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Abstract. We provide a probabilistic analysis of the output of Quicksort
when comparisons can err.

1. Introduction

Suppose that a sorting algorithm unknowingly uses element comparisons that can
err; that is, considering sorting algorithms based solely on binary comparisons of the
elements to be sorted (algorithms such as insertion sort, selection sort, quicksort,
and so on), what problems do we face when those comparisons are unreliable? For
example, [3] gives a clever O

(
ε−1 log n

)
algorithm to assure, with probability 1− ε,

that a putatively sorted sequence of length n is truly sorted. But knowing the
structure of the ill-sorted output would likely make error checking easier. As a first
step in order to understand this structure, we propose to analyze the number of
inversions in the output of a sorting algorithm (we choose Quicksort [6]) subject to
errors.

We assume throughout this paper that the elements of the sequence

x = (x1, x2, . . . , xn)

to be sorted are distinct. We assume further that the only comparisons subject
to err are those made between elements being sorted; that is, comparisons among
indices, and so on are always correct. Errors in element comparisons are random
events, spontaneous and independent of each other, of position, and of value, with
a common probability p, n being the length of the list to be sorted. The number
of inversions in the output sequence y = (y1, y2, . . . , yn) is denoted

I(y) = # {(i, j), 1 ≤ i < j ≤ n | yi > yj } .
We assume that the input list is sorted in random order, each of the n! random
orders being equiprobable. Finally we denote by I(n, p) the random number of
inversions in the output sequence of Quicksort subject to errors.

Our result is, roughly speaking,

I(n, p) = O
(
n2p

)
,

in the sense that I(n,p)
n2p converges in distribution to some nondegenerate random

variable X which is characterized by a functional equation. The ”surprise”, not so
unexpected afterwards, is that there are phase changes in the limit law, depending
on the asymptotic behaviour of p. Here and later we regard n and p as independent
variables. In the limit results we always assume n → ∞ and p → c ∈ [0, 1], often
with further conditions added.
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The organization of this paper is as follows: The results are stated in Section 2.
In Section 3, we establish a general functional equation for I(n, p). In the remaining
sections, we prove convergence results for I(n, p) when:

• p → c, 0 < c ≤ 1,
• p vanishes slower than 1/n,
• p � λ/n where λ is a positive constant.

The case np → 0 is different and not treated in detail, see Remark 2.8. In Section 4,
we establish a general result of convergence using contraction methods (cf. [10, 11]),
and we use it in Section 5 , for the first two cases. These methods do not apply for
Case 3, which requires poissonization (see Section 6, where we use an embedding
of Quicksort in a Poisson point process).

2. Results

Set

Xn,p =
I(n, p)
n2p

.

We will always let U denote a random variable that is uniformly distributed on
[0, 1]. Also, N∗ shall denote the set of positive integers, and N the set of nonnegative
integers.

Case 1: lim p = c > 0.

Theorem 2.1. If lim p = c, c ∈]0, 1], Xn,p converges in distribution to a random
variable Xc whose distribution is characterized as the unique solution with finite
mean of the equation

Xc
law= [(1− 2c)U + c]2Xc + [(2c− 1)U + 1− c]2X̃c + T (c, U),(1)

in which X̃c denotes an independent copy of Xc, both are independent of U , and

T (c, U) =
1− c

2
(U2 + (1− U)2) + cU(1− U).

Furthermore,

E [Xc] =
2− c

2(1 + 2c− 2c2)
,

and

Var (Xc) =
(1− c)2(1− 2c)2

4(1 + 2c− 2c2)2(3 + 6c− 8c2 + 4c3 − 2c4)
.

As usual with laws related to Quicksort, see e.g. [10, 11], Un is approximately
the position of the pivot of the first step of the algorithm. As in standard Quicksort
recurrences, the coefficients of Xc and of its independent copy X̃c are related to
the sizes of the two sublists on the left and right of the pivot, sizes respectively as-
ymptotic to ((1− 2c)U + c)n and ((2c− 1)U + 1− c)n. The toll function T (c, U)
is approximately (n2p)−1 ≈ (n2c)−1 times the number of inversions created in the
first step: c(1 − c)U2n2/2 is approximately the number of inversions of the cUn
elements, smaller than the pivot but misplaced on the right of it, with the ele-
ments smaller than the pivot, that are placed, as they should be, on the left, and
c2U(1− U)n2 is the number of inversions between misplaced elements from the two
sides of the pivot. The toll function T (c, U) depends on only one of the two sources
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of randomness (the randomly sorted input list, and the places of the errors), viz.
the first one, through U . The second source of randomness is killed by the law
of large numbers: in the average, each of the cUn + o(n) misplaced numbers from
the right of the pivot produces inversions with one half of the (1 − c)Un + o(n)
elements smaller than the pivot, that are placed, as they should be, on the left. As
opposed to the other values of c, the choices c = 0.5 and c = 1 lead to deterministic
Xc = 1/2, without any surprise : for p = 0.5 the output sequence is a random
uniform permutation, with a number of inversions concentrated around n2/4 ; for
p = 1 the output sequence is decreasing, and has n(n− 1)/2 inversions.

Case 2: p vanishes slower than 1
n .

Theorem 2.2. If lim p = 0 and limnp = +∞, Xn,p converges in distribution to a
random variable X whose distribution is characterized as the unique solution with
finite mean of the equation

X
law= U2X + (1− U)2X̃ +

U2 + (1− U)2

2
.(2)

In (2), X̃ denotes an independent copy of X and both are independent of U . Fur-
thermore,

E [X] = 1 and Var (X) =
1
12

.

Note that equation (2) is just (1) specialized to c = 0. The phase transition
between (1) and (2) is due to the fact that for p  1 the errors do not change
anymore the sizes of buckets (and the runtime) in a significant way. The solution X
equals half the sum of the squares of the widths of the random intervals [Yk,j , Yk,j+1]
defined by (3) below. Also, 2X equals the area

∫ 1

0
Z(t) dt under the FIND limit

process Z [4], see Remark 2.5.

Case 3: limnp = λ.
Assume that
• Π is a Poisson point process of intensity λ on N∗× [0, 1] (we regard a Poisson

process as a random set of points, see [5] for details);
• {Uk,j : k ≥ 0, 1 ≤ i ≤ 2k} is an array of independent uniform random variables

on [0, 1], independent of Π;
• the random variables Yk,j are defined recursively by

Y0,0 = 0, Y0,1 = 1, Yk+1,2j = Yk,j for 0 ≤ j ≤ 2k,
Yk+1,2j−1 = (1− Uk,j)Yk,j−1 + Uk,jYk,j for 1 ≤ j ≤ 2k;(3)

• for x ∈ [0, 1], Jk(x) = 2j − 1 if Yk−1,j−1 ≤ x < Yk−1,j ,
and define, for λ > 0, (the sum is a.s. finite by Lemma 6.4)

X(λ) =
1
λ

∑
(k,x)∈Π

∣∣x− Yk,Jk(x)

∣∣.(4)

The variables Yk,j describe a fragmentation process (see also [4] for historical
references): we start with [0, 1) and recursively break each interval into two at a
random point (uniformly chosen). In the k-th generation we thus have a partition
of [0, 1) into 2k intervals Ik,j , 1 ≤ j ≤ 2k, with Ik,j = [Yk,j−1, Yk,j). The interval
of generation k − 1 that contains x is cut at step k at the point Yk,Jk(x). Hence∣∣x− Yk,Jk(x)

∣∣ in (4) is the distance from x to this cut point.
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Theorem 2.3. If lim p = 0 and limnp = λ > 0, then Xn,p converges in distri-
bution to X(λ). The family {X(λ)}λ>0 of random variables satisfy the functional
equation:

X(λ) law= U2X(λU) + (1− U)2X̃(λ(1− U)) + Θ(λ,U),(5)

in which, conditionally, given that U = u, X(λU), X̃(λ(1 − U)) and Θ(λ,U) are
independent, X(λU) and X̃(λ(1 − U)) are distributed as X(λu) and X(λ(1 − u)),
respectively, and

Θ(λ, u) law=
1
λ

Nλ∑
i=1

|u− Vi| ,

in which Nλ is a Poisson random variable with mean λ, the random variables Vi
are uniformly distributed on [0, 1], and Nλ, and the Vi’s are independent.

