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Abstract. Pick n points independently at random in R2, according to a prescribed
probability measure µ, and let ∆n

1 ≤ ∆n
2 ≤ . . . be the areas of the

(n
3

)
triangles

thus formed, in non-decreasing order. If µ is absolutely continuous with respect to

Lebesgue measure, then, under weak conditions, the set {n3∆n
i : i ≥ 1} converges

as n → ∞ to a Poisson process with a constant intensity κ(µ). This result, and

related conclusions, are proved using standard arguments of Poisson approximation,

and may be extended to functionals more general than the area of a triangle. It is
proved in addition that, if µ is the uniform probability measure on the region S, then

κ(µ) ≤ 2/|S|, where |S| denotes the area of S. Equality holds in that κ(µ) = 2/|S| if S

is convex, and essentially only then. This work generalizes and extends considerably
the conclusions of a recent paper of Jiang, Li, and Vitányi.

1. The problem

Drop n points independently and uniformly at random into the unit square [0, 1]2

of R2. Of the
(
n
3

)
triangles thus formed, let ∆n

1 be the smallest area. It is proved
in [10] that E(∆n

1 ) lies between c1n
−3 and c2n

−3 for certain positive real c1 and
c2. An association is proposed in [10] between this problem and the (much harder)
Heilbronn problem of finding the largest value of ∆n

1 for deterministic arrangements
of n points; see [3] and the references therein. A novel aspect of [10] is the use of
Kolmogorov complexity.

Our target in this paper is to present a considerable strengthening of the above
result, and to extend it to more general measures than uniform measure on [0, 1]2.
This will be done using the now standard approach of Poisson approximation and
the so-called Chen–Stein method, see [2]. From this point of view, the problem is a
fairly straightforward exercise in modern probability theory, and does not of itself
require the intervention of concepts imported from complexity theory.

In broad terms, our extensions are as follows. First, we shall prove for the above
problem on the square that n3∆n

1 has, asymptotically, the exponential distribution
with parameter 2 (that is, with mean 1

2 ). Furthermore, the sequence ∆n
1 ≤ ∆n

2 ≤
. . . of smallest areas of triangles, written in non-decreasing order, is such that
n3{∆n

1 ,∆n
2 , . . . } converges as n →∞ to a Poisson process with intensity 2. These

weak-limit theorems are complemented by the convergence of expectations obtained
via an exponential bound on the tails of the ∆n

i .
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Very similar results are valid when the underlying point distribution µ is uniform
on a region S (⊆ R2) having non-zero finite Lebesgue measure |S|. In this case,
the constant 2 is replaced by a constant κ(µ) satisfying κ(µ) ≤ 2/|S|. Furthermore,
κ(µ) = 2/|S| if S is convex, and more fully κ(µ) = 2/|S| if and only if S differs
from a convex set by a null set. Strict inequality holds, for example, if S is the
closure of its interior and is non-convex.

Indeed, corresponding results hold for a family of n points drawn from R2 ac-
cording to a general probability measure µ having a density function f satisfying
the boundedness conditions (A1) and (A2) below. In this very general situation,
one obtains a formula for the ensuing constant κ(µ) in terms of f . Our results in
this general setting are stated in Section 2. In Section 3, we set the scene by adapt-
ing to the present problem some of the basic theorems of Poisson approximation
(see [2]) and exponential bounds (see [9]).

We return in Section 4 to the case of the uniform distribution on the unit square,
where we give explicit proofs for this case. Special prominence is afforded to this
instance since it has featured in [10], and since its resolution contains most of the
basic ingredients of the general case. It is in addition useful to see the required
arguments displayed in their simplicity without the intervention of certain minor
but significant complications which arise in the setting of general measures.

Proofs in the general setting may be found in Section 5, and some properties of
the constant κ(µ) are established in Section 6.

Further extensions come readily to mind, but we have not worked through the
details. For example, for random points in R3, one might study the smallest area of
a triangle formed by three points, or the smallest volume of a tetrahedron formed
by four points, and similarly in higher dimensions. One might also study problems
arising with points in other (Riemannian) manifolds, for example the smallest area
of a geodetic triangle formed by random points on a torus or a sphere. Yet another
possibility would be to allow µ to be singular, perhaps uniform measure on an arc
of R2. The basic ingredients of such extensions are the arguments used in Section
3.

The work reported here is quite closely related to that of [14], where Poisson
limit theorems were established for certain U -statistics, examples of which include
the number of short inter-point distances and the number of ‘flat’ triangles created
by an independent family of points in R2 with a common density function.

