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Abstract. We study Rademacher chaos indexed by a sparse set which has
a fractional combinatorial dimension. We obtain tail estimates for finite
sums and a normal limit theorem as the size tends to infinity. The tails for
finite sums may be much larger that the tails of the limit.

1. Introduction and results

A (homogeneous) Rademacher chaos is a random variable of the type

S =
∑

i1<···<id

ai1···idri1 · · · rid , (1.1)

where d ≥ 1, ai1···id are real or complex numbers and r1, r2, . . . is a sequence
of independent random variables with the symmetric two-point distribution
P(ri = 1) = P(ri = −1) = 1/2. (For example, ri could be the classical
Rademacher functions [19], defined on [0, 1] (with the usual Lebesgue measure)
by ri(x) = 1 − 2bi when x ∈ [0, 1] has the binary expansion 0.b1b2 . . . , but it
is often more convenient to let ri be defined on the Cantor group Z∞2 . For
our purposes, the choice of ri does not matter.) Equivalently, S is a linear
combination of the Walsh functions of the type ri1 · · · rid .

We will consider only finite sums (1.1), so there is no problem of convergence,
and all moments of S are finite.

We are interested in two related properties of the random variables S: the
tail behaviour, i.e. the size of the probabilities P(|S| > x) for large x, and the

size of the Lq norms ‖S‖q =
(
E |S|q

)1/q
for large q. For convenience, we define

S̃ = S/‖S‖2; thus E S̃ = 0 and Var S̃ = E S̃2 = 1.
Bonami’s hypercontractive inequality [4] implies that every S in (1.1) satis-

fies

‖S‖q ≤ (q − 1)d/2‖S‖2 = (q − 1)d/2
( ∑

i1<···<id

|ai1···id |2
)1/2

, q ≥ 2, (1.2)

or, equivalently, ‖S̃‖q ≤ (q − 1)d/2, q ≥ 2. (See also [1, 2, 11, 13].)
In general, this estimate is best possible, up to a constant depending on d but

not on q. For example, it is easily seen that ai1···id = 1 for 1 ≤ i1 < · · · < id ≤ n
(and 0 otherwise) yields an S = Sn that after suitable normalization converges,
as n →∞, to a (Hermite) d-degree polynomial in a Gaussian random variable;
see Example 3.2. It thus follows that for some c(d) > 0 and every q ≥ 2,
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‖S‖q ≥ c(d)(q − 1)d/2‖S‖2 provided n is large enough. (See e.g. [11, Chapter
XIII].)

In this paper we study Rademacher chaos (1.1) where most coefficients
ai1···id = 0 so that we really only sum over an indexing set which is com-
binatorially sparse in the sense of [2, Chapters XII and XIII]. In this case,
Bonami’s hypercontractive inequality (1.2) can be improved, precisely reflect-
ing the sparsity of the indexing set.

We first recall some definitions [2, Chapters XIII], which we modify and
adapt to our purposes in this paper.

For F ⊆ Nd and α > 0, define

ΨF (s) = max{|F ∩ (A1 × · · · × Ad)| : Aj ⊂ N, |Aj| ≤ s, j = 1, . . . ,m},
and

dF (α) = sup
s≥1

ΨF (s)/sα = sup
A1,...,Ad

|F ∩ (A1 × · · · × Ad)|/
(
max
j≤d

|Aj|
)α

.

In [2, §XIII.4], the combinatorial dimension of a set F ⊆ Nd is defined to be

dim(F ) = lim sup
s→∞

(
log ΨF (s)/ log s

)
= sup{α : dF (α) = ∞} = inf{α : dF (α) < ∞}. (1.3)

In this paper, we consider sequences of index sets FN ⊆ [N ]d, where [N ] =
{1, . . . , N}, and we adopt the definition below. Because we want to consider
only non-empty index sets, we consider sequences starting at some index N0 ≥
1; this allows for some empty FN for smaller N that we ignore.

Definition. A sequence FN ⊆ [N ]d, N = N0, N0 + 1, . . . , has combinatorial
dimension α if there exist positive constants C1, C2 such that for all N ≥ N0,

dFN
(α) ≤ C1,

(i.e. |FN ∩ (A1 × · · · × Ad)| ≤ C1

(
maxj≤d |Aj|

)α
), and

|FN | ≥ C2N
α.

We write dim{FN} = α.

Given a set F ⊆ Nd, we define FN = F ∩ [N ]d. In the present paper, we
define dim(F ) = dim{FN} when the latter exists (and leave the dimension
undefined otherwise).

Remark 1.1. Note that this is a stricter definition than (1.3); there are sets
F with no dimension in the present sense, but it is easily seen that when the
dimension exists in the present sense, it coincides with (1.3).

