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Abstract. The sizes of the cycles and unicyclic components in the ran-
dom graph G(n, n/2 ± s), where n2/3 � s � n, are studied using the
language of point processes. This refines several earlier results by different
authors. Asymptotic distributions of various random variables are given;
these distributions include the gamma distributions with parameters 1/4,
1/2 and 3/4, as well as the Poisson–Dirichlet and GEM distributions with
parameters 1/4 and 1/2.

1. Introduction and results

 Luczak [16] studied the cycles in the random graph G(n,m) for m = n/2+s,
where n2/3 � s � n. One of his results is that the longest cycle outside the
giant component and the shortest cycle inside the giant, both have lengths of
order n/s; more precisely, both these cycle lengths divided by n/s converge in
distribution to strictly positive random variables, and he gave formulae for the
limit distributions.

In the present paper, we make a further study of the cycles in G(n,m), in
particular the cycles with lengths about n/s, always taking assuming m =
n/2± s, n2/3 � s� n.

Let C1, C2, . . . , CN be the cycles in G(n,m) that belong to unicyclic com-
ponents, and let C∗

1 , C
∗
2 , . . . , C

∗
N∗ be the remaining cycles, i.e. the cycles that

belong to multicyclic components. (The ordering is arbitrary except when
specified below.)

It is well-known (see e.g. [5, 15, 9, 10]) that for m = n/2− s, a.a.s. there are
no multicyclic components, and thus {Ci} is the set of all cycles in G(n,m)
while {C∗

i } = ∅; for m = n/2+s, there exists a.a.s. one multicyclic component,
the giant component, and thus {Ci} is the set of cycles outside the giant and
{C∗

i } is the set of cycles inside the giant. (In this paper, ‘a.a.s.’ (asymptotically
almost surely) means ‘with probability tending to 1 as n→∞’; in contrast,
‘a.s.’ (almost surely) has the standard probabilistic meaning ‘with probability
1’.)

We will use the language of point processes to study the cycle lengths. We
regard a point process as a random (multi)set of points in some fixed space, for
example (0,∞); see Section 4 for technical details, including the definition of
the vague topology used in the results below, and a discussion of the difference
between e.g. (0,∞), (0,∞], etc. as ground spaces.
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The following theorem is implicit in [16]. (A proof is given in Section 5,
where also the other result stated below are proved.) All unspecified limits
here and below are as n→∞.

Theorem 1. Consider G(n,m) with m = n/2 ± s, n2/3 � s � n. Then
the two sets of cycle lengths, in unicyclic and in multicyclic components resp.,
converge after normalization by n/s to two independent Poisson processes as
follows.

(i) { s
n
|Ci|}

d→ Ξ as point processes on (0,∞], where Ξ is a Poisson process

with intensity 1
2x
e−2x, 0 < x <∞.

(ii) { s
n
|C∗

i |}
d→ Ξ∗ as point processes on [0,∞), where Ξ∗ is a Poisson

process with intensity 1
2x

(e2x − e−2x) = sinh(2x)/x, 0 < x < ∞, for
m = n/2 + s, while Ξ∗ = ∅ (a Poisson process with intensity 0) for
m = n/2− s.

(iii) The limits in (i) and (ii) hold jointly, i.e.({ s
n
|Ci|

}
,
{ s
n
|C∗

i |
})

d→ (Ξ,Ξ∗)

(as point processes on (0,∞] and [0,∞), respectively), with Ξ and Ξ∗

as above and independent.

Note that the total intensity of the Poisson process Ξ is
∫ ∞

0
1
2x
e−2x dx = ∞,

so Ξ is a.s. an infinite set of points. On the other hand, the intensity for any
interval [a,∞) with a > 0 is finite, and thus Ξ has only a finite number of
points in each such interval. Consequently, we may write Ξ = {ξ1, ξ2, . . . },
where ξ1 > ξ2 > · · · . Similarly, Ξ∗ = {ξ∗1 , ξ∗2 , . . . }, where 0 < ξ∗1 < ξ∗2 < · · · .
By Lemma 4 in Section 4, Theorem 1 can be reformulated as follows.

Theorem 2. Consider G(n,m) with m = n/2± s, n2/3 � s� n.

(i) If the cycles Ci in unicyclic components are ordered such that their
lengths are in decreasing order, i.e. |C1| ≥ |C2| ≥ . . . , then( s

n
|C1|,

s

n
|C2|, . . .

)
d→ (ξ1, ξ2, . . . ),

where ξ1 > ξ2 > . . . are the points of the Poisson process Ξ with
intensity 1

2x
e−2x, arranged in decreasing order.

(ii) If m = n/2 + s and the cycles C∗
i not in unicyclic components are

ordered such that their lengths are in increasing order, then( s
n
|C∗

1 |,
s

n
|C∗

2 |, . . .
)

d→ (ξ∗1 , ξ
∗
2 , . . . ),

where ξ∗1 < ξ∗2 < . . . are the points of the Poisson process Ξ∗ with
intensity 1

2x
(e2x − e−2x), arranged in increasing order.

(iii) The limits in (i) and (ii) hold jointly, with Ξ and Ξ∗ independent.

In particular, for each fixed k we have s
n
|Ck|

d→ ξk, where ξk (by a standard
calculation) has a distribution with the density function

e−2x

2(k − 1)! x

(∫ ∞

2x

1

2y
e−y dy

)k−1

exp

(
−

∫ ∞

2x

1

2y
e−y dy

)
, x > 0. (1)
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Similarly, if m = n/2 + s, s
n
|C∗

k |
d→ ξ∗k, where ξ∗k has the density function

sinh 2x

(k − 1)! x

(∫ 2x

0

sinh y

y
dy

)k−1

exp

(
−

∫ 2x

0

sinh y

y
dy

)
, x > 0. (2)

For k = 1 we recover (and simplify) the result by  Luczak [16, Theorem 3],
giving the asymptotic distributions of the lengths of the longest cycle outside
the giant and the shortest inside it:

Corollary 3. Consider G(n,m) with m = n/2± s, n2/3 � s� n. For every
a > 0,

P(max{|Ci|} ≤ an/s) → P(ξ1 ≤ a) = exp

(
−

∫ ∞

2a

1

2y
e−y dy

)
,

and, if m = n/2 + s,

P(min{|C∗
i |} ≤ an/s) → P(ξ∗1 ≤ a) = 1− exp

(
−

∫ 2a

0

sinh y

y
dy

)
.

We can also employ the joint convergence in Theorem 2.

Corollary 4. Consider G(n,m) with m = n/2 + s, n2/3 � s � n. The
probability that every cycle inside the giant component is longer than every
cycle outside converges to

P(ξ∗1 > ξ1) =

∫ ∞

0

e−x

2x
exp

(
−

∫ x

0

ey − e−y

2y
dy −

∫ ∞

x

e−y

2y
dy

)
dx ≈ 0.752.

We have nothing more to add to [16] about the cycles inside the giant. For
the cycles outside it, however, we note that if we scale all points in the Poisson
process Ξ by 2, we obtain a Poisson process with intensity 1

2x
e−x, which is

a well-known object, see Section 2. It follows from Section 2 that 2
∑

Ξ =
2
∑

k ξk has the standard Γ(1/2) distribution, and thus the sum
∑

Ξ =
∑

k ξk
of all points in Ξ has the gamma distribution Γ(1/2, 1/2), the normalized
sequence ξk/

∑
Ξ has a Poisson–Dirichlet distribution PD(1/2), and if the

sequence is randomly rearranged in size-biased order, its distribution is known
as GEM(1/2).

Theorem 1 does not immediately imply results for the sum
∑
|Ck| of the

cycle lengths (the vague topology is too weak for that), but the theorem can
be augmented as follows. The ‘order of appearance’ in (iii) below is defined
by inspecting the vertices of G(n,m) in a given order and for each of them
checking whether the vertex belongs to a cycle in a unicyclic component; the
first cycle found in this way is C1, the second C2, etc. In other words, the
cycles are ordered according to their smallest vertex labels. Similarly, in The-
orem 7, we list the unicyclic components in order of appearance, i.e. according
to their smallest vertex labels; note that this in general differs from listing the
components according to the order of appearance of their cycles.

Theorem 5. Consider G(n,m) with m = n/2 ± s, n2/3 � s � n. Let
L =

∑
k |Ck| be the total length of all cycles in unicyclic components. Then
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the limit in Theorem 1(i) extends to joint convergence({ s
n
|Ci|

}
,
s

n
L

)
d→

(
Ξ,

∑
Ξ
)

;

in particular, the following holds.

(i) The total cycle length L has an asymptotic gamma distribution,

2
s

n
L

d→ Γ(1/2).

(ii) If the cycles are ordered such that their lengths are in decreasing order,
then the sequence of relative lengths converges to a Poisson–Dirichlet
distribution,

(|C1|/L, |C2|/L, . . . )
d→ PD(1/2).

(iii) If the cycles are listed in order of appearance, then the sequence of
relative lengths converges to a GEM distribution,

(|C1|/L, |C2|/L, . . . )
d→ GEM(1/2).

