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Abstract. We use and extend a method by Hoeffding to obtain strong
large deviation bounds for sums of dependent random variables with suit-
able dependency structure. The method is based on breaking up the sum
into sums of independent variables. Applications are given to U -statistics,
random strings and random graphs.

1. Introduction

Many random variables can be written as a sum

X =
∑
α∈A

Yα. (1.1)

of simpler random variables Yα, with α ranging over some index set. For
example, each Yα may be an indicator variable taking the values 0 and 1 only,
i.e. Yα ∼ Be(pα) for some pα ∈ [0, 1].

We are interested in situations where the variables Yα may be dependent,
but there is a large amount of independence among them. A typical situation
is the sum

X =
∑

(i1,...,id)∈A

fi1···id(ξi1 , . . . , ξid), (1.2)

for some functions fi1···id and independent random variables ξ1, . . . , ξn, and
some set A ⊆ [n]d<, where [n]d< is the set of all d-tuples (i1, . . . , id) with 1 ≤
i1 < · · · < id ≤ n. Here d and n are some positive integers; typically d is small
(perhaps only 2 or 3) and n is large.

One example of such sums (1.2) is the family of U-statistics [13], which is
the symmetric case obtained by taking ξ1, . . . , ξn i.i.d., all fi1···id equal to some
symmetric function f , and A = [n]d<. More generally, if we in this situation
sum over a subset A ⊂ [n]d<, we obtain an incomplete U-statistic. Also two-
sample U-statistics are of the general type (1.2), but now the ξi are of two
different types.

Another example of (1.2), now with a non-symmetric f , is the problem on
random strings described in Example 4.2; this problem was the direct moti-
vation to write this paper. Further examples, for random graphs and hyper-
graphs, are also given in Section 4.

The purpose of this paper is to prove small bounds for the probability of
large deviations of a variable (1.1). Such bounds have a long history. In the
case of independent summands, some of the most important contributions are
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Bernstein [4], Cramér [9], Feller [10], Chernoff [8], Okamoto [19], Bennett [3],
and Hoeffding [14]. For dependent summands, there are many results proved
by many authors using different methods under various assumptions; for a few
of these, see the surveys in [16] and [18].

The present paper is based on Hoeffding [14], which besides the independent
case also studies several dependent cases, among them U -statistics. Hoeffding’s
method for this case is based on breaking up the sum (1.2) into several parts,
each part being a sum of independent variables. The same idea has been used
in a somewhat different form (see Remark 5.2) by, among others, [21], [18], [20].
We will show how Hoeffding’s original method, with only minor modifications,
extends to general sums (1.2) and (1.1).

The main results are stated in Section 2, proved in Section 3 and applied in
Section 4. Section 5 contains some further remarks.

Acknowledgements. I thank Wojtek Szpankowski for stimulating discus-
sions that led to this research. Part of the research was carried out at the
Newton Institute in Cambridge. I thank Ravi Kannan, Andrzej Ruciński and
Peter Winkler for helpful comments.

2. Results

Definitions. Given A and {Yα}, α ∈ A, we make the following definitions.

• A subsetA′ ofA is independent if the corresponding random variables
{Yα}α∈A′ , are independent.
• A family {Aj}j of subsets of A is a cover of A if

⋃
j Aj = A.

• A family {(Aj, wj)}j of pairs (Aj, wj), where Aj ⊆ A and wj ∈ [0, 1]
is a fractional cover of A if

∑
j wj1Aj

≥ 1A , i.e.
∑

j:α∈Aj
wj ≥ 1 for

each α ∈ A.
• A (fractional) cover is proper if each set Aj in it is independent.
• χ(A) is the size of the smallest proper cover of A, i.e. the smallest m
such that A is the union of m independent subsets.
• χ∗(A) is the minimum of

∑
j wj over all proper fractional covers

{(Aj, wj)}j.

Note that, in spite of our notation, χ(A) and χ∗(A) depend not only on A
but also on the family {Yα}α∈A.

A cover can be regarded as a fractional cover with every wj = 1. Hence

χ∗(A) ≤ χ(A). (2.1)

We can thus replace χ∗(A) by χ(A) in all results below, and the reader that
prefers it may consider only covers and ignore the fractional ones.

