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ROBUST RECONSTRUCTION ON TREES IS DETERMINED
BY THE SECOND EIGENVALUE

BY SVANTE JANSON AND ELCHANAN MOSSEL1

Uppsala University and University of California, Berkeley

Consider a Markov chain on an infinite treeT = (V ,E) rooted atρ.
In such a chain, once the initial root stateσ(ρ) is chosen, each vertex
iteratively chooses its state from the one of its parent by an application
of a Markov transition rule (and all such applications are independent).
Let µj denote the resulting measure forσ(ρ) = j . The resulting measure

µj is defined on configurationsσ = (σ (x))x∈V ∈ AV , whereA is some
finite set. Letµn

j denote the restriction ofµ to the sigma-algebra generated
by the variablesσ(x), wherex is at distance exactlyn from ρ. Letting
αn = maxi,j∈A dTV(µn

i ,µn
j ), wheredTV denotes total variation distance,

we say that thereconstruction problem is solvable if lim inf n→∞ αn > 0.
Reconstruction solvability r oughly means that thenth level of the tree
contains a nonvanishing amount of information on the root of the tree as
n → ∞.

In this paper we study the problem ofrobust reconstruction. Let ν be
a nondegenerate distribution onA and ε > 0. Let σ be chosen according
to µn

j and σ ′ be obtained fromσ by letting for each node independently,

σ(v) = σ ′(v) with probability 1− ε and σ ′(v) be an independent sample
from ν otherwise. We denote byµn

j [ν, ε] the resulting measure onσ ′. The

measureµn
j [ν, ε] is a perturbation of the measureµn

j . Letting αn(ν, ε) =
maxi,j∈A dTV(µn

i [ν, ε],µn
j [ν, ε]), we say that the reconstruction problem

is ν-robust-solvable if lim inf n→∞ αn(ν, ε) > 0 for all 0< ε < 1. Roughly
speaking, the reconstruction problem is robust-solvable if for any noise-rate
and for alln, the nth level of the tree contains a nonvanishing amount of
information on the root of the tree.

Standard techniques imply that ifT is the rootedB-ary tree (where each
node hasB children) and ifB|λ2(M)|2 > 1, whereλ2(M) is the second
largest eigenvalue ofM (in absolute value), then for all nondegenerateν, the
reconstruction problem isν-robust-solvable. We prove a converse and show
that the reconstruction problem is notν-robust-solvable ifB|λ2(M)|2 < 1.
This proves a conjecture by the second author and Y. Peres. We also consider
other models of noise and general trees.

1. Introduction. In this paper we study the perturbative theory of reconstruc-
tion on trees, and show how it depends on the spectrum of the underlying Markov
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chain. In particular, we show that the threshold for “robust reconstruction” for the
B-ary tree isB|λ2(M)|2 = 1, whereλ2(M) denotes the eigenvalue ofM which is
the second largest in absolute value. In Section 3 we prove a similar threshold for
general bounded degree trees, whereB is replaced by the branching number of the
tree br(T ). We refer the reader to Section 1.2 and to [3, 7, 21, 22] for background.

1.1. Definitions and main results. We proceed with some formal definitions.
Let T = (V,E,ρ) be a treeT with nodesV , edgesE and rootρ ∈ V . We
direct all edges away from the root so that ife = (x, y), thenx is on the path
connectingρ to y. Let d(·, ·) denote the graph-metric distance onT , andLn =
{v ∈ V :d(ρ, v) = n} be thenth level of the tree. Forx ∈ V ande = (y, z) ∈ E, we
denote|x| = d(ρ, x), d(x, (y, z)) = max{d(x, y), d(x, z)} and|e| = d(ρ, e). The
B-ary tree is the infinite rooted tree, where each vertex has exactlyB children.

A Markov chain on the tree is a probability measure whose state space isAV ,
whereA is a finite set. Without loss of generality we assume thatA = {1, . . . , q}.
Assume first thatT is finite and letM = (Mi,j )i,j∈A be a stochastic matrix. In this
case the probability measure defined byM onT is given by

µ̄�(σ ) = 1{σ(ρ)=�}
∏

(x,y)∈E

Mσ(x),σ (y).(1)

In other words, inµ̄� the root stateσ(ρ) satisfiesσ(ρ) = � and then each vertex
iteratively chooses its state from the one of its parent by an application of the
Markov transition rule given byM (and all such applications are independent).
We can define the measureµ̄� on an infinite tree too, by Kolmogorov’s extension
theorem, but we will not need chains on infinite trees in this paper (see [7] for basic
properties of Markov chains on trees).

Instead, for an infinite treeT , we let Tn = (Vn,En,ρ), where Vn = {x ∈
V :d(x,ρ) ≤ n},En = {e ∈ E :d(e, ρ) ≤ n} and defineµ̄n

� by (1) for Tn. More
explicitly,

µ̄n
�(σ ) = 1{σ(ρ)=�}

∏
(x,y)∈En

Mσ(x),σ (y).(2)

We are particularly interested in the distribution of the statesσ(x) for x ∈ Ln, the
set of leaves inTn. This distribution, denoted byµn

k , is the projection ofµ̄n
k on

ALn given by

µn
k(σ ) = ∑{µ̄n

k(σ̄ ) : σ̄ |Ln = σ }.(3)

In this paper we are interested in perturbative theory of the above process. Below
we give three definitions of perturbations ofµk

n representing three different types
of “noise.” We call a distributionν on A = {1, . . . , q} nondegenerate, ifν(i) > 0,
for all 1 ≤ i ≤ q.

