the lower tail really is much more
concentrated than the upper tail, see Example 6.7 for an example and some
explanation. Nevertheless, it is convenient to obtain estimates for both tails at
the same time, as by Kim and Vu’s method, so we leave the question whether
the deletion method can be extended to the lower tail as an important open
problem.

Problem 1.1. Does the bound for P(X ≥ µ + t) in Theorem 2.1 below apply
to P(X ≤ µ− t) too?

The basic theorem is stated and proved in Section 2, together with some
immediate consequences. These results are directly applicable in some situa-
tions. In other cases, the basic result may be used repeatedly with an inductive
argument. We give in Section 3 several results obtained in that way for rather
general situations. These theorems are still a bit technical, and we give in
Section 4 several more easily applicable corollaries.

The results in this paper are to a large extent inspired by the results of Kim
and Vu. In Sections 5 and 6 we give several examples where we rederive some
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of their results using our method. We give also a few other applications. For
comparisons with other methods, we refer to [5].

We use ln for natural logarithms and lg for logarithms with base 2. If Γ is
a set and k ≥ 1 a natural number, then [Γ]k denotes the family of all subsets

I ⊆ Γ with |I| = k and [Γ]≤k :=
⋃k

j=0[Γ]j denotes the family of all subsets

I ⊆ Γ with |I| ≤ k. We use c or C, sometimes with subscripts or superscripts,
to denote various constants that may depend on the parameter k only, unless
we explicitly give some parameters; we often give explicit values for these
constants, but we have not tried to optimize them.

2. The basic theorem

We begin with a general theorem stated for sums of random variables with
a dependency graph given for the summands. We need here only the weak
version of dependency graphs with independence between a single vertex and
the set of its non-neighbours. Cf. Theorem 7.1, where a stronger version is
used. Note that, except in trivial cases, we demand α ∼ α in the theorem,
because a non-constant random variable is not independent of itself; in other
words, we define dependency graphs to have loops at every vertex except when
the corresponding variable is constant.

Theorem 2.1. Suppose that Yα, α ∈ A, is a finite family of non-negative
random variables and that ∼ is a symmetric relation on the index set A such
that each Yα is independent of {Yβ : β 6∼ α}; in other words, the pairs (α, β)
with α ∼ β define the edge set of a (weak) dependency graph for the variables
Yα. Let X :=

∑
α Yα and µ := E X =

∑
α E Yα. Let further, for α ∈ A,

X̃α :=
∑

β∼α Yβ and

X∗ := max
α∈A

X̃α.

If t > 0, then for every real r > 0,

P(X ≥ µ + t) ≤
(
1 +

t

2µ

)−r

+ P
(
X∗ >

t

2r

)
≤

(
1 +

t

µ

)−r/2

+
∑
α∈A

P
(
X̃α >

t

2r

)
.

Remark 2.2. In applications, a suitable value of r has to be found that makes
both terms in the estimate small; note that the first terms in the estimates
decrease with r, while the second terms increase. Of course, the theorem is
useless unless we can bound the probability that X̃α is large. We will later see
several ways of doing this.

For the first terms it is often convenient to use the estimate(
1 +

t

µ

)−r/2

≤

{
e−rt/3µ, t ≤ µ;

e−r/3, t ≥ µ;

this follows since ln(1 + t/µ) ≥ min(t/µ, 1) ln 2 by concavity, and ln 2 > 2/3.
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Proof. Let
∑*

α1,...,αm
denote the sum over all sequences of α1, . . . , αm ∈ A such

that αj 6∼ αj for 1 ≤ i < j ≤ m. We first show that for every integer m ≥ 1,
letting X+ := max(X, 0),∑*

α1,...,αm

Yα1 · · ·Yαm ≥
m−1∏
j=0

(X − jX∗)+ ≥
(
X − (m− 1)X∗)m

+
. (2.1)

To verify this, suppose that α1, . . . , αm−1 are given. Then∑
α∼αi for some i<m

Yα ≤
m−1∑
i=1

X̃αi
≤ (m− 1)X∗,

and consequently ∑
α 6∼αi, i≤m−1

Yα ≥
(
X − (m− 1)X∗)

+
.

Hence, ∑*

α1,...,αm

Yα1 · · ·Yαm ≥
(
X − (m− 1)X∗)

+

∑*

α1,...,αm−1

Yα1 · · ·Yαm−1

and (2.1) follows by induction.
Next, taking the expectations in (2.1) and observing that the factors in each

term in the sum are assumed to be independent,

E
(
X − (m− 1)X∗)m

+
≤

∑*

α1,...,αm

E Yα1 · · ·E Yαm ≤
(∑

α

E Yα

)m

= µm. (2.2)

Now, take m = dre. If X ≥ µ + t and X∗ ≤ t/2r, then (m − 1)X∗ ≤ t/2
and thus X − (m− 1)X∗ ≥ µ + t/2. Consequently, using Markov’s inequality
and (2.2),

P(X ≥ µ + t) ≤ P(X∗ > t/2r) + P
(
X − (m− 1)X∗ ≥ µ + t/2

)
≤ P(X∗ > t/2r) + (µ + t/2)−m E

(
X − (m− 1)X∗)m

+

≤ P
(
X∗ >

t

2r

)
+

( µ

µ + t/2

)m

≤ P
(
X∗ >

t

2r

)
+

(
1 +

t

2µ

)−r

.

This shows the first inequality in the statement. The second follows easily,
using (1 + x/2)2 > 1 + x and thus (1 + x/2)−1 < (1 + x)−1/2 for x > 0. �

In combinatorial applications, the variables Yα usually are indexed by sub-
sets of some index set Γ. We then obtain the following estimate.

Theorem 2.3. Suppose that H ⊆ [Γ]≤k for an integer k ≥ 1, and that YI ,
I ∈ H, is a family of non-negative random variables such that each YI is
independent of {YJ : J ∩ I = ∅}. Let X :=

∑
I YI and µ := E X =

∑
I E YI .

Let further, for I ⊆ Γ, XI :=
∑

J⊇I YJ and

X∗
1 := max

i∈Γ
X{i}.
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If t > 0, then for every real r > 0,

P(X ≥ µ + t) ≤
(
1 +

t

2µ

)−r

+ P
(
X∗

1 >
t

2kr

)
≤

(
1 +

t

µ

)−r/2

+
∑
i∈Γ

P
(
X{i} >

t

2kr

)
.

Proof. We apply Theorem 2.1 with A = H and I ∼ J if I ∩ J 6= ∅, and note
that

X̃I =
∑

J∩I 6=∅

YJ ≤
∑
i∈I

X{i} ≤ kX∗
1 . �

In some applications, the summands YI satisfy a stronger independence as-
sumption: two common elements are needed for dependence. For example, this
is the case for variables that are indexed by subsets of vertices of the random
graph G(n, p), but are functions of edge indicators. (See e.g. [3] for definition
of G(n, p).) In this case, we have the following alternative to Theorem 2.3,
which usually gives stronger bounds.

Theorem 2.4. Suppose that H ⊆ [Γ]≤k for an integer k ≥ 2, and that YI ,
I ∈ H, is a family of non-negative random variables such that each YI is
independent of {YJ : |J ∩ I| ≤ 1}. Let X :=

∑
I YI and µ := E X =

∑
I E YI .

Let further, for I ⊆ Γ, XI :=
∑

J⊇I YJ and

X∗
2 := max

i6=j∈Γ
X{i,j}.

If t > 0, then for every real r > 0,

P(X ≥ µ + t) ≤
(
1 +

t

2µ

)−r

+ P
(
X∗

2 >
t

k(k − 1)r

)
≤

(
1 +

t

µ

)−r/2

+
∑

{i,j}∈[Γ]2

P
(
X{i,j} >

t

k(k − 1)r

)
.

Proof. This time we apply Theorem 2.1 with I ∼ J if |I ∩ J | ≥ 2, and note
that

X̃I =
∑

|J∩I|≥2

YJ ≤
∑

{i,j}∈[I]2

X{i,j} ≤
(

k

2

)
X∗

2 . �

Remark 2.5. For random graphs, another possibility leading to the same
bounds is to use Theorem 2.3 with Γ being the set of edges of the complete
graph; nevertheless, Theorem 2.4 is often more convenient and will be useful
in Section 3.

As remarked in Remark 2.2, there are several ways to bound the term
P(X̃α > t/2r) in Theorem 2.1 and the corresponding terms in Theorems 2.3
and 2.4. It seems that this problem has to be approached on a case to case
basis, and that there is room for ingenuity and ad hoc arguments.

In some cases, these terms can be estimated directly, for example using a
Chernoff bound for sums of independent variables as in Example 6.6 below. We
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use a related but more complicated argument, using two Chernoff estimates,
in Example 6.7.

In other applications, the terms are naturally estimated by induction; we
explore this in detail in Section 3.

The simplest possibility to estimate these probabilities is to choose r so small
that they trivially vanish, as in the following corollaries.

Corollary 2.6. Let the assumptions of Theorem 2.1 hold. Suppose further
that M is a number such that 0 ≤ Yα ≤ M for each α, and let ∆ := maxi |{j :
j ∼ i}|, the maximum degree of the dependency graph (with loops contributing
1). Then

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−t/(4M∆)

.