If the cardinalities of FN are uniformly bounded, then dim{FN} = 0; oth-
erwise 1 ≤ dim{FN} ≤ d (if dim{FN} exists at all). We are mainly interested
in the case 1 < dim{FN} < d.

Let ∆d = {(i1, . . . , id) : 1 ≤ i1 < · · · < id < ∞} and ∆d
N = ∆d ∩ [N ]d. We

will in the sequel consider only F ⊆ ∆d and FN ⊆ ∆d
N ; This is not essential,

but restriction to ordered sets of indices is convenient when we study sums
(1.6).
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It is proved in [2, Chapter XIII] that for every α ∈ [1, d], there exist sets
F ⊂ ∆d of combinatorial dimension α (also in the stricter sense used here).
Such sets can always be constructed by a random procedure; for rational α ≥
1 and d such that dα is an integer, it is also possible to use the following
deterministic construction.

Example 1.2. (Minimal fractional Cartesian products [2, §XIII.1 and p. 493].)
Fix arbitrary integers d ≥ 3 and 1 ≤ m ≤ d, and let {S1, . . . , Sd} be a cover
of [d] consisting of m-subsets of [d], such that every i ∈ [d] appears in exactly

m elements of S1, . . . , Sd; i.e.,
⋃d

j=1 Sj = [d], |Sj| = m, and for every i ∈ [d],

|{j : i ∈ Sj}| = m.
We employ the following notation: if X is a set, y = (y1, . . . , yd) ∈ Xd and

S ⊆ [d], then

πSy = (yi : i ∈ S).

For an integer N ≥ dm, let n be the greatest integer such that n ≤ N1/m. Fix
a one-one map ϕ from [n]m into [N ], and consider

F ∗
N =

{(
ϕ(πS1k), . . . , ϕ(πSd

k)
)

: k ∈ [n]d
}
. (1.4)

In order to obtain a subset of ∆d
N , for the purposes of this paper, we modify

this set to

FN =
{
(i1, . . . , id) ∈ ∆d

N : (iρ1, . . . , iρd) ∈ F ∗
N for some permutation ρ

}
.

(1.5)
We call the sequence {FN} a fractional Cartesian product.

We further say the the fractional Cartesian product is disconnected if [d] can
be partitioned into two disjoint nonempty subsets T1 and T2 such that each Sj

is a subset of either T1 or T2, and connected otherwise.
The archetypal case is d = 3, m = 2, S1 = {1, 2}, S2 = {1, 3} and S3 =

{2, 3}. This gives a connected fractional Cartesian product.

Claim. dim{FN} = dim{F ∗
N} = d/m.

We verify the claim in the archetypal case d = 3, m = 2 only. The general
case is similar; see [2, Corollary XIII.16].

Let 1 ≤ s ≤ N be an integer, and let A, B, C be arbitrary subsets of [N ].
Then,

|F ∗
N ∩ (A×B × C)| =

∑
k1,k2,k3∈[n]

1A(ϕ(k1, k2))1B(ϕ(k1, k3))1C(ϕ(k2, k3)).

A three-fold application of the Cauchy–Schwarz inequality yields

|F ∗
N ∩ (A×B × C)| ≤

( ∑
k1,k2∈[n]

1A(ϕ(k1, k2))
)1/2( ∑

k1,k3∈[n]

1B(ϕ(k1, k3))
)1/2

·
( ∑

k2,k3∈[n]

1C(ϕ(k2, k3))
)1/2

≤ |A|1/2|B|1/2|C|1/2,
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which implies ΨF ∗
N
(s) ≤ s3/2 and thus ΨFN

(s) ≤ 6s3/2. In the opposite direc-
tion,

|FN | ≥ |∆3
n| =

(
n

3

)
≥ c1n

3 ≥ c2N
3/2.

Remark 1.3. Again, the definition differs slightly from [2]; there the fractional
Cartesian product is defined on an infinite set (n = ∞ in (1.4)).

Remark 1.4. Note that the function ϕ appears in the definition of a fractional
Cartesian product, only because we let the indices be integers in this paper. We
might avoid ϕ by changing the notation slightly; for example, for the case d =
3, m = 2, we could equivalently write (1.9) below as SN =

∑
i<j<k≤n rijrikrjk,

where rij, i < j are independent Rademacher variables.

It is shown in [2] (e.g., Corollary XIII.29, see Remark 1.9 below) that if
F ⊆ ∆d (finite or infinite), and S is a Rademacher chaos

S =
∑

(i1,...,id)∈F

ai1···idri1 · · · rid , (1.6)

then

‖S‖q ≤ KdF (α)1/2qα/2‖S‖2, q ≥ 1, (1.7)

where K < ∞ depends only on the ambient dimension d. In particular, if
dim{FN} < d, the exponent in (1.2) can be improved, with d replaced by the
combinatorial dimension.

