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ABSTRACT

The number of comparisons Xn used by Quicksort to sort an array of n distinct
numbers has mean µn of order n log n and standard deviation of order n. Using different
methods, Régnier and Rösler each showed that the normalized variate Yn := (Xn−µn)/n
converges in distribution, say to Y ; the distribution of Y can be characterized as the
unique fixed point with zero mean of a certain distributional transformation.

We provide the first rates of convergence for the distribution of Yn to that of Y ,
using various metrics. In particular, we establish the bound 2n−1/2 in the d2-metric,
and the rate O(nε−(1/2)) for Kolmogorov–Smirnov distance, for any positive ε.
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1 Introduction and summary

This paper provides the first rates of convergence (as n → ∞) for the distribution of
the number of comparisons used by the sorting algorithm Quicksort to sort an array
of n distinct numbers. Quicksort is the standard sorting procedure in Unix systems,
and has been cited [3] as one of the ten algorithms “with the greatest influence on the
development and practice of science and engineering in the 20th century.” We begin
with a brief review of what is known about the analysis of Quicksort and a summary
of our new results.

The Quicksort algorithm for sorting an array of n distinct numbers is extremely
simple to describe. If n = 0 or n = 1, there is nothing to do. If n ≥ 2, pick a number
uniformly at random from the given array. Compare the other numbers to it to partition
the remaining numbers into two subarrays. Then recursively invoke Quicksort on each
of the two subarrays.

Let Xn denote the (random) number of comparisons required (so that X0 = 0).
Then Xn satisfies the distributional recurrence relation

Xn
L=XUn−1 +X∗

n−Un
+ n− 1, n ≥ 1, (1.1)

where L= denotes equality in law (i.e., in distribution), and where, on the right, Un is
distributed uniformly on the set {1, . . . , n}, X∗

j
L=Xj , and

Un; X0, . . . , Xn−1; X∗
0 , . . . , X

∗
n−1

are all independent.
As is well known and quite easily established, for n ≥ 0 we have

µn := EXn = 2(n+ 1)Hn − 4n ∼ 2n lnn,

where Hn :=
∑n

k=1 k
−1 is the nth harmonic number and ∼ denotes asymptotic equiv-

alence. It is also routine to compute explicitly the variance of Xn (see Exercise 6.2.2-8
in [15]):

VarXn = 7n2 − 4(n+ 1)2H(2)
n − 2(n+ 1)Hn + 13n = σ2n2 − 2n lnn+O(n) (1.2)

where H(2)
n :=

∑n
k=1 k

−2 are the second-order harmonic numbers and, using the stan-
dard notation .= for approximate equality,

σ2 := 7− 2
3π

2 .= 0.4203. (1.3)

Consider the normalized variate

Yn := (Xn − µn)/n, n ≥ 1.

Then (1.1) implies the recursion

Yn
L=
Un − 1
n

YUn−1 +
n− Un

n
Y ∗

n−Un
+ Cn(Un), n ≥ 1, (1.4)
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with Y0 arbitrarily defined (since its coefficient is 0), where on the right, as for Xn,
we have Un ∼ unif{1, . . . , n} and Y ∗

j
L=Yj , and Un; Y1, . . . , Yn−1; Y ∗

1 , . . . , Y
∗
n−1 are all

independent; further,

Cn(i) := n−1
n + 1

n(µi−1 + µn−i − µn), 1 ≤ i ≤ n. (1.5)

Note that EYn = 0 = ECn(Un). We will see below that if n→∞ and i/n→ u ∈ [0, 1],
then Cn(i) → C(u), where

C(u) := 2u lnu+ 2(1− u) ln(1− u) + 1, u ∈ [0, 1],

with the natural (continuous) interpretation C(u) := 1 for u = 0, 1.
Moreover, Régnier [18] and Rösler [19] showed, using different methods, that Yn → Y

in distribution, and Rösler also showed that Y satisfies the distributional identity

Y
L= UY + (1− U)Y ∗ + C(U) (1.6)

obtained by formally taking limits in (1.4), where, on the right, U , Y , and Y ∗ are
independent, with Y ∗ L=Y and U ∼ unif(0, 1). [Rösler [19] showed further that (1.6)
characterizes the limiting law L(Y ), subject to EY = 0 and VarY <∞. For a complete
characterization of the distributions satisfying (1.6), see [7].]

The purpose of the present paper is to study the rate of convergence of L(Yn) to
L(Y ), using several different measures of the distance between L(Yn) and L(Y ).

First, for real 1 ≤ p < ∞, let ‖X‖p := (E |X|p)1/p denote the Lp-norm, and let dp

denote the metric on the space of all probability distributions with finite pth absolute
moment defined by

dp(F,G) := min ‖X − Y ‖p,

taking the minimum over all pairs of random variables X and Y (defined on the same
probability space) with L(X) = F and L(Y ) = G. We will use the fact [1] that the
minimum is attained for each 1 ≤ p <∞ by the same X and Y , viz., X := F−1(u) and
Y := G−1(u) defined for u in the probability space (0, 1) (with Lebesgue measure).

We will for simplicity write dp(X,Y ) := dp(L(X),L(Y )) for random variables X
and Y , but note that this distance depends only on the marginal distributions of X
and Y .

Rösler [19] showed that dp(Yn, Y ) → 0 as n→∞ for every 1 ≤ p <∞. In Sections 2
and 3 we will quantify this and show that

dp(Yn, Y ) = O
(
n−1/2

)
for every fixed p. In the case p = 2 we will further show the explicit bound

d2(Yn, Y ) < 2n−1/2.

The best lower bound we can show (Section 4) is

dp(Yn, Y ) ≥ c
lnn
n
, p ≥ 2,
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with c > 0 independent of p. We do not know what the correct rate is, even for p = 2.
In an earlier draft of this paper, we conjectured the rate n−1/2. Subsequent to that
draft, however, Neininger and Rüschendorf [17] surprisingly showed that for another
metric, namely, the Zolotarev metric ζ3, the correct rate is (lnn)/n. We therefore now
guess that the rate is also (lnn)/n for the metrics dp, matching our lower bound—but
proving this is a challenge.

In Section 5 we use these results to bound the Kolmogorov–Smirnov distance dKS(Yn, Y )
between L(Yn) and L(Y ). We show that

dKS(Yn, Y ) = O
(
nε−(1/2)

)
for every ε > 0. Again we do not know the exact rate, but guess that it is (lnn)/n, as
for the ζ3 metric considered by Neininger and Rüschendorf [17]. The best lower bound
we can prove is c/n with c > 0.