In the general setting the perturbation is obtained by observing, for leaves
x ∈ Ln, not the stateσ(x) but a state (in a state spaceB possibly different fromA)
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derived fromσ(x) by another random choice (independently for all leaves). The
extra choice can be described by a stochastic matrixN = (Ni,j )i∈A,j∈B ; this
defines a probability measure onAVn × BLn by

µ̄[N ]n�(σ, τ ) = 1{σ(ρ)=�}
∏

(x,y)∈En

Mσ(x),σ (y) × ∏
y∈Ln

Nσ(y),τ(y),(4)

and the distribution of our observed states is the projectionµ[N ]n� on BLn given
by

µ[N ]n� (τ ) = ∑
σ

µ̄[N ]n� (σ, τ ).(5)

We will mostly be interested in the following types of noise:

• Given k ≥ 0, defineN = Mk . Here, for each leaf independently,k additional
steps of the chain are performed. We writeµn

� [k] for µn
� [N ].

• Given a distributionν on A, defineNi,j = (1 − ε)1{i=j } + ενj . Here, for each
leaf independently, with probability 1− ε, there is no noise; otherwise, the leaf
state is chosen independently from anything else according toν. We will write
µn

k[ν, ε] for µ[N ]n� .
• Given 0≤ ε ≤ 1, we letN be aq × (q + 1) matrix defined byNi,i = (1 − ε),

Ni,q+1 = ε andNi,j = 0 otherwise. Here, for each leaf independently, the state
at the leaf is deleted with probabilityε (deletion is marked byq + 1). We write
µn

�[ε] for µn
�[N ].

Recall that for distributionsµ andν on the same space
, the total variation
distance betweenµ andν is

DV (µ,ν) = 1
2

∑
σ∈


|µ(σ) − ν(σ )|.(6)

DEFINITION 1.1. (i) The reconstruction problem for theB-ary treeT andM

is solvable if there existi, j ∈ A, for which

lim inf
n→∞ DV (µn

i ,µ
n
j ) > 0.(7)

(ii) The reconstruction problem for theB-ary treeT andM is robust-solvable
if for all k < ∞ there existi, j ∈ A for which

lim inf
n→∞ DV (µn

i [k],µn
j [k]) > 0.(8)

(iii) Let ν be a nondegenerate distribution. The reconstruction problem for the
B-ary treeT andM is ν-robust-solvable if for all ε < 1, there existi, j ∈ A, for
which

lim inf
n→∞ DV (µn

i [ν, ε],µn
j [ν, ε]) > 0.(9)
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(iv) The reconstruction problem for theB-ary treeT andM is erasure-robust-
solvable if for all ε < 1, there existi, j ∈ A, for which

lim inf
n→∞ DV (µn

i [ε],µn
j [ε]) > 0.(10)

Note that by takingε = 0 in (9) or (10) we obtain the original reconstruction
condition (7). The same is true ifk = 0 in (8).

Let λ2(M) denote the eigenvalue ofM which has the second largest absolute
value [λ2(M) may be negative or nonreal]. In our main result we prove the
following:

THEOREM 1.2. Consider an ergodic Markov chain on the B-ary tree such
that B|λ2(M)|2 < 1. Then we have the following:

(i) The reconstruction problem is not robust-solvable. Moreover, there exists
k∗ such that for all k > k∗,

max
i,j

lim
n→∞DV (µn

i [k],µn
j [k]) = 0.(11)

(ii) For all nondegenerate ν, the reconstruction problem is not ν-robust-
solvable. Moreover, for all nondegenerate ν, there exists ε∗ < 1 such that for all
ε > ε∗,

max
i,j

lim
n→∞DV (µn

i [ν, ε],µn
j [ν, ε]) = 0.(12)

(iii) If all the entries of M are nonzero, then the reconstruction problem is not
erasure-robust-solvable. Moreover, there exists an ε∗ < 1 such that for all ε > ε∗,

max
i,j

lim
n→∞DV (µn

i [ε],µn
j [ε]) = 0.(13)

It is easy to see that the total variation distances in (11), (12) and (13) are
monotone decreasing ink, ε andε respectively.

The following proposition follows immediately from [12] or from the proofs
in [22]. Together with Theorem 1.2, it shows that the threshold for robust
reconstruction is given byB|λ2(M)|2 = 1.

PROPOSITION 1.3. Consider an ergodic Markov chain on the B-ary tree
where B|λ2(M)|2 > 1. Then we have the following:

(i) The reconstruction problem is robust-solvable.
(ii) For all nondegenerate ν the reconstruction problem is ν-robust-solvable.
(iii) The reconstruction problem is erasure-robust-solvable.
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1.2. Discussion. The reconstruction problem was first studied in statistical
physics [9, 28], where the problem was phrased in terms of extremality of the
free measure for the Ising model on the(B + 1)-regular tree (Bethe lattice). It
is not too hard to see (e.g., [3]) that the measure is nonextremal if and only
if the reconstruction problem is solvable for the Markov chain on theB-ary
tree with transition probabilities given by the binary symmetric Markov chain:(

1− δ δ
δ 1− δ

)
. δ is related to the “inverse temperature”β by 1− 2δ = tanh(2β).

The equivalence between nonextremality of the free measure of a random field
and reconstruction solvability of an associated Markov chain on the same tree
holds under mild nondegeneracy conditions (see, e.g., [18]).

In the past decade, the reconstruction problem reappeared in many applications:
In communication networks (see [3] and the references there), in noisy computa-
tion (a model introduced by von Neumann in [29], see [8, 4]) and in phylogeny
(molecular evolution, see [5, 26] for general background) [27]. Most recently, it
is shown that the reconstruction problem is of crucial importance to basic ques-
tions in phylogeny [19, 20, 23]. In all of these applications the interest is to find
when is it possible to reconstruct some information on the root state from states
at the leaves of a finite tree. In many of the applications it is natural to consider
robust-reconstruction as the observed data goes via additional “noise mechanism.”