These norm estimates lead to tail estimates by the customary procedure:
If (1.7) holds and dF (α) < ∞, then for any x > 0 and q ≥ 1, by Markov’s
inequality,

P(|S̃| ≥ x) ≤ x−q E |S̃|q = x−q‖S̃‖q
q ≤

(
x−1Cqα/2

)q
,

where C = KdF (α)1/2. Taking q = (x/C)2/αe−1 (if x ≥ Ceα/2), we obtain

P(|S̃| ≥ x) ≤ e−αq/2 = exp
(
−cx2/α

)
, (1.8)

for a constant c > 0 depending on d, α and dF (α) only.
The norm and tail estimates above are in fact sharp, in a sense made precise

below. (Cf. [2, Corollary XIII.29].) For simplicity, we will consider only the
case where ai1···id = 1 or 0. Specifically, we consider a sequence of non-empty
sets FN ⊆ ∆d

N and Rademacher chaos

SN =
∑

(i1,...,id)∈FN

ri1 · · · rid . (1.9)

Clearly, ‖SN‖2 = |FN |1/2, and thus S̃N = |FN |−1/2SN .

Theorem 1.5. Suppose dim{FN} = α ≥ 1, where FN ⊆ ∆d
N . Let SN be given

by (1.9). Then there exist positive constants c1, c2, c3, c4 (depending only on
d, α, C1, C2, N0 above) such that for every q ≥ 1,

c1q
α/2 ≤ sup

N
‖S̃N‖q ≤ c2q

α/2, (1.10)
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and for all x ≥ 2,

exp(−c3x
2/α) ≤ sup

N
P(|S̃N | > x) ≤ exp(−c4x

2/α). (1.11)

A natural question arises: can supN in (1.10) and (1.11) be replaced by
limN→∞? (See Remark ii in [2, p.524].) In the standard integer-dimensional
case FN = ∆d, the answer is affirmative (by a d-fold application of the usual
Central Limit theorem). But in many fractional-dimensional cases, the answer
is negative: the precise relation between tail estimates and combinatorial di-
mension, as per (1.11), is completely wiped out in the limit. We illustrate this
in two important cases.

Theorem 1.6. Let FN ⊆ ∆d
N , N = 1, . . . , and let SN be given by (1.9).

Suppose either (i) d = 2 and 1 < dim{FN} < 2, or (ii) FN is a connected

fractional Cartesian product as in Example 1.2. Then S̃N
d→ N(0, 1) with

convergence of all moments. In particular, if ξ ∼ N(0, 1), then, for all q ≥ 1,

lim
N→∞

‖S̃N‖q = ‖ξ‖q ≤ q1/2

and for all x ≥ 2,

lim
N→∞

P(|S̃N | > x) = P(|ξ| > x) ≤ exp(−x2/2).

Case (ii) with m = 2 can be translated (using Remark 1.4) into a result for
random graphs, which is a special case (with p = 1/2) of [9, Theorem 1]; see
also [10] and [11, Chapter XI].

Theorems 1.5 and 1.6 complement one another in the following (heuristic)
sense. Let us agree that tail probabilities of sums of uncorrelated symmetric
variables provide a gauge of interdependence between the variables: larger
tail probabilities (smaller likelihood of cancellations) convey higher degree of
interdependence, and conversely. In this light, Theorem 1.5 provides a precise
assessment of interdependence of the random variables ri1 · · · rid , (i1, . . . , id) ∈
FN . As a counterpoint, reflecting increasing sparsity of FN relative to the full
product set ∆d

N , Theorem 1.6 asserts that FN in the limit, as N → ∞, is
asymptotically independent.

Theorems 1.5 and 1.6 show that, for large q or x, the limits as N → ∞
are much smaller than the largest values for finite N . If we fix a large q and

study ‖S̃N‖q as N grows, we begin with rather small values (at most |FN |1/2)
that grow to a maximum of the order qα/2 (when N is about q, see Section 2),
but then the norms decrease again towards a limit of the order q1/2. (We do
not know whether the increase and decrease are monotone; there might be

several local maxima.) A similar story holds for P(|S̃N | > x) for a fixed large
x. Consequently, the limit results in Theorem 1.6 are misleading when we

consider S̃N for finite N .
A central limit theorem in fact holds generally under a condition of sparsity

in FN that is milder than the sparsity implied by non-integer combinatorial
dimension. The condition is in effect that FN is not “too close” to a product
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set. To express this precisely we use the following terminology. For j ∈ [N ],
define

F ∗
Nj =

{
(i1, . . . , id) ∈ FN : j ∈ {i1, . . . , id}

}
.