In Section 6 we prove a kind of local limit theorem which enables us to approximate
the density function f of Y . (It was proved by Tan and Hadjicostas [20] that Y has a
density function; f is bounded and infinitely differentiable by [6].)

Rösler [19] showed that (for fixed λ ∈ R) the moment generating function values
E eλYn are bounded and thus converge to E eλY . Again we quantify his bounds and give
in Section 7 explicit bounds, based on Rösler’s method.

In several (but not all) bounds we give explicit numerical values to constants. These
values are hardly the best possible, but we make some effort to get fairly small values.
This includes sometimes the use of extensive numerical verifications by computer for
small n. [All numerical calculations have been verified independently by the two au-
thors, the (alphabetically) first using Mathematica and the second using Maple.] Such
arguments could be simplified or omitted at the cost of increasing the constants.

1.1 Preliminaries

In order to later estimate Cn(i) defined by (1.5) we need some explicit bounds on µn.
First, as mentioned above,

µn = 2(n+ 1)Hn − 4n, (1.7)

which can be rewritten
µn = 2(n+ 1)Hn+1 − 4n− 2. (1.8)

Next we use the bounds on the harmonic numbers (see, e.g., Section 1.2.11.2 in [14])

lnn+ γ ≤ Hn ≤ lnn+ γ + 1
2n , n ≥ 1, (1.9)

where γ .= 0.5772 is Euler’s constant. Hence, for n ≥ 1, from (1.7)

2(n+ 1) lnn+ (2γ − 4)n+ 2γ ≤ µn ≤ 2(n+ 1) lnn+ (2γ − 4)n+ 2γ + n+1
n (1.10)

and from (1.8)

2n lnn+ (2γ − 4)n+ 2 ≤ µn−1 ≤ 2n lnn+ (2γ − 4)n+ 3. (1.11)



4

2 Bounding d2(Yn, Y )

In this section we prove the following explicit estimate for d2(Yn, Y ).

Theorem 2.1. For all n ≥ 1, d2(Yn, Y ) < 2/
√
n.

Proof. We basically follow the method of Rösler [19], making all estimates explicit. We
study in this paper only properties of the univariate distributions of Yn. We thus take
the liberty of letting Yn denote any random variable with the appropriate distribution
[Yn

L=(Xn − µn)/n]. We then may choose Y0, Y1, . . . defined on the same probability
space as Y and such that

‖Yn − Y ‖2 = d2(Yn, Y ), n ≥ 0.

Further, let (Y ∗, Y ∗
0 , Y

∗
1 , . . .) be an independent copy of (Y, Y0, Y1, . . .) and let U ∼

unif(0, 1) be independent of everything else. For convenience we write an := d2(Yn, Y ).
Observe, by (1.4), that

Yn
L= Ỹn :=

dnUe − 1
n

YdnUe−1 +
n− dnUe

n
Y ∗

n−dnUe + Cn(dnUe) (2.1)

and recall from (1.6) that

Y
L= Ỹ := UY + (1− U)Y ∗ + C(U). (2.2)

Therefore,
a2

n = d2
2(Yn, Y ) ≤ E |Ỹn − Ỹ |2. (2.3)

Now

Ỹn − Ỹ =
(
dnUe − 1

n
YdnUe−1 − UY

)
+

(
n− dnUe

n
Y ∗

n−dnUe − (1− U)Y ∗
)

+ (Cn(dnUe)− C(U))
=: W1 +W2 +W3,

say. Given U , the random variables W1 and W2 are independent with zero mean,
while W3 is a constant. Hence

E
(∣∣∣Ỹn − Ỹ

∣∣∣2 ∣∣∣∣ U)
= E

(
(W1 +W2 +W3)2

∣∣ U)
= E

(
W 2

1 |U
)

+ E
(
W 2

2 |U
)

+W 2
3

and thus, taking expectations,

E
∣∣∣Ỹn − Ỹ

∣∣∣2 = EW 2
1 + EW 2

2 + EW 2
3 . (2.4)

By symmetry (replacing U by 1 − U), EW 2
2 = EW 2

1 . We estimate this term by
conditioning on U , using the independence of U and Y, Y0, . . .. If U = (k + v)/n, with
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k ∈ {0, 1, . . . , n − 1} and 0 < v ≤ 1, then dnUe = k + 1 and W1 = k
n(Yk − Y ) − v

nY ;
hence Minkowski’s inequality yields

E
(
W 2

1 |U = (k + v)/n
)1/2 ≤ k

n‖Yk − Y ‖2 + v
n‖Y ‖2

= k
nak + v

nσ.

Consequently,

EW 2
1 =

1
n

n−1∑
k=0

∫ 1

0
E

(
W 2

1 |U = (k + v)/n
)
dv ≤ 1

n

n−1∑
k=0

∫ 1

0

(
k

n
ak +

v

n
σ

)2

dv

=
1
n

n−1∑
k=0

∫ 1

0

(
k2

n2
a2

k +
2k
n2
vakσ +

v2

n2
σ2

)
dv

=
1
n

n−1∑
k=0

(
k2

n2
a2

k +
k

n2
akσ +

σ2

3n2

)
. (2.5)

We postpone the estimation of EW 2
3 , and introduce the notation

bn := ‖W3‖2 = ‖Cn(dnUe)− C(U)‖2. (2.6)

Combining (2.3)–(2.6), we obtain our fundamental recursive estimate

a2
n ≤ 2EW 2

1 + EW 2
3

≤ 2
n3

n−1∑
k=1

k2a2
k +

2σ
n3

n−1∑
k=1

kak +
2σ2

3n2
+ b2n, n ≥ 1. (2.7)

We unwrap this recursion partly, by concentrating on the first sum on the right-hand
side and regarding the second as known. Thus, writing

yn :=
2σ
n3

n−1∑
k=1

kak +
2σ2

3n2
+ b2n, (2.8)

we define recursively

xn :=
2
n

n−1∑
k=1

xk + n2yn, n ≥ 1, (2.9)

and find by (2.7) and induction

n2a2
n ≤ xn, n ≥ 1.