Proof. Take r = t/(2M∆) in Theorem 2.1 and observe that then X̃α ≤ ∆M =
t/2r. �

Corollary 2.7. Let the assumptions of Theorem 2.3 hold. Suppose further
that M is a number such that 0 ≤ YI ≤ M for each I, and let N := |Γ| and
∆1 := maxi∈Γ |{J ∈ H : i ∈ J}|. Then

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−t/(4kM∆1)

≤
(
1 +

t

µ

)−t/(4kMNk−1)

.

Proof. Take r = t/(2kM∆1) in Theorem 2.3 and observe that ∆1 ≤ Nk−1. �

Corollary 2.8. Let the assumptions of Theorem 2.4 hold. Suppose further
that M is a number such that 0 ≤ YI ≤ M for each I, and let N := |Γ| and
∆2 := maxi6=j∈Γ |{J ∈ H : i, j ∈ J}|. Then

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−t/(2k(k−1)M∆2)

≤
(
1 +

t

µ

)−t/(2k2MNk−2)

.

Proof. Take r = t/(k(k − 1)M∆2) in Theorem 2.4 and observe that ∆2 ≤
Nk−2. �

These corollaries yield essentially the same estimate as the one obtained (for
a special case) in [3, Proposition 2.44] by another method, based on another
idea by Rödl and Ruciński [7]. See also [5].

Note further that for the case of independent summands (∆ = 1 in Corol-
lary 2.6, k = 1 in Corollary 2.7 or k = 2 in Corollary 2.8), we obtain, at
least for t = O(µ), up to a constant in the exponent, the well-known Chernoff
bound, see e.g. [3, Chapter 2].

Remark 2.9. Sometimes, for example when studying random hypergraphs,
even stronger independence properties than in Theorem 2.4 may hold; for
instance that YI is independent of {YJ : |J ∩ I| < 3}. All such cases are
easily handled by Theorem 2.1, and we leave the formulation of analogues of
Theorem 2.4 to the reader.
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Remark 2.10. The reason that we call this approach “the deletion method”
is that the original version stated roughly, in the setting of Theorem 2.3, that
with probability at least 1 − (1 + t/µ)−r, it is possible to find a subset E of
Γ of order at most rk such that if we delete all YI with I ∩ E 6= ∅, then the
sum of the remaining YI ’s is at most µ + t, see [8] and [3, Lemma 2.51]. The
theorems above combine this with trivial estimates of the deleted terms.

3. Induction

In many cases, Theorem 2.3 can be used inductively. A general setting where
this is possible is described by the following set of assumptions, which will be
used throughout this section and the next one.

(H1) Let, as above, X :=
∑

I YI , where YI , I ∈ H ⊆ [Γ]≤k for some finite
index set Γ and an integer k ≥ 1, is a family of non-negative random
variables.

Suppose further that A is another index set and that there is a
family ξα, α ∈ A, of independent random variables and a family of
subsets AI ⊆ A, I ∈ [Γ]≤k, such that each YI is a function of {ξα : α ∈
AI} and, further, A∅ = ∅ and AI ∩ AJ = AI∩J for all I, J ∈ [Γ]≤k.

Let µ := E X and N := |Γ|. To avoid trivialities, assume N > 1.
Note that although YI is defined for I ∈ H only, we want A to be defined

for all I ∈ [Γ]≤k. Actually, we can without loss of generality assume that YI is
defined for all I ∈ [Γ]≤k too, by setting YI = 0 for I /∈ H, but this is slightly
inconvenient in applications.

It is easily seen that the assumptions of Theorem 2.3 hold under (H1). The
situation studied here is more special than in Theorem 2.3, but applications
are usually of this type. The conditions (H1) are a bit technical, and we give
some examples.

Example 3.1. In many applications we simply take A = Γ and AI = I. In
other words, ξi, i ∈ Γ, are independent random variables and YI is a function
of {ξi : i ∈ I}.

Example 3.2. An important special case of Example 3.1 is when each ξi is an
indicator random variable, i.e. attains the values 0 and 1 only, and YI =

∏
i∈I ξi.

In other words, the indicator random variables ξi describe a random (Bernoulli)
subset Γp of Γ, p = (p1, . . . , pN), where pi = P(ξi = 1), and X is the number
of elements of H that are contained in Γp.

Example 3.3. We may treat subgraph counts in the random graph G(n, p)
as in Example 3.2, letting Γ be the set of all edges in the complete graph Kn,
H the family of edge sets of copies of a given graph G assumed to have no
isolated vertices, and ξi the indicator that edge i is present in G(n, p); we thus
take k to be the number of edges in G. (See e.g. [3] for various properties of
subgraph counts of G(n, p).)

Example 3.4. To treat the number of induced copies in G(n, p) of a given
graph G with v(G) vertices, we may again let Γ, A, AI and ξi be as in Examples
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3.3 and 3.1, but now letting H be the family of edge sets of copies of Kv(G)

and YI the indicator of the event that the subgraph of G(n, p) defined by I is

isomorphic to G. Here k =
(

v(G)
2

)
.

We now consider some examples where A and Γ are not the same.

Example 3.5. Subgraph counts can also be treated as follows. Let Γ = V (Kn)
be the vertex set of the complete graph Kn and let A = [Γ]2 be its edge set.
Let ξα be the indicator variable showing whether the edge α is present or not
in G(n, p), and let, for I ⊆ Γ, AI = [I]2, the set of all edges in Kn with both
endpoints in I. Again, let G be a fixed graph, and let YI be the number of
copies of G in G(n, p) that have vertex set I; this time we thus take k to be
the number of vertices of G and H = [Γ]k. Induced copies of G can be treated
in exactly the same way.

Example 3.6. For substructure counts in random `-uniform hypergraphs, we
similarly may take A = [Γ]`. Here ` can be any positive integer.

Example 3.7. For an example withA =
⋃2

j=1[Γ]j andAI = [I]≤2∩A, suppose

that the vertices in the random graph G(n, p) are randomly coloured using 7
different colours. Then the number of rainbow 7-cycles, i.e. cycles containing
exactly one vertex of each colour, is a sum X of this type; we let ξi, i ∈ [Γ]1 = Γ,
be the colour of vertex i, and ξα, α ∈ [Γ]2, be the indicator of edge α. Further
examples with such A are given in [4].

Example 3.8. More generally, we can take any A ⊆
⋃`

j=1[Γ]j = [Γ]≤`\{∅}, for

some `, and AI = [I]≤`∩A. For another example with ` = 2 and A =
⋃2

j=1[Γ]j,

consider the number of extensions of a given type in G(n, p) with fixed roots
{1, . . . , r}; we take Γ = {r + 1, . . . , n}, let ξ{i,j}, {i, j} ∈ [Γ]2, be the random
indicator of the edge ij and let ξi, i ∈ [Γ]1 = Γ, be the random vector of edge
indicators (ξi1, . . . , ξir).

Subgraph counts in random graphs can thus be treated in two different
ways; this is similar to the choice between vertex exposure and edge exposure
in martingale arguments. It turns out that in many cases, the approach in
Example 3.5 yields better results with the theorems below, although we do
not know whether that always holds. One reason why the latter approach is
better is that it usually gives a lower value of k; another is that it exhibits the
stronger independence assumption in Theorem 2.4.

In order to formulate our results, we need some more notation. Let as above
XI :=

∑
J⊇I YJ and consider E(XI | ξα, α ∈ AI), the conditional expectation

of XI when we fix the values of ξα for α ∈ AI (i.e. taking the expectation over
ξα, α /∈ AI). This is a function of ξα, α ∈ AI , and we define µI to be its
maximum (or, in general, supremum):

µI := sup E(XI | ξα, α ∈ AI). (3.1)

Further let, for l ≤ k,
µl := max

|I|=l
µI . (3.2)
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In other words, µl is the smallest number such that E(XI | ξα, α ∈ AI) ≤ µl

for every I ∈ H with |I| = l and every choice of values of ξα, α ∈ AI .
Note that if |I| = k, then XI = YI , which is a function of ξα, α ∈ AI , and

consequently, E(XI | ξα, α ∈ AI) = YI and µI = sup YI . Hence,

µk = max
|I|=k

sup XI = max
|I|=k

sup YI . (3.3)

Moreover, trivially µ0 = µ = E X.

Example 3.9. In Example 3.2, µI is the expected number of elements J ∈ H
such that I ⊆ J ⊆ Γp, given that I ⊆ Γp. In the special case P(ξi = 1) = p
for all i, we obtain µI =

∑
J∈H, J⊇I p|J |−|I|.

We now can state one of our principal results.