Moreover, {X(λ)}λ>0 is (up to equivalence in laws) the only family of random
variables satisfying (5) such that, X(λ) ≥ 0 a.s., E [X(λ)n] < ∞ for each n ≥ 0,
and λ2n−1

E [X(λ)n] → 0 as λ → 0 for each n ≥ 1.
Furthermore,

E [X(λ)] = 1, Var (X(λ)) =
1
12

+
1
3λ

.(6)

Remark 2.4. Note that the functional equations (1), (2) and (5) really are equa-
tions for distributions, but it is more convenient to state them for random variables
as done here. For (5) to make sense, it is implicitly assumed that the distributions
L(X(λ)) depend measurably on λ, i.e. that λ �→ P (X(λ) ∈ A) is measurable for
every Borel set A. (For our X(λ), measurability, and indeed continuity, in λ follows
from (8) below.) We do not know whether the extra assumptions in Theorem 2.3
for uniqueness of the solution of (5) are necessary.

Let us comment further on equation (4). Writing Πk = {x : (k, x) ∈ Π} and
Πk,j = Πk ∩ Ik,j , we can thus rewrite (4) as

X(λ) =
1
λ

∞∑
k=1

2k∑
j=1

∑
x∈Πk,j

|x− xk,j |,(7)

where xk,j is either the left or right endpoint of Ik,j (depending on whether j is
even or odd).

Note that, conditioned on the partitions {Ik,j}, i.e. on {Yk,j}k,j , each Πk,j is
a Poisson process on Ik,j with intensity λ, with the processes Πk,j independent.
Since only the distribution of X(λ) matters, we can by this conditioning and an
obvious symmetry of the Poisson processes Πk,j just as well let xk,j in (7) be the
left endpoint of Ik,j for every k and j.

Let Π′ be a Poisson process on (0, 1] × (0,∞) with intensity 1, and let ξ(t) =∑
(x,y)∈Π′, y≤t x, t ≥ 0. (This is a pure jump Lévy process with Lévy measure

1I(0,1]dt.) Let ξ(k,j)(t) be independent copies of this process, independent of {Yk,j}.
A scaling argument shows that (7) can be written

X(λ) =
1
λ

∞∑
k=1

2k∑
j=1

|Ik,j |ξ(k,j)(λ|Ik,j |).(8)
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Remark 2.5. Let X = 1
2

∑∞
k=1

∑2k

j=1 |Ik,j |2. Then X satisfies (2), so this is
the limit variable X in Theorem 2.2. (X is a.s. finite and has finite mean by
Lemma 6.1.) Moreover, the FIND limit process Z in [4] is defined by Z(t) =∑∞

k=1

∑2k

j=1 |Ik,j |1It∈Ik,j ; hence
∫ 1

0
Z(t) dt =

∑∞
k=1

∑2k

j=1 |Ik,j |2 = 2X. This justi-
fies the claims made after Theorem 2.2.

Moreover, by the law of large numbers, E|λ−1ξ(λ) − 1/2| → 0 as λ → ∞. It
follows from (8) (by dominated convergence using Lemma 6.1) that E|X(λ)−X| → 0
and hence X(λ) converges to X in distribution as λ →∞.

In this third case, we have a system of equations involving an infinite family of
laws, and we could not adapt the contraction method: we rather use a poissoniza-
tion. The phase transition from (2) to (5) is explained easily: instead of a number
of errors � 1, we have now O (1) errors at each step, and the law of large numbers
does not hold anymore for the number of inversions produced by step 1. Actually
the number Nλ of errors at the first step is asymptotically Poisson distributed, and
the Nλ errors are at positions nVi, approximately uniformly distributed on [0, 1].
Thus, the number of inversions caused by this first step is approximately

n

Nλ∑
i=1

|U − Vi| ≈ n2pΘ(λ,U).

Remark 2.6. Actually we prove a stronger theorem in each of the three cases, as
we prove convergence of laws for the Wasserstein d1 metric [9]. It entails conver-
gence of the first moment. The convergence of higher moments is an open problem.

Remark 2.7. As we shall see in Section 6, the distribution tail P (X(λ) ≥ x) de-
creases exponentially fast (Theorem 6.5).

Remark 2.8. When np → 0 very slowly, that is (np)−1  log n, we conjecture
that 2np log (I(n, p)/n) converges in distribution to logU , with the consequence
that n1−ε  I(n, p)  n, for any positive ε. Actually, the main contribution to
I(n, p) comes from the ”first” error, in some sense. When (np)−1 � log n, the
probability that no error occurs has a positive limit, and conditionally, given the
occurence of at least one error, the situation is similar to the previous case, that
is, log (I(n, p)) / log n converges in distribution to a random variable with values in
(0, 1). When (np)−1 � log n, P (I(n, p) = 0) → 1.

3. Functional equation for the number of inversions

At the first step Quicksort compares all elements of the input list with the first
element of the list (usually called pivot). All items less (resp. larger) than the pivot
are stored in a sublist on the left (resp. right) of the pivot. Comparisons are not
reliable, therefore s� items that should belong to the left sublist are wrongly stored
in the right sublist, and sr items larger than the pivot are misplaced in the left
sublist.

Since its items are chosen randomly, the input list is a random permutation
and the rank of the pivot can be written �nU�, where U is uniformly distributed
on [0, 1] and �x� is the ceiling of x. Also, s� (resp. sr) is a binomial random
variable with parameters (�nU� − 1, p) (resp. (n − �nU�, p)). Quicksort is then
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independently applied on the left sublist ! and on the right sublist r and new errors
occur, producing two new sublists !̃ and r̃. Set

Zn,p = �Un� − s� + sr,

so that Zn,p − 1 (resp. n− Zn,p) is the size of ! and !̃ (resp. r and r̃).
In order to enumerate the inversions of the output list, we introduce a purely

fictitious error-correcting algorithm that parallels the implementation of Quicksort:
This fictitious error-correcting algorithm has two recursive steps,

• First, the error-correcting algorithm corrects the sublists !̃ (resp. r̃) at costs
L = I(!̃) (resp. R = I(r̃), producing two increasing sublists !̂ and r̂. Note
that L and R are conditionally independent, given Zn,p. Furthermore, the
two sublists ! and r obtained at the end of Step 1 are in uniform random
order before the second step of Quicksort, so that, conditionally given Zn,p,
cost L (resp. R) is distributed as I(Zn,p − 1, p) (resp. I(n− Zn,p, p)).

• Then the error-correcting algorithm corrects the errors of Step 1, at a cost
t(n, p) = I(!̂−pivot− r̂). Here !̂−pivot− r̂ stands for the list obtained when
one puts !̂, the pivot and r̂ side by side. The number of inversions t(n, p) in
the list !̂− pivot− r̂ is analyzed in detail at the end of this section.