We next turn to the sizes of the unicyclic components. Let Ui be the com-
ponent containg Ci, and let V =

∑
i |Ui| be the total size of the unicyclic

components.
We have the following counterparts of the theorems above. Theorem 6 has

earlier been proved by  Luczak [15] (in a different, slighly weaker form). For
m = n/2−s, Kolchin [14] has found the limit law in Theorem 7(i), and a limit
distribution for s2n−2|U1| in Theorem 6, which, however, is more complicated
than the one given here; as remarked in [16], these results extend tom = n/2+s
by the symmetry rule (cf. Section 8).

Theorem 6. Consider G(n,m) with m = n/2 ± s, n2/3 � s � n. Then

{ s2

n2 |Ui|}
d→ Ξ′ as point processes on (0,∞], where Ξ′ is a Poisson process with

intensity 1
4x
e−2x, 0 < x <∞.

In other words, if the unicyclic components are ordered with decreasing sizes,
then ( s2

n2
|U1|,

s2

n2
|U2|, . . .

)
d→ (ξ′1, ξ

′
2, . . . ),

where ξ′1 > ξ′2 > . . . are the points of the Poisson process Ξ′ arranged in
decreasing order.

Theorem 7. Consider G(n,m) with m = n/2 ± s, n2/3 � s � n. Let
V =

∑
k |Uk| be the total size of all unicyclic components. Then the limit in

Theorem 6 extends to joint convergence({ s2

n2
|Ui|

}
,
s2

n2
V

)
d→

(
Ξ′,

∑
Ξ′

)
;

in particular, the following holds.

(i) The total size V has an asymptotic gamma distribution,

2
s2

n2
L

d→ Γ(1/4).
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(ii) If the unicyclic components are ordered such that their lengths are in
decreasing order, then the sequence of relative lengths converges to a
Poisson–Dirichlet distribution,

(|U1|/V, |U2|/V, . . . )
d→ PD(1/4).

(iii) If the unicyclic components are listed in order of appearance, then the
sequence of relative lengths converges to a GEM distribution,

(|U1|/V, |U2|/V, . . . )
d→ GEM(1/4).

We further study the joint distribution of the sizes of the unicyclic compo-
nents and the length of the cycles in them. This has interesting relations to
Brownian motion, more precisely to the hitting time for Brownian motion with
drift defined by

Ta,b = inf{t : Bt + bt = a}, (3)

where Bt is a standard Brownian motion and a > 0, −∞ < b <∞. Note that
if b ≥ 0, then 0 < Ta,b < ∞ a.s., but if b < 0, then with positive probability
Bt+bt < a for all t ≥ 0, in which case we set Ta,b = +∞. Some basic properties
of these random variables are collected in Section 3 below.

Theorem 8. Consider G(n,m) with m = n/2 ± s, n2/3 � s � n. Then

{( s
n
|Ci|, s2

n2 |Ui|)}
d→ Ξ̂ as point processes on [0,∞]× [0,∞] \ {(0, 0)}, where Ξ̂

is a Poisson process with intensity

1√
8π
y−3/2e−2y−x2/2y, 0 < x, y <∞.

Theorem 9. Consider G(n,m) with m = n/2± s, n2/3 � s� n. Then, with

L and V as above, ( s
n
L, s2

n2V )
d→ (X, Y ), where (X, Y ) has the density

1

π
x1/2y−3/2e−x2/2y−2y, x, y > 0.

Moreover, the distribution of (X, Y ) is characterized by either of:

(i) X ∈ Γ(1/2, 1/2) and the conditional distribution of Y given X = x is
the distribution of Tx,2.

(ii) Y ∈ Γ(1/4, 1/2) and X2/2Y ∈ Γ(3/4, 1), with Y and X2/2Y indepen-
dent.

In particular, it follows that L2/2V
d→ Γ(3/4).

Furthermore, we can combine this with the result in Theorem 1 for cycles

in the giant component. For a real number λ, let Ξ̃λ = {(ξi, ηi)}∞1 be the
point process on (0,∞) × [0,∞] defined as follows. Let {ξi}∞1 be a Poisson
process on (0,∞) with intensity 1

2x
eλx, and given {ξi}∞1 , choose ηi randomly

with the distribution of Tξi,−λ, independently for different i. Thus Ξ̃λ is a
Poisson process which has an intensity measure given on (0,∞) × [0,∞) by,
see (7),

1

2x
eλxfx,−λ(y) dx dy =

1√
8π
y−3/2 exp(−x2/2y − λ2y/2) dx dy, (4)
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and on (0,∞)× {∞} by, see Section 3,

1

2x
eλx P(Tx,−λ = ∞) dx =

{
1
2x

(eλx − e−λx) dx, λ > 0,

0, λ ≤ 0.
(5)

Note that if a > 0, and we rescale Ξ̃λ by defining Ξ̃
(a)
λ = {(aξi, a2ηi)}, then

Ξ̃
(a)
λ

d
= Ξ̃λ/a. Note further that Ξ̃−2 equals Ξ̂ in Theorem 8.

We then have the following result; note that unlike in the other theorems, s
may here be negative and that we thus consider the cases m < n/2 and m >
n/2 together, the difference between the cases corresponding to the different

behaviour at infinity of Tx,−λ and Ξ̃λ for positive and negative λ.

Theorem 10. Consider G(n,m) with m = n/2 + s, n2/3 � |s| � n. Let

{C̃i} = {Ci}∪{C∗
i } be the collection of all cycles in G(n,m), and let Ũi be the

component containing C̃i. Then {(|C̃i|, |Ũi|)} is approximated by Ξ̃2s/n, in the

sense that if an > 0 are such that a−1
n s/n → α 6= 0, then {(an|C̃i|, a2

n|Ũi|)}
d→

Ξ̃2α on (0,∞)× [0,∞].

The points (ξ, η) in Ξ̃2α with η < ∞ correspond (as a limit) to unicyclic
components, while the points with η = ∞ correspond to cycles in the giant
component.

Remark 1. In the studied ranges of m, the asymptotic distributions above do
not depend on s except through the scaling.

Remark 2. Corresponding results for m = n/2 +O(n2/3) are much more com-
plicated, and we do not obtain Poisson process limits in that case. See [1], [18],
[17], or [10]. For the other endpoint, some results for s = Θ(n) are given in
[5]; here we still obtain Poisson limits, but the results are somewhat different.

Remark 3. All results above hold for the random graph G(n, p) too, with
p = 1/n + 2s/n2, i.e. when n−4/3 � |p − n−1| � n−1. This follows easily by
conditioning on the number of edges, or by simple modifications of the proofs
below.

Remark 4. As is witnessed by the χ2 distribution, the standard normalizations
of the normal and gamma distributions do not match. As a consequence, the
scaling factors chosen above are not always the most convenient ones. For
example, normalizing by 2s/n and 2s2/n2 instead in Theorem 9, we obtain
convergence to the standard gamma distributions Γ(1/2) and Γ(1/4), but we
would get Tx/

√
2,
√

2 in (i).

Remark 5. In this paper we consider only G(n,m) for a single m (depending on
n). It would be interesting to study the random graph process {G(n,m)}m≥0

and find asymptotic descriptions of how the various variables and point pro-
cesses above behave as functions of m (in a suitable range).

Finally we remark that it should not be inferred, however, that all properties
of the family of cycles in unicyclic components are reflected in the Poisson pro-
cesses defined above; by the nature of the convergence in the vague topology,
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the asymptotics in this paper really only describe cycles of lengths of the order
n/s. A concrete counterexample is provided by the following simple result,
which contrasts with the fact that the Poisson process Ξ has no double points.

Theorem 11. Consider G(n,m) with m = n/2 ± s, n2/3 � s � n. The
probability that G(n,m) has two cycles of the same length, both belonging to
unicyclic components, converges to

1−
∞∏

k=3

(
1 +

1

2k

)
e−1/2k = 1− 16

15
π−1/2e3/4−γ/2 ≈ 0.045.

Some preliminaries are given in Sections 2–4. The theorems above are
proved, using the standard method of moments, in Section 5. The final sections
contain heuristic arguments using instead Brownian motion and branching pro-
cesses. These arguments could probably be made rigorous, although we have
not attempted that; in any case, we find them conceptually useful.

2. Gamma, Poisson–Dirichlet and GEM distributions

We let, for α, b > 0, Γ(α, b) denote the gamma distribution with density
function b−1gα(x/b), where

gα(x) = Γ(α)−1xα−1e−x. (6)

Thus b is a scale factor only; the distribution Γ(α, 1) with density function gα

is called standard gamma and is also denoted by Γ(α).
It is well-known that if α > 0 and Ξ = {ξ1, ξ2, . . . } is a Poisson process on

(0,∞) with intensity αx−1e−x, then the sum Σ =
∑∞

1 ξi of all points in Ξ is
a.s. finite, and has the gamma distribution Γ(α). Moreover [12, 13, 2], if we
normalize by this sum Σ and consider the sequence (ξ1/Σ, ξ2/Σ, . . . ), with the
terms in decreasing order, the distribution of this random sequence is known
as Poisson–Dirichlet and denoted by PD(α). If we reorder this sequence by
size-biased sampling, we instead obtain the GEM distribution GEM(α).

More generally, if α, b > 0 and Ξ is a Poisson process with intensity αx−1e−x/b,
a simple rescaling shows that b−1Σ ∈ Γ(α), and thus Σ ∈ Γ(α, b), while the
sequence (ξ1/Σ, ξ2/Σ, . . . ), with the two orderings above, still has the distri-
butions PD(α) and GEM(α), respectively.