Theorem 3.10. Assume (H1). With notation as above, for every t > 0 and
r1, . . . , rk such that

r1 · · · rj · µj ≤ t, j = 1, . . . , k, (3.4)

we have, with c = 1/8k,

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−cr1

+
k−1∑
j=1

N j
(
1 +

t

r1 · · · rj µj

)−crj+1

. (3.5)

Proof. We apply Theorem 2.3 with r = r1/4k and obtain, letting t1 = t/r1 =
t/4kr,

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−r/2

+
∑
i∈Γ

P(X{i} > 2t1). (3.6)

If k = 1, we have by (3.3) and (3.4), for every i ∈ Γ, X{i} ≤ µ1 ≤ t/r1 = t1,
and the result follows by (3.6). (Alternatively, use Corollary 2.7 with M = µ1

and ∆1 = 1).
If k ≥ 2 we use induction, assuming the theorem to hold for k − 1. Fix

i ∈ Γ and let Γ̃ = Γ \ {i}. Then X{i} =
∑

I∈H̃ ỸI , with ỸI = YI∪{i} and

H̃ = {I ⊆ Γ̃ : I ∪ {i} ∈ H} ⊆ [Γ̃]≤k−1. Conditioned on ξα, α ∈ A{i}, the

random variables ỸI satisfy the assumptions (H1), with Ã = A \ A{i} and

ÃJ = AJ∪{i} \A{i}; the numbers defined by (3.1) and (3.2) become µ̃I ≤ µI∪{i}
and µ̃l ≤ µl+1. Note further that, by (3.1), (3.2) and (3.4),

E(X{i} | ξα, α ∈ A{i}) ≤ µ{i} ≤ µ1 ≤ t/r1 = t1.

Consequently, still conditioning on ξα, α ∈ A{i}, we can apply the induction
hypothesis, with rj replaced by r̃j = rj+1 and t replaced by t1, noting that
(3.4) holds for these numbers because

r̃1 · · · r̃j · µ̃j ≤ r2 · · · rj+1 · µj+1 ≤ t/r1 = t1.
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This yields

P(X{i} > 2t1) ≤ P
(
X{i} ≥ E(X{i} | ξα, α ∈ A{i}) + t1

)
≤

(
1 +

t1
µ1

)−cr2

+
k−2∑
j=1

N j
(
1 +

t1
r2 · · · rj+1 µj+1

)−crj+2

=
(
1 +

t

r1µ1

)−cr2

+
k−1∑
j=2

N j−1
(
1 +

t

r1 · · · rj µj

)−crj+1

. (3.7)

The same estimate then holds unconditionally, and the result follows from (3.6)
and (3.7). �

We still have the freedom, and burden, of choosing suitable values of r1, . . . rk

when applying Theorem 3.10. In the next section, we give several corollaries
that are suitable for immediate application, and the impatient reader may
proceed there directly.

In the remainder of this section we give some variants of Theorem 3.10 that
yield better results under some circumstances.

Stronger independence. In the case of random graphs treated as in Exam-
ple 3.5, we have the stronger independence property of Theorem 2.4, since we
need a common edge, i.e. two common vertices, to get dependence between two
variables YI (or families of such variables). This is expressed by the following
property.

(H2) AI = ∅ when |I| ≤ 1.

In such cases, we can improve the estimate above. Note that there is no r1 in
the following statement.

Theorem 3.11. Assume (H1) and (H2). Then, with notation as above, for
every t > 0 and r2, r3, . . . , rk such that

r2r3 · · · rj · µj ≤ t, j = 2, . . . , k, (3.8)

we have, with c = 1/4k2,

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−cr2

+
k−1∑
j=2

N j
(
1 +

t

r2r3 · · · rj µj

)−crj+1

. (3.9)

Proof. We apply Theorem 2.4 with r = r2/2k
2 and obtain, letting t1 = t/r2 =

t/2k2r,

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−r/2

+
∑

{i,j}∈[Γ]2

P
(
X{i,j} > 2t1

)
. (3.10)

Each term in the sum is estimated as in the proof of Theorem 3.10; this time

we fix two indices i, j ∈ Γ, let Γ̃ = Γ \ {i, j} and have X{i,j} =
∑

I∈H̃ ỸI with

ỸI = YI∪{i,j} and H̃ = {I ⊆ Γ̃ : I ∪ {i, j} ∈ H} ⊆ [Γ̃]≤k−2. Conditioned

on ξα, α ∈ A{i,j}, the random variables ỸI satisfy (H1), with Ã = A \ A{i,j}
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and ÃJ = AJ∪{i,j} \ A{i,j}; the numbers defined by (3.1) and (3.2) become
µ̃I ≤ µI∪{i,j} and µ̃l ≤ µl+2. Moreover, by (3.1), (3.2) and (3.8),

E(X{i,j} | ξα, α ∈ A{i,j}) ≤ µ{i,j} ≤ µ2 ≤ t/r2 = t1.

Consequently, still conditioning on ξα, α ∈ A{i,j}, we obtain by Theorem 3.10
with k replaced by k − 2, rj replaced by r̃j = rj+2 and t replaced by t1,

P(X{i,j} > 2t1) ≤ P(X{i,j} ≥ µ{i,j} + t1)

≤
(
1 +

t1
µ2

)−cr3

+
k−3∑
j=1

N j
(
1 +

t1
r3 · · · rj+2 µj+2

)−crj+3

. (3.11)

The same estimate then holds unconditionally, and the result follows from
(3.10) and (3.11). �

Note that unlike the proof of Theorem 3.10, this proof does not use induc-
tion, since the additional independence hypothesis (H2) does not have to be

satisfied by the variables ỸI . Instead, we combine Theorem 2.4 and Theo-
rem 3.10, i.e. we combine one application of Theorem 2.4 and repeated appli-
cations of Theorem 2.3. This is thus a kind of combination of edge exposure
and vertex exposure.

As remarked in Remark 2.9, we sometimes may have even stronger indepen-
dence properties. For example, for random hypergraphs as in Example 3.6,
we need ` common vertices to get dependence; more precisely, the following
generalization of (H2) holds. (Here ` is any integer with 2 ≤ ` ≤ k.)

(H`) AI = ∅ when |I| ≤ `− 1.

We then have the following generalization of Theorem 3.11.

Theorem 3.12. Assume (H1) and (H`), for some ` ≥ 2. Then, with notation
as above, for every t > 0 and r`, . . . , rk such that

r` · · · rj · µj ≤ t, j = `, . . . , k, (3.12)

we have, with c = c(k, `),

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−cr`

+
k−1∑
j=`

N j
(
1 +

t

r` · · · rj µj

)−crj+1

. (3.13)

Proof. We apply Theorem 2.1 with I ∼ J when |I ∩ J | ≥ `, estimate X̃I ≤∑
J∈[I]` XJ and use conditioning and Theorem 3.10 as in the proof of Theo-

rem 3.11 to estimate P(XJ > t/2r
(

k
`

)
) for |J | = `; we omit the details. �

Further refinements. We define, for 1 ≤ j ≤ k,

Mj := max
|J |=j

sup XJ . (3.14)

Hence Mk = µk by (3.3). We then have the following extension of Theorem 3.10
(which is the case k0 = k). It sometimes yields better bounds, but often there
is no advantage in taking k0 < k because typically then Mk0 is much larger
than µk0 .



12 SVANTE JANSON AND ANDRZEJ RUCIŃSKI

Theorem 3.13. Assume (H1), and let k0 be an integer with 1 ≤ k0 ≤ k.
Then, with notation as above, for every t > 0 and r1, . . . , rk0 such that

r1 · · · rj · µj ≤ t, j = 1, . . . , k0 − 1,

r1 · · · rk0 ·Mk0 ≤ t,
(3.15)

we have, with c = 1/8k,

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−cr1

+

k0−1∑
j=1

N j
(
1 +

t

r1 · · · rj µj

)−crj+1

.

Proof. If k0 = 1, we have by (3.15), for every i ∈ Γ, X{i} ≤ M1 ≤ t/r1, and
the result follows by taking r = r1/2k in Theorem 2.3.

If k0 ≥ 2 we use induction; this time on k0. The same argument as in the
proof of Theorem 3.10 completes the proof; we leave the verification to the
reader. �

With the stronger independence property (H2), or more generally (H`), we
similarly get the following extension of Theorem 3.12.

Theorem 3.14. Assume (H1) and (H`), for some ` ≥ 2. Then, with notation
as above, for every t > 0, ` ≤ k0 ≤ k and r` . . . , rk0 such that

r` · · · rj · µj ≤ t, j = `, . . . , k0 − 1,

r` · · · rk0 ·Mk0 ≤ t,

we have for some c > 0,

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−cr`

+

k0−1∑
j=`

N j
(
1 +

t

r` · · · rj µj

)−crj+1

. �

Remark 3.15. In most applications, all summands YI have |I| = k, but we
allow the possibility that different cardinalities occur. In that case, we can
make another improvement of the estimates above.

Let X ′
I :=

∑
J)I YJ , thus omitting the term YI , and define

µ′I := sup E(X ′
I | ξα, α ∈ AI),

µ′l := max
|I|=l

µ′I .

Conditioned on ξα, α ∈ AI , the difference XI − X ′
I = YI is a constant, and

thus we can in the induction step (3.7) in the proof of Theorem 3.10 use X ′
{i}

instead of X{i}. This leads to the following result; we omit the details: We
may replace µj by µ′j in (3.5) (keeping µj in (3.4)), and similarly in Theorems
3.11, 3.12, 3.13 and 3.14.

4. Corollaries

We give in this section several corollaries of the theorems in the preceding
section, obtained by suitable choices of ri. These corollaries are more conve-
nient for applications, and are often as powerful as the theorems. They have,
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however, more restricted applicability, so we give several different versions to
cover different situations. We continue with the notation of Section 3.

We begin with a consequence of Theorem 3.10. The following explicit bounds
are widely applicable and form one of our principal results.