Solvability of the reconstruction problem is also closely related to the mixing
rate of Glauber dynamics on the tree. See [1, 17], where it is shown that
nonsolvability roughly corresponds to rapid mixing dynamics on the tree.

Determining if the reconstruction problem is solvable or not turns out to be
very hard. Binary symmetric Markov chains is the only family for which the
threshold for reconstruction solvability is known. Even here there is a generation
gap between the proof of the lower-bound [9] and proofs of the upper bound [2]
(see also [10] for a different proof, [3] for the result on general trees and [24]
for the critical case on general trees). For binary symmetric Markov chains on the
B-ary tree the threshold for the reconstruction problem is given byB(1−2δ)2 = 1,
or, equivalently,Bλ2(M)2 = 1. For all other families of Markov chain, including
q-ary symmetric Markov chain forq > 2 and general 2× 2 Markov chains, only
bounds are known [15, 17, 22].

The thresholdB|λ2(M)|2 = 1 is also the threshold for “census-solvability”
[22], where different nodes ofLn are indistinguishable (in other words, we
only observe the “census” of leveln). However, in general, it is not the
threshold for reconstruction. Indeed, except for the binary symmetric channel,
we know of no family of chains for whichB|λ2(M)|2 = 1 is the threshold for
reconstruction. Moreover, [18] shows that for asymmetric binary Markov chains
(general stochastic 2 by 2 matrices) or symmetric Markov chains forq > 2
[whereMi,j = (1− δ)1{i=j } + δ

q−11{i �=j } for i, j ∈ {1, . . . , q}], the reconstruction
problem is sometimes solvable even whenB|λ2(M)|2 < 1. In [18] there is also
a construction ofM with λ2(M) = 0 for which the reconstruction problem is
solvable for largeB.
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Why is determining the threshold for reconstruction hard? From the technical
point of view a Markov chain on the tree corresponds to a recursion in some
random variables ([2, 17, 24]). A natural way to analyze these recursions is to
use a perturbative argument around the stationary distribution of the chain. The
main problem is that the random variables we start with are atoms—far from the
stationary distribution—and that, in general, the recursions lack any convexity. For
“robust-reconstruction” the problem is easier—as the recursions begin close to the
stationary distribution.

Our proof is based on a new measure ofdiscrepancy for a vector of distributions
which is a weighted variant of theχ2 distance. We show that an application
of the chainM contracts the discrepancy by a|λ2(M)|2 factor, and that if the
discrepancy is smaller thanδ, then tensoringB copies of the distributions increases
the discrepancy by a factor of at mostB(1+ ε(δ)), whereε(δ) → 0, asδ → 0.

It is interesting to compare our results with the results of [25]. In [25] Pemantle
and Steif study robust phase transition on trees. For a Gibbs measure on a tree we
say that a robust phase transition occurs if the boundary conditions on a cutset have
a nonvanishing effect on the root even when the interactions along the cutsets are
made arbitrarily small but fixed (see [25] for exact definition). The main results
of [25] give the exact threshold for robust phase transitions for general (bounded
degree) trees for Potts and Heisenberg models in terms of the underlying model
and the branching number (see [14]) of the tree.

Both in our result and in the results of [25], it is easier to analyze the “robust”
problem than it is the original problem for similar reasons. In both cases the
“nonrobust” problem is hard to control without some convexity assumption, while
the solution of “robust” problem allows the use of “local” arguments.

Moreover, like robust phase transition, robust reconstruction is a geomet-
ric property, that is, for general bounded degreeT , the threshold for robust-
reconstruction depends only on br(T ) and |λ2(M)|. Indeed, the proof of
Theorem 3.3 combines the analysis of the new discrepancy measure introduced
here, with some of the techniques developed in [25] for controlling recursions on
general trees.

A natural open problem is to determine the behavior of robust-solvability in
the critical case, whereB|λ2(M)|2 = 1. Our techniques shed no light on this
problem. It is also interesting to try and remove the restriction that the entries
of M are positive for (13); see also Remark 2.10. Finally, in the proof presented
for Theorem 3.3, for fixedM andν, the bounds onε andk are becoming weaker
as br(T )|λ2(M)|2 approaches 1 (i.e.,ε → 1 andk → ∞). It is natural to ask if for
givenM , ν andK , there existε andk for which the result holds uniformly for all
infinite treesT with br(T )|λ2(M)|2 < 1.

2. Proof. Recall that we denote byM the transition matrix. In this section we
will often multiply M from the right by a vector of functions, from the left by a
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vector of measures—in which case the resulting vector would also be a vector of
functions/vector of measures.

Let 1 = (1, . . . ,1)t , then clearlyM1 = 1. Let vi be the stationary probability
of statei, andv = (v1, . . . , vq) the stationary distribution, so thatvM = v. In the
remainder of this section we will usea, b, c, . . . for column vectors, andu, v,w, . . .

for row vectors.v will always denote the stationary distribution.
Note that ifb is a column vector such thatvb = 0, thenvMb = vb = 0. In other

words, the linear spacev⊥ = {b ∈ R
q :vb = 0} is invariant underM .

LEMMA 2.1. Let b = (b1, . . . , bq)
t be a vector such that bi > 0 for all i. Then

q∑
i=1

vi

(Mb)i
≤

q∑
i=1

vi

bi

.

PROOF. By Jensen,

1

(Mb)i
= 1∑

j mi,j bj

≤ ∑
j

mi,j

1

bj

.