3. A hitting time distribution

We collect here some useful facts about the distributions of the hitting times
Ta,b defined in (3).

The case b = 0 is well-known; Ta,0 has a stable(1/2) distribution, see e.g. [19,
Propositions II.(3.7), III.(3.10)]. The general case is similar. By [19, Exercises
II.(3.14), III.(3.28) and VIII.(1.21)] for b > 0, and the same arguments (op-
tional stopping of exponential martingales or the Girsanov–Cameron–Martin
theorem) for b < 0, Ta,b has the density function

fa,b(t) =
a√
2π
t−3/2 exp(−a2/2t− b2t/2 + ab), 0 < t <∞, (7)
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and the Laplace transform

E e−λTa,b = ea(b−
√

b2+2λ), λ > 0. (8)

For b < 0 this means that P(Ta,b <∞) = e−2a|b|, cf. [19, Exercise II.(3.12)], and
that the conditional distribution of Ta,b given Ta,b <∞ equals the distribution
of Ta,|b|.

Note that if b ≥ 0 is fixed, then the strong Markov property of Brownian
motion implies that a 7→ Ta,b is an increasing stochastic process with indepen-
dent, stationary increments. In particular, if a1, a2 > 0, and T ′

a2,b denotes a
copy of Ta2,b that is independent of Ta1,b, then

Ta1,b + T ′
a2,b

d
= Ta1+a2,b. (9)

(This follows also from (8).) It follows also that (for b ≥ 0) Ta,b has an infinitely
divisible distribution. Although we will not need it, we remark that its Lévy
measure has the density a(2π)−1/2x−3/2e−b2x/2, 0 < x <∞; in other words, Ta,b

is distributed as the sum of all points in a Poisson process with this density,
cf. the corresponding result for gamma distributions in Section 2.

4. Point processes

We give here some technical remarks on point processes; see e.g. [11] for
further details and proofs.

Let S be a ‘nice’ topological space; more precisely, a locally compact Polish
space. (In this paper we only consider intervals in R = [−∞,∞] and some sim-

ple subsets of R2
.) Although we regard a point process as a random (multi)set

{ξi}i ⊂ S, it is technically convenient to formally define it as a random mea-
sure

∑
i δξi

. Hence, if Ξ denotes the point process {ξi}, we write Ξ(A) for the
number of points ξi that belong to a subset A ⊆ S; similarly, for suitable
functions f on S,

∫
f dΞ =

∑
i f(ξi).

Thus, let N = N(S) be the class of all Borel measures µ on S such that
µ(A) is a (finite) integer 0, 1, . . . for every compact Borel set A; this coincides
with the class of all finite or countably infinite sums of the type

∑
i δxi

, where
xi ∈ S and each compact subset of S contains only a finite number of xi, and
we identify such a sum with the (multi)set {xi}.

The standard topology on N (known as the vague topology) is defined such
that, for µ, µ1, µ2, · · · ∈ N, µn → µ if and only if

∫
f dµn →

∫
f dµ for every

f ∈ Cc(S), the space of real-valued continuous functions on S with compact
support.

A point process on S is a random element of N. The vague topology is
metrizable, so the general theory in [4] of convergence in distribution applies.

If Ξn and Ξ are point processes on S, then Ξn
d→ Ξ (w.r.t. the vague topology

just defined) if and only if
∫
f dΞn

d→
∫
f dΞ (as real-valued random variables)

for every f ∈ Cc(S). It is also true that Ξn
d→ Ξ if and only if Ξn(A)

d→ Ξ(A)
for every relatively compact Borel set A ⊆ S such that Ξ(∂A) = 0 a.s., and
moreover joint convergence holds for every finite collection of such sets A.



CYCLES AND UNICYCLIC COMPONENTS IN RANDOM GRAPHS 9

Note that the definitions of both point processes and convergence of them
are sensitive to the choice of S, since a point process is not allowed to have any
cluster point in S. Hence, for subsets of Rd, say, it matters whether boundary
points are included. For example, if S is a closed interval (or any compact
set), then every point process is finite. If, instead, S is a half-open interval
(a, b], then an element µ ∈ N is finite on every interval [c, b], a < c < b, and
thus every point process may be written as a (finite or infinite) set {ξi} with
ξ1 ≥ ξ2 ≥ . . . and, if the set is infinite, ξi → a as i → ∞. If S = [a, b)
we may similarly write a point process as {ξi} with ξ1 ≤ ξ2 ≤ . . . and, if
the set is infinite, ξi → b as i → ∞. Finally, a point process on an open
interval (a, b) may have both a and b as cluster points. By including one or
both endpoints, we thus get stronger conditions; similarly, as is shown more
generally in the following lemma, we get a stronger mode of convergence. It
may thus be advantageous to consider (when possible) a random set of points
in (a, b) as a point process on [a, b), (a, b] or [a, b].

Lemma 1. Suppose that S′ is a locally compact subset of S and that Ξn, Ξ
are point processes on S that a.s. have all their points in S′.

(i) If Ξn
d→ Ξ on S, then Ξn

d→ Ξ on S′.

(ii) If Ξn
d→ Ξ on S′, and for each compact K ⊆ S and ε > 0, there exists

a compact Kε ⊆ S′ such that lim supn→∞ P
(
Ξn(K\Kε) 6= 0

)
≤ ε, then

Ξn
d→ Ξ on S.

Proof. For the first part, suppose that f ∈ Cc(S
′). Fix a metric on S. Since

supp f is compact, f is uniformly continuous, and may thus be extended to
a continuous function on the closure S̄′ ⊆ S [6, Theorem 4.3.17], which by
the Tietze–Urysohn extension theorem [6, Theorem 2.1.8 or Exercise 4.1.F]
may be further extended to a continuous function f1 on S. Moreover, since
supp f is compact and S is locally compact, there exists a continuous function
g ∈ Cc(S) that equals 1 on supp f . Thus f2 = gf1 ∈ Cc(S) and f2 = f on S′.
Hence ∫

S′
f dΞn =

∫
S

f2 dΞn
d→

∫
S

f dΞ =

∫
S′
f dΞ,

and by the criterion above, Ξn
d→ Ξ on S′.

For (ii), let f ∈ Cc(S), take K = supp f and let, for N ≥ 1, K1/N be as in
the assumption with ε = 1/N . We may assume that K1 ⊆ K1/2 ⊆ · · · , and
that

⋃
N K1/N = S′. There exists a function gN ∈ Cc(S

′) with 0 ≤ gN ≤ 1
and gN(x) = 1 for x ∈ K1/N . Thus fN = gNf ∈ Cc(S

′) and∣∣∣∫
S

f dΞn −
∫

S′
fN dΞn

∣∣∣ =
∣∣∣∫

S′
f(1− gN) dΞn

∣∣∣ ≤ Ξn(K \K1/N) sup |f |,

since f(1− gN) = 0 off K \K1/N , and thus

lim
N→∞

lim sup
n→∞

P
(∫

S′
fN dΞn 6=

∫
S

f dΞn

)
= 0.
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Moreover,
∫

S′ fN dΞn →
∫

S′ fN dΞ as n→∞ for each fixed N , and, denoting
the finite set of points in Ξ that belong to K by {ξ′j},∫

S′
fN dΞ =

∑
j

f(ξ′j)gN(ξ′j) →
∑

j

f(ξ′j) =

∫
S

f dΞ as N →∞.

It now follows [4, Theorem 4.2] that
∫

S
f dΞn →

∫
S
f dΞ as n→∞. �

In Lemma 1 we assumed that all points that occurs in the point processes
lie in the subspace S′, so that the processes can be regarded as point processes
on S′ too. More generally, we can ignore points outside S′: if µ ∈ N(S),
we define the restriction µ|S′ to be the measure A 7→ µ(A ∩S′); regarded as
(multi)sets we have µ|S′ = µ ∩S′.

Lemma 2. Suppose that S′ is a locally compact subset of S. The mapping
µ 7→ µ|S′ is a measurable map N(S) → N(S′) which is continuous at every
µ ∈ N(S) such that µ(∂S′) = 0. Consequently, if Ξn and Ξ are point processes

on S such that Ξn
d→ Ξ, and further Ξ(∂S′) = 0 a.s., then Ξn|S′

d→ Ξ|S′.

Proof. The claim about measurability follows immediately, since the Borel σ-
fields are generated by the mappings µ 7→ µ(A), where A ranges over the Borel
sets in S and S′, respectively [11, Lemma 4.1]; note that S′ is σ-compact and
thus a Borel subset of S.

Suppose µn → µ in N(S), with µ(∂S′) = 0, and let f ∈ Cc(S
′). As in

the proof of Lemma 1, f can be extended to a function f2 ∈ Cc(S). Let
A = supp(f2) ∩ ∂S′; this is a closed subset of supp(f2) and is thus compact.
Moreover, µ(A) = 0, and thus A∩supp(µ) = ∅, and there exists a non-negative
function g ∈ Cc(S) such that g = 1 in a neighbourhood U of A but g = 0 on
supp(µ) and thus

∫
g dµ = 0. Since then

∫
g dµn →

∫
g dµ = 0 as n→∞, for

some n0 and all n > n0 we have
∫
g dµn < 1 and thus µn(U) = 0.