QuicksortQuicksort

Quicksort

s  s +s  +s

W W

I(n,p)

s

algorithm

[nU]

Correction

first step
sl r

I(Z  −1,p) n  nI(n−Z   ,p)

 l r l  r

(n,p)t

rl

Figure 1. The error-correcting algorithm.
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These two steps lead to the following equation for I(n, p):

I(n, p) law= I(Zn,p − 1, p) + I ′(n− Zn,p, p) + t(n, p)(9)

where Zn,p = �Un� − s� + sr. We shall obtain the asymptotic distribution of
t(n, p), and as a consequence (9) will translate, after renormalisation, in a functional
equation satisfied by the limit law of I(n, p)/n2p. The limit law appears on both
sides of the functional equation, as expected, due to the recursive structure of
Quicksort, and is thus characterized as the fixed point of some transformation.

Description of t(n, p). At the end of the first step of the error-correcting algo-
rithm, we obtain two subarrays !̂ and r̂, left and right of the pivot (cf. Figure 3).
They are sorted in increasing order but there are sr (red) elements larger than the
pivot just to its left and s� (green) elements smaller than the pivot element just to
its right. Thus, the only misplaced elements that the proofreader must correct in
step 2 are clustered around the pivot.

elements larger than the pivot

Pivot

elements less than the pivot

Errors

Figure 2. The two sublists !̂ and r̂.

In order to sort the list, the red and green sublists must be exchanged. This
requires s�sr + s� + sr inversions. We get therefore two unsorted lists %! and %r

each composed of two sorted sublists. All items of %! (resp. of %r ) are now smaller
(resp. larger) than the pivot, so that the length of %! (resp. of %r ) is �nU� − 1 (resp.
n − �nU�). It remains to sort %! and %r, at respective costs W�� and W�r that are
conditionally independent given U , leading to:

t(n, p) = s�sr + s� + sr + W�� + W�r.(10)

A model for
(
W��,W�r

)
. Let Wm be the number of inversions in a list of m elements

sorted as follows: each element is painted black or white with probability p (resp.
1− p). Then the black and white sublists are separately sorted in increasing order
and the two sorted sublists are placed side by side, producing a new list h with m
elements. We have

Proposition 3.1. Let Y1, . . . , Ym be m independent Bernoulli random variables
with the same parameter p, and let Sm = Y1 + · · ·+ Ym. Then

Wm
law=

( m∑
i=1

iYi

)
− Sm(Sm + 1)

2
.
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Proof. Let us abbreviate Sm to S. Among the Yi’s, let Yi1 , . . . , YiS denote the S
random variables equal to 1, YiS+1 , · · · , Yim those equal to 0, with i1 < · · · < iS
and iS+1 < · · · < im. Now Wm can be seen as the number of inversions of the list(
ij

)
1≤j≤m. In order to move the numbers ij (j ≤ S) to the correct position, the

proofreader corrects inversions with each of the ij − j elements of {1, · · · ,m} that
are smaller than ij and do not belong to {i1, · · · , iS}. Thus

Wm =
S∑

j=1

(ij − j),(11)

leading to the result.

With the help of Proposition 3.1, we can give a useful description of the distri-
bution of (s�,W��) and (sr,W�r):

Proposition 3.2. Conditionally, given that the length of %! is m− 1, (s�,W��) and
(sr,W�r) are independent and distributed as (Sm−1,Wm−1) and (Sn−m,Wn−m), re-
spectively.

To sum up the results of this section, renormalizing (9), one obtains a functional
equation satisfied by Xn,p:

Xn,p
law= An,pXZn,p−1,p + Bn,pX̃n−Zn,p,p + Tn,p(12)

in which

Zn,p = �Un� − s� + sr,(13)

An,p =
(
Zn,p − 1

n

)2

,(14)

Bn,p =
(
n− Zn,p

n

)2

,(15)

t(n, p) = s�sr + s� + sr + W�� + W�r,(16)

Tn,p =
t(n, p)
n2p

,(17)

and
• U is a uniform random variable on [0, 1], and �nU� is the position of the pivot,
• conditionally, given �nU� = m, (s�,W��) and (sr,W�r) are distributed as in

Proposition 3.2,
• X = (Xm)m≥0, X̃ =

(
X̃m

)
m≥0

are two independent sequences with the same

unknown distribution, independent of (U, s�,W��, sr,W�r), or, equivalently, of
(An,p, Bn,p, Zn,p, Tn,p).

The errors having a balancing effect, Zn,p = �Un� − s� + sr has the same mean,
(n + 1)/2, and a smaller variation than �Un�; we prove this in the following form.

Lemma 3.3.

E
[
(Zn,p − 1)2 + (n− Zn,p)2

]
≤ E

[
(�Un� − 1)2 + (n− �Un�)2

]
=

(n− 1)(2n− 1)
3

≤ 2
3
n2.
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Proof. The left hand side is the expected number of pairs i and j that end up on
the same side of the pivot. This happens if i and j originally are on the same side
of the pivot and we either compare both correctly or make errors for both of them,
or if they are on each side of the pivot and we make an error for exactly one of
them. Hence

E
[
(Zn,p − 1)2 + (n− Zn,p)2

]
=

(
p2 + (1− p)2

)
E

[
(�Un� − 1)2 + (n− �Un�)2

]
+ 2p(1− p)2E [(�Un� − 1)(n− �Un�)]

= E
[
(�Un� − 1)2 + (n− �Un�)2

]
− 2p(1− p)E

[
(�Un� − 1− (n− �Un�))2

]
which proves the first inequality. The rest is a simple calculation.

Let I(k)(n, p) be the number of inversions created at step k. We shall need the
following bound:

Lemma 3.4. For every k ≥ 1,

E

[
I(k)(n, p)

]
≤ 1

2

(
2
3

)k

n2p.

Proof. For k = 1, I(1)(n, p) = t(n, p), and a simple calculation yields

E [t(n, p)] = p
(n− 1)(n + 1)

3
− p2 (n− 1)(n− 2)

6
≤ 1

3
n2p.

For k > 1 we find by induction, conditioning on the partition in the first step,

E

[
I(k)(n, p)

]
≤ E

[
1
2

(
2
3

)k−1

(Zn,p − 1)2p +
1
2

(
2
3

)k−1

(n− Zn,p)2p

]
and the result follows by Lemma 3.3.

Proposition 3.5. Set an,p = E [Xn,p]. Then

an,p ≤ 1.

Proof. By Lemma 3.4, an,p ≤
∑∞

1
1
2

(
2
3

)k.
4. Fixed point theorems

The proofs of the first two cases are examples of the contraction method [10, 11]:
on one hand we have more or less explicitly defined random variables A

(i)
n,p, 1 ≤ i ≤

I, and Tn,p, and we know how to prove directly that they converge to A(i), T . On
the other hand, we have a family Xn,p of random variables defined by induction:

Xn,p
law=

I∑
i=1

A(i)
n,pX

(i)

Z
(i)
n,p,p

+ Tn,p,(18)

and a random variable X implicitly defined by the following functional equation

X
law=

I∑
i=1

A(i)X(i) + T,(19)

in which, in some sense, limZ
(i)
n,p = +∞. Then, under additional technical condi-

tions, the convergence of the ”coefficients” A
(i)
n,p, Tn,p, entails the convergence of the

”solution” Xn,p. One has to prove existence and unicity of the solutions, usually as
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fixed points of contracting transformations in a subspace of the space of probability
measures, with a suitable metric. In the case we are interested in, (18) holds and:

• I is a fixed positive integer;
• Cn,p = (A(1)

n,p, Z
(1)
n,p, . . . , A

(I)
n,p, Z

(I)
n,p, Tn,p) is a given random vector for each n, p;

• Z
(i)
n,p ∈ [0, . . . , n− 1];

• The families (X(i)
n,p)n,p, i = 1, 2, . . . , I, are i.i.d. and independent of Cn,p, and

and X
(i)
n,p

law= Xn,p.