Hence,

∑
i

vi

(Mb)i
≤ ∑

i

∑
j

vimi,j

1

bj

= ∑
j

(∑
i

vimi,j

)
1

bj

= ∑
j

vj

bj

,

as needed.�

By looking at the Jordan form ofM it is easy to see the following:

LEMMA 2.2. Given ε > 0, there exists an Euclidean norm ‖ · ‖ on v⊥ such
that ‖Mb‖ ≤ (|λ2(M)| + ε)‖b‖ for all b ∈ v⊥.

Let Q be the projection ontov⊥ defined byQb = b − (vb)1 [note thatvQb =
vb − (vb)(v1) = 0 for all b].

DEFINITION 2.3. Let‖·‖ be a Euclidean norm onv⊥. Letν = (ν1, . . . , νq) be
a vector of distributions on a common space. Letf = (f1, . . . , fq) be the vector
of density functions with respect to aσ -finite measureµ, such thatνi � µ for
everyi. In other words,dνi = fi dµ for all i. We then define thediscrepancy of
the vector by

D
µ
‖·‖(f ) =

∫
‖Qf ‖2

q∑
i=1

vi

fi

dµ.

We also writeD(ν) andD(f ) for the discrepancy, without explicitly indicating
the norm and reference measure.
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Note the similarity between the discrepancy and theχ2-distance. The
χ2-distance is known to be well behaved with respect to�2 norms. Note that if
f1 = · · · = fq , thenQf = fQ1 = 0. Thus,Q projects into the orthogonal com-
plement of the space where the discrepancy should be 0.

LEMMA 2.4. D(ν) is independent of the reference measure µ; that is, if
f = (f1, . . . , fq) and g = (g1, . . . , gq) are such that dνi = fi dµ = gi dµ̃ for all i,

then D
µ
‖·‖(f ) = D

µ̃
‖·‖(g).

PROOF. Assume that̃µ � µ. The general case then follows by considering
the three reference measuresµ, µ + µ̃, µ̃.

SinceQ is linear and‖ · ‖ is Euclidean, we may write‖Qb‖2 = ∑q
i,j=1 ti,j bibj

for someti,j ∈ R. Now

Dµ(f ) =
q∑

r,i,j=1

vr ti,j

∫
fifj

fr

dµ =
q∑

r,i,j=1

vr ti,j

∫
gigj (dµ̃/dµ)2

gr dµ̃/dµ
dµ

=
q∑

r,i,j=1

vr ti,j

∫
gigj

gr

dµ̃ = Dµ̃(g).
�

LEMMA 2.5. Let the norm ‖ · ‖ on v⊥ satisfy ‖Mb‖ ≤ α‖b‖ for all b ∈ v⊥
and some constant α. Then D(Mf ) ≤ α2D(f ) for all f , as in Definition 2.3.

PROOF. For allb,

MQb = M
(
b − (vb)1

) = Mb − (vb)M1

= Mb − (vb)1 = Mb − (vMb)1 = QMb.

Therefore, we have pointwise that

‖QMf ‖2 = ‖MQf ‖2 ≤ α2‖Qf ‖2.(14)

Now

D(Mf ) =
∫

‖QMf ‖2
q∑

i=1

vi

(Mf )i
dµ

≤ α2
∫

‖Qf ‖2
q∑

i=1

vi

(Mf )i
dµ(15)

≤ α2
∫

‖Qf ‖2
q∑

i=1

vi

fi

dµ = α2D(f ),(16)

where (15) follows from (14), and (16) follows by Lemma 2.1.�
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LEMMA 2.6. For every Euclidean norm ‖ · ‖ on v⊥, there exists a constant
C = C(‖ · ‖), such that ∣∣∣∣

∫
fifj

fk

dµ − 1
∣∣∣∣ ≤ CD(f ),(17)

for all i, j, k, where f and µ are as in Definition 2.3.

PROOF. By Cauchy–Schwarz,∣∣∣∣
∫

fifj

fk

dµ − 1
∣∣∣∣ =

∣∣∣∣
∫

(fi − fk)(fj − fk)

fk

dµ

∣∣∣∣
≤

√∫ |fi − fk|2
fk

dµ

√∫ |fj − fk|2
fk

dµ.

Therefore, in order to prove the lemma, it suffices to prove that there exists a
constantC such that for alli, j, k, it holds that

∫ |fi − fj |2
fk

dµ ≤ CD(f ).(18)

Note that

(Qb)i − (Qb)j = (
b − (vb)1

)
i − (

b − (vb)1
)
j = bi − bj .

Therefore, for allb, it holds that, for some constantCij ,

|bi − bj | = |(Qb)i − (Qb)j | ≤ Cij‖Qb‖.
Hence,

∫ |fi − fj |2
fk

dµ ≤ C2
ij

∫ ‖Qf ‖2

fk

≤ C2
ij

vk

D(f ).

Now (18) follows by takingC = supi,j,k
C2

ij

vk
. �

Given aσ -finite measureµ on a spaceX, we denote byµ⊗B the product
measure onXB with marginalsµ. Similarly, if fi is a density ofνi with respect

to µ, write f ⊗B
i for the density ofν⊗B

i with respect toµ⊗B . Finally, for
f = (f1, . . . , fq), write f ⊗B = (f ⊗B

1 , . . . , f ⊗B
q ), and forν = (ν1, . . . , νq), write

ν⊗B = (ν⊗B
1 , . . . , ν⊗B

q ). We similarly use
⊗B

r=1νr for the componentwise product
of several vectorsνr of measures.
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LEMMA 2.7. Let ‖ · ‖ be an Euclidean norm on v⊥, B ≥ 1 an integer
and ε > 0. Then there exists a δ > 0 such that if ν1 = (ν1

1, . . . , ν1
q), . . . , νB =

(νB
1 , . . . , νB

q ), satisfy D(νi) ≤ δ for 1 ≤ i ≤ B, then

D

(
B⊗

r=1

νr

)
≤ (1+ ε)

(
D(ν1) + · · · + D(νB)

)
.