There exists a non-negative function h ∈ Cc(S) with supp(h) ⊂ U and
h = 1 on A. The function f3 = f2(1−h) ∈ Cc(S) then vanishes on ∂S′. Thus,
if we define f4 by f4(x) = f3(x) for x ∈ S′ and f4(x) = 0 for x /∈ S′, f4 is
continuous, and f4 ∈ Cc(S). Moreover, if n > n0, then supp(h)∩supp(µn) = ∅
and thus on supp(µn) ∩ S′ we have h = 0 and f4 = f3 = f2 = f ; the same
holds on supp(µ) ∩S′. Consequently, for large n,∫

S′
f dµn =

∫
S′
f4 dµn =

∫
S

f4 dµn →
∫

S

f4 dµ =

∫
S′
f4 dµ =

∫
S′
f dµ,

and µn|S′ → µ|S′ follows.
The final assertion on convergence in distribution follows by [4, Theorem 5.1].

�

The next lemma follows easily from the definitions above.

Lemma 3. If ϕ : S → S′ is continuous and proper, i.e. ϕ−1(K) is compact
for every compact K ⊆ S′, then for every point process Ξ = {ξi} on S, the

image ϕ(Ξ) = {ϕ(ξi)} is a point process on S′. Moreover, if Ξn
d→ Ξ on S,

then ϕ(Ξn)
d→ ϕ(Ξ) on S′. �
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For point processes on a closed or half-open interval, with the points ordered
as above, convergence in distribution is equivalent to joint convergence of the
individual points. We state this for the two cases we are interested in.

Lemma 4. Suppose that Ξn, 1 ≤ n ≤ ∞, are point processes on the interval
(0,∞], and write Ξn = {ξni}Nn

i=1 with ξn1 ≥ ξn2 ≥ . . . and 0 ≤ Nn ≤ ∞. If

some Nn < ∞, define further ξni = 0 for i > Nn. Then Ξn
d→ Ξ∞ if and

only if (ξn1, ξn2, . . . )
d→ (ξ∞1, ξ∞2, . . . ), in the standard sense that all finite

dimensional distributions converge.
The same holds for point processes on [0,∞), now with ξn1 ≤ ξn2 ≤ . . . , and

ξni = ∞ for i > Nn.

Proof. It suffices to prove this for non-random sets, i.e. (for (0,∞]) that the
one-to-one correspondence between N and the set X of all non-increasing se-
quences {xi}i ∈ [0,∞]∞ such that limi→∞ xi = 0, is a homomorphism when
[0,∞]∞ is given the product topology and X the corresponding subspace topol-
ogy. This is a simple consequence of the definition of the vague topology, and
we omit the details. �

A Poisson process on S with intensity measure ν is a point process Ξ such
that Ξ(A) has a Poisson distribution with parameter ν(A) for every Borel set
A, and Ξ(A1), . . . ,Ξ(Ak) are independent for disjoint Borel sets A1, . . . , Ak.
Here ν may be any Borel measure on S that is finite on compact sets; we will
mainly consider absolutely continuous measures (w.r.t. Lebesgue measure on
R or R2), and the density of ν is then called the intensity of Ξ.

5. Proofs

Let Z(k, l) be the number of cycles in G(n,m) that have size k and lie in a
unicyclic component of order l and let Z̃(k) be the total number of cycles of
length k. (Here 3 ≤ k ≤ l ≤ m.)

Denote the corresponding expectations by z(k, l) = EZ(k, l) and z̃(k) =
E Z̃(k). When necessary, we indicate n and m by subscripts and write zn,m(k, l)
etc.

As numerous authors before us, we make the straightforward calculations

z̃(k) =

(
n

k

)
k!

2k

((
n
2

)
− k

m− k

)((
n
2

)
m

)−1

=
nkmk

2k
(

n
2

)k
, (10)

where nk = n(n− 1) · · · (n− k + 1), and

z(k, l) =

(
n

k

)
k!

2k

(
n− k

l − k

)
kll−k−1

((
n−l
2

)
m− l

)((
n
2

)
m

)−1

=
nlll−k−1ml

(
n−l
2

)m−l

2(l − k)!
(

n
2

)m

=
lk

lk
ll−1

2l!

nlml
(

n−l
2

)m−l(
n
2

)m . (11)
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As n→∞, (10) implies, for k = O(n/s),

z̃(k) =
nkmk

2k
(

n
2

)k

(
1 +O(k2/n)

)
=

1

2k

(
1 +

2s

n

)k(
1 + o(1)

)
=
e2ks/n+o(1)

2k
. (12)

Similarly, (11) implies, by a standard calculation using Stirling’s formula and
Taylor expansions of logarithms which we omit, that if k = O(n/s) and l =
Θ(n2/s2), then

z(k, l) ∼ (8πl3)−1/2 exp
(
−k

2

2l
− 2s2

n2
l
)

=
s3

n3
ψ

(
k
s

n
, l
s2

n2

)
(13)

with

ψ(x, y) =
1√
8πy3

exp
(
−x

2

2y
− 2y

)
. (14)

Moreover, similar calculations, which we also omit, show that for some con-
stants c and c′ > 0, and all k and l,

z(k, l) ≤ c′l−3/2 exp
(
−k

2

2l
− c

s2

n2
l
)
. (15)

Proof of Theorem 8. We begin by proving convergence on (0,∞)×(0,∞). Let

Ξn = {( s
n
|Ci|, s2

n2 |Ui|)}.
By [11, Theorem 4.2], it suffices to prove that for any finite family of rectan-

gles Ri = [ai, bi)× [ci, di) with 0 < ai < bi <∞, 0 < ci < di <∞, i = 1, . . . , N ,

we have Ξn(Ri)
d→ Ξ̂(Ri), jointly for all i. By subdividing the rectangles, if

necessary, it suffices to prove this for a disjoint family of rectangles, i.e. to prove

that if R1, . . . , RN are disjoint rectangles, then Ξn(Ri)
d→ Po(µ(Ri)), jointly

and with independent limits, where µ is the measure with density ψ(x, y) given
by (14).

We show this by the method of moments in the traditional way. First, define
for E ⊆ R2, τn(E) = {(xn/s, yn2/s2) : (x, y) ∈ E}. Then

Ξn(Ri) =
∑

(k,l)∈τn(Ri)

Z(k, l),

and thus, letting τ ′n(Ri) = [dain/se, bbin/sc + 1) × [dcin2/s2e, bdin
2/s2c + 1)

be τn(Ri) rounded off to integer coordinates and Rin = τ−1
n (τ ′n(Ri)), we have

by (13) and dominated convergence, using (15),

E Ξn(Ri) =
∑

(k,l)∈τn(Ri)

z(k, l) =

∫
τ ′n(Ri)

z(buc, bvc) du dv

=

∫
Rin

z(bxn/sc, byn2/s2c)n
3

s3
dx dy

→
∫

Ri

ψ(x, y) dx dy = µ(Ri).

It is similarly shown that all mixed factorial moments converge, using the fact
that conditioned on the existence of a specific unicyclic component on l given
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vertices, the rest of G(n,m) is a random graph G(n − l,m − l). Hence, for
example, using l = O(n2/s2) = o(s), by dominated convergence as above,

E
(

Ξn(R1)
(
Ξn(R1)− 1

)
Ξn(R2)

)
=

∑
(k1,l1)∈τn(R1)
(k2,l2)∈τn(R1)
(k3,l3)∈τn(R2)

zn,m(k1, l1)zn−l1,m−l1(k2, l2)zn−l1−l2,m−l1−l2(k3, l3)

→ µ(R1)
2µ(R2).

By the method of moments, this implies the required joint convergence Ξn(Ri)
d→

Po(µ(Ri)).

This completes the proof that Ξn
d→ Ξ̂ on S′ = (0,∞) × (0,∞). In order

to extend this to S = [0,∞] × [0,∞] \ {(0, 0)}, we use Lemma 1. If K ⊂ S
is compact, then ([0, r] × [0, r]) ∩ K = ∅ for some r > 0. Taking Kj =
[j−1, j] × [j−1, j] and writing (E)δ = {x : d(x,E) < δ} for E ⊂ R2, we have,
using (15), for some c, c1 > 0 and large n,

E Ξn(K \Kj) =
∑

(k,l)∈τn(K\Kj)

z(k, l) ≤
∫

(τn(K\Kj))√2

z(due, bvc) du dv

≤
∫

(K\Kj)2s/n

z(dxn/se, byn2/s2c)n
3

s3
dx dy

≤ c1

∫
(K\Kj)2s/n

y−3/2 exp
(
−x

2

2y
− cy

)
dx dy.

Since ψ′(x, y) = y−3/2 exp(−x2/2y − cy) is integrable over (0,∞)2 \ (0, r)2, we
obtain by dominated convergence first

lim sup
n→∞

P
(
Ξn(K \Kj) 6= 0

)
≤ lim sup

n→∞
E Ξn(K \Kj) ≤ c1

∫
K\Kj

ψ′(x, y) dx dy

and then
lim
j→∞

lim sup
n→∞

P
(
Ξn(K \Kj) 6= 0

)
= 0.

The theorem now follows by Lemma 1(ii). �

Proof of Theorems 1(i), 2(i) and 6. By Lemma 1(i), the convergence in The-
orem 8 holds also on the subset (0,∞] × [0,∞], and since the projection
π : (x, y) 7→ x is continuous and proper (0,∞] × [0,∞] → (0,∞], Lemma 3

shows that { s
n
|Ci|}

d→ π(Ξ̂) on (0,∞].