Given such Cn,p we thus define, for any distributions G0,p, . . . , Gn−1,p,

Φ(G0,p, . . . , Gn−1,p) = L
(

I∑
i=1

A(i)
n,pX

(i)

Z
(i)
n,p,p

+ Tn,p

)
,

when, as above, the families (X(i)
k,p)k,p, i = 1, 2, . . . , I, are i.i.d. and independent of

Cn,p, and further X
(i)
k,p has the distribution Gk,p. Thus (18) can be written

Gn,p = Φ(G0,p, . . . , Gn−1,p).

For (19) we similarly assume

• C = (A(1), . . . , A(I), T ) is a given random vector;
• the variables X(i), i = 1, 2, . . . , I are i.i.d. and independent of C, and X(i) law=

X.

Given such C we define

Ψ(F ) = L
(

I∑
i=1

A(i)X(i) + T

)
,

when the variables X(i), i = 1, 2, . . . , I are i.i.d. with distribution F and indepen-
dent of C. Then (19) can be written

Ψ(F ) = F.

Let D be the space of probability measures µ on R, such that
∫
R
|x| dµ(x) < +∞.

The space D is endowed with the Wasserstein metric

d1(µ, ν) = inf
L(X)=µ
L(Y )=ν

‖X − Y ‖1(20)

=
∥∥F−1(U)−G−1(U)

∥∥
1
.

in which F and G denote the distribution functions of µ and ν, F−1 (resp. G−1)
denote the generalized inverses of F and G and, as in previous sections, U is a
uniform random variable. Since F−1(U) (resp. G−1(U)) has distribution µ (resp.
ν), the infimum is attained in relation (20).

The metric d1 makes D a complete metric space. Convergence of L(Xn) to L(X)
in D is equivalent to convergence of Xn to X in distribution and

limE [|Xn|] = E [|X|] ;
also, convergence in D entails

limE [Xn] = E [X] .
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We refer to [9] for an extensive treatment of Wasserstein metrics. In what fol-
lows, we shall improperly refer to the convergence of Xn to X in D, meaning the
convergence of their distributions. Let us take care first of relation (19):

Theorem 4.1. If
I∑

i=1

E

[∣∣A(i)
∣∣] < 1, then Ψ is a strict contraction and (19) has a

unique solution in D.

Proof. Let (X,Y ) be a couple of random variables, with laws µ and ν, respectively,
such that

E [|X − Y |] = d1(µ, ν).

Let
((
X(i), Y (i)

))
1≤i≤I be I independent copies of (X,Y ). Furthermore, assume

that C and
((
X(i), Y (i)

))
1≤i≤I are independent. Then the probability distribution

of
I∑

i=1

A(i)X(i) + T, resp.
I∑

i=1

A(i)Y (i) + T

is Ψ(µ) (resp. Ψ(ν)) and

d1(Ψ(µ),Ψ(ν)) ≤
I∑

i=1

E

[∣∣A(i)
∣∣ ∣∣X(i) − Y (i)

∣∣]

≤ d1(µ, ν)
I∑

i=1

E

[∣∣A(i)
∣∣] .

Thus Ψ is a contraction with contraction constant smaller than 1. Since D is
a complete metric space, this implies that Ψ has a unique fixed point in D, by
Banach’s fixed point theorem.

We prove now a theorem which is a variant of those used by the precited authors:
the difference is not deep, but here we deal with family of laws, not sequences, as
we have two parameters, n and p. As a consequence, to cover Theorems 2.1 and
2.2, it will be convenient in their proofs to consider convergence with respect to a
filter F on N× [0, 1]. The filter F1 corresponding to Theorem 2.1 has basis

VN,ε = {n ≥ N} × [c− ε, c + ε] ,

while the filter F2 corresponding to Theorem 2.2 has basis

ṼN,ε =
{
(n, p)

∣∣ 0 < p ≤ ε, n ≥ N/p
}
.

Theorem 4.2. Suppose that (18) holds for n ≥ 1 and X0,p = 0; i.e. Gn,p =
Φ(G0,p, . . . , Gn−1,p) for n ≥ 1 and G0,p = δ0, where Gn,p = L(Xn,p). If

i) (E [Xn,p])n,p is bounded,

ii)
I∑

i=1

E

[∣∣A(i)
∣∣] < 1,

iii) Tn,p
L1

−→
F

T, A
(i)
n,p

L1

−→
F

A(i),

iv) limF E

[∣∣A(i)
n,p

∣∣ ; (Z(i)
n,p, p) /∈ V

]
= 0, ∀V ∈ F ,

then
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– Ψ is a contraction for d1 and the equation Ψ(F ) = F has a unique solution
F in D.

– Xn,p converges in distribution to F . More precisely, d1(Gn,p, F ) → 0 along
F .

We need a lemma.

Lemma 4.3. Assume that three families of nonnegative numbers (an,p, bn,p)0≤n,0<p<1,
and (γi,n,p)0≤n,0≤i≤n,0<p<1 satisfy the inequalities:

an,p ≤ bn,p +
n−1∑
i=0

γi,n,pai,p,

Let F be a filter. Under the following assumptions:

– an,p is nonnegative and bounded,
– for some Γ < 1 and some V0 ∈ F , ∀(n, p) ∈ V0,

∑n−1
k=0 γk,n,p < Γ,

– limF bn,p = 0,
– ∀V ∈ F , limF

∑
k s.t. (k,p)/∈V γk,n,p = 0,

we have

lim
F

an,p = 0.

Proof of Lemma 4.3. The proof is also a variant of the proof of [10, Proposition
3.3]. Let M be a bound for an,p, and let

a = lim sup
F

an,p.

For any ε > 0, let Vε ∈ F be such that for (n, p) ∈ Vε,

an,p ≤ a + ε.

Then for (n, p) ∈ Vε ∩ V0 we have

an,p ≤
∑

k s.t. (k,p)/∈Vε

γk,n,pak,p +
∑

k s.t. (k,p)∈Vε

γk,n,pak,p + bn,p

≤ M
∑

k s.t. (k,p)/∈Vε

γk,n,p + (a + ε)Γ + bn,p.

Going to the limit, we obtain that for any ε > 0,

a ≤ (a + ε)Γ.

Proof of Theorem 4.2. We can choose X(i) and the family
(
X

(i)
k,p

)
k≥0

in such a way

that

E

[∣∣∣X(i)
k,p −X(i)

∣∣∣] = d1(Gk,p, F ),
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and we can also choose the families
(
X(i), (X(i)

k,p)k≥0

)
0≤i≤I

to be i.i.d. Then

d1(Gn,p, F ) ≤ E
[∣∣∣ I∑

i=1

A(i)
n,pX

(i)

Z
(i)
n,p,p

+ Tn,p −
I∑

i=1

A(i)X(i) − T
∣∣∣]

≤
n−1∑
k=0

E

[
I∑

i=1

∣∣A(i)
n,p1IZ(i)

n,p=k

∣∣]E [∣∣X(i)
k,p −X(i)

∣∣] + bn,p

≤
n−1∑
k=0

γk,n,p d1(Gk,p, F ) + bn,p

with

bn,p =
I∑

i=1

E

[∣∣A(i)
n,p −A(i)

∣∣X(i)
]

+ E [|Tn,p − T |] ,

γk,n,p =
I∑

i=1

E

[∣∣A(i)
n,p

∣∣1I
Z

(i)
n,p=k

]
.