Further, let F#
N be the subset of FN × FN defined as follows: a pair of d-

tuples
(
(i1, . . . , id), (j1, . . . , jd)

)
∈ F#

N if {i1, . . . , id}∩{j1, . . . , jd} = ∅ and there
exist (k1, . . . , kd) ∈ FN , (l1, . . . , ld) ∈ FN such that {k1, . . . , kd, l1, . . . , ld} =
{i1, . . . , id, j1, . . . , jd} but (k1, . . . , kd) does not equal (i1, . . . , id) or (j1, . . . , jd).
(In other words, the 2d indices i1, . . . , id, j1, . . . , jd can be partitioned in at
least two ways into elements of FN .)

Theorem 1.7. Suppose

lim
N→∞

max
j
|F ∗

Nj|/|FN | = 0 (1.12)

and
lim

N→∞

(
|F#

N |/|FN |2
)

= 0. (1.13)

Then S̃N
d→ N(0, 1), with convergence of all moments.

We have the following partial converse. (The trivial example F = {(1, j) :
j ≥ 2} shows that (1.12) is not necessary; we do not know whether it is needed
at all in Theorem 1.7.)

Theorem 1.8. Suppose that S̃N
d→ N(µ, σ2) for some µ and σ2 > 0. Then

µ = 0, σ2 = 1 and (1.13) holds.

The proof of Theorem 1.5 is given in Section 2, and the proofs of Theorems
1.6, 1.7, 1.8 are given in Section 3. Some simple examples of nonnormal limits
when (1.13) is not satisfied are given also in Section 3. Further remarks and
open problems are presented in Section 4.

Remark 1.9. The results in the present paper use Corollary XIII.29 in [2].
A correction to an argument in the proof of that theorem is included in the
preprint version of the present paper [3]. The referee has pointed out that (1.7)
also follows from [2, Corollary XIII.28] together with the decoupling inequality,
see e.g. [6, Theorem 3.1.1].

2. Proof of Theorem 1.5

The upper bounds follow by (1.7) and (1.8) (for x ≥ x0, say; the case
2 ≤ x ≤ x0 follows by Chebyshev’s inequality if c4 is small enough).

To verify the lower bounds, let EN be the event r1 = · · · = rN = 1; thus

P(EN) = 2−N . On EN , we have SN = |FN | and thus S̃N = |FN |1/2. Hence, for
every q ≥ 1,

‖S̃N‖q ≥ |FN |1/2 P(EN)1/q ≥ cNα/22−N/q.

To verify the left inequality in (1.10), in the line above choose N = max(N0, bqc).
Similarly, given x (large enough), let N = dCx2/αe for a constant C > C

−1/α
2 ,

where C2 is as in the definition above. Then, on EN

S̃N = |FN |1/2 ≥ C
1/2
2 Nα/2 > x,
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and thus
P(S̃N > x) ≥ P(EN) = 2−N ≥ exp(−c3x

2/α). �

3. Asymptotic normality

Lemma 3.1. If d = 2, then for any α and any finite subsets A and B of N
such that |A| ≤ |B|,

|F ∩ (A×B)| ≤ 2dF (α)|A|α−1|B|,
|F ∩ (B × A)| ≤ 2dF (α)|A|α−1|B|.

Proof. We may assume |A| ≥ 1. Partition B into d|B|/|A|e ≤ 2|B|/|A| subsets
Bj with |Bj| ≤ |A|. For each j, |F ∩ (A × Bj)| ≤ ΨF (|A|) ≤ dF (α)|A|α, and
similarly for |F ∩ (Bj × A)|. The result follows by summing over j. �

Proof of Theorem 1.6. We verify the conditions of Theorem 1.7. Let α =
dim{FN}.

First consider case (i), i.e., suppose that d = 2 and 1 < α < 2. Then,
|F ∗

Nj| ≤ N = o(|FN |), which verifies (1.12).

Next, choose εN > 0 such that εN → 0 and Nε
1/(2−α)
N →∞. (For example,

εN = N−δ for 0 < δ < 2− α.) Let A = AN = {i : |F ∗
Ni| ≥ εNN}. Then,

|FN ∩ (A× [N ])|+ |FN ∩ ([N ]× A)| =
∑
i∈A

|F ∗
Ni| ≥ εNN |A|,

and thus, by Lemma 3.1

εNN |A| ≤ 4dFN
(α)|A|α−1N,

which implies

|A| ≤
(
4dFN

(α)/εN

)1/(2−α)
= o(N). (3.1)

By definition, F#
N is the set of all

(
(i, j), (k, l)

)
∈ FN×FN , all of which entries

are distinct, such that either
(
{i, k}, {j, l}

)
∈ FN × FN or

(
{i, l}, {j, k}

)
∈

FN ×FN (or both), where {i, k} = (i, k) when i < k and (k, i) when i > k. We

let F#
N1 be the subset of F#

N where i ∈ A, and F#
N2 the subset where i /∈ A.