Corollary 4.1. Assume (H1). With notation as above, and c = 1/12k, for
every t > 0,

P(X ≥ µ + t) ≤ 2Nk−1 exp
(
−c min

1≤j≤k

(t lg(1 + t/µ)

µj

)1/j)

≤

2Nk−1 exp
(
−c min1≤j≤k

(
t2

µµj

)1/j)
, t ≤ µ;

2Nk−1 exp
(
−c min1≤j≤k

(
t

µj

)1/j)
, t ≥ µ.

(4.1)

Proof. We estimate the terms in the sum in (3.5) using (3.4), which implies

1 +
t

r1 · · · rj µj

≥ 2. (4.2)

Hence, (3.5) yields, writing τ = lg(1 + t/µ) and c1 = 1/8k

P(X ≥ µ + t) ≤ 2−c1r1τ +
k∑

j=2

N j−12−c1rj . (4.3)

We choose r1 = r/τ and r2, . . . , rk = r, where r is the largest number that
makes (3.4) hold, i.e.

r = min
1≤j≤k

( tτ

µj

)1/j

.

This makes all exponents of 2 in (4.3) equal to −c1r, and the right hand side
of (4.2) can be bounded by

2−c1r

k∑
j=1

N j−1 < e−(c1 ln 2)r(2Nk−1).

The first estimate follows using c1 ln 2 > 2c1/3 = 1/12k = c. The second
estimate follows because lg(1 + t/µ) ≥ min(1, t/µ) by concavity. �

Remark 4.2. It is easily seen that the choice of rj in the proof of Corollary 4.1
is essentially optimal in (4.3); any other choice would make one of the expo-
nents of 2 smaller in absolute value, and thus the corresponding term larger;
hence the resulting estimate differs from the optimum in (4.3) by at most the
factor 2Nk−1.

When the stronger independence hypothesis (H2) holds, we obtain a stronger
result using Theorem 3.11. This is another of our principal results.
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Corollary 4.3. Suppose that (H1) and (H2) hold. With notation as above,
and c = 1/6k2, for every t > 0,

P(X ≥ µ + t) ≤ 2Nk−1 exp
(
−c min

2≤j≤k

(t lg(1 + t/µ)

µj

)1/(j−1))

≤

2Nk−1 exp
(
−c min2≤j≤k

(
t2

µµj

)1/(j−1))
, t ≤ µ;

2Nk−1 exp
(
−c min2≤j≤k

(
t

µj

)1/(j−1))
, t ≥ µ.

(4.4)

Proof. We use Theorem 3.11 with (4.2), now without r1, choosing r2 = r/τ
and r3, . . . , rk = r, where

r = min
2≤j≤k

( tτ

µj

)1/(j−1)

. �

More generally, we similarly obtain from Theorem 3.12 the following. (As
above, we can replace t lg(1 + t/µ) by t2/µ when t ≥ µ.)

Corollary 4.4. Assume (H1) and (H`), for some ` ≥ 2. With notation as
above, for every t > 0,

P(X ≥ µ + t) ≤ 2Nk−1 exp
(
−c min

`≤j≤k

(t lg(1 + t/µ)

µj

)1/(j−`+1))
. �

If we compare Corollaries 4.1 and 4.3, we see that the power in the exponent
in Corollary 4.3 is larger. For example, it is often the case that the terms with
j = k are the minimum ones; if, for simplicity, further t = µ and µk = 1, then
the estimates are, ignoring the factor 2Nk−1, exp(−cµ1/k) and exp(−cµ1/(k−1)),
respectively. The difference between the two corollaries stems from the fact
that the basic estimate Theorem 2.1 is used (unravelling the induction) k times
in the proof of Theorem 3.10 and thus of Corollary 4.1, but only k − 1 times
in the proof of Theorem 3.11 and Corollary 4.3, since we there jump by two
in the first step. (Corollary 4.4 with ` > 2 is even better.)

This is typical for this kind of induction; if we apply the basic estimate
inductively m times, and want a final estimate of exp(−λ), we need to choose
r1, . . . , rm roughly equal to λ, at least, and for the final step we need something
like t/(r1 · · · rm) ≥ 1; hence, again for t = µ, typically λm ≤ µ. Although this
is not completely rigorous, it shows that often it is advantageous to avoid too
many induction steps.

One way to cut down the number of induction steps is to use Theorems 3.13
and 3.14. Again using (4.2) and choosing rj as in the proofs above, for the
largest r now allowed, we obtain the following corollaries. They are sometimes
better than Corollaries 4.1, 4.3 and 4.4, but as remarked above, the advantage
gained by taking k0 < k (and thus reducing the number of induction steps) is
often lost because Mk0 may be much larger than µk0 . We omit the proofs.
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Corollary 4.5. Assume (H1). With notation as above, and c = 1/12k, for
every k0 ≤ k and t > 0,

P(X ≥ µ + t)

≤ 2Nk0−1 exp
(
−c min

(
min

1≤j≤k0−1

(t lg(1 + t/µ)

µj

)1/j

,
(t lg(1 + t/µ)

Mk0

)1/k0
))

.

�

Corollary 4.6. Assume (H1) and (H`), for some ` ≥ 2. With notation as
above and some c > 0, for every t > 0 and ` ≤ k0 ≤ k,

P(X ≥ µ + t)

≤ 2Nk0−1 exp

(
−c min

(
min

`≤j≤k0−1

(t lg(1 + t/µ)

µj

)1/(j−`+1)

,(t lg(1 + t/µ)

Mk0

)1/(k0−`+1)))
.

�

All the corollaries above are useful only when the exponents in them are
large. Consider, for simplicity, the case t ≤ µ. The factor Nk−1 in Corollary 4.1
is harmless when the exponent is much larger than (k − 1) ln N , i.e. if t2/µ ≥
Cµj lnj N for some large constant C and all 1 ≤ j ≤ k. On the other hand,
the corollary is useless if t2/µ ≤ cµj lnj N for some small constant c and some
j ≤ k. In such cases, the following version is better; it yields non-trivial results
when t2/µ ≥ Cµj lnj−1 N , 1 ≤ j ≤ k.

Corollary 4.7. Assume (H1). With notation as above and some c > 0, for
every t > 0,

P(X ≥ µ + t) ≤ 2 exp

(
−c min

(
min

1≤j≤k

(t lg(1 + t/µ)

µj

)1/j

, min
2≤j≤k

t lg(1 + t/µ)

µj lnj−1 N

))
.

Proof. As in the proof of Corollary 4.1, we use (4.3), where τ = lg(1 + t/µ)
and c1 = 1/8k, but now choose r1 = r/τ and rj = r + kc−1

1 lg N , j ≥ 2, with

r = min
(

1
2

min
1≤j≤k

( tτ

µj

)1/j

, min
1≤j≤k

cj−1
1 tτ

µj(2k)j−1 lgj−1 N

)
.

(This yields c = 2−(4k−1)k−(2k−1) lnk−1 2 for k > 1, which certainly can be
improved.) �

Again we obtain a stronger result when (H`) holds.

Corollary 4.8. Assume (H1) and (H`), for some ` ≥ 2. With notation as
above and some c > 0, for every t > 0,

P(X ≥ µ + t)

≤ 2 exp

(
−c min

(
min

`≤j≤k

(t lg(1 + t/µ)

µj

)1/(j−`+1)

, min
`+1≤j≤k

t lg(1 + t/µ)

µj lnj−` N

))
.
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Proof. We choose r` = r/τ and rj = r + C lg N , j > `, in Theorem 3.12 and
optimize r; we leave the details as an exercise. �

Similarly, we obtain from Theorems 3.13 and 3.14 the following more general
results, here condensed into one statement; we omit the proof.

Corollary 4.9. Let 1 ≤ ` ≤ k0 ≤ k. If ` = 1, assume (H1), and if ` ≥ 2,
assume (H1) and (H`). With notation as above, let µ̄j = µj for j < k0 and
µ̄k0 = Mk0. Then, for every t > 0,

P(X ≥ µ + t)

≤ 2 exp

(
−c min

(
min

`≤j≤k0

(t lg(1 + t/µ)

µ̄j

)1/(j−`+1)

, min
`+1≤j≤k0

t lg(1 + t/µ)

µ̄j lnj−` N

))
.

�

We have so far used (4.2) and (4.3), and the corresponding estimates ob-
tained from the other theorems, but in some situations with t2/µ small, the
full strength of (3.5) etc. is needed. In the following result, we assume that
µ1, . . . , µk−1 are small, while µk may be 1.

Corollary 4.10. Assume (H1). For every α, β > 0, there is a constant c =
c(k, α, β) > 0 such that, with notation as above, if µj ≤ N−α for 1 ≤ j ≤ k−1
and µk ≤ 1, then for 0 < t ≤ µ,

P(X ≥ µ + t) ≤ e−ct2/µ + N−β.

Proof. Let A ≥ 1 be a constant, and choose r2, . . . , rk = A and r1 = A1−kt.
Then (3.4) is satisfied, and Theorem 3.10 yields

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−cA1−kt

+
k−1∑
j=1

N j(Nα)−cA.

The result follows by choosing A so that cαA = β + k. �

We obtain two immediate corollaries by letting one of the terms on the right
hand side dominate the other.