Set

an,p = d1(Gn,p, F ),

and let us check the assumptions of Lemma 4.3:

0 ≤ an,p ≤ E [Xn,p] + E [X] ≤ 1 + E [X] ;

for the second assumption,

lim sup
F

n−1∑
k=0

γk,n,p = lim sup
F

I∑
i=1

E

[∣∣A(i)
n,p

∣∣] =
I∑

i=1

E

[∣∣A(i)
∣∣] < 1 ;

limF bn,p = 0 by assumption iii), as

I∑
i=1

E

[∣∣A(i)
n,p −A(i)

∣∣X(i)
]

= E [X]
I∑

i=1

E

[∣∣A(i)
n,p −A(i)

∣∣] ;

finally ∑
k s.t. (k,p)/∈V

γk,n,p =
I∑

i=1

E

[∣∣A(i)
n,p

∣∣ ; (Z(i)
n,p, p) /∈ V

]
.

Therefore d1(Gn,p, F ) vanishes along F and the proof of the theorem is now com-
plete.

The following Theorem is folklore. It gives the means and variances in Theorems
2.1 and 2.2, after some computations.

Theorem 4.4. Suppose that (19) holds, where
∑

i E
[
|A(i)|

]
< 1 and E [|X|] < ∞;

in other words, L(X) = F , where F is the unique solution in D to Ψ(F ) = F .
Then

E [X] =
E [T ]

1−
∑

i E
[
A(i)

] .(21)
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Moreover, if further
∑

i E
[
|A(i)|2

]
< 1 and E

[
T 2

]
< ∞, then E

[
X2

]
< ∞ and

Var (X) =
E

[
T 2

]
+ 2E [X]E

[
T

∑
iA

(i)
]
+ E

[(∑
iA

(i)
)2 − 1

]
(E [X])2

1−
∑

i E
[
A(i) 2

] .(22)

Proof. Taking expectations in (19) we obtain E [X] =
∑

i E
[
A(i)

]
E [X] + E [T ],

which yields (21).
For the second part, let D2 = {µ ∈ D :

∫
x dµ(x) = E [X] ,

∫
x2 dµ(x) < ∞}. It

is easy to see that now Ψ is a strict contraction in D2 with the d2 metric; hence Ψ
has a unique fixed point in D2. Since D2 ⊂ D, this fixed point must be F , which
shows that E

[
X2

]
< ∞. If we square (19) and take the expectation, we obtain

E
[
X2

]
= E

[
I∑

i=1

A(i) 2

]
E

[
X2

]
+

I∑
i,j=1, i 
=j

E

[
A(i)A(j)

]
(E [X])2

+ 2
I∑

i=1

E

[
A(i)T

]
E [X] + E

[
T 2

]
,

which yields (22).

5. Proofs of Theorems 2.1 and 2.2

We apply Theorem 4.2 to the functional equation (12), with I = 2,(
A(1)
n,p, Z

(1)
n,p

)
= (An,p, Zn,p − 1) ,(

A(2)
n,p, Z

(2)
n,p

)
= (Bn,p, n− Zn,p) .

Here the distribution of
(
A

(i)
n,p, Z

(i)
n,p

)
does not depend on i. We verify the as-

sumptions i)–iv) of Theorem 4.2 for Theorems 2.1 and 2.2 together; for the second
theorem take c = 0. The first assumption holds true by Proposition 3.5.

Verification of the second point. We have

A(1) = A = [(1− 2c)U + c]2,

A(2) = B = [(2c− 1)U + 1− c]2,

and c ∈ [0, 1]. Easy computations give

E
[
[(1− 2c)U + c]2

]
+ E

[
[(2c− 1)U + 1− c]2

]
=

2
3
(1− c + c2) ≤ 2

3
.

Verification of the third point. We must prove the convergence of An,p, Bn,p

and Tn,p to A, B and T (c, U), in L1. Recall (13)–(17).
Note first that, conditioned on U , s� ∼ Bi(�nU� − 1, p) and thus

E
(
(s� − (�nU� − 1)p)2 | U

)
= (�nU� − 1)p(1− p) ≤ np.

Hence, taking the expectation,

E
(
s� − (�nU� − 1)p

)2 ≤ np

and thus

‖s� − nUp‖2 ≤ ‖s� − (�nU� − 1)p‖2 + p ≤ (np)1/2 + p ≤ 2(np)1/2.
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Consequently, ∥∥∥s�
n
− Uc

∥∥∥
2
≤

∥∥∥s�
n
− Up

∥∥∥
2

+ |p− c| → 0,(23)

and, similarly but sharper,∥∥∥∥ s�
n
√
p
− U

√
c

∥∥∥∥
2

≤ 2√
n

+
|p− c|√

p
→ 0.(24)

Similarly, ∥∥∥sr
n
− (1− U)c

∥∥∥
2
→ 0(25)

and ∥∥∥∥ sr
n
√
p
− (1− U)

√
c

∥∥∥∥
2

→ 0.(26)

From (13), (23) and (25) follows∥∥∥∥Zn,p − 1
n

−
(
U − Uc + (1− U)c

)∥∥∥∥
2

→ 0.(27)

It follows easily from Hölder’s inequality that multiplication is a continuous bilinear
map L2 × L2 → L1. Hence (27) yields

‖An,p −A‖1 =

∥∥∥∥∥
(
Zn,p − 1

n

)2

−
(
U − Uc + (1− U)c

)2

∥∥∥∥∥
1

→ 0,

verifying the first assertion. (27) similarly implies ‖Bn,p −B‖1 → 0 too.
For Tn,p we first observe that, similarly, from (24) and (26),∥∥∥∥s�sr

n2p
− U(1− U)c

∥∥∥∥
1

→ 0.

Moreover, since np → ∞, (23) and (25) imply
∥∥s�/n2p

∥∥
1
≤

∥∥s�/n2p
∥∥

2
→ 0 and∥∥sr/n2p

∥∥
1
→ 0.

For the terms W�� and W�r we use Proposition 3.1. We have ‖Sm −mp‖2 =√
mp(1− p) and thus, uniformly for 0 ≤ m ≤ n,∥∥∥∥ Sm

n
√
p
− m

n

√
c

∥∥∥∥
2

≤ 1√
n

+ |√p−
√
c| → 0,

which, using Hölder again, yields∥∥∥∥Sm(Sm + 1)
2n2p

− c

2

(m

n

)2
∥∥∥∥

1

≤ 3√
n

+
1

n
√
p

+ 3|√p−
√
c| → 0.(28)

Moreover, let W ′m =
∑m

i=1 iYi. Then EW ′m = m(m+1)p
2 and

‖W ′m − EW ′m‖
2
2 = Var (W ′m) =

m∑
i=1

i2p(1− p) ≤ m3p,

and thus ∥∥∥∥W ′m
n2p

− 1
2

(m

n

)2
∥∥∥∥

2

≤ 1√
np

+
1
2n

→ 0.(29)
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Proposition 3.1 now yields, by (28) and (29), uniformly for m ≤ n,∥∥∥∥Wm

n2p
− 1− c

2

(m

n

)2
∥∥∥∥

1

→ 0.

Consequently, using Proposition 3.2,∥∥∥∥ W��

n2p
− 1− c

2
U2

∥∥∥∥
1

→ 0,∥∥∥∥ W�r

n2p
− 1− c

2
(1− U)2

∥∥∥∥
1

→ 0.

Collecting the various terms above, we find ‖Tn,p − T‖1 → 0.

Verification of the fourth point. We have to check that

lim
Fi

E
[∣∣An,p

∣∣ ; (Zn,p, p) /∈ V
]

= 0, ∀V ∈ Fi.