Note further that χ∗(A) ≥ 1 (unless A = ∅) and that χ∗(A) = 1 if and
only if the variables Yα, α ∈ A, are independent. It is often convenient to
consider a dependency graph for {Yα}. This is a graph Γ with vertex set A
such that if B ⊂ A and α ∈ A is not connected by an edge to any vertex
in B, then Yα is independent of {Yβ}β∈B. A typical example is for sums of
type (1.2), where A ⊆ [n]d<; we define Γ to have an edge between every pair
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of d-tuples α, β ∈ [n]d< such that α and β have an index in common. (See
further Remark 5.3 and the examples in Section 4.) It follows that a subset
of A that is independent in Γ in the graph theory sense (no edges inside the
subset) is independent in the sense above. (The converse is not necessarily
true, see Remark 5.3.) Hence, χ(A) ≤ χ(Γ) and χ∗(A) ≤ χ∗(Γ), where χ(Γ)
and χ∗(Γ) are the usual chromatic and fractional chromatic numbers of Γ.

We further let ∆(Γ) denote the maximum degree of Γ and let (for conve-
nience) ∆1(Γ) := ∆(Γ) + 1. It is well-known (and easily seen by a greedy
colouring) that χ(Γ) ≤ ∆1(Γ), see e.g. [6]. When Γ is a dependency graph for
{Yα}, we thus have

χ∗(A) ≤ χ∗(Γ) ≤ χ(Γ) ≤ ∆1(Γ), (2.2)

so χ∗(A) can be replaced by any of χ∗(Γ), χ(Γ), ∆1(Γ) in our results; in many
applications this causes no significant loss.

We now can state our main results. The first extends [14, Theorem 2], which
is the case χ∗(A) = 1 (i.e. independent variables).

Theorem 2.1. Suppose that X is as in (1.1) with aα ≤ Yα ≤ bα for every
α ∈ A and some real numbers aα and bα. Then, for t > 0,

P(X ≥ E X + t) ≤ exp
(
−2

t2

χ∗(A)
∑

α∈A(bα − aα)2

)
.

The same estimate holds for P(X ≤ E X − t).

Corollary 2.2. Suppose that X is as in (1.1) with Yα ∼ Be(pα) for some
pα ∈ (0, 1) and all α ∈ A. Then, for t ≥ 0,

P(X ≥ E X + t) ≤ exp
(
−2

t2

χ∗(A)|A|

)
.

The same estimate holds for P(X ≤ E X − t). �

These results, while useful in many situations, can be improved (again by
Hoeffding’s methods) when the summands have variances that are substan-
tially smaller than the upper bound (bα − aα)2/4. Note that we assume a
one-sided bound on Yα in Theorem 2.3 (and Theorem 2.5) below; as in Theo-
rem 2.3 the obtained estimate holds for P(X ≤ E X − t) too (by considering
−X), but only if the boundedness assumption is reversed to Yα − E Yα ≥ −b.
We define

ϕ(x) := (1 + x) ln(1 + x)− x. (2.3)

Theorem 2.3. Suppose that X is as in (1.1) with Yα − E Yα ≤ b for some
b > 0 and all α ∈ A. Then, with ϕ(x) as in (2.3) and S :=

∑
α∈A Var Yα, for

t ≥ 0,

P(X ≥ E X + t) ≤ exp

(
− S

b2χ∗(A)
ϕ
(4bt

5S

))
≤ exp

(
− 8t2

25χ∗(A)(S + bt/3)

)
.
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Corollary 2.4. Suppose that X is as in (1.1) with Yα ∼ Be(p) for some
p ∈ (0, 1) and all α ∈ A. Let N := |A|. Then, for t ≥ 0,

P(X ≥ E X + t) ≤ exp
(
− Np

(1− p)χ∗(A)
ϕ
( 4t

5Np

))
(2.4)

≤ exp
(
− 8t2

25χ∗(A)(Np + t/3)

)
; (2.5)

P(X ≤ E X − t) ≤ exp
(
−N(1− p)

pχ∗(A)
ϕ
( 4t

5N(1− p)

))
; (2.6)

P(X ≤ E X − t) ≤ exp
(
− 8t2

25χ∗(A)Np

)
. (2.7)

If we are given a dependency graph Γ, we may by (2.2) replace χ∗(A) by
∆1(Γ). Actually, with ∆1, which is often convenient for applications, we may
improve the bounds a little as follows in the important case when all Yα have
the same distribution. (The improvement amounts typically to a factor ≈
25/16 in the exponent. For many applications this is irrelevant.)