Our triangle problem has a property which raises its visibility above that of
some other applications of the approach, namely the following. We will see in the
proofs of Sections 4 and 5 that, although the smallest triangle has small area (with
order n−3), its diameter does not tend (stochastically) to 0 as n →∞, but remains
of order 1. This fact underlies the observation that, in the case of the uniform
distribution µ on a region S, the shape of S affects the value of the constant κ(µ).

2. Notation and results

Let µ be a probability measure on the Borel σ-field of R2, and let X,X1,X2, . . . ,Xn

be points chosen independently at random according to the measure µ. The n points
X1,X2, . . . ,Xn form

(
n
3

)
triangles, whose areas we write in non-decreasing order
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ON SMALLEST TRIANGLES 3

as ∆n
1 ≤ ∆n

2 ≤ . . . . For α > 0, we shall be interested in the number Tn(α) of such
triangles with area not exceeding αn−3, which is to say that

Tn(α) = |{k : ∆n
k ≤ αn−3}|.

The target of this paper is to establish conditions on µ under which Tn(α) has an
approximate Poisson distribution, and more generally that the set n3{∆n

1 ,∆n
2 , . . . }

is approximately distributed as a Poisson process.
We assume throughout that µ is absolutely continuous with respect to Lebesgue

measure, which is to say that there exists an integrable (density) function f : R2 →
[0,∞) such that µ(A) =

∫
A

f(x) dx for any Borel set A. There follow two conditions
on f .

(A1) The function f is bounded, in that there exists M < ∞ such that f(x) ≤ M
for all x ∈ R2.

This condition will prevent the clustering of points. A further condition concerns
certain marginals of f , and this is prefaced with some notation. For notational
convenience, we identify R2 with the complex plane, and we let L(r, θ) denote the
line {reiθ + iteiθ : −∞ < t < ∞}. Note that L(r, θ) = {x : x · (cos θ, sin θ) =
r}, and that L(−r, θ) = L(r, θ + π). The family of all lines is given by either
{L(r, θ) : 0 ≤ θ < 2π, r ≥ 0}, where L(0, θ) is identified with L(0, θ + π), or as
{L(r, θ) : 0 ≤ θ < π, −∞ < r < ∞}. We write fL for the integral of f along
the line L, and denote fL(r,θ) by fr,θ where convenient. Note that the mapping
r 7→ fr,θ is the density function of the projection τθ(X) = X · (cos θ, sin θ) of X
onto the line through the origin in the direction θ. We shall assume that all these
marginal densities are uniformly bounded.

(A2) There exists N < ∞ such that, for all r, θ, fr,θ ≤ N .
In our first theorem, we identify a constant which will play an important role in

what follows. We write |x| for the Euclidean norm of x (∈ R2).

Theorem 2.1. Assume that (A1) and (A2) hold, and let X,Y be chosen indepen-
dently according to µ. Let L(R,Θ) be the straight line passing through the points X
and Y. The constant

(2.1) κ = κ(µ) =
2
3

E
(

fR,Θ

|X−Y|

)
exists and satisfies 0 < κ < ∞. Furthermore,

(2.2) κ =
2
3

∫ π

0

∫ ∞

−∞
f3

r,θ dr dθ.

We are ready to state our main theorem. For accounts of vague and weak
convergence, see [8], [11].

Theorem 2.2. Assume that (A1) and (A2) hold.
(a) The set n3{∆n

1 ,∆n
2 , . . . } converges vaguely to a Poisson process with con-

stant intensity κ = κ(µ), and the convergence is weak when restricted to any
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bounded interval of R. In particular, the random variable n3∆n
1 converges

weakly, as n →∞, to the exponential distribution with parameter κ.
(b) If E(|X|δ) < ∞ for some δ > 0, then all positive moments of n3∆n

1 converge
to the corresponding moments of the exponential distribution with parameter
κ. In particular, E(∆n

1 ) ∼ 1/(κn3) as n →∞.
(c) There exist absolute positive constants A = A(µ), B = B(µ) such that the

total-variation distance between Tn(α) and the Poisson distribution with
parameter λ = λn(α) = E(Tn(α)) satisfies

dTV

(
Tn(α),Po(λn(α))

)
≤ A

1− e−λ

λ
· α2 log(n3/α)

n
,

for 0 < α/n3 < B and n ≥ 3, where, for α > 0, λ = λn(α) → κα as
n →∞.

The conclusion of part (b) is valid with ∆n
1 replaced by ∆n

i+1−∆n
i for any given

i. We shall return briefly to this point after the statement of Theorem 3.4.
With X chosen according to µ, let V = V (µ) denote the covariance matrix of

the 2-vector X, and write |V | for the determinant of V . If E(|X|2) = ∞, we write
|V | = ∞. The constant κ may be calculated numerically using the formula in (2.2),
and there is a universal lower bound on the product κ(µ)|V (µ)|1/2. More important,
there is an explicit formula for κ valid whenever µ is uniform on a convex region.
Prior to stating formally this last fact, we make a definition. A measurable subset
S of R2 is called essentially convex if there exists a set N (⊆ R2) with Lebesgue
measure 0 such that the symmetric difference S 4 N is convex. It is trivial that
every convex set is essentially convex.