But for (n, p) ∈ VN,ε (resp. for (n, p) ∈ ṼN,ε),

E
[∣∣An,p

∣∣ ; (Zn,p, p) /∈ VN,ε

]
≤

(
N − 1

n

)2

,

E

[∣∣An,p

∣∣ ; (Zn,p, p) /∈ ṼN,ε

]
≤

(
N

np

)2

.

6. Proof of Theorem 2.3.

The proof of this theorem is done in three steps:
(i) We prove that X(λ) is almost surely finite, and has exponentially decreasing

distribution tail. Thus it has moments of all orders.
(ii) With the help of a Poisson point process representation of Quicksort, we prove

the convergence of certain copies of Xn,p to a copy of X(λ) for the norm ‖.‖1.
This entails the weak convergence.

(iii) We prove that X(λ) satisfies the functional equation (5), and that (5) has a
unique solution under the extra assumptions in the theorem.

Some properties of X(λ). Recall that the increasing sequence (Yk,j)0≤j≤2k , de-
fined by the recurrence relation (3), splits [0, 1] in 2k intervals, obtained recursively
by breaking each of the 2k−1 intervals of the previous step in two random pieces.
For k ≥ 0 and 1 ≤ i ≤ 2k, let

wk,i = Yk,i − Yk,i−1,

Mk = max
{
wk,i; 1 ≤ i ≤ 2k

}
,

Fk,α =
(

1 + α

2

)k ∑
1≤i≤2k

wα
k,i

Fk = σ
(
Yi,j , i ≤ k, 1 ≤ j ≤ 2i − 1

)
F = (Fk)k≥0 .

We begin with a simple estimate (see also [4]):

Lemma 6.1. E
[
w2
k,j

]
= 3−k.
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Proof. The length wk,j = |Ik,j | is the product of k independent random variables,

each uniform on [0, 1]. Hence E
[
w2
k,j

]
=

(
E

[
U2

])k = 3−k.

Lemma 6.2. For α > 0, (Fk,α)k≥0 is a F-martingale, and E [Fk,α] = 1.

Proof. Clearly E [F0,α] = 1. Also:

E [Fk+1,α|Fk] =
(

1 + α

2

)k+1 2k∑
i=1

E
[
wα
k+1,2i−1 + wα

k+1,2i|Fk

]
=

(
1 + α

2

)k+1 2k∑
i=1

wα
k,iE

[
V α
k,i−1 + (1− Vk,i−1)α

]
=

(
1 + α

2

)k 2k∑
i=1

wα
k,i.

Let ρ = 0.792977 . . . denote the largest solution of the equation ρ = −2e ln ρ.
Lemma 6.2 entails that

Lemma 6.3. E [Mk] ≤ ρk.

Proof. Clearly,

Mα
k ≤

(
2

1 + α

)k

Fk,α,

thus, for α ≥ 1,

E [Mk] ≤ E [Mα
k ]1/α ≤

(
2

1 + α

)k/α

E [Fk,α]1/α =
(

2
1 + α

)k/α

.

The rate
(

2
1+α

)1/α

reaches its minimum for 1 + α = 4.311 . . . , a constant that is
an old friend of Quicksort and binary search trees. This leads to the desired value
for ρ.

A weaker form of this inequality (for α = 2), actually sufficient for our purposes,
is given in [4]. The sequence (Fk,α)k≥0 is a specialization of martingales that are of
a great use for the study of general branching random walks, see for instance [1],
of which binary search trees are a special case [7, 8].

Lemma 6.4. E [X(λ)] = 1.

Proof. Set F∞ = σ
(
Yk,j , k ≥ 0, 1 ≤ j ≤ 2k − 1

)
. Inspecting (7), we see that

E [X(λ) | F∞] =
1
2

∑
k≥1

(
2
3

)k

Fk,2,

because, conditionally given F∞, the expected number of points of Πk,j is λwk,j

and each of them has an expected contribution wk,j/(2λ) to X(λ).

As a consequence of Lemma 6.3, we have

Theorem 6.5. The distribution tail P (X(λ) ≥ x) decreases exponentially fast.
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Proof. Equivalently, we prove the first result for Ξ(λ) = λX(λ). Since

|x− Yk,Jk(x)

∣∣ ≤ Mk,

we have

Ξ(λ) ≤
∑

(k,x)∈Π

Mk =
∑
k≥1

NkMk,

where Nk = |Πk| is a Poisson random variable with mean λ. We split its tail as
follows:

P (Ξ(λ) ≥ x) ≤ P

∑
k≥1

NkMk ≥ x


≤ p1 + p2,

in which

p1 = P

 ∑
1≤k≤n

NkMk ≥ x/2

 ,

p2 = P

(∑
k>n

NkMk ≥ x/2

)
.

We have, by the standard Chernoff bound for the Poisson distribution,

p1 ≤ P

 ∑
1≤k≤n

Nk ≥ x/2

 ≤ exp
(x

2
(1− ln(x/2nλ))− nλ

)
,

the last inequality holding only for n ≤ x
2λ . Also

p2 ≤ P

 ∑
0≤k≤n

Nkρ
k/2 ≥ x/2

 + P
(
∃k > n, Mk > ρk/2

)

≤
(

1 +
2λ
x

)
ρ(n+1)/2

1−√
ρ
,

using a Markov first moment inequality to bound both terms. For any α in (0, 1),
the choice n � αx

2λ leads to an exponential decrease of the tail.

Convergence of Xn,p to X(λ). We assume that the input list for Quicksort
contains the integers {1, 2, . . . , n} in random order. We model our erratic Quicksort
as follows using the variables Uk,j and Π in Section 2, but with the intensity λ of
Π replaced by λ(n, p) = −n ln(1− p):

In the first step, we use the pivot p1,1 = �nU0,1� and let for each i (except the
pivot) there be an error in the comparison of i and the pivot if Π1 ∩ ( i−1

n , i
n ] �= ∅.

(Recall that Πk = {x : (k, x) ∈ Π}.) Note that our choice of λ(n, p) yields the right
error probability p.

Let p′1,1 be the position of the pivot after the first step. (This position was
earlier denoted Zn,p; it may differ from p1,1 because of errors.) The items of the
left sublist will thus be placed on positions 1, . . . , p′1,1 − 1 and those in the right
sublist on positions p′1,1 + 1, . . . , n. Let p′1,0 = 0 and p′1,2 = 1 + n.
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When the k-th step begins, we have a set of 2k−1 sublists (!k−1,j)j=1,...,2k−1 , the
elements of !k−1,j being on positions p′k−1,j−1 + 1, . . . , p′k−1,j − 1, j = 1, . . . , 2k−1

(with the convention that the sublist is empty when p′k−1,j − p′k−1,j−1 ≤ 1). In
each nonempty such sublist we choose as pivot the item with rank �Uk−1,j(p′k−1,j−
p′k−1,j−1−1)�, in this sublist, so that its position in the final output will be exactly

pk,2j−1 = p′k−1,j−1 + �Uk−1,j(p′k−1,j − p′k−1,j−1 − 1)�,(30)

in case no errors occurs while proceeding the sublist. We assume an error is made
when comparing the element at position i with the pivot pk,2j−1 if Πk ∩ ( i−1

n , i
n ] �=

∅. Let p′k,2j = p′k−1,j . Let p′k,2j−1 be the position of the pivot pk,2j−1 after the
comparisons (as in the first step, p′k,2j−1 may differ from pk,2j−1 because of errors);
let p′k,2j−1 = p′k−1,j if the sublist was empty. Set

yk,j = pk,j/n and y′k,j = p′k,j/n.