Theorem 2.5. Suppose that X is as in (1.1) and that all Yα have the same
distribution with Yα − E Yα ≤ b for some b > 0. Suppose further that Γ is
a dependency graph for {Yα}α∈A. Let N := |A|, S := N Var Yα and ∆1 :=
∆1(Γ). Then, with ϕ(x) as in (2.3), for t ≥ 0,

P(X ≥ E X + t) ≤ exp
(
− S

b2∆1

ϕ
( bt

S(1 + ∆1/8N)

))
≤ exp

(
−t2(1−∆1/4N)

2∆1(S + bt/3)

)
.

Corollary 2.6. Under the assumptions of Corollary 2.4, and with ∆1 =
∆1(Γ), where Γ is a dependency graph for {Yα}, for t ≥ 0,

P(X ≥ E X + t) ≤ exp
(
− Np

(1− p)∆1

ϕ
( t

(N + ∆1/8)p

))
(2.8)

≤ exp
(
− t2(1−∆1/4N)

2∆1(Np + t/3)(1− p)

)
; (2.9)

P(X ≤ E X − t) ≤ exp
(
−N(1− p)

∆1p
ϕ
( t

(N + ∆1/8)(1− p)

))
; (2.10)

P(X ≤ E X − t) ≤ exp
(
−t2(1−∆1/4N)

2∆1Np

)
. (2.11)

3. Proofs

The reader is advised to first consider the case of covers only (every wi = 1)
for simplicity.

We say that a fractional cover {(Aj, wj)}j is exact if
∑

j wj1Aj
= 1A.
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Lemma 3.1. If {(Aj, wj)}j is an exact fractional cover of A, and xα, α ∈ A,
are any numbers, then ∑

α∈A

xα =
∑

j

wjsj,

where sj :=
∑

α∈Aj
xα. In particular, |A| =

∑
j wj|Aj|.

Proof. ∑
j

wjsj =
∑

j

wj

∑
α∈A

1Aj
(α)xα =

∑
α∈A

∑
j

wj1Aj
(α)xα =

∑
α∈A

xα.

The final claim follows by taking each xα = 1. �

The following simple lemma will enable us to consider only exact (fractional)
covers, which will simplify proofs. In particular, it implies that χ∗ is the
minimum of

∑
j wj over all exact proper fractional covers.

Lemma 3.2. If {(Aj, wj)}j is a fractional cover, we can replace each (Aj, wj)
by one or several (Ajk, wjk) with Ajk ⊆ Aj and

∑
k wjk = wj such that

{(Ajk, wjk)}jk is an exact fractional cover.

Proof. Take an element α ∈ A. It is easily seen that {(Aj, wj)}j can be
replaced by a family {(Ajk, wjk)}jk with each Ajk = Aj or Aj \{α},

∑
k wjk =

wj, and
∑

wjk1Ajk
(α) = 1. Repeat the same procedure for each α ∈ A. �

Proof of Theorem 2.1. We follow the method of Hoeffding [14]. Subtracting
the means, we may assume that E Yα = 0 for all α, and thus E X = 0. Then,
by [14, (4.16)], for every real h,

E exp
(
hYα

)
≤ exp

(
1
8
h2(bα − aα)2

)
. (3.1)

Let {(Aj, wj)}j be an exact proper fractional cover of A, and let Xj :=∑
Aj

Yα. Then X =
∑

j wjXj by Lemma 3.1. Let pj be any positive numbers

with
∑

j pj = 1. By Jensen’s inequality, for any real u,

exp(uX) = exp
(∑

j

pj
uwj

pj

Xj

)
≤

∑
j

pj exp
(uwj

pj

Xj

)
.