Theorem 2.3. Assume that (A1) and (A2) hold.
(a) The product κ(µ)|V (µ)|1/2 is invariant under non-singular affine mappings of
R2, and satisfies

(2.3) κ(µ)|V (µ)|1/2 ≥ 1
6π

for all µ.

(b) Let S be a subset of R2 with non-zero finite Lebesgue measure |S|, and let µ be
the uniform probability measure on S. Then

(2.4) κ(µ) ≤ 2
|S|

.

Equality holds in (2.4) if and only if S is essentially convex.

Proofs of the above results may be found in Sections 5 and 6. Here is an example
of Theorem 2.3(a) in action. Suppose that µ is the standard bivariate normal
distribution on R2. Using the rotational invariance of µ, we have that

fr,θ =
1√
2π

e−r2/2.
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By Theorem 2.1,

κ =
2
3
π

∫ ∞

−∞

1
(2π)3/2

e−3r2/2 dr =
1

3
√

3
.

By Theorem 2.3(a), if µ is a non-degenerate bivariate normal distribution with
covariance matrix V , then

κ(µ) =
1

3
√

3|V |
.

It is easy to see that, in contrast to (2.3), the quantity κ(µ)|V (µ)|1/2 is not
bounded above, even for distributions µ with E(|X|2) < ∞. A simple example is
given by the mixture of two symmetric bivariate normal distributions with covari-
ance matrices I and a2I where I is the identity matrix and 0 < a < ∞. We omit
the calculations.

Theorem 2.3(b) has a striking reformulation in the language of geometrical prob-
ability. Let S be a region of R2 having Lebesgue measure satisfying 0 < |S| < ∞,
and let X, Y be points chosen independently and uniformly from S according to the
uniform probability measure on S. Let l(X,Y) be the one-dimensional Lebesgue
measure (length) of the intersection with S of the doubly infinite straight line
through X and Y. Note that, in the earlier notation, fR,Θ = l(X,Y)/|S|.

Corollary 2.4. We have that

E
(

l(X,Y)
|X−Y|

)
≤ 3

for all S with 0 < |S| < ∞. Equality holds if and only if S is essentially convex.

In the case of convex S, this exact calculation amounts to a reformulation of a
classical result of M. Crofton in integral geometry, namely the following. Let l(r, θ)
be the length of the intersection of L(r, θ) with a given convex region S. Crofton
proved that ∫ π

0

∫ ∞

−∞
l(r, θ)3 dr dθ = 3|S|2.

His claim may be found in [5], with ancillary references at [4], [13]. Some related
methods and conclusions of Crofton are summarised in [7, Section 4.13].

We close this section with a remark concerning the integrals

I(p, S) =
∫ π

0

∫ ∞

−∞
l(r, θ)p dr dθ, for p > 0,

where S is assumed convex and l is given as above. It is easily seen that I(1, S) =
π|S|, and Crofton’s formula is that I(3) = 3|S|2. One may ask whether or not
I(p, S) depends only on |S| for any other value of p. The answer is negative, and
indeed I(p, S) is not even invariant under affine area-preserving maps of S. As an
illustration, let Sε be the rectangle [0, ε−1] × [0, ε]. By elementary estimates, as
ε → 0,

I(p, Sε) →
{

0 for p ∈ (1, 3),
∞ for p ∈ (0, 1) ∪ (3,∞).
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3. Generalities

In advance of proving the theorems of the last section, we collect together cer-
tain sufficient conditions for Poisson-limit results to hold. We begin with the
‘one-dimensional’ distribution of Tn(α), and follow Barbour and Eagleson [1] as
interpreted in [2, Thm 2.N].

Let U,V,X,Y,Z be chosen independently from R2 according to µ, and let
∆(X,Y,Z) be the area of the triangle with vertices X,Y,Z. We fix β > 0, and
write

π(β) = P
(
∆(X,Y,Z) ≤ β

)
,

π1(β) = P
(
∆(X,Y,Z) ≤ β, ∆(X,U,V) ≤ β

)
,(3.1)

π2(β) = P
(
∆(X,Y,Z) ≤ β, ∆(X,Y,V) ≤ β

)
.

We let α > 0 and write

λn(α) =
(

n

3

)
π(αn−3),

the mean number of triangles with area not exceeding αn−3. The following inequal-
ity will be useful.

Lemma 3.1. We have that π(β)2 ≤ π1(β) ≤ π2(β).