Now, the recursion (2.9) is easily solved (see, e.g., [5]), giving

a2
n ≤ n−2xn = yn + 2

n+ 1
n2

n−1∑
j=1

j2

(j + 1)(j + 2)
yj , n ≥ 1. (2.10)
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We substitute (2.8), treating the three terms separately, into (2.10). The first term
in (2.8) yields the sum

n−1∑
j=1

j2

(j + 1)(j + 2)
2σ
j3

j−1∑
k=1

kak =
n−1∑
k=1

∑
k<j<n

σkak
2

j(j + 1)(j + 2)

=
n−1∑
k=1

σkak

n−1∑
j=k+1

(
1

j(j + 1)
− 1

(j + 1)(j + 2)

)

=
n−1∑
k=1

σkak

(
1

(k + 1)(k + 2)
− 1
n(n+ 1)

)
and the total contribution

2σ
n3

n−1∑
k=1

kak + 2
n+ 1
n2

n−1∑
k=1

σkak

(
1

(k + 1)(k + 2)
− 1
n(n+ 1)

)

= 2σ
n+ 1
n2

n−1∑
k=1

kak

(k + 1)(k + 2)
. (2.11)

The second term in (2.8) yields the sum

n−1∑
j=1

j2

(j + 1)(j + 2)
2σ2

3j2
=

2σ2

3

n−1∑
j=1

(
1

j + 1
− 1
j + 2

)
=

2σ2

3

(
1
2
− 1
n+ 1

)
and the total contribution

2σ2

3n2
+ 2

n+ 1
n2

2σ2

3

(
1
2
− 1
n+ 1

)
=

2σ2

3n2
(1 + n+ 1− 2) =

2σ2

3n
. (2.12)

Hence we find from (2.10)

a2
n ≤ 2σ

n+ 1
n2

n−1∑
k=1

kak

(k + 1)(k + 2)
+

2σ2

3n
+ b2n + 2

n+ 1
n2

n−1∑
k=1

k2b2k
(k + 1)(k + 2)

. (2.13)

We next use the following estimate of bn, whose proof we postpone.

Lemma 2.2. For n ≥ 1,

bn := ‖Cn(dnUe)− C(U)‖2 ≤
(

3 +
2π√

3

)
1
n
<

6.63
n
.

Using this lemma in (2.13), we find in analogy with (2.12)

b2n + 2
n+ 1
n2

n−1∑
k=1

k2b2k
(k + 1)(k + 2)

<
(6.63)2

n
<

44
n

(2.14)
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and thus

a2
n ≤ 2σ

n+ 1
n2

n−1∑
k=1

kak

(k + 1)(k + 2)
+

(
44 +

2σ2

3

)
1
n
, n ≥ 1. (2.15)

We claim that (2.15) implies the sought estimate an = O(n−1/2). Indeed, assume
that n ≥ 1 and that A > 0 is a number such that

ak ≤ A/
√
k (2.16)

for 1 ≤ k ≤ n− 1. Then, using k + 1 ≥ [k(k + 2)]1/2,

n−1∑
k=1

kak

(k + 1)(k + 2)
≤ A

n−1∑
k=1

k1/2

(k + 1)(k + 2)
≤ A

n−1∑
k=1

1
(k + 2)3/2

≤ A

∫ n−1

0

dx

(x+ 2)3/2
= 2A

(
2−1/2 − (n+ 1)−1/2

)
. (2.17)

In particular, for n ≥ 2,

1
n

n−1∑
k=1

kak

(k + 1)(k + 2)
≤ 1
n

2A ≤ 2A(n+ 1)−1/2 (2.18)

and thus (2.17) yields (trivially for n = 1, too)

n+ 1
n

n−1∑
k=1

kak

(k + 1)(k + 2)
≤ 21/2A.

Consequently, by (2.15),

na2
n ≤ 23/2σA+ 44 + 2

σ2

3
≤ 23/2σA+ 45.

If 23/2σA+45 ≤ A2, which holds for example for A = 8, then this yields na2
n ≤ A2, and

thus (2.16) holds for k = n, too. By induction, (2.16) holds for all k ≥ 1, and we have
proved the explicit estimate

an ≤
8√
n
, n ≥ 1. (2.19)

This is the desired estimate, apart from the value of the constant. To improve the
constant, we use numerical calculations by computer. Indeed, for (2.6),

b2n =
n∑

i=1

∫ i/n

(i−1)/n
(C(u)− Cn(i))2 du

=
∫ 1

0
C(u)2 du− 2

n∑
i=1

Cn(i)
∫ i/n

(i−1)/n
C(u) du+

n∑
i=1

1
n
Cn(i)2

=
σ2

3
− 2

n∑
i=1

Cn(i)
(
F

(
i

n

)
− F

(
i− 1
n

))
+

1
n

n∑
i=1

Cn(i)2,
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where F (u) := u2 lnu − (1 − u)2 ln(1 − u) and Cn(i) is given by (1.5); so, given any
integer N , bn can be computed exactly for n ≤ N . Next, for n = 1, . . . , N , an upper
bound ān to an can be computed recursively from (2.7) or, equivalently, (2.13), using
the already computed āk, k < n, to bound ak in the right-hand side. (We do not know
how to compute an exactly even for n = 3.) For larger n, we use the estimates (2.16)
and Lemma 2.2.

Let

Vn :=
n∑

k=1

kak

(k + 1)(k + 2)
,

V̄n :=
n∑

k=1

kāk

(k + 1)(k + 2)
,

Wn :=
n∑

k=1

k2b2k
(k + 1)(k + 2)

.

Then for n > N , arguing as in (2.17), for any A such that (2.16) holds for all k,

Vn−1 ≤ V̄N +
n−1∑

k=N+1

A

(k + 2)3/2
≤ V̄N + 2A

(
(N + 2)−1/2 − (n+ 1)−1/2

)
and thus by (2.18)

n+1
n Vn−1 = Vn−1 + 1

nVn−1 ≤ V̄N + 2A(N + 2)−1/2. (2.20)

Similarly, with B :=
(
3 + 2π√

3

)2
< 44, for n > N , by Lemma 2.2, we have

n+1
n Wn−1 ≤ WN +

n−1∑
k=N+1

B

(k + 1)(k + 2)
+

1
n

n−1∑
k=1

B

(k + 1)(k + 2)

= WN +B

(
1

N + 2
− 1
n+ 1

+
1
2n

− 1
n(n+ 1)

)
= WN +

B

N + 2
− B

2n
.

Consequently, (2.13) yields, using Lemma 2.2 again and (2.20),

a2
n ≤ 2σ

n+ 1
n2

Vn−1 +
2σ2

3n
+
B

n2
+ 2

n+ 1
n2

Wn−1

≤ 1
n

(
2σV̄N + 4σA(N + 2)−1/2 +

2σ2

3
+ 2WN + 2B(N + 2)−1

)
, n > N.