Taking the expectations we find using (3.1), since Xj is a sum of independent
variables Yα, α ∈ Aj,

E exp(uX) ≤
∑

j

pj E exp
(uwj

pj

Xj

)
=

∑
j

pj

∏
α∈Aj

E exp
(wju

pj

Yα

)
≤

∑
j

pj

∏
α∈Aj

exp
(w2

ju
2

8p2
j

(bα − aα)2
)

=
∑

j

pj exp
(w2

ju
2cj

8p2
j

)
, (3.2)

where cj :=
∑

α∈Aj
(bα − aα)2. We choose pj = wjc

1/2
j /T with T :=

∑
j wjc

1/2
j ,

and find
E exp(uX) ≤ exp

(
1
8
T 2u2

)
, u ∈ R.

Hence, for u ≥ 0,

P(X ≥ t) ≤ e−ut E euX ≤ exp
(

1
8
T 2u2 − ut

)
,
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and the optimal choice u := 4t/T 2 yields

P(X ≥ t) ≤ exp
(
−2t2/T 2

)
. (3.3)

By the Cauchy–Schwarz inequality and Lemma 3.1,

T 2 =
(∑

j

wjc
1/2
j

)2

≤
∑

j

wj ·
∑

j

wjcj =
∑

j

wj ·
∑
α∈A

(bα − aα)2

and the result follows from (3.3) by choosing {(Aj, wj)}j with
∑

j wj = χ∗(A).

The result for P(X ≤ E X − t) follows by considering −X. �

Remark 3.3. In some cases (when the Cauchy–Schwarz inequality above is
far from sharp), (3.3) may be substantially better than the theorem.

We will derive Theorems 2.3 and 2.5 from the following more technical esti-
mate.

Theorem 3.4. Suppose that X is as in (1.1) with Yα − E Yα ≤ b for some
b > 0 and all α ∈ A. Suppose further that {(Aj, wj)}j is a proper fractional
cover of A. Let S :=

∑
α∈A Var Yα and σ2

j :=
∑

α∈Aj
Var Yα. Then, with ϕ(x)

as in (2.3),

P(X ≥ E X + t) ≤ exp
(
− S

b2W
ϕ
(btW

US

))
, t ≥ 0, (3.4)

where W :=
∑

j wj and

U :=
∑

j

wj max
(
1,

σjW
1/2

S1/2

)
. (3.5)

Proof. This is similar to the proof of Theorem 2.1, but we use a (usually)
sharper estimate than (3.1).

We may by Lemma 3.2 assume that the fractional cover {(Aj, wj)}j is ex-
act; note that the modification in Lemma 3.2 preserves W and preserves or
decreases U . We may further assume that b = 1 and, for each α, E Yα = 0; the
general case follows by replacing Yα by (Yα − E Yα)/b. We thus have E Yα = 0
and Yα ≤ 1 for all α. Hence, with σ2

α := Var Yα, by [3, p. 42], see also [14,
Lemma 2],

E exp
(
hYα

)
≤ 1

1 + σ2
α

e−hσ2
α +

σ2
α

1 + σ2
α

eh, h ≥ 0. (3.6)

We rewrite this as

E exp
(
hYα

)
≤ exp

(
f(σ2

α; h)
)
, h ≥ 0,

where

f(s; h) := ln
( 1

1 + s
e−hs +

s

1 + s
eh

)
.

It is proved in [14, Lemma 3 and p. 24] that f is a concave function of s ≥ 0
with f(0) = 0, and thus

f(s; h) ≤ sg(h), s ≥ 0,
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where

g(h) :=
∂

∂s
f(0; h) = eh − 1− h.