Corollary 4.11. Assume (H1). For every α, β, ε > 0, there is a constant
Q = Q(k, α, β, ε) > 0 such that, with notation as above, if µj ≤ N−α for
1 ≤ j ≤ k − 1, µk ≤ 1, and µ ≥ Q ln N , then

P
(
X ≥ (1 + ε)µ

)
≤ N−β. �

Corollary 4.12. Assume (H1). For every α > 0, there is a constant c =
c(k, α) > 0 such that, with notation as above, if µj ≤ N−α for 1 ≤ j ≤ k − 1,
µk ≤ 1, 0 < ε ≤ 1 and µ ≤ ln N , then

P
(
X ≥ (1 + ε)µ

)
≤ 2e−cε2µ. �

Remark 4.13. Remark 3.15 implies that in Corollaries 4.10–4.12, the assump-
tions on µj may be weakened to µ′j ≤ N−α, 1 ≤ j ≤ k− 1, and YI ≤ 1, I ∈ H.
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5. Relations with Kim and Vu’s results

As said earlier, the results in Sections 3 and 4 are inspired by the results
and methods in Kim and Vu [6] and Vu [12, 14, 15], where similar induction
arguments are used.

The general setting of Kim and Vu is to consider a random variable X
which is a polynomial X(ξ1, . . . , ξN) of degree k in N independent random
variables ξ1, . . . , ξN . (We change their notation to correspond to ours.) It is
furthermore assumed that the polynomial has only non-negative coefficients
and that 0 ≤ ξi ≤ 1; sometimes it is further assumed that the variables ξi are
binary, i.e. ξi ∈ {0, 1}.

Let, for a multi-set A = {i1, . . . , ij}, ∂AX denote the partial derivative
∂j

∂ξi1
···∂ξij

X(ξ1, . . . , ξN), and define E ′
j := max|A|=j E(∂AX) and

Ej := max
|A|≥j

E(∂AX) = max
l≥j

E ′
l.

In particular, E0 ≥ E ′
0 = E X = µ.

This setting is an instance of (H1) as in Example 3.1; we take Γ = A =
{1, . . . , N} and let YI be the sum of all terms ai1···ijξi1 · · · ξij in X such that
{i1, . . . , ij} = I. (If no variable occurs to higher power than 1, YI is just a
single term. Example 3.2 is a special case of this case.)

If no variable occurs to a higher power than 1 in X, then ∂AX = 0 if A
contains any repetition, and otherwise ∂AX equals our XA with ξi replaced by
1 for i ∈ A; hence (assuming sup ξi = 1 for each i) E ∂AX = µA and µj = E ′

j.
In general, it is easily seen that

µj ≤ c
k∑

l=j

E ′
l ≤ CEj. (5.1)

Let us begin with the first estimate by Kim and Vu’s method, the main
theorem of [6].

Example 5.1. Let λ ≥ 1, and take t =
√

E0E1λ
k, r1 = c1λ

√
E0/E1 and

ri = λ for i ≥ 2 in Theorem 3.10. By (5.1), µj ≤ CE1 for every j ≥ 1;
hence it is easily checked that if c1 = 1/C, then (3.4) is satisfied. Moreover,
t/µ ≥ t/E0 ≥ (E1/E0)

1/2 and thus

r1 lg(1 + t/µ) ≥ r1 lg(1 + (E1/E0)
1/2) ≥ r1(E1/E0)

1/2 = c1λ.

Hence Theorem 3.10 yields the estimate

P
(
X ≥ µ + (E0E1)

1/2λk
)
≤ 2Nk−1e−c2λ, λ ≥ 1,

which is equivalent to the upper tail part of the main theorem in Kim and Vu
[6], see also [15, Theorem 3.1], apart from the numerical value of the constants.

Corollary 4.1 easily yields the somewhat better estimate

P
(
X ≥ µ + (E0E1)

1/2λk
)
≤ 2Nk−1 exp

(
−c min(λ2, λ(E0/E1)

1/2k)
)
, λ ≥ 1.

These estimates trivially hold for λ ≤ 1 too.
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This first result by Kim and Vu is superseded by later results by Vu; we
begin with a simplified version.

Example 5.2. Suppose that λ ≥ 1 and that E0, . . . , Ek are numbers such that

Ej ≥ Ej, 0 ≤ j ≤ k, (5.2)

Ej/Ej+1 ≥ λ, 0 ≤ j ≤ k − 1. (5.3)

Take t = (λE0E1)
1/2. Then t/µ = t/E ′

0 ≥ t/E0 by (5.2) and, by (5.3), t ≤ E0;
hence t lg(1 + t/µ) ≥ t lg(1 + t/E0) ≥ t2/E0 = λE1. Consequently, using (5.1)
together with (5.2) and (5.3) again,

t lg(1 + t/µ)

µj

≥ λE1

CEj

≥ C−1λj. (5.4)

Hence, Corollary 4.1 yields

P
(
X ≥ µ + (λE0E1)

1/2
)
≤ 2Nk−1e−cλ. (5.5)

The result in (5.5) is useful when λ ≥ C ln N ; then we can remove the factor
Nk−1. For smaller λ, the same can be done with a stronger hypothesis.

Example 5.3. If we strengthen (5.3) to

Ej/Ej+1 ≥ λ + j ln N, 0 ≤ j ≤ k − 1, (5.6)

we see by (5.4) also

t lg(1 + t/µ)

µj

≥ λE1

CEj

≥ C−1λ(ln N)j−1.

Corollary 4.7 thus implies

P
(
X ≥ µ + (λE0E1)

1/2
)
≤ 2e−cλ.

This result yields the upper tail parts of Theorem 2.3 in [13] and of the case

k̃ = k in Theorem 3.2 in [15]. In general, the upper tail part of the latter
theorem follows by Corollary 4.9 (with ` = 1). Indeed, Vu [15] inspired both
Theorem 3.13 and Corollaries 4.7–4.9.

The results discussed so far in this section all use, in our version, A = Γ as
in Example 3.1. The more general setting in (H1) is inspired by Vu [14]. In
particular, our Theorems 3.10 and 3.11 and the corresponding Corollaries 4.1
and 4.3, owe much to Theorems 2 and 1, respectively, in [14]. The upper tail
parts of these theorems by Vu follow from our Corollaries 4.1 and 4.3 as shown
below.

Example 5.4. Vu [14] studies the subgraph count XG in G(n, p), where G is
a fixed graph with k vertices; see Section 6 below where we do the same in
detail. He defines Fj as the minimum of E XH over all subgraphs H of G with
at least j vertices, and Ej := E(XG)/Fj. Thus E0 ≥ µ and Ek = 1.

Vu further studies the corresponding, more general, problem of counting
extensions with a fixed set of roots; we denote this random number by XL,
where L is a given rooted graph with k non-root vertices. Vu defines Mj
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corresponding to, and generalizing, Ej; see [14] for details. Again, M0 ≥ µ
and Mk = 1.

Note that the subgraph case is an instance of our Example 3.5 where (H2)
holds, while the extension case is an instance of Example 3.8 where (H2) fails;
thus we (and Vu) obtain better bounds for the subgraph case.

In the subgraph case, it is easily seen that µj ≤ CEj, 0 ≤ j ≤ k, see (6.1)
below; similarly, in the extension case µj ≤ CMj.

In his Theorem 2, Vu [14] assumes that λ ≥ C ln n and M0, . . . ,Mk are
numbers, with Mk = 1, such that

Mj ≥ Mj, j = 0, . . . , k,

Mj/Mj+1 ≥ λ, j = 0, . . . , k − 1.

It then follows from Corollary 4.1, exactly as in Example 5.2 above, that

P
(
XL ≥ µ + (λM0M1)

1/2
)
≤ 2nk−1e−c1λ ≤ e−cλ,

which is the upper tail part of Vu’s result.
In Theorem 1, for subgraphs, Vu [14] assumes, more weakly, that λ ≥ C ln n

and E0, E2, . . . , Ek are numbers, with Ek = 1, such that

Ej ≥ Ej, j = 0, 2, . . . , k,

Ej/Ej+1 ≥ λ, j = 2, . . . , k,

E0/E2 ≥ λ.

Now take t = (λE0E2)
1/2. Then, as in Example 5.2, t ≤ E0 and, for 2 ≤ j ≤ k,

t lg(1 + t/µ)

µj

≥ t2/E0

CEj

=
λE2

CEj

≥ C−1λj−1.

Corollary 4.3 yields

P
(
X ≥ µ + (λE0E2)

1/2
)
≤ 2nk−1e−c1λ ≤ e−cλ,

which is the upper tail part of Vu’s result.
Similarly, the upper tail part of Theorem 6 in [14] follows from our Corol-

lary 4.4.

Corollaries 4.10–4.12 are inspired by and strongly related to results in Vu
[12]; we have not been able to derive Theorem 1.3 in [12] by our method, but
the upper tail parts of its corollaries Theorem 1.2 and Theorem 1.4 follow
immediately from our Corollaries 4.11 and 4.12, respectively, together with
Remark 4.13. Also Remark 3.15 is inspired by Vu [12].

6. Applications to random graphs

We give in this section several applications of the general results above to
random graphs. In order to compare our method with the method of Kim and
Vu, we mainly consider applications treated by Vu [12, 14, 15], and rederive
several of his results. Many other applications from [6, 12, 14, 15] could be
handled similarly. See further [5], where also other methods are considered.
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Several of the arguments used below are similar to the arguments of Vu, but
sometimes there are differences; we invite the reader to compare the details.