In particular, given ε > 0, there exists a δ > 0 such that if ν = (ν1, . . . , νq) satisfies
D(ν) ≤ δ, then D(ν⊗B) ≤ (1+ ε)BD(ν).

PROOF. The second part of the lemma immediately follows from the first part.
Choose a reference measureµ with νr

i � µ for everyi andr , and letf r
i be the

densitydνr
i /dµ.

As in Lemma 2.4, we may write‖Qb‖2 = ∑
i,j ti,j bibj . Moreover, since

‖Q1‖2 = ‖0‖2 = 0, it follows that
∑

i,j ti,j = 0. Hence,

D(f ) =
∫

‖Qf ‖2
q∑

k=1

vk

fk

dµ

= ∑
i,j,k

vkti,j

∫
fifj

fk

dµ(19)

= ∑
i,j,k

vkti,j

(∫
fifj

fk

dµ − 1
)
.

Substituting
⊗B

r=1f r in (19), we obtain, using the reference measureµ⊗B ,

D

(
B⊗

r=1

f r

)
= ∑

i,j,k

vkti,j

(∫ ⊗B
r=1f r

i

⊗B
r=1f r

j⊗B
r=1f r

k

dµ⊗B − 1
)

(20)

= ∑
i,j,k

vkti,j

(
B∏

r=1

(∫ f r
i f r

j

f r
k

dµ

)
− 1

)
.

Let C be chosen to satisfy (17) in Lemma 2.6, andC̃ = C
∑

i,j |ti,j |. Let δ be
chosen such that for all(x1, . . . , xB) ∈ [1− Cδ,1+ Cδ]B , it holds that∣∣∣∣∣

B∏
r=1

xr − 1−
B∑

r=1

(xr − 1)

∣∣∣∣∣ ≤ ε
∑B

r=1 |xr − 1|
C̃

.(21)

By Lemma 2.6, it follows that ifD(f ) ≤ δ, then for alli, j, k,∣∣∣∣
∫

fifj

fk

dµ − 1
∣∣∣∣ ≤ CD(f ) ≤ Cδ.
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Therefore, it follows from (20) and (21) that

D

(
B⊗

r=1

f r

)
≤ ∑

i,j,k,r

vkti,j

(∫ f r
i f r

j

f r
k

dµ − 1
)

+ ε

C̃

∑
i,j,k,r

vk|ti,j |
∣∣∣∣
∫ f r

i f r
j

f r
k

dµ − 1
∣∣∣∣

= ∑
r

D(f r) + ε

C̃

∑
i,j,k,r

vk|ti,j |
∣∣∣∣
∫ f r

i f r
j

f r
k

dµ − 1
∣∣∣∣

(22)
≤ ∑

r

D(f r) + ε

C̃

∑
i,j,k,r

vk|ti,j |CD(f r)

= (1+ ε)
∑
r

D(f r),

where inequality (22) follows from Lemma 2.6.�

LEMMA 2.8. Given a Euclidean norm ‖ · ‖ on v⊥, there exists a constant
C(‖ · ‖) < ∞ such that for any vector ν = (νi)

q
i=1 = (fi dµ)

q
i=1 of distributions we

have

sup
i,j

dTV(νi, νj ) = sup
i,j

∫
|fi − fj |dµ ≤ C

√
D(f ),(23)

where f = (f1, . . . , fq).

PROOF. By Cauchy–Schwarz,

∫
|fi − fj |dµ ≤

√∫ |fi − fj |2
fi

dµ

√∫
fi dµ =

√∫ |fi − fj |2
fi

dµ,

and (23) follows from Lemma 2.6.�

LEMMA 2.9. (i) Let ‖ · ‖ be a Euclidean norm on v⊥. Let µ be a probability
distribution on 1, . . . , q such that µ(i) > 0 for all i. Then for all δ > 0, there
exists an ε∗ = ε∗(δ) < 1 such that for any vector ν′ = (ν′

1, . . . , ν
′
q) of probability

distributions on 1, . . . , q and for all ε > ε∗, if

ν = (1− ε)(ν′
1, . . . , ν

′
q) + ε(µ, . . . ,µ),

then D(ν) ≤ δ.
(ii) Let ‖ · ‖ be a Euclidean norm on v⊥. Let ν

(r)
� denote the �th row of Mr ,

that is, the distribution of the chain given by Mr , after r steps starting at �, and
ν(r) = (ν

(r)
1 , . . . , ν

(r)
q ). Then for all δ > 0, there exists an r∗ = r∗(δ) such that if

r ≥ r∗, then D(ν(r)) ≤ δ.
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(iii) Let ‖ · ‖ be an Euclidean norm on v⊥. Let ν = (ν1, . . . , νq) be a vector
of probability measures such that for all 1 ≤ i, j ≤ q, it holds that νi(j) > 0. Let
νε = (νε

1, . . . , νε
q) be a collection of probability measures on {1, . . . , q + 1} such

that νε
i = (1 − ε)νi + εν′, where ν′ is the delta measure on q + 1. Then for all

δ > 0, there exists an ε∗ = ε∗(δ) < 1 such that if ε > ε∗, then D(νε) ≤ δ.