In other words, (2.16) holds for k > N , with A replaced by

AN :=
(

2σV̄N + 4σA(N + 2)−1/2 +
2σ2

3
+ 2WN + 2B(N + 2)−1

)1/2

. (2.21)

For N = 100 we find (using Mathematica or Maple), rounded to four decimal places,
V̄100

.= 1.1995 and W100
.= 0.3466, and thus, taking A = 8 as in (2.19), A100

.= 2.3332.
Moreover, the computer verifies that n1/2ān < 1.7 for n ≤ 100; thus (2.16) holds for all
k ≥ 1 with A = 2.34. Using this value in (2.21) we find A100

.= 1.9976, and the theorem
is proved.
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Remark 2.3. The sequence n1/2ān seems to increase slowly. For n = 100 the value is
(rounded to four decimal places) 1.6018, and hence the bound in Theorem 2.1 cannot
be much improved using the present method based on (2.7).

It remains to prove Lemma 2.2 above.

Proof of Lemma 2.2. Let Ii := {u : dnue = i} = ((i − 1)/n, i/n]. Thus I1, . . . , In form
a partition of (0, 1]. We choose a point ti ∈ Īi for each i (where the bar here indicates
closure) and define

C̃n(u) := C(tdnue),

i.e., C̃(u) = C(ti) when u ∈ Ii. By Minkowski’s inequality,

bn ≤ ‖Cn(dnUe)− C̃n(U)‖2 + ‖C̃n(U)− C(U)‖2. (2.22)

To estimate the second term in (2.22), note that for u ∈ Ii,

|C̃n(u)− C(u)| = |C(ti)− C(u)| ≤
∫

Ii

|C ′(x)| dx.

The Cauchy–Schwarz inequality yields

|C̃n(u)− C(u)|2 ≤ 1
n

∫
Ii

|C ′(x)|2 dx, u ∈ Ii,

and thus (for any choice of ti ∈ Īi),

‖C̃n(U)− C(U)‖2
2 =

n∑
i=1

∫
Ii

|C̃n(u)− C(u)|2 du

≤
n∑

i=1

1
n2

∫
Ii

|C ′(x)|2 dx

=
1
n2

∫ 1

0
|C ′(x)|2 dx. (2.23)

We have
C ′(x) = 2 lnx− 2 ln(1− x)

and find ∫ 1

0
[ln(1− x)]2 dx =

∫ 1

0
(lnx)2 dx =

∫ ∞

0
y2e−y dy = 2

and ∫ 1

0
[lnx][ln(1− x)] dx =

∞∑
k=1

1
k

∫ 1

0
xk | lnx| dx =

∞∑
k=1

1
k

∫ ∞

0
e−kyye−y dy

=
∞∑

k=1

1
k

1
(k + 1)2

=
∞∑

k=1

(
1

k(k + 1)
− 1

(k + 1)2

)
= 1−

(
π2

6
− 1

)
= 2− π2

6
;
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consequently,∫ 1

0
|C ′(x)|2 dx = 8

∫ 1

0
(lnx)2 dx− 8

∫ 1

0
[lnx][ln(1− x)] dx =

4π2

3
.

Hence (2.23) yields

‖C̃n(U)− C(U)‖2 ≤
1
n
‖C ′(U)‖2 ≤

2π√
3n
. (2.24)

For the first term in (2.22), let us first assume that n ≥ 2. For u ∈ Ii we have

Cn(dnue)− C̃n(u) = Cn(i)− C(ti)
= − 1

n + 1
n(µi−1 + µn−i − µn)− 2ti ln ti − 2(1− ti) ln(1− ti).

For i ≤ dn/2e we choose ti = i/n. This yields, using (1.11) and (1.10),

Cn(i)− C(ti) ≤ 1
n [−1 + 2i ln i+ (2γ − 4)i+ 3

+2(n− i+ 1) ln(n− i) + (2γ − 4)(n− i) + 2γ + 1 + 1
n−i

−2(n+ 1) lnn− (2γ − 4)n− 2γ − 2i ln( i
n)− 2(n− i) ln(n−i

n )
]

= 1
n

[
2 ln(n−i

n ) + 3 + 1
n−i

]
≤ 1

n

[
3− 2i

n + 1
n−i

]
≤ 3

n . (2.25)

In the opposite direction, by (1.11) and (1.10), still for i ≤ dn/2e,

Cn(i)− C(ti) ≥ 1
n [−1 + 2i ln i+ (2γ − 4)i+ 2

+2(n− i+ 1) ln(n− i) + (2γ − 4)(n− i) + 2γ
−2(n+ 1) lnn− (2γ − 4)n− 2γ − 1− 1

n

−2i ln( i
n)− 2(n− i) ln(n−i

n )
]

= 1
n

[
2 ln(n−i

n )− 1
n

]
≥ 1

n

[
2 ln(1

3)− 1
2

]
≥ − 3

n .

Consequently, for i ≤ dn/2e,

|Cn(i)− C(ti)| ≤ 3/n. (2.26)

For i > dn/2e we choose instead ti = (i − 1)/n = 1 − tn+1−i. The symmetries of Cn

and C then yield Cn(i)−C(ti) = Cn(n+ 1− i)−C(tn+1−i), and since n+ 1− i ≤ n/2,
(2.26) shows that |Cn(i)−C(ti)| ≤ 3/n for i > dn/2e, too, i.e., (2.26) holds for all i ≤ n.
In other words,

|Cn(dnue)− C̃n(u)| = |Cn(dnue)− C(tdnue)| ≤ 3/n

for all u ∈ (0, 1]; in particular, ‖Cn(dnUe) − C̃n(U)‖2 ≤ 3/n for all n ≥ 2. This holds
trivially for n = 1, too, for any choice of t1, and together with (2.22) and (2.24) yields
the result.
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Remark 2.4. Define
c∗ := sup{n1/2d2(Yn, Y ) : n ≥ 1},

so that, by Theorem 2.1, c∗ ≤ 2. Conversely,

c∗ ≥ 21/2d2(Y2, Y ) = 21/2‖Y ‖2 = σ
√

2 > 0.9168;

thus the constant 2 in Theorem 2.1 is no more than about twice the optimal value.
Although we do not know the exact value of d2(Yn, Y ) for any n > 2, one can

in principle for any n and m compute the exact distributions of Yn and Ym and thus
d2(Yn, Ym). We have done this for some m,n ≤ 50 using Mathematica and Maple. The
results are consistent with a decay of the type d2(Yn, Y ) ∼ cn−1/2 with c ≈ 1, but our
data are too few to be conclusive.