Proof. Let H be the perpendicular distance (counted non-negative) from Z to the
doubly infinite straight line through X and Y, and write ∆ = ∆(X,Y,Z). Since
∆ = 1

2H|X−Y|, we have that

(3.2) π(β) = E
(

P
(

H ≤ 2β

|X−Y|

∣∣∣∣X)) ,

and the Cauchy–Schwarz inequality yields

π(β)2 = E
(

P
(

H ≤ 2β

|X−Y|

∣∣∣∣X))2

≤ E

(
P
(

H ≤ 2β

|X−Y|

∣∣∣∣X)2
)

= π1(β).

Similarly,

π1(β) = E

(
E
(

P
(

H ≤ 2β

|X−Y|

∣∣∣∣X,Y
) ∣∣∣∣X)2

)

≤ E

(
E

(
P
(

H ≤ 2β

|X−Y|

∣∣∣∣X,Y
)2 ∣∣∣∣X

))
= π2(β),

as required. �

For random variables A, B, we define the total-variation distance

dTV(A,B) = sup
E

∣∣P(A ∈ E)− P(B ∈ E)
∣∣

where the supremum is taken all events E. We write Po(γ) for a random variable
having the Poisson distribution with parameter γ.
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Theorem 3.2. For α > 0 and n ≥ 3,

dTV

(
Tn(α),Po(λn(α))

)
≤ 1− e−λ

2λ
n5π2,

where λ = λn(α) and π2 = π2(αn−3).

Proof. The set of areas of the
(
n
3

)
triangles formed by the points X1,X2, . . . ,Xn is a

dissociated family of random variables. We now apply [2, Thm 2.N] with β = αn−3.
The upper bound follows via an application of Lemma 3.1. �

It is an immediate corollary that

P(∆n
1 > αn−3) = P(Tn(α) = 0)

satisfies

(3.3)
∣∣P(∆n

1 > αn−3)− e−λn(α)
∣∣ ≤ 1− e−λ

2λ
n5π2,

whence n3∆n
1 has, asymptotically as n → ∞, the exponential distribution with

parameter limn→∞ λn(α)/α, whenever: (a) this limit exists and is independent of
α, and (b) the right-hand side of (3.3) tends to zero for every α > 0. We shall
verify these conditions for suitable µ in the subsequent sections.

We turn now to the set n3∆ = n3{∆n
1 ,∆n

2 , . . . }.

Theorem 3.3. Assume that there exist constants c, c′ ∈ (0,∞) such that, for all
α > 0:

(a) λn(α) → cα as n →∞,
(b) λn(α) ≤ c′α for all n, and
(c) n5π2(αn−3) → 0 as n →∞.

Then n3∆n converges vaguely to a Poisson progress ξ with constant intensity c,
and, for all T > 0, the set n3∆n ∩ [0, T ] converges weakly to the process ξ restricted
to [0, T ]. In particular, n3∆n

1 converges weakly to the exponential distribution with
parameter c.

Proof. We apply Theorem 3.2 and Lemma 2.2 of [8] (see also [11]), with I the semi-
ring of half-open intervals of the form (a, b], a, b ≥ 0. Note that, in the notation of
[8], if U ∈ I is such that U ⊆ [0, T ] for some T , then

P(Xj ∈ U) ≤ P(Xj ≤ T ),

and similarly for P(Xj ∈ U, Xk ∈ U ′). Lemma 3.1 is used to bound π1 by π2. �

In Sections 4 and 5, we shall verify conditions (a), (b), (c) of Theorem 3.3 under
the conditions stated in Section 2.

The above theorems will be used to prove weak convergence, but they can imply
only little about the convergence of expectations. We concentrate here on the
random variable n3∆n

1 , noting that similar arguments are valid for other elements
of the set n3∆n. We shall require an estimate for the tail of n3∆n

1 , in combination
with the results above, in order to study its expectations.
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Theorem 3.4. We have that
P(n3∆n

1 > α) ≤ exp
(
−λn(α)2/Mn(α)

)
for α > 0

where
Mn(α) = max

{
4λn(α), 6n5π2(αn−3)

}
.

Proof. This is an application of Lemma 3.1, and Theorem 4 of [9]. �

A corresponding exponential bound for the tail of any given ∆n
i , for i ≥ 1,

follows from Theorem 10 of [9], and may be used in a similar way to that of the
proof of Theorem 2.2(b) in order to obtain the convergence of the moments of ∆n

i

as n →∞; see the remark after the statement of Theorem 2.2.

4. Uniform distribution on the unit square

This section contains an analysis of the special instance in which µ is the uniform
measure on the unit square S = [0, 1]2. We give special emphasis to this case for
two reasons. First, it is the case considered in [10], and secondly, it is valuable to
see an example of the required estimates where other minor but significant matters
do not arise.