We denote the numbers of vertices and edges of a graph G by v(G) and
e(G), respectively.

Let G be a fixed graph, and let XG be the number of copies of G in the
random graph G(n, p). As explained in Example 3.5, we have XG =

∑
I∈[Γ]k YI ,

where k = v(G) and YI is the number of copies of G in G(n, p) with vertex set
I, so we are in the setting of Section 3. We have (for n ≥ k)

E XG =
k!

aut(G)

(
n

k

)
pe(G) � nkpe(G),

where aut(G) is the number of automorphisms of G and � means that the
quotient of the two sides is bounded from above and below by positive con-
stants.

We split the contents of this section into two part according to how large
the deviation t is.

Large deviations. Throughout this subsection we write t = εµ; the reader
may concentrate on the typical case when ε is a constant, but the results cover
also cases when ε depends on n. Corollary 4.3 yields the following estimate.

Theorem 6.1. For any graph G, there exists a constant c > 0 such that, for
every ε > 0, n and p,

P
(
XG ≥ (1 + ε) E XG

)
≤ 2nv(G)−1 exp

(
−c min

H⊆G:v(H)≥2

(
lg(1 + ε)ε E XH

)1/(v(H)−1)
)
.

If further lg(1 + ε)ε E XH ≥ C lnv(H)−1 n for some large constant C and every
H ⊆ G with v(H) ≥ 2, then

P
(
XG ≥ (1 + ε) E XG

)
≤ exp

(
−c min

H⊆G:v(H)≥2

(
lg(1 + ε)ε E XH

)1/(v(H)−1)
)
.

Proof. The first estimate follows directly by Corollary 4.3, since if 1 ≤ j ≤ k =
v(G), then

µj � nk−j max
H⊆G, v(H)=j

pe(G)−e(H) � max
H⊆G, v(H)=j

E XG

E XH

. (6.1)

The second follows (with a smaller c) since the exponent now is at least k log n.
�

Recall that the graph G is said to be balanced if e(H)/v(H) ≤ e(G)/v(G)
for every H ⊆ G, see [3].

Corollary 6.2. If G is a balanced graph, there exist constants c, C > 0 such
that, for every ε > 0, n and p with min(ε2, ε1/(v(G)−1))(E XG)1/(v(G)−1) ≥ C ln n,

P
(
XG ≥ (1 + ε) E XG

)
≤

{
exp

(
−cε2(E XG)1/(v(G)−1)

)
, ε ≤ 1,

exp
(
−c(ε E XG)1/(v(G)−1)

)
, ε ≥ 1.
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Proof. Since G is balanced, (E XH)1/v(H) � npe(H)/v(H) ≥ c1(E XG)1/v(G). It
follows a fortiori that (E XH)1/(v(H)−1) ≥ c2(E XG)1/(v(G)−1) when ε ≤ 1 and
thus E XG > 1, and (ε E XH)1/(v(H)−1) ≥ c2(ε E XG)1/(v(G)−1) when ε ≥ 1 and
thus ε E XG > 1. The result follows from the theorem. �

For balanced graphs (and ε bounded), we have obtained the same bound as
Vu [14, Theorem 3], up to the values of the constants.

Moreover, Theorem 6.1 applies also to unbalanced graphs. Note that by the
argument in the proof of Corollary 6.2, if ε is constant, it suffices to consider
H = G and induced subgraphs H with density e(H)/v(H) > e(G)/v(G) when
taking the minimum. Note further that the minimum may be attained for
H = G also for an unbalanced G, at least for some ranges of p, so that we
obtain the same estimate as for balanced graphs.

Example 6.3. Let G be K4 with a pendant edge added; we have v(G) = 5
and e(G) = 7. This graph is not balanced, since the subgraph K4 has density
6/4 > 7/5. All other proper induced subgraphs have density at most 1, and
thus Theorem 6.1 yields for ε = 1, provided the exponent is at least C ln n,

P(XG ≥ 2 E XG) ≤ exp
(
−c min(n5/4p7/4, n4/3p2)

)
.

In particular, in the range p ≥ n−1/3, we obtain the same estimate
exp(−cµ1/(v(G)−1)) as for balanced graphs.

Vu [14] also gave a lower bound for the probability in Theorem 6.1. Let
α∗(G) denote the fractional independence number of G, i.e. the maximum of∑

v av where av, v ∈ V (G), are non-negative numbers such that av + aw ≤ 1
whenever v and w are two adjacent vertices. Vu [14] then showed that, provided
µ ≥ 1 and p ≤ 1/2, say,

P
(
XG ≥ (1 + ε) E XG

)
≥ exp

(
−C(ε, G)(E XG)1/α∗(G) ln(1/p)

)
. (6.2)

The proof of this bound is short and elementary. For instance, when G = K4,
when α∗(G) = 2, consider the event that d(24(1 + ε)µ)1/4e + 3 given vertices
form a complete subgraph in G(n, p).

As observed by Vu [14], this lower bound shows that the estimate in Corol-
lary 6.2 is sometimes sharp up to a logarithmic factor in the exponent; at
least, this holds if G is a star. In general, however, the exact asymptotics are
unknown, even ignoring such logarithmic factors.

Problem 6.4. What are the asymptotics of − ln P
(
XG ≥ (1 + ε) E XG

)
?

When p is large, the bound of Theorem 6.1 is surpassed by a simple appli-
cation of Corollary 2.8, which immediately yields the following.

Theorem 6.5. For any graph G, there exists a constant c > 0 such that, for
every ε > 0, n and p,

P
(
XG ≥ (1 + ε) E XG

)
≤ exp

(
−cε lg(1 + ε)n2pe(G)

)
. �

It is easily checked that for a constant ε, Corollary 6.2 and Theorem 6.5 both
yield estimates exp(−c(ε)n) when p = n−1/e(G); for p � n−1/e(G) Theorem 6.5
is better than Corollary 6.2, and for p � n−1/e(G) Corollary 6.2 is the better.
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We consider some examples, for simplicity taking ε = 1. Any constant ε ≤ 1
would give the same results with, at most, an extra factor ε2 in the exponent.
In particular, we will see how close our results are to the lower bound (6.2).

Example 6.6. A simple example is G = K3. This graph is balanced, and
Corollary 6.2 immediately yields, assuming µ � n3p3 ≥ C ln2 n,

P(XK3 ≥ 2 E XK3) ≤ exp
(
−cµ1/2

)
≤ exp

(
−c′n3/2p3/2

)
. (6.3)

For p ≥ n−1/3, it is better to use Theorem 6.5, which yields

P(XK3 ≥ 2 E XK3) ≤ exp
(
−cn2p3

)
.

In this simple case, we can also use Theorem 2.4. Note that X{i,j} ≤ Z,
where Z is the number of common neighbours of i and j. (More precisely,
X{i,j} = Z if there is an edge between i and j, and X{i,j} = 0 otherwise.) Z
is a binomial random variable with mean ν := (n − 2)p2, so we can use the
Chernoff bound

P(Z ≥ z) ≤ e−z, z ≥ 7ν (6.4)

[3, Corollary 2.4]. Choosing t = µ and r = µ1/2 in Theorem 2.4, and applying
(6.4) with z = t/6r, we again obtain (6.3).

We can improve this slightly, by using the sharper Chernoff bound

P(Z ≥ z) ≤ exp
(
−z ln

z

eν

)
, (6.5)

again see [3, Corollary 2.4]. We choose t = µ, r = (µ ln µ)1/2 and z = t/6r =
1
6
µ1/2 ln−1/2 µ; then z/eν ≥ c1µ

1/6 ln−1/2 µ and thus ln(z/eν) ≥ c2 ln µ (for large
n). Consequently, Theorem 2.4 and (6.5) yield, still assuming µ � n3p3 ≥
C ln2 n,

P(XK3 ≥ 2 E XK3) ≤ exp
(
−c(µ ln µ)1/2

)
≤ exp

(
−c′n3/2p3/2 ln1/2(np)

)
. (6.6)

On the other hand, we have α∗(K3) = 3/2, and thus (6.2) yields, for µ ≥ 1,
the lower bound

P
(
XK3 ≥ 2 E XK3

)
≥ exp

(
−Cµ2/3 ln(1/p)

)
≥ exp

(
−Cn2p2 ln(1/p)

)
,

which for p → 0 is not approached by any of the upper bounds above.

Example 6.7. Another example is G = K4. This graph is balanced too. If
we assume µ � n4p6 ≥ C ln3 n, Corollary 6.2 yields

P(XK4 ≥ 2 E XK4) ≤ exp
(
−cµ1/3

)
≤ exp

(
−c′n4/3p2

)
, (6.7)

while Theorem 6.5 yields

P(XK4 ≥ 2 E XK4) ≤ exp
(
−cn2p6

)
,

which is better when p > n−1/6.
For some p, we can do substantially better by using Theorem 2.4 and the

following argument to estimate the term P(X{i,j} > t/12r).
Fix i and j, and let W be the number of subgraphs of G(n, p) on 4 vertices,

including i and j, that are complete except possibly for the edge ij; such
subgraphs are called extensions of type K4 with roots i and j. Each such
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extension thus contains, besides i and j, two other vertices that are common
neighbours of i and j, and further are joined by an edge. Clearly, W ≥ X{i,j}
(W = X{i,j} if i and j are adjacent, and W = 0 otherwise).