3 Bounding dp(Yn, Y )

In this section we extend Theorem 2.1 and show that dp(Yn, Y ) = O(n−1/2) for every p.
In contrast to the style of Section 2, we will make no attempt to keep constants small,
nor to keep track of them explicitly.

Theorem 3.1. For every p ≥ 1, there exists a constant cp <∞ such that

dp(Yn, Y ) ≤ cp/
√
n, n ≥ 1.

Proof. Since dp ≤ dq when p ≤ q, it suffices to consider integer p ≥ 2. The case p = 2
is Theorem 2.1 (with c2 = 2), so we assume further that p ≥ 3. We use induction on p
and assume that the result holds for smaller positive integer values of p.

Let Y, Yn, Y
∗, Y ∗

n , U be as in Section 2, and note that for every p ≥ 1,

‖Yn − Y ‖p = ‖Y ∗
n − Y ∗‖p = dp(Yn, Y ), n ≥ 0, (3.1)

by the fact [1] that there is an optimal coupling for d2 that is optimal for every dp.
Using the notation of Section 2, we have, for n ≥ 1,

dp(Yn, Y ) ≤ ‖Ỹn − Ỹ ‖p = ‖W1 +W2 +W3‖p. (3.2)

We use a simple lemma to estimate this.

Lemma 3.2. Let Z1, Z2, and Z3 be three independent random variables, and let p ≥ 2
be an integer. Then

E |Z1 + Z2 + Z3|p ≤ E |Z1|p + E |Z2|p + (‖Z1‖p−1 + ‖Z2‖p−1 + ‖Z3‖p)
p .

Proof. By the binomial theorem and independence,

E |Z1 +Z2 +Z3|p ≤ E (|Z1|+ |Z2|+ |Z3|)p =
∑
j,k,l

(
p

j, k, l

) (
E |Z1|j

) (
E |Z2|k

) (
E |Z3|l

)
.



12

If j ≤ p − 1 and k ≤ p − 1 we estimate E |Z1|j = ‖Z1‖j
j ≤ ‖Z1‖j

p−1 (which holds
also for j = 0, disregarding the central expression) and similarly E |Z2|k ≤ ‖Z2‖k

p−1 and
E |Z3|l ≤ ‖Z3‖l

p. Hence all terms in the sum, except E |Z1|p and E |Z2|p, are bounded by
the corresponding terms in the trinomial expansion of (‖Z1‖p−1 + ‖Z2‖p−1 + ‖Z3‖p)

p.

Conditional on U = u, the three variables W1, W2, and W3 are independent, so the
lemma is applicable. Fix u ∈ (0, 1) and let i = dnue, so 1 ≤ i ≤ n. Then, given U = u,
W1 = i−1

n Yi−1 − uY and thus, for any q ≥ 1,

E (|W1|q |U = u)1/q = ‖ i−1
n Yi−1 − uY ‖q

≤ ‖ i−1
n (Yi−1 − Y )‖q + | i−1

n − u| ‖Y ‖q

≤ i−1
n dq(Yi−1, Y ) + 1

n‖Y ‖q. (3.3)

Similarly,
E (|W2|q |U = u)1/q ≤ n−i

n dq(Yn−i, Y ) + 1
n‖Y ‖q. (3.4)

Further, given U = u, W3 = Cn(i) − C(u) is a constant, for which we use the simple
estimate (from Proposition 3.2 in [19])

|W3| = |Cn(dnue)− C(u)| ≤ 6
n lnn+O

(
n−1

)
= O

(
n−1/2

)
. (3.5)

We first use (3.3) with q = p−1 together with the induction hypothesis dp−1(Yi−1, Y ) ≤
cp−1(i− 1)−1/2, i ≥ 2, to obtain (also for i = 1)

E
(
|W1|p−1 |U = u

)1/(p−1) ≤ cp−1
(i− 1)1/2

n
+

1
n
‖Y ‖p−1 ≤ b1n

−1/2,

where b1, like b2, b3, b4 below, denotes some constant depending on p only. By similar
argument using (3.4) and (3.5), we obtain

E
(
|W1|p−1 |U = u

)1/(p−1)+E
(
|W2|p−1 |U = u

)1/(p−1)+E (|W3|p |U = u)1/p ≤ b2n
−1/2.

Hence, using (3.3) and (3.4) for q = p, too, Lemma 3.2 yields

E (|W1 +W2 +W3|p |U = u) ≤
(
i− 1
n

dp(Yi−1, Y ) + b3
1
n

)p

+
(
n− i

n
dp(Yn−i, Y ) + b3

1
n

)p

+ bp2n
−p/2.

Taking the average over all u ∈ (0, 1) we finally find the recursive estimate

dp(Yn, Y )p ≤ E |W1 +W2 +W3|p = EE (|W1 +W2 +W3|p |U)

≤ 2
n

n−1∑
j=0

(
j

n
dp(Yj , Y ) + b3

1
n

)p

+ bp2n
−p/2. (3.6)
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The proof is now completed by another induction, this one on n. Suppose that
dp(Yj , Y ) ≤ cj−1/2 for 1 ≤ j ≤ n− 1. Then (3.6) yields

dp(Yn, Y )p ≤ 2
n

n−1∑
j=1

(
cj1/2n−1 + b3n

−1
)p

+
2
n
bp3n

−p + bp2n
−p/2

≤ 2
n

(c+ b3)p
n−1∑
j=1

jp/2n−p + b4n
−p/2

≤ 2(c+ b3)p

∫ 1

0
xp/2n−p/2 dx+ b4n

−p/2

=
[
2(c+ b3)p 1

(p/2) + 1
+ b4

]
n−p/2. (3.7)

Since p ≥ 3, we have 2
(p/2)+1 = 4

p+2 < 1, and thus, if c is sufficiently large,

4
p+ 2

(c+ b3)p + b4 ≤ cp.

For such c, (3.7) yields dp(Yn, Y )p ≤
(
cn−1/2

)p
, which completes both inductions and

the proof.

Note that the arguments used above for p ≥ 3 do not work for p = 2, so we need
both the proof here and the proof in Section 2.

4 Lower bounds for dp(Yn, Y )

We do not know whether the upper bounds O(n−1/2) proved in the preceding two
sections are sharp. We give in this section two simple lower bounds.

First, dp(Yn, Y ) = Ω(n−1) for every p by the following general result.