We assume henceforth in this section that µ is the uniform measure on the unit
square S, and we next identify the constant c for an application of Theorem 3.3.

Theorem 4.1. Let X,Y be chosen independently according to µ, and let l(X,Y)
be the Lebesgue measure (length) of the intersection with S of the doubly infinite
straight line through X and Y. The constant

(4.1) κ =
2
3

E
(

l(X,Y)
|X−Y|

)
exists and satisfies 0 < κ < ∞.

We shall see in the proof of Theorem 2.3 (see Section 6) that κ = 2 for this
special instance of µ.

Proof. The basic estimate necessary for the proof is the following. There exists an
absolute constant ν (≥ 1) such that

(4.2) P
(
|X−Y| ≤ ε

∣∣X) ≤ νε2 for all ε > 0 and all X.

For reasons which will emerge soon, we shall assume that
(4.3) ν ≥ e.

It follows that

E
(
|X−Y|−1

)
=
∫ ∞

0

P
(
|X−Y|−1 > u

)
du ≤

∫ ∞

0

min{1, νu−2} du = 2
√

ν.

The diameter of S is
√

2, and therefore,

κ ≤ 2
√

2
3

E
(
|X−Y|−1

)
=

4
√

2ν

3
,

as required. �

We next verify the conditions of Theorem 3.3 with c = κ, obtaining thereby
the Poisson-process limit for the set n3∆n, as n →∞. Conditions (a) and (b) are
implied by the next lemma, proved below.
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Lemma 4.2. We have that λn(α) ≤ κα for all α, n, and λn(α) → κα as n →∞,
for all α > 0.

We shall require an upper bound for π2(β) valid for small β.

Lemma 4.3. There exist absolute constants A, B, with B > 0, such that π2(β) ≤
Aβ2 log β−1 for β < B.

It is an immediate consequence of Lemma 4.3 that

(4.4) π2(αn−3) ≤ Aα2

n6
log(n3/α) = O(n−6 log n) for α > 0 and large n,

thus verifying condition (c) of Theorem 3.3. It follows that the set n3∆n satisfies the
conclusions of Theorem 3.3, namely the vague and weak convergence to a Poisson-
process limit. In addition, Theorem 3.2 provides a bound tending to zero for the
total-variation distance between Tn(α) and the appropriate Poisson distribution.
An extra ingredient is needed in order to prove convergence of expectations, as
stated next.

Theorem 4.4. For p = 1, 2, . . . , the random variables {|n3∆n
1 |p : n ≥ 3} are

uniformly integrable, and therefore, as n → ∞, E(|n3∆n
1 |p) → p! c−p, the pth

moment of the exponential distribution with parameter c.

The proof is given at the end of this section.

Proof of Lemma 4.2. The letter L denotes a doubly infinite straight line of R2. For
x,y ∈ R2, x 6= y, we write L(x,y) for the doubly-infinite straight line through x
and y. For ε > 0, we write Sε(x,y) for the closed strip containing all points whose
Euclidean distance to L(x,y) does not exceed ε.

Let X, Y, Z be chosen independently according to µ, and let H be the absolute
value of the length of the perpendicular dropped from Z onto L(X,Y). We have
that ∆ = ∆(X,Y,Z) satisfies

P(∆ ≤ β | X,Y) = P
(

H ≤ 2β

|X−Y|

∣∣∣∣X,Y
)

(4.5)

= P
(
Z ∈ S2β/|X−Y|(X,Y)

∣∣∣X,Y
)
≤ 4βl(X,Y)

|X−Y|

with equality if the event C(β) does not occur, where C(β) is the event that
S2β/|X−Y|(X,Y) contains one or more of the four corners of S, and 1E denotes
the indicator function of an event E. Thus,

1
β

∣∣∣∣P(∆ ≤ β)− E
(

4βl(X,Y)
|X−Y|

)∣∣∣∣ ≤ E
(

4l(X,Y)
|X−Y|

1C(β)

)
.

We have by the absolute continuity of µ that P(C(β)) → 0 as β → 0, and it follows
by Theorem 4.1 and the monotone convergence theorem that

(4.6)
1
β

P(∆ ≤ β) → E
(

4l(X,Y)
|X−Y|

)
as β ↓ 0.
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As an immediate consequence, we obtain that

λn(α) =
(

n

3

)
P(∆ ≤ αn−3) = (1 + o(1))

n3

6
· α

n3
E
(

4l(X,Y)
|X−Y|

)
→ κα as n →∞.