The number of possible (i, j) ∈ FN with i ∈ A is |FN ∩ (A× [N ])|, and thus,
by Lemma 3.1 and (3.1),

|F#
N1| ≤ |FN ∩ (A× [N ])| · |FN | ≤ 2dFN

(α)|A|α−1N |FN |
= o

(
Nα|FN |

)
= o(|FN |2). (3.2)

On the other hand, let F ∗∗
Ni = {k : (i, k) ∈ F ∗

Ni or (k, i) ∈ F ∗
Ni}. Thus

|F ∗∗
Ni| = |F ∗

Ni|. If
(
(i, j), (k, l)

)
∈ F#

N , then either k or l is in F ∗∗
Ni, and thus

the number of possible (k, l) ∈ FN for a given i /∈ A is at most, again by
Lemma 3.1,

|FN ∩ (F ∗∗
Ni × [N ])|+ |FN ∩ ([N ]×F ∗∗

Ni)| ≤ 4dF (α)|F ∗∗
Ni|α−1N ≤ 4dF (α)εα−1

N Nα.

Summing over all possible (i, j) we find

|F#
N2| ≤ 4dF (α)εα−1

N Nα|FN | = o(|FN |2). (3.3)
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Combining (3.2) and (3.3), we obtain (1.13) and the result follows in this case.
In case (ii), we first observe that fixing an index j in FN means that the

corresponding k in (1.4) is such that πSi
k = ϕ−1(j) for some i; for each i

this means that m of the d coordinates of k have given values, so the number
of choices of k is at most dnd−m. Consequently, |F ∗

Nj| ≤ dnd−m = o(|FN |),
proving (1.12).

Next, suppose that
(
(i1, . . . , id), (j1, . . . , jd)

)
∈ F#

N , and that (i1, . . . , id)
and (j1, . . . , jd) are generated by (1.4) and (1.5) by some vectors i and j in

[n]d, respectively. By the definition of F#
N , there exists also (k1, . . . , kd) ∈

FN , generated in the same way by, say, k ∈ [n]d, such that {k1, . . . , kd} ⊆
{i1, . . . , id, j1, . . . , jd} but (k1, . . . , kd) does not equal (i1, . . . , id) or (j1, . . . , jd).

Hence, each πSνk, 1 ≤ ν ≤ d, coincides with some πSµi or πSµj, 1 ≤ µ ≤ d.
Define

J1 = {ν ∈ [d] : πSνk = πSµi for some µ};
J2 = {ν ∈ [d] : πSνk = πSµj for some µ};

Ts =
⋃

ν∈Js

Sν , s = 1, 2.

Then J1∪J2 = [d] and T1∩T2 6= ∅, because otherwise the fractional Cartesian
product would be disconnected.

If q ∈ T1, then q ∈ Sν for some ν ∈ J1, and thus πSνk = πSµi for some µ. In
particular, the qth coordinate of k is one of the coordinates of i. Similarly, if
q ∈ T2, then the qth coordinate of k is one of the coordinates of j.

Because T1 ∩ T2 6= ∅, it follows that i and j have at least one coordinate in
common (not necessarily in the same position). Consequently, the number of
possible pairs (i, j) is O(n2d−1), and

|F#
N | = O

(
n2d−1

)
= O

(
N2(d/m)−1

)
= o

(
N2α

)
= o

(
|FN |2

)
,

verifying (1.13). �

Proof of Theorem 1.7. All limits in the proof are as N → ∞. We begin by
observing that the assumption (1.12) implies

N∑
j=1

|F ∗
Nj|2 ≤ max

j
|F ∗

Nj|
N∑

j=1

|F ∗
Nj| ≤ max

j
|F ∗

Nj| · d|FN | = o
(
|FN |2

)
. (3.4)

We use the martingale central limit theorem, as stated in [16, Corollary
(2.13)]. We let

FNj =
{
(i1, . . . , id) ∈ FN : id = j

}
⊆ F ∗

Nj,

and let
XNj =

∑
(i1,...,id)∈FNj

ri1 · · · rid = rj

∑
(i1,...,id)∈FNj

ri1 · · · rid−1
.