Moreover, since Ξ̂ is a Poisson process with intensity

ψ(x, y) =
(
8πy3

)−1/2
exp

(
−x

2

2y
− 2y

)
=

1

2x
e−2xfx,2(y),

see (14) and (7), and
∫ ∞

0
fx,2(y) dy = 1, π(Ξ̂) is a Poisson process with intensity∫ ∞

0

ψ(x, y) dy =
1

2x
e−2x.
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This proves Theorem 1(i), and Theorem 2(i) follows by Lemma 4.
Similarly, we obtain Theorem 6 by projecting on the second coordinate

[0,∞]× (0,∞] → (0,∞] and integrating∫ ∞

0

ψ(x, y) dx = (8πy3)−1/2e−2y

∫ ∞

0

e−x2/2y dx =
1

4y
e−2y. �

Proof of Theorem 5. Let, for N ≥ 1, fN be a function in Cc(0,∞) such that
0 ≤ fN(x) ≤ x for all x and fN(x) = x when 1/N ≤ x ≤ N , and further
fN ≥ fN−1 when N ≥ 2. Let LN =

∑
i fN( s

n
|Ci|).

Since the mapping ν 7→ (ν,
∫
fN dν) is continuous N(R) → N(R) × R,

the convergence { s
n
|Ci|}

d→ Ξ implies the joint convergence ({ s
n
|Ci|}, LN)

d→
(Ξ,

∫
fN dΞ), as n→∞, for each fixed N , cf. [4, Section 5]. By monotone

convergence,
∫
fN dΞ

d→
∫
x dΞ =

∑
Ξ as N →∞. Moreover,

LN ≤ s

n
L ≤ LN +

s

n

∑
i

|Ci|1[ s
n
|Ci| < 1/N ] +

s

n

∑
i

|Ci|1[ s
n
|Ci| > N ]

= LN + S1 + S2,

say. Now, for some c > 0,

ES1 ≤
s

n

∑
k≤n

s
N−1

kz̃(k) ≤ c/N

by (12), and thus

P(|LN − s
n
L| > ε) ≤ P(S1 + S2 > ε) ≤ P(S1 > ε) + P(S2 6= 0)

≤ c/Nε+ P(max
i

s
n
|Ci| > N).

Consequently, by Theorem 2(i),

lim sup
n→∞

P(|LN − s
n
L| > ε) ≤ c/Nε+ P(ξ1 > N),

which tends to 0 as N → ∞. Thus, by [4, Theorem 4.2], ({ s
n
|Ci|}, s

n
L)

d→
(Ξ,

∑
Ξ), as n→∞.

The assertions (i) and (ii) now follow by Section 2 and Lemma 4; for (iii)
we observe that taking the cycles in order of appearence gives a size-biased
distribution of the sequence of their lengths. �

Proof of Theorem 7. By Theorem 6 and similar arguments as in the proof of
Theorem 5, using (15) to obtain the estimate (with ε = 1/N)

E
∑

l≤εn2/s2

∑
k

s2

n2
lz(k, l) ≤ c1

s2

n2

∫ εn2/s2+1

0

∫ ∞

0

v−1/2e−
u2

2v
−c s2

n2 vdu dv

≤ c1

∫ 2ε

0

∫ ∞

0

y−1/2e−x2/2y−cydx dy

= c2

∫ 2ε

0

e−cy dy = O(ε). �
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Proof of Theorem 9. It follows as in the proofs of Theorems 5 and 7, using
the estimates obtained there, that we can sum all points in Theorem 8 and

obtain ( s
n
L, s2

n2V )
d→

∑
Ξ̂. The theorem now follows as the case α = 1/4 of

the following more general result. �

Lemma 5. Let α > 0 and let Ξ̂ be a Poisson process in (0,∞)× (0,∞) with
intensity

α
√

2/πy−3/2 exp(−x2/2y − 2y).

Then (X, Y ) =
∑

Ξ̂ has a distribution that can be characterized by any of the
three following properties.

(i) (X, Y ) has a density

22α−1/2π−1/2Γ(2α)−1x2αy−3/2 exp(−x2/2y − 2y), 0 < x, y <∞.

(ii) X has a gamma distribution Γ(2α, 1
2
), and given X = x, Y is dis-

tributed as Tx,2.
(iii) Y ∈ Γ(α, 1

2
) and X2/2Y ∈ Γ(α+1

2
, 1), with Y and X2/2Y independent.

Proof. Let h(x, y) denote the intensity of Ξ̂ and write the points of Ξ̂ as (ξ1, η1),
(ξ2, η2), . . . . Since h(x, y) = h1(x)fx,2(y) with h1(x) = 2αx−1e−2x and fx,2

given by (7), and thus the marginal intensity
∫
h(x, y) dy = h1(x), the Poisson

process Ξ̂ can be constructed by first taking a Poisson process Ξ = {ξ1, ξ2, . . . }
on (0,∞) with intensity h1(x), and then for each ξi randomly choosing ηi with
the distribution of Tξi,2 (independently for all i). Conditional on (ξ1, ξ2, . . . )

we thus have by (9), for any finite N ,
∑N

1 ηi
d
= T∑N

1 ξi,2
, and letting N →∞,

Y =
∞∑
1

ηi
d
= TX,2. (16)

Moreover, by Section 2, X ∈ Γ(2α, 1
2
), which yields (ii).

Consequently, X has the density 2g2α(2x), and the conditional density of Y
given X = x is by (16) fx,2(y). Thus (X,Y ) has the density 2g2α(2x)fx,2(y),
which by (6) and (7) yields (i).

Finally, denoting the density just obtained by ρ(x, y) and letting Z =
X2/2Y , the density of (Z, Y ) is

(2z)−1/2y1/2ρ(
√

2yz, y) = cyα−1zα−1/2e−z−2y = 2gα(2y)gα+1/2(z),

for some constant c, which shows (iii). (It is easy to calculate c, and verify the
formula just given by the duplication formula for the gamma function, but it is
easier to ignore the constants and just note that a density function integrates
to one, so the constants have to match.) �

In order to treat the cycles in the giant component (and in other multicyclic
components, in the unlikely event that such exist), we first show that the
method of moment applies when we count all cycles.
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Lemma 6. Consider G(n,m) with m = n/2 + s, n2/3 � s� n. Let I = [a, b)
be an interval with 0 < a < b < ∞, and let Z̃n(I) be the number of cy-
cles in G(n,m) with lengths in [an/s, bn/s). Then, for every integer r ≥ 0,
E Z̃n(I)r → λ(I)r, where λ(I) =

∫
I

1
2x
e2x dx. The result extends to joint facto-

rial moments of several Z̃n(Ii) for disjoint intervals Ii.

Proof. Z̃n(I) =
∑

an/s≤k<bn/s Z̃(k) and thus, by (12),

E Z̃n(I) =
∑

an/s≤k<bn/s

z̃(k) →
∫ b

a

e2xdx

2x
= λ(I). (17)

In order to treat higher moments, we observe that Z̃n(I)r is the number of
r-tuples (C1, . . . , Cr) of distinct cycles with the correct lengths. The expected
number of such r-tuples with all cycles disjoint is easily shown to converge
to λ(I)r by a straight-forward generalization of the calculation (17) for the
expectation. This extends to the case of several intervals too.

It thus remains to show that the expected number of such r-tuples (C1, . . . , Cr)
with at least two cycles intersecting tends to zero. Consider for simplicity the
case when the union C1 ∪ · · · ∪ Cr is connected, and let µ1 be the expected
number of such r-tuples (C1, . . . , Cr); the general case follows in the same way
by considering the components of the union C1 ∪ · · · ∪ Cr separately. Up to a
factor of at most r!, we may further assume that the cycles are ordered such
that Ci ∩ (C1 ∪ · · · ∪ Ci−1) 6= ∅ for 2 ≤ i ≤ r. Then C1 ∪ C2 is obtained by
adding to C1 some number w2 ≥ 1 of paths P21, . . . , P2w2 , each having two,
not necessarily distinct, endpoints in C1. Similarly, C1 ∪ C2 ∪ C3 is obtained
by adding some further paths P31, . . . , P3w3 with endpoints in C1 ∪ C2, where
w3 ≥ 0, and so on. Let ki = |Ci| and let lij ≥ 0 be the number of new ver-
tices in Pij; thus Pij contains lij + 1 edges. Further, let W =

∑r
i=2wi and

L =
∑r

i=2

∑wi

j=1 lij. Note that C1∪ · · ·∪Cr has k1 +L vertices and k1 +L+W

edges; in particular k1 + L+W ≤
∑r

i=1 ki ≤ rbn/s.
We estimate the expected number of such r-tuples with given k1, (wi)i and

(lij)ij. First, the cycle C1 may be chosen in nk1 1
2k1

< k−1
1 nk1 ways. Next, for

i ≥ 2 and each choice of C1, . . . , Ci−1, the endpoints of Pij may be chosen in
|C1 ∪ · · · ∪ Ci−1|2 ≤ (rbn/s)2 ways, and the lij internal points in at most nlij

ways. Hence the total number of choices of C1, . . . , Cr is at most

1

k1

nk1+L(rbn/s)2W . (18)

For each such choice, the probability that the k1 + L + W edges in the union
C1 ∪ · · · ∪ Cr belong to G(n,m) is at most( m(

n
2

))k1+L+W

= n−k1−L−W
(

1 +
2s+ 1

n− 1

)k1+L+W

≤ n−k1−L−W
(

1 +
3s

n

)rbn/s

.