Proposition 4.1. Let W,W1,W2, . . . be random variables such that W has an absolutely
continuous distribution while, for each n ≥ 1 and some constant bn, n(Wn − bn) is
integer-valued. Then, for each 1 ≤ p <∞, dp(Wn,W ) = Ω(1/n). More precisely,

lim inf
n→∞

ndp(Wn,W ) ≥ 1
2(p+ 1)−1/p. (4.1)

Proof. Let Vn := {n(W − bn)}, where {x} := x − bxc denotes the fractional part of x.
For any coupling of W and Wn,

|W −Wn| = 1
n |n(W − bn)− n(Wn − bn)| ≥ 1

nh(Vn),

where h(x) := min(x, 1− x), 0 ≤ x ≤ 1, and thus

dp(W,Wn) ≥ 1
n‖h(Vn)‖p. (4.2)
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We regard Vn as a random variable taking values in R/Z ∼= T, and find that its distri-
bution, νn say, has Fourier coefficients

ν̂n(k) = E
(
e−2πikVn

)
= e2πiknbnφ(−2πkn),

where φ is the characteristic function of W . In particular, |ν̂n(k)| = |φ(2πkn)|. By our
hypothesis on W and the Riemann–Lebesgue lemma, φ(x) → 0 as x → ±∞. Thus,
for each fixed k 6= 0, ν̂n(k) → 0 as n → ∞. This implies that νn converges weakly
(as measures on T) to the uniform distribution, i.e., Vn

L→U where U ∼ unif(0, 1).
Consequently, as n→∞,

‖h(Vn)‖p
p = Eh(Vn)p → Eh(U)p = 2

∫ 1/2

0
xp dx = 2−p/(p+ 1),

which together with (4.2) leads to (4.1). The proof of the proposition is completed by

observing dp(Wn,W ) > 0 for every n, because Wn

L
6=W .

Note that, in contrast to the asymptotic result (4.1), there is no positive lower bound
to dp(Wn,W ) for a fixed n without further assumptions. Hence the implicit constant in
Ω(1/n) in the theorem depends on the variables W,W1, . . ..

For p ≥ 2 we can improve this lower bound by a logarithmic factor by using the
known variance of Yn.

Theorem 4.2. If 2 ≤ p <∞, then

dp(Yn, Y ) ≥ d2(Yn, Y ) = Ω( ln n
n ).

Proof. Recall that Y and Yn have mean 0 and that VarY = σ2 while by (1.2)

VarYn = σ2 − 2 ln n
n +O(n−1)

and thus
‖Yn‖2 = (VarYn)1/2 = σ − 1

σ
ln n
n +O(n−1).

Consequently, for the d2-optimal coupling of Y and Yn, by Minkowski’s inequality,

d2(Yn, Y ) = ‖Yn − Y ‖2 ≥ ‖Y ‖2 − ‖Yn‖2 = σ−1 ln n
n +O(n−1).

We still have a gap between (lnn)/n and n−1/2.

Remark 4.3. It can be shown that EY m
n = EY m + O

(
ln n
n

)
, n ≥ 2, holds also for

m = 3, 4, . . .; cf. the formulas for moments and cumulants by Hennequin [11]. Hence we
do not get better lower bounds for dp by considering higher moments.
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5 The Kolmogorov–Smirnov distance

Recall that the Kolmogorov–Smirnov distance dKS(F,G) between two distributions is
defined as supx∈R |P (X ≤ x) − P (Y ≤ x)|, when X ∼ F and Y ∼ G. We will in this
case also write dKS(X,Y ).

To obtain upper bounds for dKS(Yn, Y ), we combine the bounds above for dp(Yn, Y )
with the following simple general result and the fact [6] that Y has a bounded density
function.

Lemma 5.1. Suppose that X and Y are two random variables such that Y is absolutely
continuous with a bounded density function f . If M := supy∈R |f(y)| and 1 ≤ p < ∞,
then

dKS(X,Y ) ≤ (p+ 1)1/(p+1) (Mdp(X,Y ))p/(p+1) .

Proof. Consider an optimal dp-coupling of X and Y . Then, for x ∈ R and ε > 0,
denoting the distribution functions of X and Y by FX and FY ,

FX(x) = P (X ≤ x) ≤ P (Y ≤ x) + P (x < Y ≤ x+ ε) + P (Y −X > ε)
≤ FY (x) +Mε+ P (Y −X > ε).

Similarly,

FY (x) ≤ P (X ≤ x) + P (x− ε < Y ≤ x) + P (X − Y > ε)
≤ FX(x) +Mε+ P (X − Y > ε).

Consequently,

∆(x) := |FX(x)− FY (x)| ≤Mε+ P (|X − Y | > ε)

and thus

dp(X,Y )p = E |X − Y |p =
∫ ∞

0
pεp−1P (|X − Y | > ε) dε

≥
∫ ∆(x)/M

0
pεp−1(∆(x)−Mε) dε

= 1
p+1∆(x)p+1M−p.

Theorem 5.2. For every ε > 0,

dKS(Yn, Y ) = O
(
nε−(1/2)

)
.

Proof. By [6], Y has a bounded density function, so Lemma 5.1 and Theorem 3.1 yield,
for every fixed 1 ≤ p <∞,

dKS(Yn, Y ) = O
(
dp(Yn, Y )p/(p+1)

)
= O

(
n−p/[2(p+1)]

)
.

The result follows by choosing p so large that p
2(p+1) >

1
2 − ε.
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To get an explicit bound we take p = 2 in Lemma 5.1 and use Theorem 2.1. This
yields the bound 31/3

(
2Mn−1/2

)2/3
, and we know M < 16 from Theorem 3.3 of [6].

Hence,

Theorem 5.3. For n ≥ 1,

dKS(Yn, Y ) ≤ (12M2)1/3n−1/3 < (3072/n)1/3 < 15n−1/3.

Numerical evidence [20] suggests that M < 1, which would give a bound 2.3n−1/3.
As stated in the introduction, we do not know the right order of decay. The rate

O(nε−1/2) in Theorem 5.2 can be marginally improved to exp(C
√

lnn)n−1/2 by checking
that the proof of Theorem 3.1 yields cp = O(cp) for some c and then choosing p =
(lnn)1/2 in Lemma 5.1. We omit the details, since it is likely that this still is far from
the truth.

The best lower bound we can prove is Ω(n−1).

Theorem 5.4.
dKS(Yn, Y ) >

1
8(n+ 1)

, n ≥ 1.

Again, the lower bound follows from quite general considerations. In this case we
use the following lemma.