The uniform upper bound on λn(α) follows from (4.5). �

Proof of Lemma 4.3. We have by (4.2) and (4.5) that, for ε > 0,

π2(β) = E
(
P(∆ ≤ β | X,Y)2

)
(4.7)

≤ E

(
1{|X−Y|≤ε} +

(
4βl(X,Y)
|X−Y|

)2

1{|X−Y|>ε}

)

≤ νε2 + 32β2E
(

1{|X−Y|>ε}

|X−Y|2

)
.

Now, by (4.2) and (4.3),

E
(

1{|X−Y|>ε}

|X−Y|2

)
=
∫ ε−2

0

P
(
|X−Y|−2 > u

)
du(4.8)

≤
∫ ε−2

0

min{1, νu−1} du

= ν + ν log(ε−2/ν) ≤ ν log(ε−2),

if νε2 ≤ 1. We substitute this into (4.7) and minimize over ε to obtain that there
exist A = A(ν) and B = B(ν) > 0 such that

π2(β) ≤ Aβ2 log β−1 for β < B. �

Proof of Theorem 4.4. By a standard argument (see [7, Section 7.10]), it suffices to
show that, for each p ≥ 1, the set {E(|n3∆n

1 |p) : n ≥ 3} is uniformly bounded. This
will be achieved by the exponential tail estimate of Theorem 3.4, which we make
more precise as follows.

Consider the expression Mn(α) in Theorem 3.4. By Lemma 4.2 and equation
(4.4),

Mn(α) ≤ max
{

c1α,
c2α

2 log n

n

}
,

for positive constants ci and n ≥ 3. Therefore,

Mn(α) ≤


c1α if α <

c1n

c2 log n
,

c2α
2 log n

n
otherwise.
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Furthermore, by (4.6), P(∆ ≤ β) ≥ c3β for 0 < β < 1, and thus λn(α) > c4α for
α < n3 and n ≥ 3. We apply Theorem 3.4 to obtain

(4.9) P(n3∆n
1 > α) ≤


e−c5α if α <

c1n

c2 log n
,

exp
(
− c6n

log n

)
otherwise;

this probability is evidently 0 for α ≥ n3. Therefore,

E
(
|n3∆n

1 |p
)
≤
∫ c7n/ log n

0

pαp−1e−c5α dα(4.10)

+
∫ n3

c7n/ log n

pαp−1 exp
(
− c6n

log n

)
dα,

which is bounded above uniformly in n. �

5. Proofs of Theorems 2.1 and 2.2

We assume throughout this section that (A1) and (A2) hold, and begin with a
preliminary lemma. As in Section 2, a line in R2 is denoted L(r, θ), and L(R,Θ)
denotes the line passing through two points X, Y chosen independently according
to the measure µ.

Lemma 5.1. Let g(r, θ) be a non-negative measurable function on the set of lines
L(r, θ) in R2. Then

E
(

g(R,Θ)
|X−Y|

)
=
∫ π

0

∫ ∞

−∞
g(r, θ)f2

r,θ dr dθ.

Proof. Using polar coordinates in the form Y = X+ ireiθ, r ∈ (−∞,∞), θ ∈ [0, π),
we find

E
(

g(R,Θ)
|X−Y|

∣∣∣∣X) =
∫ π

0

∫ ∞

−∞

g(τθ(X), θ)
|r|

f(X + ireiθ)|r| dr dθ

=
∫ π

0

g(τθ(X), θ)fτθ(X),θ dθ,

where τθ(X) = X · (cos θ, sin θ) as before. Hence, by Fubini’s theorem,

E
(

g(R,Θ)
|X−Y|

)
=
∫ π

0

E
(
g(τθ(X), θ)fτθ(X),θ

)
dθ =

∫ π

0

∫ ∞

−∞
g(r, θ)f2

r,θ dr dθ,

since τθ(X) has density function fr,θ. �
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Proof of Theorem 2.1. It is elementary that κ exists and is non-negative. Further-
more,

κ ≤ 2N

3
E
(
|X−Y|−1

)
.

The finiteness of E
(
|X − Y|−1

)
follows just as in the proof of Theorem 4.1, or

alternatively as follows. By Lemma 5.1,

(5.1) E
(
|X−Y|−1

)
=
∫ π

0

∫ ∞

−∞
f2

r,θ dr dθ ≤ N

∫ π

0

∫ ∞

−∞
fr,θ dr dθ = Nπ.

Equation (2.2) follows from Lemma 5.1 with g(r, θ) = fr,θ. �

Proof of Theorem 2.2. We show first that conditions (a), (b), (c) of Theorem 3.3
are valid with c = κ. Let ∆ = ∆(X,Y,Z) where X, Y, Z are chosen independently
according to µ, and let H be the length of the perpendicular dropped from Z onto
L(R,Θ). Then

(5.2) P(H ≤ h | X,Y) =
∫ R+h

R−h

fr,Θ dr ≤ 2hN.