PROOF. For the first part of the lemma we use the representation ofD(ν) as
in (19) with respect to the measureµ. Let m = min{µ(1), . . . ,µ(q)}, and observe
that if dνi = fi dµ, then

fi = dνi

dµ
= ε + (1− ε)

dν′
i

dµ
,

so

ε ≤ fi ≤ ε + (1− ε)/m,

and for alli, j, k,

fifj

fk

≤ (ε + (1− ε)/m)2

ε
.

Hence, by (19),

D(ν) ≤
(

(ε + (1− ε)/m)2

ε
− 1

)∑
i,j

|ti,j |,(24)

and the right-hand side of (24) converges to 0 asε → 1.
The second part of the lemma follows from the first one, as the ergodicity ofM

implies that for alli, ν
(m)
i converges to the stationary distribution of the chain as

m → ∞.
The third part of the lemma is proven similarly to the first part. Letm =

mini,j∈A νi(j) and

µε = εν′ + (1− ε)

q

q∑
i=1

νi .

Note that if dνε
i = fi dµε, then m ≤ fi(�) ≤ q for 1 ≤ � ≤ q and all i, and

fi(q + 1) = 1 for all i. It follows that for alli, j, k and 1≤ � ≤ q,

m2

q
≤ fi(�)fj (�)

fk(�)
≤ q2

m
and

fi(q + 1)fj (q + 1)

fk(q + 1)
= 1.

Moreover,µε(q + 1) = ε andµε({1, . . . , q}) = 1− ε, so for alli, j andk,∫
fifj

fk

dµ − 1=
∫ (

fifj

fk

− 1
)

dµ ≤
(

q2

m
− 1

)
(1− ε).
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Hence, by (19),

D(νε) = ∑
i,j,k

vkti,j

(∫
fifj

fk

dµ − 1
)

≤
(

q2

m
− 1

)
(1− ε)

∑
i,j

|ti,j |(25)

and the right-hand side of (25) converges to 0 asε → 1. �

PROOF OFTHEOREM 1.2. The basic idea of the proof is that ifµ[N ]n is the
vector of probability measures(µ[N ]n1, . . . ,µ[N ]nq) defined in (5), then we may
write µ[N ]n+1 in terms ofµ[N ]n using the operatorM and tensoring. This will
allow us to bound discrepancies recursively. Letρ1, . . . , ρB be theB children of
ρ in the B-ary tree. WriteEn+1(s) for the edges inEn+1 that are on the subtree
rooted inρs (formally, these are the edges ofEn+1 that are connected toρ only
by paths going viaρs). DefineLn+1(s) similarly. Finally, for a configurationσ of
the vertices at the firstn level of the tree, letσ1, . . . , σB denote the configurations
restricted to the subtrees rooted atρ1, . . . , ρB . Then by (4) and (5),

µ[N ]n+1
� (τ ) = ∑

σ

1{σ(ρ)=�}
∏

(x,y)∈En+1

Mσ(x),σ (y)

∏
y∈Ln+1

Nσ(y),τ(y)

=
B∏

s=1

( q∑
�′=1

M�,�′
∑
σs

1{σs(ρs)=�′}
∏

(x,y)∈En+1(s)

Mσs(x),σs(y)

(26)

× ∏
y∈Ln+1(s)

Nσs(y),τs (y)

)

=
B∏

s=1

( q∑
�′=1

M�,�′µ[N ]n�′
(
τ |Ln+1(s)

))
.

Note that the expression in the parenthesis in (26) is given by(M(µ[N ]n))�(τ |
Ln+1(s)), the�th coordinate of the vectorM(µ[N ]n). It is now easy to see that

µ[N ]n+1 = (
M(µ[N ]n))⊗B

.(27)

We use (27) in order to bound discrepancies recursively.
The assumptionB|λ2(M)|2 < 1 implies by Lemma 2.2 that there exists anε > 0

and a norm‖ · ‖ onv⊥ such that for allb ∈ v⊥, it holds that‖Mb‖ ≤ α‖b‖, where
B(1+ ε)α2 ≤ 1− ε. Let δ be chosen as to satisfy Lemma 2.7, so that ifD(f ) ≤ δ,
thenD(f ⊗B) ≤ B(1+ ε)D(f ).

By Lemma 2.9 it follows that there exists ak∗ such thatµ0 = (µ0
1[k], . . . ,µ0

q[k])
satisfiesD(µ0) ≤ δ for all k ≥ k∗. Write µn for (µn

1[k], . . . ,µn
q[k]). Thus, (27) im-

plies thatµn+1 = (Mµn)⊗B . It now follows by Lemmas 2.7 and 2.5 that

D(µn+1) ≤ B(1+ ε)α2D(µn) ≤ (1− ε)D(µn).
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Hence, limn→∞ D(µn) = 0. We therefore conclude from Lemma 2.8 that

lim
n→∞ max

i,j
dTV(µn

i [k],µn
j [k]) = 0,

and (11) follows.
In order to prove (12), letν be a nondegenerate measure and note that by

Lemma 2.9 it follows that there exist anε∗ < 1 such thatµ0 = (µ0
1[ν, ε], . . . ,

µ0
q[ν, ε]) satisfiesD(µ0) ≤ δ for all ε > ε∗. Now (12) follows similarly to (11).

The proof of (13) is similar. We look atµ1 = (µ1
1[ε], . . . ,µ1

q [ε]). Note that (27)
implies thatµ1 = (Mµ0)⊗B . Let ν = Mµ0. Note that the vectorν satisfies for all
i thatνi(q + 1) = ε andνi(j) = (1− ε)Mi,j otherwise.