Then

SN =
N∑

j=1

XNj
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and, with X̃Nj = |FN |−1/2XNj,

S̃N =
N∑

j=1

X̃Nj.

Evidently, (X̃Nj)
N
j=1 is a martingale difference sequence for the filtration Fj =

F(r1, . . . , rj), and we have E S̃2
N =

∑
E X̃2

Nj = 1.

By [16, Corollary (2.13)], to prove S̃N
d→ N(0, 1) it suffices to verify the

Lindeberg condition

N∑
j=1

E
(
X̃2

Nj1[|X̃Nj| > ε]
)
→ 0 for every ε > 0, (3.5)

together with

lim sup
N→∞

∑
i6=j

E
(
X̃2

NiX̃
2
Nj

)
≤ 1. (3.6)

Because every moment of S̃N stays bounded by (1.2), moment convergence
will follow as well.

To prove (3.5) it suffices to show

N∑
j=1

E X̃4
Nj → 0. (3.7)

In our case, by (1.2) we note ‖X̃Nj‖4 ≤ 3d/2‖X̃Nj‖2 and therefore

N∑
j=1

E X̃4
Nj ≤ 32d

N∑
j=1

‖X̃Nj‖4
2 = 32d

N∑
j=1

|FNj|2

|FN |2
≤ 32d|FN |−2

N∑
j=1

|F ∗
Nj|2,

which by (3.4) implies (3.7).
It remains to verify (3.6). For simplicity we treat first the case d = 2, and

will describe later the modifications needed in the general case. If d = 2, then

E
(
X2

NiX
2
Nj

)
=

∑
k,l,m,n

E1FN
(k, i)1FN

(l, i)1FN
(m, j)1FN

(n, j)rkrlrmrn.

We have, E rkrlrmrn = 0 unless the indices k, l, m, n coincide in pairs, and
obtain (overcounting the case when all four indices coincide)

E
(
X2

NiX
2
Nj

)
≤

∑
k,m

1FN
(k, i)1FN

(k, i)1FN
(m, j)1FN

(m, j)

+ 2
∑
k,l

1FN
(k, i)1FN

(l, i)1FN
(k, j)1FN

(l, j).

Summing the first term on the right over all i and j, we obtain |FN |2. Therefore,
to show (3.6), it suffices to verify∑

i6=j

∑
k,l

1FN
(k, i)1FN

(l, i)1FN
(k, j)1FN

(l, j) = o(|FN |2). (3.8)
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The sum above equals the number of pairs
(
(k, i), (l, j)

)
∈ FN × FN such that

also
(
(l, i), (k, j)

)
∈ FN × FN . The number of such pairs with distinct i, j, k, l

is at most |F#
N |. Further, the number of pairs

(
(k, i), (l, j)

)
∈ FN × FN where

two indices are equal to some r is at most |F ∗
Nr|2. Consequently, the sum in

(3.8) is at most

|F#
N |+

N∑
r=1

|F ∗
Nr|2,

and (3.8) follows by (1.13) and (3.4).
In the case d ≥ 2, we similarly find that E X2

NiX
2
Nj equals the number of

quadruples I1, I2, I3, I4 of d-tuples in FN wherein the 4d indices coincide in
pairs, and the last index is i in I1 and I2 and j in I3 and I4. We group
such quadruples according to the positions of the pairs of coinciding elements
(again overcounting in the cases with less than 2d distinct indices, when there
are several possibilities of pairing).

To do this precisely, let Îk = {1, . . . , d}×{k}, k = 1, 2, 3, 4; thus, Î1, Î2, Î3, Î4

are four disjoint copies of {1, . . . , d}. We define a pattern to be a complete

matching in Î1 ∪ Î2 ∪ Î3 ∪ Î4, i.e. a partition of the 4d points into 2d pairs,
which are regarded as the edges of a graph.

For a pattern π, any assignment of indices in {1, . . . , N} to the 2d edges
defines 4 d-tuples I1, I2, I3, I4 in the obvious way. Let TN(π) be the number
of quadruples (I1, I2, I3, I4) ∈ F 4

N generated this way, i.e., the number of all
assignments such that I1 ∈ FN , I2 ∈ FN , I3 ∈ FN , I4 ∈ FN .

Finally, let Π′ denote the set of all patterns that contain the two edges
{(d, 1), (d, 2)} and {(d, 3), (d, 4)}.

In this framework, we then observe∑
i,j

E X2
NiX

2
Nj ≤

∑
π∈Π′

TN(π).

We classify the patterns in Π′ into three types: a pattern is of type I if all
its edges are inside Î1 ∪ Î2 or Î3 ∪ Î4; it is of type II if it is not of type I and
there are no edges connecting Î2 and Î3, and type III otherwise.