Expose first all edges in G(n, p) adjacent to i or j. Let, as in Example 6.6,
Z ∼ Bi(n− 2, p2) be the number of common vertices of i and j.

Then expose the remaining vertices. Conditioned on Z = z, there are
(

z
2

)
possible edges that would complete an extension of the above type, so W ∼
Bi

((
z
2

)
, p

)
.

Now, let t = µ and fix a large number a such that

a ≥ 7np2,

t

12r
≥ 7

a2

2
p.

(6.8)

Then two applications of the Chernoff bound (6.4) and its analogue for W
yield

P(X{i,j} > t/12r) ≤ P(Z > a) + P(W > t/12r, Z ≤ a)

≤ P
(
Bi(n− 2, p2) > a

)
+ P

(
Bi

((
bac
2

)
, p

)
> t/12r

)
≤ e−a + e−t/12r,

and consequently, by Theorem 2.4,

P(XK4 ≥ 2 E XK4) ≤ e−r + n2(e−a + e−t/12r). (6.9)

We have to choose r and a so that (6.8) holds. If n2p3 ≥ C ln n and np2 ≤ 1,
we take a = n2p3 and r = c1n

2p3 for some small constant c1 > 0, and obtain

P(XK4 ≥ 2 E XK4) ≤ e−cn2p3

. (6.10)

Actually, (6.10) holds for all p ≤ n−1/2; the case n2p3 ≤ C ln n and µ ≥ C1

follows from Corollary 4.10, cf. Theorem 6.9 below and its proof, and the case
µ ≤ C1 is trivial by Markov’s inequality; we omit the details.

By Vu’s lower bound (6.2), we have (when E XK4 ≥ 1 and p ≤ 1/2)

P(XK4 ≥ 2 E XK4) ≥ e−c′n2p3 ln n. (6.11)

Hence, in the case µ ≥ 1 and np2 ≤ 1, we have found upper and lower bounds
(6.10) and (6.11) that differ only by a logarithmic factor in the exponent.

If p ≤ n−1/2−ε, for some ε > 0, and µ ≥ C ln n, we can improve the upper
bound by taking r = n2p3 ln1/2 n instead and using (6.5) and its analogue for
W . Since a/np2 = np > n1/3 and t/12ra2p > c2n

ε, this yields, instead of (6.9),

P(XK4 ≥ 2 E XK4) ≤ e−r + n2(e−c3a ln n + e−c4ε(ln n)t/12r)

and thus

P(XK4 ≥ 2 E XK4) ≤ e−c(ε)n2p3 ln1/2 n, (6.12)

getting even closer to the lower bound (6.2).
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If np2 ≥ 1, the above choice of a and r is not allowed. Instead we take
a = r = c1n

4/3p5/3 for a small c1 > 0 and find from (6.9)

P(XK4 ≥ 2 E XK4) ≤ e−cn4/3p5/3

, (6.13)

which improves (6.7). It is still an open problem to find the correct asymptotics
in this range of p.

Note that the probabilities of large deviations that we have found for the up-
per tail when np2 ≤ 1 are small but much larger than the corresponding results
for the lower tail: for any ε with 0 < ε ≤ 1, P(XK4 ≤ (1− ε) E XK4) ≤ e−cε2µ,
see [3, Theorems 3.9 and 2.14]. This should not be surprising; a comparatively
small number of clustered extra edges can create a large number of copies of
K4, see the argument after (6.2), but there is no comparable simple way to get
substantially fewer copies than expected.

It is surprising that we are able to find (almost) the precise asymptotics for
K4, at least for some range of p, but not for the simpler case K3.

The proof of Theorem 6.1 and Corollary 6.2, is, as the corresponding argu-
ment in [14], based on an inductive argument, adding one vertex at a time.
(To be precise, the induction is for the more general problem of counting ex-
tensions, cf. the proof of Theorem 3.11.) The argument above yielding a better
bound for K4 suggests that it may for other graphs too be better to use an-
other induction scheme, adding several vertices (or edges) each time according
to some kind of “shell decompostion” of the graph, but we leave this possibility
for future research.

Note that applying Corollary 4.1 with Γ the set of edges of Kn as in Ex-
ample 3.3, i.e. adding one edge at a time (“edge exposure”), generally gives
inferior results, even if we may improve them somewhat by using Corollary 4.5
with, for example, k0 = k+1−δ(G), where δ(G) denotes the minimum degree.
With this k0, Mk0 ≤ C since this many edges determine the vertex set, and
Mk0 is just the number of ways the remaining edges may be added to create a
copy of G.

Small deviations. For small deviations t, i.e. for small ε, the estimate in
Theorem 6.1 is useless because of the factor nv(G)−1. We give some comple-
mentary results for small t; for simplicity we treat only some cases where we
obtain bounds of the sub-Gaussian type P

(
XG ≥ µ+ t

)
≤ exp

(
−ct2/ Var XG

)
.

Note that as soon as P(XG = 0) → 0 and n2(1−p) →∞, XG is asymptotically
normally distributed [9], [3, Theorem 6.5], and thus an estimate of this type
holds if t/(Var XG)1/2 is fixed, and by a continuity argument if this quantity
is slowly increasing too; the problem is to find explicit ranges of t where this
is true. Therefore, in this subsection, we write σ2 := Var XG and, instead of
writing t = εµ, we compare t to the standard deviation σ. Theorem 6.8 below
slightly extends the upper tail parts of results by Vu [14, Corollary 2], [15,
Corollary 6.4].



THE DELETION METHOD FOR UPPER TAIL ESTIMATES 25

To avoid trivialities, we assume e(G) > 0 and p ≤ 1/2. We begin by
observing that then

σ2 = Var XG � max
H⊆G, v(H)≥2

(E XG)2

E XH

� max
2≤j≤k

µµj, (6.14)

see [3, Lemma 3.5] and (6.1). We say that H is a leading overlap if it attains
the maximum in (6.14), i.e. if E XH is minimal, at least within a constant
factor. (Formally this makes sense only if we let n → ∞ and consider some
given p = p(n).) See [3, Section 3.2] for further information.

If e(G) ≥ 2 we define

m(2)(G) := max
{e(H)− 1

v(H)− 2
: H ⊆ G with v(H) ≥ 3

}
;

in the trivial case e(G) = 1 we set m(2)(G) := 1/2. Thus, if H ⊆ G with
v(H) ≥ 2, then

E XH � nv(H)pe(H) ≥ n2p
(
npm(2)(G)

)v(H)−2
. (6.15)

Note that m(2)(G) ≥ 1/2 for every G with e(G) > 0.

The significance of m(2)(G) comes partly from the fact that if npm(2)(G) ≥ 1,
then (6.14) and (6.15) imply that K2 is a leading overlap, i.e.

σ2 = Var XG �
(E XG)2

E XK2

� (E XG)2

n2p
. (6.16)

Theorem 6.8. For any graph G, there exist constants c, C > 0 such that, for
every n and p ≤ 1/2 with npm(2)(G) ≥ ln n and for every t with C ≤ t/σ ≤(
npm(2)(G)

)1/2
,

P
(
XG ≥ µ + t

)
≤ exp

(
−ct2/σ2

)
.

Proof. Write ω = npm(2)(G). Since m(2)(G) ≥ 1/2, we have ω ≤ ω2 ≤ n2p, and
thus, using (6.16),

t2 ≤ ωσ2 ≤ n2pσ2 ≤ C1µ
2. (6.17)

By (6.1) and (6.15), for 2 ≤ j ≤ k,

µj ≤ C2
E XG

n2p ωj−2

and thus, by (6.17) and (6.16),

t lg(1 + t/µ)

µj

≥ c1
t2

µµj

≥ c2
t2n2p ωj−2

(E XG)2
≥ c3

t2

σ2
ωj−2.

By the assumptions, this is at least c3(t
2/σ2)j−1, and also at least

c3(t
2/σ2) lnj−2 n, and the result follows by Corollary 4.8 with ` = 2. �

Theorem 6.8 requires that p is so large that K2 is the only leading overlap.
Another result by Vu [12, Corollary 5.1] yields a similar bound in the opposite
extreme case, viz. when p is small and G itself is the only leading overlap; it is
further assumed that G is strictly balanced, i.e. e(H)/v(H) < e(G)/v(G) for
every proper subgraph H. We state his result as follows.
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Theorem 6.9. Suppose that G is a strictly balanced graph. Then there exists
a constant c > 0 such that if µ := E XG ≤ ln n and 0 < t ≤ µ, then

P(XG ≥ µ + t) ≤ 2e−c1t2/µ ≤ 2e−c2t2/σ2

.

Proof. The assumptions on G and µ imply that for every subgraph H ⊂ G with
1 ≤ v(H) < k = v(G), and some α > 0, we have E XH ≥ nα E XG (for large
n, at least). By (6.1), µj = O(n−α) for 1 ≤ j ≤ k − 1, while µk ≤ C for some
C, and the first inequality follows by Corollary 4.12 (applied to XG/C). The
second follows because σ2 � µ by (6.14). (In this case, actually σ2 ∼ µ.) �

The lower bound (6.11) shows that the result does not extend to µ � ln2 n;
we do not know whether µ = O(ln n) is necessary.