Since all the entries ofM are positive, it follows from Lemma 2.9 that for every
δ′ > 0 there exists anε∗ < 1 such that ifε > ε∗, thenD(ν) ≤ δ′. We may now
apply Lemma 2.7 and chooseδ′ > 0 in such a way that

D(µ1) = D(ν⊗B) ≤ δ.

The rest of the proof is identical.�

REMARK 2.10. It is an interesting goal to extend (13) to general ergodic
chains (where some of the entries ofM may be zero). Above we proved this for
the case where all the entries ofM are positive.

The proof of Lemma 2.9 can easily be extended to the case when there exists
ann such that the measuresµn

1, . . . ,µ
n
q all have the same support [in such a case

one can prove that there exists a value ofε < 1 such thatD(µn) ≤ δ by showing
that forε sufficiently large, the measuresµn

i have most of their mass on the atom
(q + 1, . . . , q + 1) and bounded relative densities elsewhere]. However, we do
not know any simple characterizations of the matricesM for which this holds (it
evidently depends only on the set of zero entries ofM); nor we do believe that this
property is necessary for nonerasure-robust-solvability.

3. General trees. Our results readily extend to general infinite bounded
degree trees, whereB is replaced by br(T ), the branching number of the tree.
In [6], Furstenberg introduced the notion of the Hausdorff dimension of a tree.
Later, Lyons [13, 14] showed how many of the probabilistic properties of the
tree are determined by this number which he named the branching number.

For our purposes it is best to define the branching number via cutsets. Acutset S

for a treeT rooted atρ is a finite set of vertices separatingρ from ∞. In
other words, a finite setS is a cutset, if every infinite self avoiding path fromρ
intersectsS. An antichain is a cutset that does not have any proper subset which is
also a cutset.

We follow the notation of [25] and for a cutsetS, write Ins(S) for the inside
of S (the finite component ofT \ S, containing the rootρ), InsE(S) for edges
insideS [those edges(x, y) havingx ∈ Ins(S)] and Out(S) for the outside ofS
[Out(S) = T \ (S ∪ Ins(S))].
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DEFINITION 3.1. The branching number ofT is defined as

br(T ) = inf

{
λ > 0 : inf

cutsetsS

∑
x∈S

λ−|x| = 0

}
.

Note that

br(T ) = inf

{
λ > 0 : inf

antichainsS

∑
x∈S

λ−|x| = 0

}
.

By Min-Cut-Max-Flow, br(T ) is also the supremum of the real numbersλ > 0,
such thatT admits a positive flow from the root to infinity, where on every
edgee of T , the flow is bounded byλ−|e|. It is shown in [14] that br(T )−1

is the critical probability for Bernoulli percolation onT . See [14] and [3] for
equivalent definitions of br(T ) in terms of percolation, cutset sums and electrical
conductance. We note that br(TB) = B for theB-ary treeTB .

As in Section 1, the Markov chain onT is described by an|A| × |A| stochastic
matrix M and the perturbations by an|A| × |B| stochastic matrixN . For B-ary
trees, we observed the process on the special antichainsLn; for general trees, it
seems more natural to consider arbitrary antichains. The distributionµ[N ]S� of
the observed (perturbed) states on an antichainS in T is given by, extending
(4) and (5),

µ[N ]S� (τ ) = ∑
σ

1{σ(ρ)=�}
∏

(x,y)∈InsE(S)

Mσ(x),σ (y) × ∏
y∈S

Nσ(y),τ(y).(28)

We proceed by definingµS
� , the measureµS

� [k] for k ≥ 0, the measureµS
� [ν, ε] for

ε > 0 and nondegenerate distributionν on A andµS
� [ε]. This is done in exactly

the same way as in the case of theB-ary tree, by choosing appropriateN ’s in (28).
We say that the reconstruction problem is solvable if there existsi, j ∈ A, for

which

inf
S antichain

DV (µS
i ,µS

j ) > 0,

whereµS
� denotes the conditional distribution onσS given thatσ(ρ) = �. We

similarly define the notions of robust-solvable,ν-robust-solvable and erasure-
robust-solvable.

REMARK 3.2. The definitions of solvability for general trees andB-ary tree
are not compatible. If T is the B-ary tree, then solvability by Definition 1.1
involves only cutsetsS = Ln and is therefore a weaker condition than solvability
defined here, which involves all antichains (same for robust-solvable etc.).
However, we will obtain the same threshold for robust-reconstruction under both
definitions.



RECONSTRUCTION ON TREES 2645

The proof of our main result extends to show the next theorem.

THEOREM 3.3. Consider an ergodic Markov chain on a rooted tree T such
that br(T )|λ2(M)|2 < 1. Then we have the following:

(i) The reconstruction problem is not robust-solvable.
(ii) For all nondegenerate ν, the reconstruction problem is not ν-robust-

solvable.
(iii) If all the entries of M are nonzero, then the reconstruction problem is not

erasure-robust-solvable.

This proves that the threshold for robust reconstruction is given by br(T ) ×
|λ2(M)|2 = 1 as the proof of Theorem 1.4 in [22] immediately generalizes to show
the following proposition:

PROPOSITION 3.4. Consider an ergodic Markov chain on a tree T such
that br(T )|λ2(M)|2 > 1. Then the reconstruction problem is robust-solvable, for
all nondegenerate ν the reconstruction problem is ν-robust-solvable and the
reconstruction problem is erasure-robust-solvable.

We now turn to the proof of Theorem 3.3 which generalizes the proof of
Theorem 1.2. For a vertexx of the rooted treeT , we writeT (x) for the subtree
rooted atx, that is, the subtree consisting ofx and all of its descendents. We will
use the following lemma from Pemantle and Steif [25].