Consequently,
E exp

(
hYα

)
≤ exp

(
σ2

αg(h)
)
, h ≥ 0. (3.7)

As in (3.2), for any u ≥ 0 and positive numbers pj with
∑

j pj = 1, now

using (3.7),

E exp(uX) ≤
∑

j

pj

∏
α∈Aj

E exp
(wju

pj

Yα

)
≤

∑
j

pj

∏
α∈Aj

exp
(
σ2

αg
(wju

pj

))
=

∑
j

pj exp
(
σ2

j g
(wju

pj

))
. (3.8)

Choose this time pj := wj max(1,
σjW 1/2

S1/2 )/U , cf. (3.5). If σ2
j ≤ S/W , then

pj = wj/U and

σ2
j g

(uwj

pj

)
≤ S

W
g(uU). (3.9)

If σ2
j ≥ S/W , then pj = wjσjW

1/2/(S1/2U) and

σ2
j g

(uwj

pj

)
= σ2

j g
(uS1/2U

σjW 1/2

)
≤ σ2

j

S

σ2
j W

g(uU),

because g(0) = g′(0) = 0 and g′′ is increasing, and thus x 7→ g(x)/x2 is
increasing. Hence, (3.9) holds in this case too, and (3.8) yields

E exp(uX) ≤ exp
( S

W
g(uU)

)
, u ≥ 0. (3.10)

Hence,

P(X ≥ E X + t) ≤ exp
( S

W
g(uU)− ut

)
, u ≥ 0. (3.11)

We optimize by choosing u = U−1 ln
(
1 + tW/SU

)
, which yields (3.4). �

To prove Theorems 2.3 and 2.5, it remains to estimate W and U for suitable
proper fractional covers.

Proof of Theorem 2.3. By the inequality y ≤ 1 + y2/4 and Lemma 3.1, we
always have

U ≤
∑

j

wj

(
1 +

σ2
j W

4S

)
=

∑
j

wj +
∑

j

wjσ
2
j

W

4S
= W + S

W

4S
=

5

4
W.

The first inequality in Theorem 2.3 now follows from Theorem 3.4 if we choose
an optimal proper fractional cover {(Aj, wj)}j such that W = χ∗(A).

The second inequality follows by the elementary inequality

ϕ(x) ≥ x2

2(1 + x/3)
, x ≥ 0, (3.12)

see e.g. [3] or [16, proof of Theorem 2.1]. �
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Proof of Corollary 2.4. For (2.4)–(2.5), apply Theorem 2.3 with b = 1− p and
S = Np(1− p).

For (2.6), replace Yα by 1− Yα and apply (2.4).
Finally, (2.7) is trivial for t > E X = Np, and for t ≤ Np it follows from

(2.6) and (3.12), using (1− p)(1 + 4t/15N(1− p)) ≤ 1− p + t/N ≤ 1. �

Proof of Theorem 2.5. For Theorem 2.5, we use instead the Hajnal–Szemerédi
Theorem [12], [5], which says that A can be partitioned into ∆1 independent
sets, each of size equal to either d|A|/∆1e or b|A|/∆1c. We use these sets as
our Aj, with all weights wj = 1. If N = k∆1 + l, with k and l integers and
0 ≤ l < ∆1, there are necessarily ∆1 − l sets of size k and l of size k + 1, and
thus W = ∆1 and, by (3.5),

U = ∆1 − l + l
((k + 1)∆1

N

)1/2

= ∆1 + l

(√
1 +

∆1 − l

N
− 1

)
≤ ∆1 +

l(∆1 − l)

2N
≤ ∆1

(
1 +

∆1

8N

)
.

The result follows from Theorem 3.4 and (3.12). �

Proof of Corollary 2.6. This follows from Theorem 2.5 by the arguments for
Corollary 2.4. �

Remark 3.5. The idea to use the Hajnal–Szemerédi Theorem in this context
is due to Ruciński [16, 18] and Pemmaraju [20] (independently). Pemmaraju
[20] further explores the possibility of improving the bound by finding by other
means, for specific Γ, a partition of Γ into fewer than ∆1 independent sets of
(almost) the same size. Note that such arguments can beat our general bound
in Theorem 2.3 by at most a factor 25/16 in the exponent. Indeed, the proof
of Theorem 2.3 uses the general estimate U/W ≤ 5/4 proved above, while
Theorem 2.5 and [20] exploits better estimates of U/W in special situations;
however, U/W ≥ 1 by (3.5), so the room for improvement is limited.