Lemma 5.5. Suppose that Y and Z are two random variables such that Y has a con-
tinuous distribution while a(Z − b) is integer-valued for some real numbers a > 0 and b.
If σ2

Z := VarZ <∞, then

dKS(Y, Z) ≥ 1/(12aσZ + 8).

Proof. For any x ∈ R and δ > 0,

FZ(x+ δ)− FY (x+ δ) + FY (x− δ)− FZ(x− δ) ≤ 2dKS(Y, Z).

Letting δ → 0 we find, since Y is continuous,

P (Z = x) ≤ 2dKS(Y, Z).

The result now follows from the following lemma applied to a(Z − b).

Lemma 5.6. If Z is an integer-valued random variable with finite variance σ2
Z , then

sup
n
P (Z = n) ≥ 1/(6σZ + 4).

Proof. Let µ := EZ and m :=
⌈

3
2σZ

⌉
. By Chebyshev’s inequality,

P (|Z − µ| ≥ m) ≤
σ2

Z

m2
≤ 4

9
<

1
2

and thus
P (µ−m < Z < µ+m) > 1/2.

The interval (µ−m,µ+m) contains at most 2m integers, and thus it must contain an
integer n such that

P (Z = n) ≥ 1
2m

P (µ−m < Z < µ+m) >
1

4m
>

1
6σZ + 4

.
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Proof of Theorem 5.4. We apply Lemma 5.5 with a = n and observe that

σYn := (VarYn)1/2 < σ = (VarY )1/2 (5.1)

and that 12σ .= 7.8 < 8. Indeed, (5.1) is trivial for n = 1 or 2 and easily verified for
3 ≤ n ≤ 6, while for n ≥ 7 it holds because then, by (1.2) and (1.3),

σ2 −VarYn = −4
π2

6
+ 4

(
1 +

1
n

)2

H(2)
n + 2

n+ 1
n2

Hn −
13
n

> −4
∞∑

k=n+1

k−2 +
8
n
H(2)

n +
2
n
Hn −

13
n

> 1
n

(
−4 + 8H(2)

n + 2Hn − 13
)
> 0.

6 Approximating the density of Y

It was shown in [6] that the density f of Y is infinitely differentiable, with all derivatives
rapidly decaying. In particular, the derivative f ′ is bounded; Theorem 3.3 of [6] gives
the explicit bound

M ′ := sup
x∈R

|f ′(x)| < 2466.

(This is not very sharp; the true value seems to be less than 2.) The bounds above on
the Kolmogorov–Smirnov distance then imply the following local result.

Theorem 6.1. For any x ∈ R and δ > 0,∣∣∣∣∣Fn(x+ δ
2)− Fn(x− δ

2)
δ

− f(x)

∣∣∣∣∣ ≤ (96M2)1/3

δn1/3
+
M ′

4
δ.

In particular, for any M̄ ≥M and M̄ ′ ≥M ′, choosing δ = δn := 2
(
96M̄2(M̄ ′)−3

)1/6
n−1/6

yields ∣∣∣∣∣Fn(x+ δn
2 )− Fn(x− δn

2 )
δn

− f(x)

∣∣∣∣∣ ≤ (
96M̄2(M̄ ′)3

)1/6
n−1/6. (6.1)

The choices M̄ = 16 and M̄ ′ = 2466 provided by [6] yield the bound 268n−1/6

in (6.1). If M̄ = 1 and M̄ ′ = 2 could be proven to be legitimate, we could reduce the
bound to 3.03n−1/6.

Proof. By Theorem 5.3,∣∣Fn

(
x+ δ

2

)
− Fn

(
x− δ

2

)
−

(
F

(
x+ δ

2

)
− F

(
x− δ

2

))∣∣ ≤ 2dKS(Yn, Y ) ≤ 2(12M2)1/3n−1/3,

while ∣∣∣∣F (
x+

δ

2

)
− F

(
x− δ

2

)
− δf(x)

∣∣∣∣ =

∣∣∣∣∣
∫ δ/2

−δ/2
(f(x+ y)− f(x)) dy

∣∣∣∣∣
≤

∫ δ/2

−δ/2
M ′|y| dy =

M ′

4
δ2.

The first estimate follows, and the second is an immediate consequence.
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Theorem 6.1 yields a simple method to numerically calculate the unknown density f
up to any given accuracy. For an application, see [2]. (In [2], a preliminary version
of Theorem 6.1 with larger constants is used.) Note, however, that the convergence
is slow and that it seems impractical to obtain high precision by this method. Other,
potentially more powerful, methods to calculate f numerically are discussed in [8].

Open Problem 6.2. Does a local limit theorem hold in the form that∣∣∣∣nP (Xn = k)− f

(
k − µn

n

)∣∣∣∣ =
∣∣∣∣nP (

Yn =
k − µn

n

)
− f

(
k − µn

n

)∣∣∣∣ → 0,

perhaps uniformly in k ∈ Z, as n→∞?

7 Bounds on moment generating functions

Rösler [19] proved that the moment generating functions E eλYn are bounded for fixed λ,
and thus E eλYn → E eλY as n→∞. Rösler did not make his estimates explicit, but his
method can be used to obtain explicit bounds. For the limit variable Y , this was done
in [8], where we obtained by Rösler’s method (with some refinements) the following
explicit estimates for the moment generating function of Y : Let L0

.= 5.018 be the
largest root of eL = 6L2; then

ψY (λ) := E eλY ≤



e1.25λ2
, λ ≤ −0.62,

e0.5λ2
, −0.62 ≤ λ ≤ 0,

eλ
2
, 0 ≤ λ ≤ 0.42,

e12λ2
, 0.42 ≤ λ ≤ L0,

e2eλ
, L0 ≤ λ.

(7.1)

In particular, E eλY ≤ exp
(
max

(
12λ2, 2eλ

))
for all λ ∈ R.

The constants in (7.1) are not sharp, but the doubly exponential growth as λ→ +∞
is correct: it was also shown in [8] that ψY (λ) ≥ exp

(
γλ−1eλ

)
for all large λ whenever

γ < 2/e.
In this section we will establish similar bounds for E eλYn . For simplicity we first

consider the slight shrinkage

Ŷn :=
n

n+ 1
Yn =

Xn − µn

n+ 1

of Yn; in particular, Ŷ0 := X0 − µ0 = 0. We then have the following simple result.

Theorem 7.1. E eλŶn ↑ E eλY as n ↑ ∞. Hence, for any n ≥ 0, E eλŶn ≤ E eλY , and
in particular the upper bounds on E eλY in (7.1) above apply also to E eλŶn.