(19)
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By (18) and (19), the expected number of r-tuples with given k1, (wi)i and
(lij)ij is at most

c

k1

n−W (rbn/s)2W ,

for some constant c (depending on b and r).
Moreover, lij ≤ ki ≤ bn/s, so given w2, . . . , wr, there are at most (bn/s)W

choices of (lij)ij. Consequently, the expected number µ′ is at most, for large
n,

r!

bn/s∑
k1=an/s

ck−1
1

∑
w2≥1

w3,...,wr≥0

(r2b3n2

s3

)w2+···+wr

≤ c′
b

a

r2b3n2

s3
= o(1). �

Proof of Theorem 10. For simplicity we assume that an = |s|/n, and thus
α = ±1; the general case follows by a simple rescaling argument. If s < 0,
there is a.a.s. no multicyclic component and the result follows by restricting
Theorem 8 to (0,∞)× [0,∞], using Lemma 1(i).

Thus assume s > 0 and an = s/n, which implies α = 1. Let Ξ′′
n =

{( s
n
|C̃i|, s2

n2 |Ũi|)}, let Ξ̃ be the claimed limit process Ξ̃2α = Ξ̃2 and let µ denote
its intensity measure. By (4), the restriction of µ to (0,∞)2 equals the inten-

sity measure of Ξ̂ in Theorem 8; note further that, by the construction of Ξ̃λ,
for I ⊂ (0,∞),

µ(I × [0,∞]) =

∫
I

1

2x
e2x dx. (20)

Let R be the family of all rectangles in S = (0,∞) × [0,∞] of the form
[a, b)× [c, d) or [a, b)× [c,∞] with 0 < a < b <∞ and 0 ≤ c < d <∞. As in
the proof of Theorem 8, it follows from [11, Theorem 4.2] that it suffices to show

that Ξ′′
n(Rk)

d→ Ξ̃(Rk), jointly, for any finite family of rectangles Rk ∈ R. By
subdividing the rectangles, and perhaps adding some, it suffices to consider the
case {Rk} = {Ii × Jj}1≤i≤p, 1≤j≤q+1, where p and q are integers, Ii = [ai−1, ai),
i = 1, . . . , p, and Jj = [bj−1, bj), j = 1, . . . , q, while Jq+1 = [bq,∞], for some
numbers 0 < a0 < a1 · · · < ap < ∞ and 0 = b0 < b1 · · · < bq < ∞. We thus
want to show that then(

Ξ′′
n(Ii × Jj)

)p, q+1

i=1, j=1

d→
(
Ξ̃(Ii × Jj)

)p, q+1

i=1, j=1
. (21)

Writing Rij = Ii × Jj and R∗
i =

⋃q+1
j=1 Rij = Ii × [0,∞], (21) is equivalent to(

Ξ′′
n(Rij)

)p, q

i=1, j=1
∪

(
Ξ′′

n(R∗
i )

)p

i=1

d→
(
Ξ̃(Rij)

)p, q

i=1, j=1
∪

(
Ξ̃(R∗

i )
)p

i=1
.

We make one further preliminary modification. Let, as in the proof of Theo-
rem 8, Ξn be defined as Ξ′′

n but counting cycles in unicyclic components only.
A.a.s. there is only one multicyclic component and it has order at least s (in-
deed, the order is 4s+op(s)) [15], [10, Theorem 5.12]. Since s� n2/3 and thus
s > bqn

2/s2 for large n, it follows that P
(
Ξ′′

n(Rij) 6= Ξn(Rij)
)
→ 0 for every i

and j ≤ q. Consequently, it suffices to show that(
Ξn(Rij)

)p, q

i=1, j=1
∪

(
Ξ′′

n(R∗
i )

)p

i=1

d→
(
Ξ̃(Rij)

)p, q

i=1, j=1
∪

(
Ξ̃(R∗

i )
)p

i=1
. (22)



18 SVANTE JANSON

We prove (22) using an unusual version of the method of moments. Define,
for non-negative integers r1, . . . , rq, r, the polynomial

pr1,...,rq ,r(x1, . . . , xq, y) = x
r1

1 · · ·x
rq

q

(
y −

q∑
i=1

ri

)r

.

We will show that, for any non-negative integers rij and ri,

E
p∏

i=1

pri1,...,riq ,ri

(
Ξn(Ri1), . . . ,Ξn(Riq),Ξ

′′
n(R∗

i )
)

→ E
p∏

i=1

pri1,...,riq ,ri

(
Ξ̃(Ri1), . . . , Ξ̃(Riq), Ξ̃(R∗

i )
)
. (23)

Since the polynomials pr1,...,rq ,r form a basis of the linear space of all polyno-

mials in x1, . . . , xq, y, it then follows that all mixed moments of
(
Ξn(Rij)

)p,q

1,1
∪(

Ξ′′
n(R∗

i )
)p

1
converge to the corresponding moments for Ξ̃, and (22) follows by

the method of moments.
To show (23), we observe that the product on the left hand side equals

the number of families (Cijk)1≤i≤p, 1≤j≤q, 1≤k≤rij
∪ (C̃ik)1≤i≤p, 1≤k≤ri

of distinct
cycles, such that each Cijk lies in a unicyclic component Uijk, and s

n
|Cijk| ∈ Ii,

s2

n2 |Uijk| ∈ Jj,
s
n
|C̃ik| ∈ Ii.

First, ignoring the C̃ik, the expected number of such families (Cijk)ijk con-
verges by the proof of Theorem 8 (extended to include the case ci = 0) to∏p

i=1

∏q
j=1 µ(Rij)

rij .

Next, suppose we are given a family (Uijk)ijk of disjoint unicyclic subgraphs

of Kn such that s
n
|Cijk| ∈ Ii and s2

n2 |Uijk| ∈ Jj, where Cijk is the unique cycle
in Uijk. Conditioned on the event that each Uijk is a component of G(n,m),

the expected number of families (C̃ik)p, ri

i=1, k=1 of cycles that are distinct from

each other and from all Cijk, and with s
n
|C̃ik| ∈ Ii, equals the expected number

of families (C̃ik)p, ri

i=1, k=1 of distinct cycles with such sizes in G(n − L,m − L),

where L =
∑

ijk |Uijk|. Since L = O(n2/s2) = o(s), it follows from Lemma 6

that, uniformly over all choices of (Uijk)ijk with given p, q and rij, the expected

number of (C̃ik)ik is
∏p

i=1 λ(Ii)
ri + o(1), where by (20) λ(Ii) =

∫
Ii

1
2x
e2x dx =

µ(R∗
i ).

Consequently,

E
p∏

i=1

pri1,...,riq ,ri

(
Ξn(Ri1), . . . ,Ξn(Riq),Ξ

′′
n(R∗

i )
)

→
p∏

i=1

( q∏
j=1

µ(Rij)
rij · µ(R∗

i )ri

)
. (24)

It remains to verify that the right hand sides of (23) and (24) coincide. Since

the variables Ξ̃(Rij) are independent, it suffices to consider a single i and show,



CYCLES AND UNICYCLIC COMPONENTS IN RANDOM GRAPHS 19

changing the notation, that if Xj ∼ Po(µj), j = 1, . . . , q + 1, are independent
Poisson random variables and r1, . . . , rq, r ≥ 0, then

EXr1

1 · · ·Xrq

q

( q+1∑
j=1

Xj −
q∑

j=1

rj

)r

= µr1
1 · · ·µrq

q

( q+1∑
1

µj

)r

. (25)

This can be verified by taking the derivative (∂/∂u)r|u=0

∏q+1
1 (∂/∂tj)

rj |tj=0,
with rq+1 = 0, of the generating function

E
q+1∏
j=1

(1 + tj + u)Xj = exp
( q+1∑

i=1

µi(ti + u)
)
.

(Alternatively, (25) is easily verified using the binomial theorem for fractional
powers [8, Exercise 5.37], or by interpreting the left hand side combinatorically
and using simple Poisson process properties.) This completes the proof of (23),
and thus of the theorem. �

Proof of Theorem 1(ii),(iii). In the case m = n/2 − s, the set {C∗
i } is a.a.s.

empty, and there is nothing to prove.
Thus assume m = n/2 + s, and let, as in the proof of Theorem 10, Ξ′′

n =

{( s
n
|C̃i|, s2

n2 |Ũi|)} and Ξ̃ = Ξ̃2; Theorem 10 shows Ξ′′
n

d→ Ξ̃.

Further, let Ξn = {( s
n
|C̃i|, s2

n2 |Ũi|) : Ũi is unicyclic} and Ξ∗
n = {( s

n
|C̃i|, s2

n2 |Ũi|) :

Ũi is multicyclic}; thus Ξ′′
n = Ξn ∪ Ξ∗

n.
We will separate the points in Ξn and Ξ∗

n from each other using the sizes
of the corresponding components. Thus, for any u < ∞, define the re-
strictions Ξnu = Ξ′′

n|(0,∞)×[0,u] and Ξ∗
nu = Ξ′′

n|(0,∞)×[u,∞]. Similarly, define

Ξ̃u = Ξ̃|(0,∞)×[0,u], Ξ̃∗
u = Ξ̃|(0,∞)×[u,∞] and Ξ̂ = Ξ̃|(0,∞)×[0,∞), Ξ̂∗ = Ξ̃|(0,∞)×{∞}.