4. Examples

Example 4.1 (U -statistics). Consider a sum

X =
∑

1≤i1<···<id≤n

fi1···id(ξi1 , . . . , ξid) (4.1)

where ξ1, . . . , ξn are independent random variables. This is the special case of
(1.2) with A = [n]d<, and includes U -statistics.

We define, as in Section 2, a dependency graph Γ with vertex set [n]d< by
declaring that α and β are joined by an edge if α ∩ β 6= ∅ (regarding the
d-tuples α and β as sets).

Let k := bn/dc. Let A1, . . . ,AM be a listing of all families of k disjoint

d-tuples in A = [n]d<. By symmetry,
∑M

j=1 1Aj
= Mk|A|−11A, and thus we
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have
∑

j wj1Aj
= 1A with wj = |A|/(Mk) for all j. Hence,

χ∗(A) ≤ χ∗(Γ) ≤ |A|
k

=

(
n
d

)
bn/dc

. (4.2)

Consequently, Theorem 2.1 shows that if a ≤ fi1···id(ξi1 , . . . , ξid) ≤ b for every
i1, . . . , id and two real numbers a and b, then, for t > 0,

P
(
X ≥ E X + t

(
n

d

))
≤ exp

(
−2

⌊n

d

⌋
t2/(b− a)2

)
. (4.3)

This estimate is due to Hoeffding [14, (5.7)]. (Hoeffding treated U -statistics
only; his proof extends to the more general non-symmetric version here.) We

have the same estimate for P
(
X ≤ E X − t

(
n
d

))
.

Since dbn/dc ≥ n− d + 1, we obtain from (4.2) also

χ∗(A) ≤
(

n

d− 1

)
(4.4)

which leads to a slight weakening of (4.3) that may look simpler:

P
(
X ≥ E X + tnd−1/2

)
≤ exp

(
−2

d! (d− 1)!

(b− a)2
t2

)
. (4.5)

In many cases, Theorem 2.3 or Corollary 2.4 yields better results. For ex-
ample, if ξ1, . . . , ξn are identically distributed and fi1···id = f does not depend
on i1, . . . , id and take the values 0 and 1 only, then Corollary 2.4 yields, with
p := P

(
f(ξ1, . . . , ξd) = 1

)
,

P(X ≥ E X + t) ≤ exp
(
− 8t2

25
(

n
d−1

)((
n
d

)
p + t/3

))
; (4.6)

P(X ≤ E X − t) ≤ exp
(
− 8t2

25
(

n
d−1

)(
n
d

)
p

)
. (4.7)

These are better than (4.3) and (4.5) when p < 0.16 and (for (4.6)) t is not
too large.

In this case, Theorem 2.5 and its corollary are somewhat weaker. We have

∆(Γ) ≤ d

(
n− 1

d− 1

)
,

and this estimate is asymptotically sharp. Together with (4.4), we thus see that
we lose about a factor d in the exponent by using ∆1 instead of χ∗(A), which
outweighs the gain of a factor 25/16 in Theorem 2.5 compared to Theorem 2.3.

If we have a sparse sum as in (1.2), for example an incomplete U -statistic,
we can get better estimates provided we have a reasonable estimate of χ∗(A)
or ∆(A).

Some other large deviation bounds for U -statistics are given in [1], [2], [7].

Example 4.2 (Patterns in a random string). Let ξ1, . . . , ξn be i.i.d. random
letters from a finite alphabet A, and let w be a given word of length d. Flajolet
et al. [11] studied the number of subsequences ξi1 · · · ξid that equal w. This is
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a random variable of the form (4.1), with f(x1, . . . , xd) = 1 if x1 · · ·xd = w
and 0 otherwise. Hence all bounds in Example 4.1 apply, with b − a = 1
and p = P(ξ1 · · · ξd = w) =

∏d
i=1 pwi

, where wi is the i:th letter of w and
px := P(ξ1 = x). In particular, (4.5) (Theorem 2.1) yields the bound

P(|X − E X| ≥ tnd−1/2) < 2 exp
(
−2d!(d− 1)! t2

)
.