First, consider a pattern π of type I. Since the d-tuples in FN are ordered,
it follows that TN(π) = 0 unless π is the pattern with edges {(i, 1), (i, 2)}
and {(i, 3), (i, 4)}, i = 1, . . . , d. In this case, I1 = I2 and I3 = I4, which are
arbitrary elements of FN , and thus TN(π) = |FN |2.

Because the set of patterns is finite, it suffices to show that TN(π) = o(|FN |2)
for every pattern π of type II or III.

If π is of type II, then I1 and I4 together determine I2 and I3. As in the
case d = 2, the number of allowed pairs (I1, I4) with distinct indices is at most

|F#
N |, and the number of pairs (I1, I4) with at least one common index is at

most
∑N

r=1 |F ∗
Nr|2. Therefore TN(π) = o(|FN |2) by (1.13) and (3.4).

Finally, suppose that π is of type III. Let ÎL = Î1 ∪ Î2 and ÎR = Î3 ∪ Î4,
and call these the left and right sides of the pattern. We further say that the
points (i, k) ∈ ÎL and (i, k + 2) ∈ ÎR are the mirror images of one another.
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Suppose that there are r edges between ÎL and ÎR; call these r edges crossing,
and order them (in some way). Let tLN(k1, . . . , kr) be the number of ways to

assign indices to the edges inside ÎL such that, with k1, . . . , kr assigned to the
crossing edges, I1, I2 ∈ FN . Similarly, let tRN(k1, . . . , kr) be the corresponding

number of ways to assign indices in ÎR such that I3, I4 ∈ FN . Then,

TN(π) =
N∑

k1,...,kr=1

tLN(k1, . . . , kr)t
R
N(k1, . . . , kr).

Further, let π′ be the pattern obtained by taking the edges inside ÎL in π to-
gether with their mirror images in ÎR and the edges connecting each remaining
point to its mirror image. Define π′′ similarly, starting with the edges inside
ÎR in π. Note that both π′ and π′′ are patterns of type II. Then, by the
Cauchy–Schwarz inequality,

TN(π) =
N∑

k1,...,kr=1

tLN(k1, . . . , kr)t
R
N(k1, . . . , kr)

≤
( N∑

k1,...,kr=1

tLN(k1, . . . , kr)
2
)1/2( N∑

k1,...,kr=1

tRN(k1, . . . , kr)
2
)1/2

= TN(π′)1/2TN(π′′)1/2

= o(|FN |)2,

where the final estimate holds because π′ and π′′ are of type II.
This completes the proof of (3.6) and thus of the theorem. �

Proof of Theorem 1.8. If S̃N converges in distribution, then (1.2) implies that
all moments converge (as remarked in the proof of Theorem 1.7). In particular,

µ = lim E S̃N = 0 and σ2 = lim E S̃2
N = 1; further,

E S̃4
N → E ξ4 = 3. (3.9)

Similarly, as in the proof above, ES4
N equals the number of quadruples (I1, I2,

I3, I4) of d-tuples in FN such that the 4d indices in them coincide in pairs. To
estimate this number from above, we note that the number of possibilities that
I1, I2, I3, I4 can coincide in two different pairs is 3|FN |(|FN |−1), and that each

element in F#
N contributes (at least) one more to the count. Hence,

|FN |2 E S̃4
N = E S4

N ≥ 3|FN |2 − 3|FN |+ |F#
N |. (3.10)

Obviously, |FN | → ∞ if S̃N
d→ N(0, 1). Hence, (3.9) and (3.10) imply (1.13).

�

We end this section with some counterexamples where the set FN is close to
a product set and asymptotic normality does not hold.

Example 3.2. Take FN = ∆d
N with d ≥ 2. It is easily seen that (1.13) does

not hold, so asymptotic normality fails by Theorem 1.8. Actually, it is easy

to see that in this case, S̃N converges to a Hermite polynomial of degree d in
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a standard normal variable [20], see also [11, Section XI.1] and [2, Theorem
X.26].

In particular, with d = 2, this example shows that Theorem 1.6(i) does not
extend to dim{FN} = 2.

Example 3.3. Fix an integer ` ≥ 1 and let, for N > `, FN be the product set
{1, . . . , `} × {` + 1, . . . , N}.

Clearly, SN =
∑`

1 ri ·
∑N

`+1 rj and it follows from the central limit theorem
that

S̃N
d→ Y ξ,

where Y and ξ are independent, ξ ∼ N(0, 1) and Y = `−1/2
∑`

1 ri.
Hence, if ` = 1, the limit is normal, but not if ` ≥ 2. For example, if ` = 2,

the limit variable is 0 with probability 1/2. (The limit can be regarded as a
mixture of normal distributions with different variances.)