We expect yk,j and y′k,j to converge to Yk,j as n → +∞.
This procedure (stopped when there are no more nonempty sublists) is an exact

simulation of the erratic Quicksort, so we may assume that I(n, p) is the number of
inversions created by it. As in Section 3, let I(k)(n, p) be the number of inversions
created at step k, so

I(n, p) =
∞∑
k=1

I(k)(n, p).

We will prove that, using the notation of (7),

δk =

∥∥∥∥∥∥ 1
n2p

I(k)(n, p)− 1
λ(n, p)

2k∑
j=1

∑
x∈Πk,j

|x− xk,j |

∥∥∥∥∥∥
1

→ 0(31)

for each k. Since also, by Lemmas 3.4 and 6.1,

δk ≤
1

n2p
E

[
I(k)(n, p)

]
+

1
λ(n, p)

E

 2k∑
j=1

∑
x∈Πk,j

|x− xk,j |


=

1
n2p

E

[
I(k)(n, p)

]
+ E

1
2

2k∑
j=1

w2
k,j

 ≤
(

2
3

)k

,

it follows by dominated convergence that, using (7),

∥∥Xn,p −X
(
λ(n, p)

)∥∥
1
≤
∞∑
k=1

δk → 0.

Moreover, λ(n, p) → λ, and it follows easily from (8) that
∥∥X(

λ(n, p)
)
−X(λ)

∥∥
1
→

0. Hence we have E |Xn,p −X(λ)| → 0, which proves the convergence.
It remains to verify (31). Set

X(k) =
2k∑
j=1

∑
x∈Πk,j

|x− xk,j |.
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Relation (31) is equivalent to

E

∣∣∣∣ 1
n
I(k)(n, p)−X(k)

∣∣∣∣ → 0.(32)

For simplicity, we write in the sequel λ instead of λ(n, p). We begin with a lemma.

Lemma 6.6. For each k and j,

max
{∥∥Yk,j − y′k,j

∥∥
1
, ‖Yk,j − yk,j‖1

}
≤ k(1 + λ)

n
.

Proof. Recall that p′k,j = ny′k,j , so (30) translates to

pk,2j−1 = ny′k−1,j−1 + �Uk−1,j(ny′k−1,j − ny′k−1,j−1 − 1)�,
We use induction on k. Comparing the definitions of Yk,j and y′k,j , we see that it
suffices to consider an odd j = 2l− 1, and in that case there are three sources of a
difference:

(i) The differences between y′k−1,l−1 and Yk−1,l−1 and between y′k−1,l and Yk−1,l.
By the induction hypothesis, this contributes at most (k − 1)(1 + λ)/n.

(ii) The −1 inside (and the rounding by) the ceiling function. This contributes
at most 1/n.

(iii) The shift of the pivot, from pk,2j−1 to p′k,2j−1, caused by the erroneous com-
parisons. The shift is bounded by the total number of errors at step k, so its
mean is less than λ, and the contribution is less than λ/n.

We return to (32). For k = 1, I(1)(n, p) is just t(n, p) studied in Section 3, and
(10) yields

I(1)(n, p) = s�sr + s� + sr + W�� + W�r.

Let E1 be the set of items i such that an error was made in the comparison with
p1,1. Relation (11) entails that∑

i∈E1

|i− p1,1| = W�� + W�r + 1
2s�(s� + 1) + 1

2sr(sr + 1).

We shall denote this last sum Ĩ(1)(n, p). Thus, we have∣∣∣I(1)(n, p)− Ĩ(1)(n, p)
∣∣∣ =

∣∣s�sr + s� + sr − 1
2s�(s� + 1)− 1

2sr(sr + 1)
∣∣ ≤ s2

� + s2
r.

Furthermore

E
[
s2
� | �nU1,1 = k�

]
= (k − 1)p(1− p) + ((k − 1)p)2 ≤ np + n2p2.(33)

Hence, ∥∥∥I(1)(n, p)− Ĩ(1)(n, p)
∥∥∥

1
= O (1) .

Moreover, 1
n Ĩ

(1)(n, p) =
∑

i∈E1
| in−y1,1| differs from X(1) =

∑2
j=1

∑
x∈Π1,j

|x−x1,j |
in (32) in four ways only (recall that x1,1 = x1,2 = Y1,1):

(i) i/n differs from x by at most 1/n. Since the expected number of terms is not
larger than λ, this gives a contribution O (1/n).

(ii) |y1,1 − x1,j | = |y1,1 − Y1,1|, which by Lemma 6.6 has expectation O (1/n).
Thus this too gives a contribution O (1/n).
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(iii) If there are two or more points in Π1 ∩ ( i−1
n , i

n ] for some i, X(1) contains
more terms than 1

n Ĩ
(1)(n, p). It is easily seen that the expected number of

such extra points in each interval ( i−1
n , i

n ] is less than (λ/n)2, and each point
contributes for at most 1 to X(1).

(iv) Each point in Π1 ∩ (p1,1−1
n ,

p1,1
n ] contributes for an extra term in X(1) again.

The expected number of such extra points is λ/n and each of these terms
contributes for at most 1 to X(1).

This verifies (32) for k = 1.
For k ≥ 2 we argue similarly. We can approximate I(k)(n, p) by the sum of the

distances between the errors and the respective pivots,

Ĩ(k)(n, p) =
∑

j≤2k−1

∑
i∈Ek−1,j

|i− pk,2j−1|,

as follows: Let Ek,j be the set of items i ∈ !k,j subject to error when compared
with pk+1,2j−1, and let Gk be the σ-algebra generated by (U�,j)�≤k,j≤2� and Π1 ∪
Π2 ∪ · · · ∪Πk−1. As for k = 1, using relation (11), we obtain the following bound:

E

[∣∣∣I(k)(n, p)− Ĩ(k)(n, p)
∣∣∣ ∣∣∣ Gk

]
≤

∑
j≤2k−1

(
p2 (#!k−1,j)

2 + p#!k−1,j

)
≤ 2k−1(n2p2 + np) = O (1) ,

and as a consequence, ∥∥∥I(k)(n, p)− Ĩ(k)(n, p)
∥∥∥

1
= O (1) .

Now,
1
n
Ĩ(k)(n, p) =

∑
j≤2k−1

∑
i∈Ek−1,j

∣∣∣∣ in − yk,2j−1

∣∣∣∣
differs from X(k) =

∑2k

j=1

∑
x∈Πk,j

|x − xk,j | in (32) in the same four ways as for
k = 1, plus an extra fifth way:

(i) See the case k = 1.
(ii) |yk,2j−1 − xk,2j−1| = |yk,2j−1 − xk,2j | = |yk,2j−1 − Yk,2j−1|, which by Lemma

6.6 has expectation O (1/n). Thus this too gives a contribution O (1/n).
(iii) Two or more points in Πk ∩ ( i−1

n , i
n ] for some i, see the case k = 1.

(iv) Each point in Πk ∩ (−1/n + yk,2j−1, yk,2j−1] contributes for an extra term in
X(k). The expected number of such extra points is λ2k−1/n and each of these
terms contributes for at most 1 to X(k).

(v) There is a new source of error in this approximation, because some points x
in Πk and the corresponding positions i = �nx� belong to subintervals that do
not correspond to each other, because the endpoints y′k−1,j differ somewhat
from Yk−1,j . By Lemma 6.6, the expected number of such cases is O (1/n),
so again we get a contribution of order O (1/n) only.

This verifies (32) and thus the convergence of Xn,p to X(λ).

The functional equation for X(λ). We first check that X(λ) satisfies the func-
tional equation and our side conditions.