Proof. It is well known that the number Xn of Quicksort comparisons has the same
distribution as the internal path length of a random binary search tree (under the ran-
dom permutation model) with n internal nodes—see, e.g., [15, Section 6.2.2]. Moreover,
it was shown by Régnier [18] that when Xn is reinterpreted as the internal path length
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of an evolving random binary search tree after n keys have been inserted, the process
(Ŷn)n≥0 is a martingale, which is L2-bounded and thus converges a.s. and in L2 to some
limit Y . It follows that also Yn → Y a.s., and thus in distribution; hence this random
variable Y is (a realization of) the same Y as above.

The martingale property can be written Ŷn = E (Ŷn+1|Fn), for the appropriate
σ-field Fn. Since x 7→ eλx is convex, it now follows by Jensen’s inequality for condi-
tional expectations that eλŶn ≤ E (eλŶn+1 |Fn); and thus, taking expectations, E eλŶn ≤
E eλŶn+1 .

By the same argument, E eλŶn ≤ E eλY for each n ≥ 0, which together with Fatou’s
lemma yields E eλŶn → E eλY as n→∞.

Corollary 7.2. For every n ≥ 1, we have

E eλYn ≤



e1.25[1+(1/n)]2λ2
, λ ≤ 0,

e0.5[1+(1/n)]2λ2
, −0.62n/(n+ 1) ≤ λ ≤ 0,

e[1+(1/n)]2λ2
, 0 ≤ λ ≤ 0.42n/(n+ 1),

e12[1+(1/n)]2λ2
, 0 ≤ λ ≤ L0 n/(n+ 1),

e2e[1+(1/n)]λ
, L0 n/(n+ 1) ≤ λ.

In particular, E eλYn ≤ exp
(
max

(
12[1 + (1/n)]2λ2, 2e[1+(1/n)]λ

))
for all λ ∈ R.

Proof. λYn = λnŶn with λn := [1 + (1/n)]λ.

Remark 7.3. The factors [1+(1/n)] in Corollary 7.2 are annoying but hardly important
in applications. With some effort, we have been able to modify the proof in [8] and obtain
for λ ≥ −0.58 the same estimates for E eλYn as obtained there for E eλY ; for λ < −0.58
we only obtain a slightly weaker bound, which for large n is inferior to the bound in
Corollary 7.2. More precisely, we have shown

E eλYn ≤



e1.34λ2
, λ ≤ −0.58,

e0.5λ2
, −0.58 ≤ λ ≤ 0,

eλ
2
, 0 ≤ λ ≤ 0.42,

e12λ2
, 0.42 ≤ λ ≤ L0,

e2eλ
, L0 ≤ λ.

(7.2)

In particular, E eλYn ≤ exp
(
max

(
12λ2, 2eλ

))
for all λ ∈ R. In other words, we can

eliminate the factors [1 + (1/n)] in Corollary 7.2 for λ ≥ −0.58 (and in particular for
all positive λ). Since the proof is quite long and the result only marginally improves
Corollary 7.2, we give the proof not here but rather in a separate appendix [9].

It seems likely that with further effort one could remove the factor [1 + (1/n)] for
λ < −0.58 too, so that all the bounds in (7.1) also would bound eλYn . Moreover, it
seems quite likely that E eλYn ≤ E eλY holds for all λ and n, and perhaps even that
E eλYn ↑ E eλY , as was proved for Ŷn in Theorem 7.1.

Theorem 7.1 enables us to get an explicit constant in Rösler’s [19] large deviation
bound.
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Corollary 7.4. For any ε > 0 and λ > 0,

P (|Xn − µn| ≥ εµn) ≤ 2 exp
[
3ελ+ max

(
12λ2, 2eλ

)]
n−2ελ.

Proof. By Markov’s inequality,

P (|Xn − µn| ≥ εµn) = P (|Ŷn| ≥ εµn/(n+ 1))

≤ exp(−ελµn/(n+ 1))E eλ|Ŷn|

≤ exp(−ελµn/(n+ 1))
(
E eλŶn + E e−λŶn

)
.

The result follows from Theorem 7.1, since µn/(n+ 1) ≥ 2Hn − 4 ≥ 2 lnn− 3 by (1.7)
and (1.9).

Corollary 7.5. For any fixed ε > 0,

P (|Xn − µn| ≥ εµn) ≤ n−2ε ln ln n+O(1), n ≥ 2.

Proof. Take (for n ≥ 3) λ = ln lnn in Corollary 7.4.

The bound in Corollary 7.5 is essentially the same as the one obtained by McDiarmid
and Hayward [16] by different methods; the only difference is a slight improvement in
the error term. More generally, McDiarmid and Hayward [16] considered ε varying
with n such that 1/ lnn < ε ≤ 1; if we take λ = ln lnn + ln ε in Corollary 7.4, we
obtain the bound in their Theorem 1.1 with O(ln ln lnn) improved to O(1). Compare
also the related large deviation estimates for the limit distribution Y in [8] (by similar
arguments) and Knessl and Szpankowski [13] (much more precise, but assuming an as
yet unverified regularity hypothesis).

Finally we show that the rate of convergence of the moment generating functions
E eλYn to E eλY also is O(n−1/2). (The same holds for E eλŶn .)

Theorem 7.6. For any fixed complex λ,

E eλYn = E eλY +O(n−1/2).

Explicitly, with λ1 := Re(λ),∣∣∣E eλYn −E eλY
∣∣∣ ≤ 3|λ| exp

[
max

(
24[1 + (1/n)]2λ2

1, e
2[1+(1/n)]λ1

)]
n−1/2.

Proof. Consider a d2-optimal coupling of Yn and Y . Then, using the mean value theo-
rem, the Cauchy–Schwarz inequality, Corollary 7.2, and (7.1),∣∣∣E eλYn −E eλY

∣∣∣ ≤ E
∣∣∣eλYn − eλY

∣∣∣
≤ E

(
|λ||Yn − Y | emax(λ1Yn,λ1Y )

)
≤ |λ|

(
E |Yn − Y |2

)1/2
(
E e2 max(λ1Yn,λ1Y )

)1/2

≤ |λ|d2(Yn, Y )
(
E e2λ1Yn + E e2λ1Y

)1/2

≤
√

2 |λ| exp
[
max

(
24[1 + (1/n)]2λ2

1, e
2[1+(1/n)]λ1

)]
d2(Yn, Y ).

The result follws by Theorem 2.1.
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Remark 7.7. By Remark 7.3, the factors [1+(1/n)] can be eliminated in the statement
of Theorem 7.6.
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