LEMMA 3.5 ([25], Lemma 3.3). Assume that br(T ) < g. Then for all ε > 0
there exists an anitchain S such that

∑
x∈S

(
1

g

)|x|
≤ ε,(29)

and for all y ∈ S ∪ Ins(S),

∑
x∈S∩T (v)

(
1

g

)|x|−|y|
≤ 1.(30)

PROOF OF THEOREM 3.3. We will show that under the conditions of
Theorem 3.3 the reconstruction problem is not robust-solvable.

Let S be an antichain andy ∈ S ∪ Ins(S). Consider the Markov chain on the
subtreeT (y), starting with state� at y, and letµ[N ]y,S

� be the distribution of the
observed states onT (y) ∩ S. Thus,

µ[N ]y,S
� (τ ) = ∑

σ

1{σ(y)=�}
∏

(x,z)∈InsE(S)

x∈T (y),z∈T (y)

Mσ(x),σ (z) × ∏
z∈T (y)∩S

Nσ(z),τ(z).(31)
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We write µ[N ]y,S for (µ[N ]y,S
1 , . . . ,µ[N ]y,S

q ). Note thatµ[N ]S = µ[N ]ρ,S for
any antichainS.

The proof of Theorem 1.2 easily extends to show that ify ∈ Ins(S) and
z1, . . . , zB are the children ofy, then

µy,S[N ] =
B⊗

r=1

(Mµzr,S[N ]).(32)

We will prove the theorem by recursively analyzing discrepancies via (32). We
will prove the result for robust-solvability and indicate the modifications needed
for other cases at the end of the proof.

Below, we will write µy,S[k] for the measureµy,S[N ], whereN = Mk . Note
that if S is an antichain andv ∈ S, then the measureµy,S is a measure on a single
node. We may therefore apply Lemma 2.9 and conclude that for allδ > 0, there
exists ak∗ such that fork ≥ k∗, for all antichainsS andy ∈ S, it holds that

D(µy,S[k]) ≤ δ.(33)

Since br(T )|λ2(M)|2 < 1, there exist, by Lemma 2.2, anε > 0 and a norm
‖ · ‖ on v⊥ such that for allb ∈ v⊥, it holds that‖Mb‖ ≤ α‖b‖, where(1 +
ε)br(T )α2 ≤ 1 − ε. Recall that there is a uniform boundK on the number of
children of vertices ofT . Let δ be chosen as to satisfy Lemma 2.7 for every
B ≤ K , so that ifD(f r) ≤ δ for r = 1, . . . ,B, andB ≤ K , thenD(

⊗B
r=1f r) ≤

(1+ ε)
∑B

r=1 D(f r).
Lemma 3.5 implies that there exists a sequence of antichainsSn such that

lim
n→∞

∑
x∈Sn

[(1+ ε)α2]|x| = 0,(34)

and that for alln andy ∈ Sn ∪ Ins(Sn),∑
x∈Sn∩T (y)

[(1+ ε)α2]|x|−|y| ≤ 1.(35)

We will now show by induction (ons − |y|, wheres = maxx∈S |x|), that for all
antichainsS = Sn and ally ∈ S ∪ Ins(S), for k ≥ k∗,

D(µy,S[k]) ≤ δ
∑

x∈S∩T (y)

[(1+ ε)α2]|x|−|y|.(36)

The case wherey ∈ S follows from (33). This also proves the base of the induction.
For the induction step, it therefore suffices to considery ∈ Ins(S) such that the
children ofv denotedz1, . . . , zB satisfy the induction hypothesis. By Lemma 2.5
and the induction hypothesis, for allr ,

D(Mµzr ,S[k]) ≤ α2D(µzr,S[k]) ≤ δα2
∑

x∈S∩T (zr )

[(1+ ε)α2]|x|−|zr |.(37)
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The right-hand side of (37) is bounded byδ by (35), sinceα < 1. Therefore, we
may apply Lemma 2.7 with (32) and (37) to obtain

D(µy,S[k]) ≤ (1+ ε)

B∑
r=1

D(Mµzr,S)(38)

≤ (1+ ε)δα2
B∑

r=1

∑
x∈S∩T (zr)

[(1+ ε)α2]|x|−|zr |

= δ
∑

x∈S∩T (y)

[(1+ ε)α2]|x|−|y|,

proving (36).
Applying (36) for the rootρ andSn, we get by (34), takingn → ∞,

lim sup
n→∞

D(µ
ρ,Sn

1 [k], . . . ,µρ,Sn
q [k]) ≤ δ lim

n→∞
∑
x∈Sn

[(1+ ε)α2]|x| = 0,

which implies by Lemma 2.8 that

max
i,j

lim
n→∞DTV(µ

ρ,Sn

i [k],µρ,Sn

j [k]) = 0,

as needed.
The proof forν-robust-solvability is exactly the same. The proof for erasure-

robust solvability requires the following modification.
First, as in the proof of Theorem 1.2, we may findε∗ < 1 such that ifε > ε∗

andB ≤ K , then for ally, which haveB childrenz1, . . . , zB in a cutsetS, it holds
thatD(µy,S[ε]) < δ (with δ as above).

If S is an antichain, letS′ denote the set of children ofS. Note thatS′
n is an

antichain for alln. We prove by induction that for all antichainsS = Sn and all
y ∈ S ∪ Ins(S), for ε > ε∗,

D(µy,S′ [ε]) ≤ δ
∑

x∈S∩T (y)

[(1+ ε)α2]|x|−|y|.(39)

The proof is again by induction ons − |y|, where s = maxx∈S |x|. The only
difference is in that fory ∈ S, we use the estimateD(µy,S′ [ε]) < δ. The remainder
of the proof is the same.�
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