We regard all these as point processes on (0,∞)× [0,∞].
By Lemma 2, the mapping Φ : ν 7→ (ν|(0,∞)×[0,u], ν|(0,∞)×[u,∞]) is a measur-

able map N
(
(0,∞)× [0,∞]

)
→ N

(
(0,∞)× [0, u]

)
×N

(
(0,∞)× [u,∞]

)
which

is continuous at every ν with ν((0,∞) × {u}) = 0. Since the embeddings
(0,∞) × [0, u] → (0,∞) × [0,∞] and (0,∞) × [u,∞] → (0,∞) × [0,∞] are
proper, Lemma 3 shows that the same holds if we regard Φ as a mapping into

N
(
(0,∞)× [0,∞]

)2
.

For any fixed u <∞, Ξ̃
(
(0,∞)× {u}

)
= 0 a.s., since the intensity measure

is absolutely continuous on (0,∞)2 by (4). Consequently, Φ is a.s. continuous

at Ξ̃, and Theorem 10 implies, see [4, Theorem 5.1],

(Ξnu,Ξ
∗
nu)

d→ (Ξ̃u, Ξ̃
∗
u) as n→∞, (26)

for any fixed u <∞.
Moreover, cf. the proof of Theorem 6,

E Ξ̃
(
(0,∞)× (1,∞)

)
=

∫ ∞

1

1

4x
e−2x <∞
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and thus a.s. Ξ̃ has only a finite number of points in
(
(0,∞)× (1,∞)

)
; hence,

for all large u we have Ξ̃u = Ξ̂ and Ξ̃∗
u = Ξ̂∗. In particular, as u→∞,

(Ξ̃u, Ξ̃
∗
u) → (Ξ̂, Ξ̂∗) (27)

a.s., and thus in distribution.
Furthermore, let U1 be the largest unicyclic component and let V be the

smallest multicyclic component (i.e., a.a.s. the unique giant component). If
|U1| < un2/s2 < |V |, then Ξnu = Ξn and Ξ∗

nu = Ξ∗
n. Thus, using Theorem 6

and the fact that a.a.s. |V | > s > un2/s2, see the proof of Theorem 10,

lim sup
n→∞

P
(
(Ξnu,Ξ

∗
nu) 6= (Ξn,Ξ

∗
n)

)
≤ lim sup

n→∞
P(|U1| ≥ un2/s2) + lim sup

n→∞
P(|V | ≤ un2/s2)

= P(ξ′1 ≥ u) + 0, (28)

which tends to 0 as u→∞. Hence, (26), (27) and (28) imply, see [4, Theorem
4.2],

(Ξn,Ξ
∗
n)

d→ (Ξ̂, Ξ̂∗) as n→∞. (29)

Next we project the processes onto (0,∞), using the map π(x, y) = x. By
(29) and Lemma 3 we have({ s

n
|Ci|

}
,
{ s
n
|C∗

i |
})

=
(
(π(Ξn), π(Ξ∗

n)
) d→

(
π(Ξ̂), π(Ξ̂∗)

)
.

as pairs of processes on (0,∞). By construction, Ξ = π(Ξ̂) and Ξ∗ = π(Ξ̂∗) are
independent Poisson processes with the intensities 1

2x
e−2x and 1

2x
(e2x − e−2x),

respectively, see (4) and (5), as asserted in the theorem.
We have shown the asserted joint convergence, but only as processes on

(0,∞). To extend this to (0,∞] and [0,∞), we use Lemma 1. Observe that
for any two disjoint sets S1 and S2, there is a natural homeomorphism N(S1)×
N(S2) ≡ N(S1∪S2); hence the claimed joint convergence can be regarded as
convergence of point processes on the disjoint union of (0,∞] and [0,∞), i.e.
on S = (0,∞]×{0}∪ [0,∞)×{1}. We have shown convergence on the subset
S′ = (0,∞) × {0, 1}, and it is easily seen that the additional assumption in
Lemma 1 follows from the two conditions

lim
N→∞

lim sup
n→∞

P
(
π(Ξn)(N,∞] 6= 0

)
= 0, (30)

lim
ε→0

lim sup
n→∞

P
(
π(Ξ∗

n)[0, ε) 6= 0
)

= 0. (31)

or, equivalently, if the cycles are ordered as in Theorem 2,

lim
N→∞

lim sup
n→∞

P
( s
n
|C1| > N

)
= 0, (32)

lim
ε→0

lim sup
n→∞

P
( s
n
|C∗

1 | < ε
)

= 0. (33)

The statement (32) is implicitly verified in the proof of Theorem 8, and follows
directly from Theorem 2(i). Similarly, (33) follows from the fact that s

n
C∗

1

converges in distribution to a strictly positive random variable, as follows from
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the not yet proved Theorem 2(ii). This fact is proved by  Luczak [16], and our
proof is complete. Alternatively, in order to obtain a self-contained proof, we
use Lemma 7 below and estimate, for some c > 0 and 0 < ε ≤ 1,

E
(
π(Ξ∗

n)[0, ε)
)

=
∑

k<εn/s

z∗(k) ≤ cε,

which proves (31). �

Lemma 7. Consider G(n,m) with m = n/2 + s, n2/3 � s� n. Let z∗(k) =
z̃(k) −

∑
l z(k, l) be the expected number of cycles of length k in multicyclic

components. Then, uniformly for k ≤ n/s, z∗(k) = O(s/n).

Proof. First, for the total number of cycles of length k ≤ n/s, (10) easily yields

z̃(k) ≤ nkmk

2k
(

n
2

)k
=

1

2k

(
1 +

2s+ 1

n− 1

)k

=
1

2k

(
1 +O

(ks
n

))
=

1

2k
+O

( s
n

)
. (34)

For the cycles in unicyclic components we sum z(k, l) given by (11). If l ≤
n2/s2, it is easy to verify that (11) yields

z(k, l) =
lk

lk
ll−1

2l!
exp

(
−l −O(ls2/n2)

)
= a(k, l)e−l exp

(
−O(ls2/n2)

)
, (35)

where

a(k, l) =
lk

lk
ll−1

2l!
=

ll−k−1

2(l − k)!
.

Then Fk(z) =
∑∞

l=k a(k, l)zl is the exponential generating function for con-
nected unicyclic graphs with a k-cycle, and Fk(z) = 1

2k
T (z)k, where T (z) =∑∞

1
ll−1

l!
zl is the tree function. In particular,

∑∞
l=k a(k, l)e−l = Fk(e−1) = 1/2k,

since T (e−1) = 1. Moreover, Stirlings formula yields a(k, l) ≤ ll−1/l! ≤ l−3/2el

for all l. Consequently, (35) yields

1

2k
−

∑
l

z(k, l) =
∞∑

l=k

(
a(k, l)e−l − z(k, l)

)
≤

n2/s2∑
l=1

a(k, l)e−lc
ls2

n2
+

∞∑
n2/s2

a(k, l)e−l

≤ c
s2

n2

n2/s2∑
l=1

l−1/2 +
∞∑

n2/s2

l−3/2 ≤ c′
s

n
.

The result follows by combining this and (34). �

Remark 6. The limit (29) (and another application of Lemma 1) shows joint
convergence for the results in Theorem 8 and Theorem 1(ii).

Proof of Theorem 2(ii),(iii). This is an immediate consequence of Theorem 1
and Lemma 4. �
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Proof of Corollary 3. Directly from Theorem 2(i)(ii); for example,

P(ξ1 ≤ a) = P
(
Ξ(a,∞) = 0

)
= exp

(
−

∫ ∞

a

1

2x
e−2x dx

)
which by a change of variable yields the stated formula. �

The calculation of the densities (1) and (2) is similar and left to the reader.

Proof of Corollary 4. By (1) or Corollary 3, ξ1 has the density

f(x) = e−2x

2x
exp

(
−

∫ ∞
2x

1
2y
e−y dy

)
. Hence, by the second formula in Corollary 3,

and the independence in Theorem 2,

P(ξ∗1 > ξ1) =

∫ ∞

0

P(ξ∗1 > x)f(x) dx

=

∫ ∞

0

e−2x

2x
exp

(
−

∫ ∞

2x

1

2y
e−y dy −

∫ 2x

0

sinh y

y
dy

)
,

which yields the stated formula by a change of variable. The integral was
numerically evaluated by Maple. �

Proof of Theorem 11. This is an easy consequence of another Poisson limit
result for cycles, which is well-known and goes back to the fundamental paper
by Erdős and Rényi [7]: For each fixed k ≥ 3 (and m as in this paper), the

cycle count Z̃(k)
d→ Po(1/2k); moreover, the convergence holds jointly for any

finite family k = 3, . . . , N .
Let pn[a, b] be the probability that for some k with a ≤ k ≤ b, G(n,m) has

two cycles of the same length k in unicyclic components. If N is fixed, there are
a.a.s. no cycles of length ≤ N outside unicyclic components, see Theorem 2(ii).
Hence, the joint Poisson convergence of the cycle counts implies that, with
Wk ∈ Po(1/2k) independent,

pn[3, N ] → P( max
3≤k≤N

Wk ≥ 2) = 1−
N∏

k=3

P(Wk ≤ 1) = 1−
N∏

k=3

(
1 +

1

2k

)
e−1/2k.