Consequently, by (3.2) and (5.1),

π(β) ≤ 4βNE
(
|X−Y|−1

)
≤ 4βN2π,

and (b) follows for suitable c′.
For each θ, the mapping r 7→ fr,θ is integrable. Let Eθ be the set of r (∈ R)

such that

lim
ε→0

1
2ε

∫ r+ε

r−ε

fs,θ ds = fr,θ,

and note that, by the Lebesgue differentiation theorem (see [12], Theorem 9.3), the
complement R \ Eθ has Lebesgue measure zero. We thus have

1
β

P
(

H ≤ 2β

|X−Y|

∣∣∣∣X,Y
)

=
1
β

∫ R+2β/|X−Y|

R−2β/|X−Y|
fr,θ dr(5.3)

→ 4fR,Θ

|X−Y|
as β → 0,

whenever R /∈ EΘ.
For x,y ∈ R2, x 6= y, write L(r, θ) for the line through x and y. Define u,

v by x = (r + iu)eiθ, y = (r + iv)eiθ. The mapping (x,y) 7→ (r, θ, u, v), with
domain {(x,y) : x 6= y} and range {(r, θ, u, v) : u 6= v}, is differentiable with
differentiable inverse. Thus it maps null sets to null sets. It follows that (5.3)
holds for almost every (X,Y) ∈ R2, and thus µ-a.s. Together with (5.2) and the
dominated convergence theorem, we deduce that

1
β

π(β) =
1
β

E
(

P
(

H ≤ 2β

|X−Y|

∣∣∣∣X,Y
))

→ 4E
(

fR,Θ

|X−Y|

)
as β ↓ 0.
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Consequently, for any α > 0,

λn(α) =
(

n

3

)
π(αn−3) → 4

6
E
(

fR,Θ

|X−Y|

)
α = κα as n →∞,

thus confirming (a).
Finally, (c) follows as in the proof of (4.4) and Lemma 4.3. Theorem 2.2(a)

follows.
We turn now to Theorem 2.2(b). The proof of Theorem 4.4 may be followed until

equation (4.9), which is valid subject to an upper bound on α/n3 (with c6 depending
on the bound). Unlike the situation when µ has bounded support, there is in the
general case no deterministic upper bound on the maximal area of a triangle. Thus
we shall need a further estimate on the tail of ∆n

1 . Assume that δ ∈ (0, 1) is such
that E(|X|δ) < ∞, and note that ∆ = ∆(X,Y,Z) satisfies

∆ ≤ |X−Y| · |X− Z|,

whence

E(∆δ/2) ≤
√

E
(
|X−Y|δ · E

(
|X− Z|δ

)
= E

(
|X−Y|δ

)
≤ 2E(|X|δ) < ∞.

By Markov’s inequality, there exists t0 ≥ 1 such that

P(∆ > t) ≤ t−δ/2E(∆δ/2) ≤ 1
8 t−δ/3 for t ≥ t0.

Therefore, by considering the bn/3c triangles X1X2X3, X4X5X6, . . . with disjoint
vertex sets,

P(∆n
1 > t) ≤ (8tδ/3)−bn/3c ≤ 22−nt−bn/3cδ/3, t ≥ t0.

Let p ≥ 1. It follows from the above that

P(∆n
1 > t) ≤ 22−nt−p−1 for n ≥ 3 +

9(p + 1)
δ

, t ≥ t0.

Hence, for n ≥ 3 + 9(p + 1)/δ,∫ ∞

t0n3
pαp−1P(n3∆n

1 > α) dα = n3p

∫ ∞

t0

ptp−1P(∆n
1 > t) dt ≤ n3p · 22−np.

We combine this with (4.10), with the range of the second integral of that equation
extended to t0n

3, to deduce as required that the pth moment of ∆n
1 is uniformly

bounded in n. This completes the proof of Theorem 2.2(b).
Part (c) follows by Theorem 3.2 and the proof of Lemma 4.3. �

We remark that conditions (A1) and (A2) may be relaxed, but we do not attempt
here to obtain the weakest necessary assumptions. We note as follows, however,
that conditions (a) and (b) of Theorem 3.3, with c = κ, hold whenever κ < ∞.
Under the assumption κ < ∞, we have by (2.2) and [15, Thm 1], that the Hardy–
Littlewood maximal function of fr,θ is bounded in L3. It is now a simple matter to
replace (5.2) in the above proof.
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6. Proof of Theorem 2.3

Finally, we prove Theorem 2.3, beginning with part (a). Let A be a non-singular
2 × 2 matrix, let b ∈ R2, and write X̃j = AXj + b. Denote by µ̃ the measure
governing the X̃j . Let the areas formed by triangles of the X̃j be written ∆̃n

i , so that
∆̃n

i = |A|∆n
i . We have by Theorem 2.2 that n3∆̃n converges to a Poisson process

with intensity |A|−1κ(µ), and thus κ(µ̃) = |A|−1κ(µ). The covariance matrix of X̃1

has determinant |V (µ̃)| = |A|2 · |V (µ)|, and thus κ(µ̃)|V (µ̃)|1/2 = κ(µ)|V (µ)|1/2 as
required.