We can obtain a similar estimate also in intermediate cases when some other
subgraph is the only leading overlap, or when there are several leading overlaps
but all have the same number of vertices.

Theorem 6.10. Suppose that G is a graph and that p ≤ 1/2 is such that there
exists a subgraph F ⊆ G and a number γ > 0 with E XH ≥ nγ E XF for every
subgraph H ⊆ G with v(H) ≥ 2 and v(H) 6= v(F ). Then there is a constant
c = c(G, γ) such that if 0 < t/σ ≤ (ln n)1/2 and t ≤ µ, then

P(XG ≥ µ + t) ≤ 2e−ct2/σ2

.

Proof. Let f = v(F ) and k = v(G). By assumption and (6.1),

µj ≤ Cn−γµf , 2 ≤ j ≤ k and j 6= f. (6.18)

Moreover, by (6.14), σ2 � µµf .
Let A be a large constant and apply Theorem 3.11 with r2 = A−kt/µf ,

r3, . . . , rf = A and rf+1, . . . , rk = Anγ/k. Using (6.18), it is easy to first verify
(3.8) and then from (3.9) and (6.14) obtain

P(XG ≥ µ + t) ≤ e−c1A−kt2/µµf +

f−1∑
j=2

nj
(Aµf

µj

)−cA

+
k−1∑
j=f

nj2−cAnγ/k

≤ e−c2A−kt2/σ2

+ nf−cAγ + nk2−cAnγ/k

.

The result follows by choosing A large enough (depending on γ and k). �

Problem 6.11. Can the range of t in Theorem 6.10 be extended?

If we consider the special case p = n−α for some fixed α, the assumptions
of Theorem 6.10 are satisfied (for large n, at least) for all but a finite number
of α; the exceptions are when there exist two leading overlaps with different
numbers of vertices; cf. [3, Section 3.2]. We obtain the following corollary.

Corollary 6.12. For any graph G and every α > 0 except for a finite number
of values (depending on G), there is a constant c = c(G, α) such that if p =
n−α, 0 < t/σ ≤ (ln n)1/2 and t ≤ µ, then

P(XG ≥ µ + t) ≤ 2e−ct2/σ2

. �
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The exceptional case when there are two leading overlaps with different
numbers of vertices is more complicated; under suitable hypotheses it is still
possible to obtain bounds from (2.4), but they will be weaker than in the
theorems above.

Problem 6.13. Does Corollary 6.12 extend to all α?

We give here only a simple counterexample which shows that Theorem 6.9
does not extend to arbitrary balanced graphs.

Example 6.14. Let G consist of a triangle with 3 pendant edges attached to
the same vertex of the triangle. (Equivalently, G is a star K1,5 with an added
edge.) Further, let np tend to ∞ very slowly, for example p = ln ln n/n. For
convenience we assume that n is even and large.

We have µ := E XG ∼ 1
12

(np)6 and σ2 := Var XG � µ2

(np)3
� (np)9 (K3 is a

leading overlap). Let t = (np)11/2; thus t/σ � np →∞ but t � µ.
Expose the edges in two rounds, cf. [3, Section 1.1]: first select red edges

with probabilities p1 = p(1−(np)−3/2) and then, independently, blue edges with
probabilities p2 = (p− p1)/(1− p1) > p(np)−3/2; this makes p1 + p2− p1p2 = p
and thus we obtain G(n, p) by ignoring colours and possible double edges.

Let X ′
G be the number of red copies of G, and let X ′′

G be the number of
copies with at least one blue edge. We have E X ′

G = (p1/p)6µ = µ + O(σ) and
Var X ′

G ∼ Var XG = σ2. Hence, by Chebyshev’s inequality (or [9]), P(X ′
G >

µ− t) → 1.
Suppose that X ′

G > µ − t and select a vertex v in some red triangle. Let
B be the number of blue edges adjacent to v, not counting those overlapping
with a red edge; thus B ∼ Bi(n − 1 − dr(v), p2), where dr(v) is the number
of red neighbours of v. If B ≥ b := 3dt1/3e, then X ′′

G ≥
(

b
3

)
> 2t and thus

XG = X ′
G + X ′′

G > µ + t. We may further suppose that dr(v) < n/2, since

otherwise XG ≥ X ′
G >

(
n/2−2

3

)
� µ + t. Consequently, conditioned on a red

graph with X ′
G > µ− t,

P(XG > µ + t) ≥ P
(
Bi(n/2, p2) = b

)
∼ 1

b!

(n

2
p2

)b

≥
(np2

b

)b

≥ exp
(
−c1t

1/3 ln t
)

= exp
(
−c2(np)11/6 ln(np)

)
.

Hence, unconditionally too, P(XG > µ + t) ≥ exp
(
−c2(np)11/6 ln(np)

)
, which

is larger than e−ct2/σ2 ≤ e−c′(np)2 .

Remark 6.15. The arguments and results in this section apply to counts of
induced subgraphs too; note that our method does not require the summands
YI to be increasing functions of the underlying variables ξα.

7. Appendix: The lower tail

As remarked in the introduction, estimates for the lower tail can be derived
by other inequalities. In particular, we give here a new version of Suen’s
inequality that applies in the setting of Theorem 2.1. It is a slight extension
of [3, Theorem 2.23], where it is assumed that the Yα are indicator random
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variables (as is usually the case in applications). (Suen’s original inequality
[11] deals only with P(X = 0); see also [2, 10] for further related results.)

Note that the inequality in [3, Theorem 2.14] is slightly stronger when ap-
plicable (although the difference usually is insignificant), but it applies only
under more restrictive assumptions.

Theorem 7.1. Suppose that Yα, α ∈ A, is a finite family of non-negative
random variables and that ∼ is a symmetric relation on the index set A such
that if A, B are two subsets of A such that α 6∼ β for α ∈ A, β ∈ B, then the
family {Yα : α ∈ A} is independent of {Yβ : β ∈ B}; in other words, the pairs
(α, β) with α ∼ β and α 6= β define the edge set of a strong dependency graph
for the variables Yα. Let X :=

∑
α Yα and µ := E X =

∑
α E Yα. Let further,

for α ∈ A, X̃α :=
∑

β∼α Yβ and let ∆̄ :=
∑∑

α∼β E(YαYβ) =
∑

α E(X̃αYα)

and δ := maxα E X̃α. If 0 ≤ t ≤ µ, then

P(X ≤ µ− t) ≤ exp
(
−min

( t2

4∆̄
,

t

6δ

))
. (7.1)

Proof. The proof in [3, Theorem 2.23] holds with only notational changes (re-
place Ii by Yα and pi by E Yα), since, for any XA ≥ 0,

(Yα − E Yα)
(
1− e−sXA

)
≤ Yα

(
1− e−sXA

)
≤ YαsXA.

We omit the details. �

In the situation studied in Section 3, we derive the following corollary, which
in many cases yields a stronger bound for the lower tail than the upper tail
estimate in Corollary 4.1. (For t = O(µ), the bound is always at least as strong
as (4.1) up to a constant factor in the exponent; typically, it is much stronger.)

Corollary 7.2. Assume (H1). With notation as in Section 3, and c = 2−k−2,
for 0 ≤ t ≤ µ,

P(X ≤ µ− t) ≤ exp
(
−c min

(
min

1≤j≤k

( t2

µµj

)
,

t

µ1

))
. (7.2)

Proof. In this case, cf. the proof of Theorem 2.3,

δ = max
I

E
∑

J∩I 6=∅

YJ ≤ max
I

E
∑
i∈I

X{i} ≤ kµ1. (7.3)

Moreover, given I, let for every non-empty J ⊆ I, X∗
J :=

∑
K∩I=J YK ≤

XJ . Conditioned on {ξα, α ∈ AJ}, the random variables YI and X∗
J are

independent, as a consequence of (H1). Hence, using (3.1),

E(YIX
∗
J | ξα, α ∈ AJ) = E(YI | ξα, α ∈ AJ) E(X∗

J | ξα, α ∈ AJ)

≤ E(YI | ξα, α ∈ AJ)µJ . (7.4)

and consequently E(YIX
∗
J) ≤ E YIµJ . Hence,

E(YIX̃I) =
∑
∅6=J⊆I

E(YIX
∗
J) ≤

∑
∅6=J⊆I

E YIµJ ≤ E YI

k∑
j=1

(
k

j

)
µj
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and

∆̄ =
∑

I

E(YIX̃I) ≤ µ

k∑
j=1

(
k

j

)
µj ≤ 2kµ max

1≤j≤k
µj. (7.5)

The result follows form Theorem 7.1, (7.3) and (7.5). �

Remark 7.3. We have throughout assumed that our summands YI be non-
negative. In cases where the sign of YI may change, one may separate the
positive and negative parts of YI and treat them separately, using a result
from Section 2 or 3 for one part and Theorem 7.1 or Corollary 7.2 for the
other.
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Department of Mathematics, Uppsala University, PO Box 480, S-751 06 Upp-
sala, Sweden

E-mail address: svante.janson@math.uu.se

Department of Discrete Mathematics, Adam Mickiewicz Universiy, Poznań,
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