(36)
Next, let B be a positive constant. Then, if C1 is the longest cycle in a

unicyclic component, by Theorem 2(i),

pn[Bn/s, n] ≤ P(|C1| ≥ Bn/s) → P(ξ1 ≥ B).

Furthermore, for k ≤ Bn/s, the expected number of ordered pairs of disjoint
cycles of length k is at most, using (12),

z̃n,m(k)z̃n−k,m−k(k) =
e4ks/n+o(1)

4k2
,

and thus, for n large,

pn[N + 1, Bn/s] ≤
Bn/s∑

k=N+1

z̃n,m(k)z̃n−k,m−k(k) ≤
∞∑

N+1

e4B

k2
≤ e4B

N
.
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Consequently,

lim sup
n→∞

|pn[3, n]− pn[3, N ]| ≤ lim sup
n→∞

pn[N + 1, Bn/s] + lim sup
n→∞

pn[Bn/s, n]

≤ e4BN−1 + P(ξ1 > B). (37)

Let, for 3 ≤ k ≤ ∞, ql = 1−
∏l

k=3

(
1 + 1

2k

)
e−1/2k. Then, by (36) and (37),

lim sup
n→∞

|pn[3, n]− q∞| ≤ |qN − q∞|+ e4BN−1 + P(ξ1 > B),

for every positive N and B. Letting first N → ∞ and then B → ∞, we see
that the left hand side vanishes, and thus pn[3, n] converges to q∞ as asserted.
Finally, to find q∞ explicitly, we note that

l∏
k=3

(
1+

1

2k

)
=

l∏
k=3

k + 1/2

k
=

Γ(l + 3/2)/Γ(3 + 1/2)

Γ(l + 1)/Γ(3)
∼ l1/2 Γ(3)

Γ(7/2)
=

16

15π1/2
l1/2

while
l∏

k=3

e−1/2k = exp
(3

4
− 1

2

l∑
k=1

1

k

)
= exp

(3

4
− 1

2

(
ln l + γ + o(1)

))
and thus

1− q∞ = lim
l→∞

l∏
k=3

(
1 +

1

2k

)
e−1/2k =

16

15
π−1/2 exp

(3

4
− γ

2

)
. �

6. Branching processes

In this and the following section, we give some heuristic arguments that
at least suggest some of the results above. We have not attempted to make
the arguments rigorous, and we will not try to justify any approximations.
For simplicity, we consider instead of G(n,m) the random graph G(n, p) with
p = 1/n + 2s/n2, where s is positive or negative with n2/3 � |s| = o(n), cf.
Remark 3.

We begin with the well-known branching process approximation for compo-
nent sizes, cf. [10, Section 5.2].

Condition on the existence of a specific k-cycle C. We explore the component
containing C step by step as follows. First, we mark the k vertices in C as
found. Next, we expose all remaining edges incident to any of them, and mark
the other endpoint of each of these edges as found. We continue this process
repeatedly, until the entire component is found.

When l vertices are found, the number of new vertices found when exposing
the edges at the next vertex has a binomial distribution Bi(n − l, p), with
expectation (n − l)p = 1 + 2s/n + O(l/n). We approximate this binomial
distribution by a Poisson distribution Po(1+2s/n). Hence, the number of new
vertices found at each step is approximated by a (Galton–Watson) branching
process, with k initial individuals and the offspring distribution Po(1 + 2s/n).
The component size is approximated by the total progeny of this branching
process.
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If s > 0, this is a supercritical branching process, which has a positive prob-
ability of growing for ever. Of course, the component containing C cannot be
larger than n, and the approximation above breaks down when a large number
of vertices are found, but indefinite growth of the branching process corre-
sponde to C belonging to a very large component, i.e. to the giant component,
while extinction corresponds to C belonging to a relatively small component,
which then is unicyclic (since a.a.s. only the giant component is multicyclic).

The probability q of extinction of the branching process with offspring dis-
tribution Po(1 + 2s/n) and one initial individual is given by the standard
equation

q = exp
(

(q − 1)
(

1 +
2s

n

))
,

see e.g. [3, Theorem I.5.1], which yields

q − 1 = (q − 1)
(

1 +
2s

n

)
+ 1

2
(q − 1)2 + o

(
(q − 1)2

)
,

1 =
(

1 +
2s

n

)
+ 1

2
(q − 1) + o(q − 1),

and, finally,

1− q =
4s

n

(
1 + o(1)

)
.

With k initial points, as above, the extinction probability is, for k = O(n/s),

qk =
(
1− (4 + o(1))s/n

)k
= e−4ks/n+o(1). (38)

The expected number of cycles of length k = xn/s is by (12) ∼ 1
2k
e2x, and

by (38) we expect that the expected number in unicyclic components is e−4x

times that, i.e. ∼ 1
2k
e−2x, and consequently that the expected number in the

giant component is ∼ 1
2k

(
e2x − e−2x

)
, in accordance with Theorem 1.

Turning to the sizes of the unicyclic components, consider first the case
s < 0. Then the branching process is subcritical and a.s. dies out. The
expected total progeny of a single initial individual is

∞∑
i=0

(
1 +

2s

n

)i

=
∞∑
i=0

(
1− 2|s|

n

)i

=
n

2|s|
.

Consequently, we expect that a unicyclic component with a cycle of length
k = Θ(n/s) has Θ(kn/s) = Θ(n2/s2) vertices.

In the supercritical case s > 0, we obtain the same result if we conditionthe
branching process on extinction, since a branching process with offspring distri-
bution Po(1 + 2s/n) conditioned on extinction is a branching process with off-
spring distribution Po

(
q(1+2s/n)

)
, with q as above, and q(1+2s/n) ≈ 1−2s/n.

Hence, for both positive and negative s we expect that the largest unicyclic
components should be of order n2/s2, as shown in detail in Theorem 6.

For the distribution of the sizes of the unicyclic components, one could
similarly study the distribution of the total progeny in the branching processes,
but the method in the next section seems more instructive and we do not pursue
this further.
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7. Brownian motion heuristics

As in Section 6, we condition on the existence of a specific k-cycle and explore
the component it belongs to, but this time we expose the edges incident to one
vertex at a time, and will use a Brownian motion approximation. Note that
similar arguments have been used in a rigorous way by Aldous [1] to study
components in the critical case s = O(n2/3); presumably similar methods could
be used to make our argument too rigorous.

Thus, let X0 = k and let Xi be the number of vertices found to belong to
the component when the neighbourhoods of i vertices have been exposed, for
i = 1, . . . ,M , where M is the component size. Thus Xi > i for i < M while
XM = M . As above, we approximate Xi −Xi−1 by independent Po(1 + 2s/n)
variables. These have mean 1 + 2s/n and variance 1 + 2s/n ∼ 1, and thus,
given some positive scaling factors an → 0, we may approximate

−an

(
Xba−2

n tc −X0 − a−2
n t(1 + 2s/n)

)
by a standard Brownian motion Bt, cf. Donsker’s theorem [4].

We thus approximate Xu (defined for integers u ≤M) by

X ′
u = k + (1 + 2s/n)u− a−1

n Ba2
nu

(defined for all real u ≥ 0); hence we approximate the component size

M = min{i : Xi = i}

by

min{u : X ′
u = u} = min{u : a−1

n Ba2
nu = k + 2us/n}

= a−2
n min{t : a−1

n Bt = k + 2a−2
n ts/n}

= a−2
n min{t : Bt = ank + 2a−1

n ts/n}.

Assuming a−1
n s/n → α 6= 0 and ank = x, we thus approximate a2

nM by
min{t : Bt = x + 2αt} = Tx,−2α, cf. (3). This approximation is in accordance
with Theorem 10, including the case Tx,−2α = ∞ (possible when s > 0), which
is interpreted as a2

nM being ‘large’, which means that C belongs to the giant
component.

8. Three symmetry rules

Finally, we remark that the arguments in the two preceding sections show
that there are close connections between the following three well-known ‘sym-
metry rules’:

Random graph symmetry rule. If n2/3 � s� n, then G(n, n/2 + s) with
its giant component deleted looks roughly the same as G(n, n/2 − s). (For a
precise formulation, see e.g. [15, 10].) In the present paper this is reflected in
that the asymptotic results for m = n/2 + s and m = n/2− s coincide for the
unicyclic components and the cycles in them.
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Branching process symmetry rule. A supercritical Galton-Watson branch-
ing process with offspring distribution Po(λ), λ > 1, conditioned on extinc-
tion, coincides with a subcritical branching process with offspring distribution
Po(λ′), where λ′ < 1 satisfies λ′e−λ′ = λe−λ. More generally, every supercrit-
ical branching process conditioned on extinction is equivalent to a subcriti-
cal branching process with a suitable offspring distribution, see [3, Theorem
I.12.3].

Brownian motion symmetry rule. If a, b > 0, then the hitting time Ta,−b,
conditioned on being finite, has the same distribution as Ta,b. (An easy conse-
quence of the Cameron–Martin formula; see further Section 3.)
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