We prove (2.3) next. Since the mapping r 7→ fr,θ is a density function,∫ π

0

∫ ∞

−∞
fr,θ dr dθ = π.

The Cauchy–Schwarz inequality yields(∫ π

0

∫ ∞

−∞
f2

r,θ dr dθ

)2

≤
∫ π

0

∫ ∞

−∞
fr,θ dr dθ

∫ π

0

∫ ∞

−∞
f3

r,θ dr dθ = π · 3κ

2
,

by Theorem 2.1, whence, by (5.1),

(6.1) κ(µ) ≥ 2
3π

E
(
|X−Y|−1

)2
.

On the other hand, by Hölder’s inequality with exponents 3
2 and 3,

1 = E
(

1
|X−Y|2/3

· |X−Y|2/3

)
≤ E

(
1

|X−Y|

)2/3

E
(
|X−Y|2

)1/3
,

and thus

(6.2) E
(
|X−Y|−1

)−2 ≤ E
(
|X−Y|2

)
= 2(v11 + v22),

where V (µ) = (vij). If V (µ) = I, the identity matrix, (6.1) and (6.2) yield

κ(µ) ≥ 2
3π

· 1
2(v11 + v22)

=
1
6π

=
1

6π|V (µ)|1/2
,

and (2.3) is proved in this case. The general case follows since κ(µ)|V (µ)|1/2 is
invariant under non-singular affine maps of R2.

We turn to part (b). First suppose that S is convex. For x ∈ S and θ ∈ [0, 2π),
let r(x, θ) = sup{t : x + teiθ ∈ S}. Then, for every x ∈ S,

(6.3) |S| =
∫ 2π

0

∫ r(x,θ)

0

ρ dρ dθ =
∫ 2π

0

1
2r(x, θ)2 dθ,

and thus, by Fubini’s theorem,

|S|2 =
∫ 2π

0

∫
S

1
2r(x, θ)2 dx dθ.
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The line L(s, θ) intersects S in a (possibly empty) interval of length l(s, θ), say,
and, for x in this interval, r(x, θ + 1

2π) varies linearly between 0 and l(s, θ). Hence,

∫
S

r(x, θ + 1
2π)2 dx =

∫ ∞

−∞

∫ l(s,θ)

0

r2 dr ds =
∫ ∞

−∞

1
3 l(s, θ)3 ds.

Consequently,

|S|2 = 1
6

∫ 2π

0

∫ ∞

−∞
l(s, θ)3 ds dθ = 1

3

∫ π

0

∫ ∞

−∞
l(s, θ)3 ds dθ,

and thus, since fs,θ = l(s, θ)/|S|,

κ =
2
3

∫ π

0

∫ ∞

−∞
f3

s,θ ds dθ =
2
|S|

.

The same conclusion is easily seen to hold under the weaker assumption that S be
essentially convex.

For a general region S, let A(x, θ) = {t ≥ 0 : x + teiθ ∈ S}. Then, as in (6.3),

(6.4) |S| ≥
∫ 2π

0

1
2 |A(x, θ)|2 dθ,

and, as above (except that L(s, θ) ∩ S need not be an interval),

∫ 2π

0

∫
S

1
2 |A(x, θ)|2 dx dθ = 1

3

∫ π

0

∫ ∞

−∞
|L(s, θ) ∩ S|3 ds dθ

= 1
3 |S|

3

∫ π

0

∫ ∞

−∞
f3

s,θ ds dθ,

yielding as required that |S|2 ≥ 1
2 |S|

3κ. Equality holds only if there is equality in
(6.4) for almost every x, that is, if A(x, θ), for almost every (x, θ), differs only by
a null set from an interval containing 0.

Let T ′ denote the set of density points of a measurable subset T of R2 (recall
that x is a density point of T if |T ∩B(x, r)|/|B(x, r)| → 1 as r → 0, where B(x, r)
denotes the ball of radius r with centre x). It may be deduced from the above
statement concerning the A(x, θ) that S′ is a convex set (this is left to the reader
to prove). The symmetric difference T 4 T ′ is a null set for any measurable T (see
[15, Section 1.1] and [6, Thm 2.9.11]), and in particular N = S 4 S′ is a null set.
Thus S 4 N is convex where N is null. Hence S is essentially convex and the proof
is complete.
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