For p small, better results are given by (4.6) and (4.7) (Corollary 2.4).
Flajolet et al. [11] further studied the number of such subsequences with the

constraints ij+1 − ij ≤ `j on the gaps of the sequence, where `1, . . . , `d−1 are
given numbers (possibly ∞). This is a random variable of the type (1.2), so
the results above apply. We now have

A = {(i1, . . . , id) ∈ [n]d< : 0 < ij+1 − ij ≤ `j for j = 1, . . . , d− 1}.

Let F := {i : `i < ∞} and set b := d − |F| = 1 + |{i : `i = ∞}| and D :=∏
i∈F `i. Consider `j as fixed and let n →∞. Then |A| =

(
n
b

)
D(1 + O(1/n)),

see [11]. Moreover, given any ik, the gaps ij+1 − ij may be chosen in at most
D ways for j ∈ F and in at most

(
n

b−1

)
ways for j /∈ F . Since any given

d-tuple α ∈ A has d indices, and any of these may be in (at most) d positions
in another d-tuple, it follows that, with the dependency graph Γ defined as in
Example 4.1,

∆1(Γ) ≤ d2D

(
n

b− 1

)
≤ d2D

(b− 1)!
nb−1. (4.8)

We thus obtain from Corollary 2.6, for all t > 0,

P(X ≥ E X + t) ≤ exp

(
−(b− 1)! b!

2d2D2p
· t2

n2b−1

(
1 + O

( 1

n
+

t

nbp

)))
P(X ≤ E X − t) ≤ exp

(
−(b− 1)! b!

2d2D2p
· t2

n2b−1

(
1 + O

( 1

n

)))
.

Since Var(X) is of the order n2b−1 [11], these estimates are of the subgaussian
type exp

(
−ct2/ Var(X)

)
, at least for t not too large.

Example 4.3 (Random graphs). The random graph G(n, p) consists of n (la-
belled) vertices and edges drawn randomly, with each possible edge appearing
with probability p, independently of all other edges.

Let X be the number of triangles in G(n, p). This can be written in the form
(1.1), where A = [n]3< and Yα is the indicator that the three edges between the
three vertices in α all are present in G(n, p). (Note that this is not of the form
(1.2), since the underlying independent variables are indexed by pairs ij of
vertices rather than vertices. X can be regarded as an incomplete U -statistic
based on the

(
n
2

)
edge indicators; this will lead to the same results.)

In this case, two variables Yα and Yβ are independent even if α and β have
one vertex (but not two) in common, and we can define an independence graph
Γ with vertex set A such that α and β are joined by an edge if |α ∩ β| = 2.
This means fewer edges that in the independence graph in Example 4.1 (for
d = 3), and thus smaller ∆1 and χ∗, and better estimates.



LARGE DEVIATIONS FOR SUMS OF PARTLY DEPENDENT RANDOM VARIABLES11

We have E Yα = P(Yα = 1) = p3, |A| =
(

n
3

)
and ∆(Γ) = 3(n − 3), whence

∆1(Γ) = 3n− 8 < 3n. It follows from Corollary 2.6 that, for ε > 0,

P(X ≥ (1 + ε) E X) ≤ exp
(
− ε2

36 + 12ε
n2p3

(
1 + O(1/n)

))
(4.9)

P(X ≤ (1− ε) E X) ≤ exp
(
− ε2

36
n2p3

(
1 + O(1/n)

))
. (4.10)

If p is not too small, these exponential bounds are rather good. However, for
p < n−2/3, they are pretty useless. Also for larger p, they are not sharp (unless
p is bounded away from 0). Indeed, for this problem the following is known
by other methods, assuming for simplicity that n → ∞ and that p → 0 and
np ≥ 1.

As is shown in [15], [16, Chapter 3], the sharp exponent in the lower tail
estimate (4.10) is, for any fixed ε ≤ 1, really of the order min(n3p3, n2p).

For the upper tail (4.9), the sharp exponent is of the order n2p2 (possibly
up to a factor log n) for any fixed ε ≥ 0, see [17]. See also partial results
and discussions in [22] and [18]; the present method is essential the same as
“Break-up” in the latter. (It is a slight improvement, see Remark 5.2.)