In particular, this example shows that Theorem 1.6(i) does not extend to
dim{FN} = 1.

Example 3.4. Consider a disconnected fractional Cartesian product. For
example, take d = 6, m = 2 and let S1, . . . , S6 be the sets {1, 2}, {1, 3}, {2, 3},
{4, 5}, {4, 6}, {5, 6}. It is easily seen that (1.13) does not hold, so asymptotic
normality fails by Theorem 1.8.

This case is related to the case of disconnected G or H, respectively, in

[9, Theorem 1] or [10, Theorem 1]. We expect that, as in those results, S̃N

converges to a polynomial in normal variables, but we have not checked the
details.

4. Further remarks and open problems

Remark 4.1. It would be interesting to know more about ‖S̃N‖q and P(|S̃N | >
x) as functions of N . For example, how fast is the transition from the maxima
in Theorem 1.5 to the limits in Theorem 1.6 as N grows?

Remark 4.2. We considered for simplicity only ai1···id = 1 in Theorems 1.5
and 1.6. The upper bounds in (1.7) and (1.8) are given for arbitrary ai1···id ,
and, in particular, ai1···id = ±1, but the proof of the lower bounds uses the fact
that all coefficients have the same sign. In general, there will be cancellations
among the terms in (1.6), for any values of r1, . . . , rN , and it seems likely that
the lower bounds in Theorem 1.5 do not extend to general ai1···id . What is the
correct result? Give an extension of Theorem 1.5 to arbitrary ai1···id .

Certainly, the central limit theorems 1.6 and 1.7 extend to sums (1.6) with
suitable conditions on ai1···id , but we have not worked out the details of such
extensions.

See also [8] and [17] for some related bounds.

Remark 4.3. Note that if S is given by (1.6) and dF (α) < ∞, then

‖S‖∞ ≥ c‖{ai1···id}‖`2α/(α+1) ,
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where the exponent 2α/(α+1) is the best possible; see [2, Section XIII.7]. This
generalizes a result for F = ∆d (i.e. sums (1.1), with α = d) proved by Little-
wood [15] for d = 2 and for general d by [5] and [12]. It would be interesting
to obtain lower bounds to the probability P

(
S ≥ c‖{ai1···id}‖`2α/(α+1)

)
.

Remark 4.4. The proofs above show that the tail estimates in Theorem 1.5

hold for the upper tails P(S̃N > x) too. If d is odd, we obtain the same results

for P(S̃N < −x) by symmetry, but if d is even this fails. It seems likely that

supN P(S̃N < −x) is smaller than exp(−cx2/α) for even d, for example for
d = 2. How small is it?

We can also replace the Rademacher system by other orthogonal systems.
(See e.g. [13, Chapter 6] for a general background.)

Remark 4.5. If we replace the Rademacher variables ri by Steinhaus functions
χi, i.e. independent complex random variables that are uniformly distributed
on the unit circle, then Theorem 1.5 still holds.

Indeed, (1.7) is still valid [2, Corollary XIII.29], and thus (1.8) holds by the
same proof, so the upper bounds in Theorem 1.5 hold. For the lower bounds, we
use the same proof as above, now taking EN = {Re χk ≥ 1/2, k = 1, . . . , N}.

For the upper bound in (1.7), we can alternatively introduce a Rademacher
system {ri} independent of {χi}, replace χi by χiri, which has the same dis-
tribution, and use the Rademacher version above conditioning on {χi}. This
standard trick works for all i.i.d. sequences of bounded symmetric random
variables.

Are the central limit theorems 1.6 and 1.7 true for the Steinhaus system too,
now with complex Gaussian limits? (We believe so, but we have not checked
the details.)

Remark 4.6. Let us instead consider a Gaussian chaos, obtained by replacing
ri by independent Gaussian variables ξi ∼ N(0, 1).

The hypercontractive inequality (1.2) holds in this case too [18], see also
[1, 11, 13], but the combinatorial dimension version (1.7) fails in the Gaussian
case, as is seen by taking F to be a set with a single element.

Hence Theorem 1.5 is not true in the Gaussian case. What is true? There
is no problem with the lower bounds in Theorem 1.5; the proof in Section 2
works if we take EN = {ξi > 1, i = 1, . . . , N}.

We believe that Theorems 1.6 and 1.7 hold for the Gaussian case too, but
we have not checked the details.

The estimates in [7] and [14] for d = 2 might be useful.

Remark 4.7. Are the results true if we replace rk by a lacunary sequence
exp(2πinkt), where inf nk+1/nk > 1?
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