We have here for simplicity discussed the number of triangles. Similar re-
sults hold for the number of copies of any fixed graph in G(n, p). Again,
Corollary 2.6 gives estimates that are exponentially small for certain ranges of
p, but we do not obtain optimal results (except in some extreme cases). Cf.
[15], [16], [22], [18], [17].

Example 4.4 (Random hypergraphs). Another problem that was used in
[18] to compare several different methods was the following: Consider a fixed
hypergraph H, for simplicity assumed to be uniform (all hyperedges have the
same number of vertices). Delete vertices of H at random, keeping each vertex
with probability p, independently of the other vertex, and let X be the number
of surviving hyperedges.

As shown in [18] (“Break-up” in Section 3.2), we typically obtain reasonable
estimates by the methods of this paper. In some cases, these are the best that
we can prove, but in others they are surpassed by other methods.

5. Further remarks

Remark 5.1. The method presented here uses independence of suitable (large)
subsets of {Yα}, but it does not use any other information on the dependencies.
Hence it can be expected to be wasteful and not give optimal results when the
dependencies that exist are weak.

Remark 5.2. Several authors, e.g. [21], [16], [18], [20], have used a splitting
of (1.1) into sums with independent summands in a slightly different way. In
the notation above, the argument runs as follows.

Consider for simplicity Theorem 2.1. Let {(Aj, wj)}j be an exact proper
fractional cover of A (usually, only covers are considered), and let again Xj :=
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Aj

Yα. For any positive pj with
∑

j pj = 1,

P(X ≥ E X+t) = P
(∑

j

wj(Xj−E Xj) ≥
∑

j

pjt
)
≤

∑
j

P
(
Xj−E Xj ≥

pjt

wj

)
.

Since each Xj is a sum of independent variables, the latter probabilities can be
estimated by [14, Theorem 2], i.e. our Theorem 2.1 with χ∗(A) = 1, yielding

P(X ≥ E X + t) ≤
∑

j

exp
(
−2

p2
j

w2
j cj

t2
)
,

where, as in our proof of Theorem 2.1, cj :=
∑

α∈Aj
(bα − aα)2. Taking again

pj = wjc
1/2
j /T with T :=

∑
j wjc

1/2
j , we obtain

P(X ≥ E X + t) ≤ N1 exp
(
−2t2/T 2

)
,

where N1 is the number of sets Aj in the fractional cover. (For an optimal
cover, thus N1 = χ(A).) This is the same as (3.3) except for the factor N1;
hence it leads to the estimate in Theorem 2.1 multiplied by N1 (for an optimal
fractional cover).

Hence Hoeffding’s method above, using Jensen’s inequality, is better, al-
though the difference usually is negligible in applications.

This version of the splitting argument also applies to the other theorems
above. Again, the results above are typically better by an insignificant factor,
but exact comparison seems more difficult than for Theorem 2.1.

Remark 5.3. The definition in Section 2 of dependency graphs is not the only
one in the literature. In some cases one needs a stronger version, requiring
{Yα}α∈A1 and {Yα}α∈A2 to be independent of each other whenever A1 and A2

are two disjoint subsets of A with no edges between them. (See e.g. [16].)
In the opposite direction, an even weaker version, still sufficient for our

purposes, would be to require only that {Yα}α∈A1 is a family of independent
variables whenA1 is an independent set in the graph. To see that this is strictly
weaker than the definition used above, consider the three variables ξ1ξ2, ξ1ξ3

and ξ2ξ3, where ξ1, ξ2 and ξ3 are i.i.d. with P(ξi = 1) = P(ξi = −1) = 1/2.
Then Γ is an independence graph in our sense if and only if Γ has at least two
edges, while one edge suffices for the weaker definition.

Note further that |A| = 3 and that every proper subset of A is independent;
hence no independence graph describes all independent sets. It is easily checked
that χ∗(A) = 3/2, but χ∗(Γ) ≥ 2 for every independence graph (for any of the
definitions above).
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