Proposition 6.7. (X(λ))λ>0 is a solution of (5). Moreover, E [X(λ)n] < ∞ and
λnE [X(λ)n] → 0 as λ → 0, for n ≥ 1.
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Proof. All moments are finite by Theorem 6.5. Moreover, E [(λX(λ))n] → 0 as
λ → 0 by (8) and dominated convergence.

For a < b, let Π(a, b) is a Poisson point process of intensity λ on N∗ × [a, b],
and let {Uk,j : k ≥ 0, 1 ≤ i ≤ 2k} be independent uniform random variables as in
Section 2, and further independent of Π(a, b). Define {Yk,j : k ≥ 0, 1 ≤ i ≤ 2k} and
Jk(x) as in Section 2, with the slight modification

Y0,0 = a and Y0,1 = b

and set

X(λ, a, b) =
1
λ

∑
(k,x)∈Π(a,b)

∣∣x− Yk,Jk(x)

∣∣.
Note that X(λ, 0, 1) = X(λ). Shifting and rescaling Π(a, b), we obtain

X(λ, a, b) law= X(λ, 0, b− a) law= (b− a)2X(λ(b− a)).

Let us split X(λ): we have

X(λ) = X0(λ) + X1(λ) + X2(λ)

λX0(λ) =
∑

(x,1)∈Π(a,b)

∣∣x− Y1,1

∣∣
λX1(λ) =

∑
(k,x)∈Π(a,b)
k≥2,x≤Y1,1

∣∣x− Yk,Jk(x)

∣∣,
λX2(λ) =

∑
(k,x)∈Π(a,b)
k≥2,x≥Y1,1

∣∣x− Yk,Jk(x)

∣∣.
We see, using general properties of Poisson point processes and the recursive con-
struction of {Yk,j : k ≥ 0, 1 ≤ i ≤ 2k}, that

(X0(λ), X1(λ), X2(λ)) law= (Θ(λ, Y1,1), X(λ, 0, Y1,1), X̃(λ, Y1,1, 1))

law= (Θ(λ, Y1,1), Y 2
1,1X(λY1,1), (1− Y1,1)2X̃(λ(1− Y1,1))),

in the sense that, conditionally given that Y1,1 = u, X0(λ), X1(λ) and X2(λ) are
independent and distributed as Θ(λ, u), u2X(λu), (1−u)2X(λ(1−u)), respectively.
Also Y1,1 = U0,1 is uniformly distributed on [0, 1].

Uniqueness of solutions of (5). The idea of the proof is that (5) uniquely deter-
mines the moments of its solutions. However, using (5), computations of moments
by induction are hardly tractable because all three terms on the right of (5) depend
on U . To circumvent this problem, we consider a new functional equation

Y (λ) law= ξ(λ) + UY (λU) + (1− U)Ỹ (λ(1− U)),(34)

in which
• ξ(λ) is as in Section 2; equivalently, ξ(λ) =

∑
x∈Π1

x;

• ξ(λ) and
(
U, Y (λU), Ỹ (λ(1− U))

)
are independent;

• conditionally, given U = u, Y (λU) and Ỹ (λ(1 − U)) are independent and
distributed as Y (λu) and Y (λ(1− u)), respectively.
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We say that a family of nonnegative random variables (Y (λ))λ>0 (with laws de-
pending measurably on λ) is an admissible solution of (34) if it satisfies furthermore,
for any n ≥ 1,

(i) E [Y (λ)n] < ∞;
(ii) λn−1

E [Y (λ)n] → 0 as λ → 0.
Similarly, we say that a solution (Z(λ))λ>0 of (5) is admissible if it satifies the
conditions E [Z(λ)n] < ∞ and λ2n−1

E [Z(λ)n] → 0 as λ → 0 in Theorem 2.3.
To conclude the proof of the theorem, we prove the following two propositions.

Proposition 6.8. If (Z(λ))λ>0 is an admissible solution of (5), then the family
(ξ(λ) + λZ(λ))λ>0, in which ξ(λ) and Z(λ) are assumed independent, is an admis-
sible solution of (34).

Proposition 6.9. All admissible solutions of (34) have the same moments fn(λ),
n ≥ 1.

Let (Z(λ))λ>0 be an admissible solution of (5). As the moments of ξ(λ)+λZ(λ)
uniquely determine the moments of Z(λ), it follows from Propositions 6.7, 6.8 and
6.9 that X(λ) and Z(λ) have the same moments. Since X(λ) has an exponentially
decreasing tail by Lemma 6.5 , its moments satisfy the Carleman condition [2, Chap.
7], and determine uniquely its distribution. Hence Z(λ) law= X(λ), concluding the

proof of uniqueness for admissible solutions of (5).
Before proving Propositions 6.8 and 6.9, we need a lemma.

Lemma 6.10. The n-th moment gn(λ) = E [ξ(λ)n] is a polynomial of degree n
with gn(0) = 0.

Proof. Owing to Campbell’s Theorem [5, p.28], we have

E

[
esξ(λ)

]
= exp

(
λ

(
E

[
esU

]
− 1

))
= exp

(
λ

(
s

2!
+

s2

3!
+ . . .

))
.

Expanding the last expression gives the lemma.

Proof of Proposition 6.8. Lemma 6.10 shows that E [ξ(λ)n] is finite for every λ and
converges to 0 as λ → 0. Hence, by Minkowski’s inequality for the norm ‖·‖n =
E [| · |n]1/n, the conditions on the moments of Y (λ) = ξ(λ) + λZ(λ) follow from
(and are equivalent to) the corresponding conditions on the moments of Z(λ).

To show (34), it is enough to show

λZ(λ) law= UY (λU) + (1− U)Ỹ (λ(1− U))

= Uξ(λU) + λU2Z(λU) + (1− U)ξ̃(λ(1− U)) + λ(1− U)2Z̃(λ(1− U)),

where, as usual, conditioned on U = u, the terms on the right hand side are
independent with the right distributions. This follows immediately from (5), since

λΘ(λ, u) law= uξ(λu) + (1− u)ξ̃(λ(1− u)).

Proof of Proposition 6.9. Consider the sequence of integral equations

P0(λ) = 1, Pn(λ) = 2
∫ 1

0

unPn(λu)du + ψn(λ), n ≥ 1,(35)
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in which

ψn(λ) =
∑

r+k+�=n
k<n,�<n

(
n

r, k, !

)
gr(λ)

∫ 1

0

uk(1− u)�Pk(λu)P�(λ(1− u)) du.(36)

Proposition 6.9 is a consequence of the next lemma.

Lemma 6.11. The induction formula (35) and the initial condition P1(0) = 0
defines a unique sequence of polynomials, (Pn(λ))n≥0. Furthermore, Pn has degree
n, and vanishes at 0. If (Y (λ))λ is an admissible solution of (34), then, for n ≥ 1,
its n-th moment E [Y (λ)n] is equal to Pn(λ).

Proof. Consider n ≥ 1 and assume that the properties in the lemma hold for 1 ≤
m ≤ n− 1. Then, for k and ! smaller than n, and r + k + ! = n, the expression

gr(λ)
∫ 1

0

uk(1− u)�Pk(λu)P�(λ(1− u)) du

is a polynomial with degree n and, due to Lemma 6.10, vanishes at 0. Thus, in this
case, ψn(λ) is a polynomial with degree n, vanishing at 0. It is now easy to check
that a polynomial Pn(λ) satisfies (35) if and only if, for (n, k) �= (1, 0),

[
λk

]
Pn =

n + k + 1
n + k − 1

[
λk

]
ψn.(37)

Also, by the induction assumptions,

E [Y (λ)n] = E
[(
ξ(λ) + UY (Uλ) + (1− U)Ỹ ((1− U)λ)

)n]
=

∑
r+k+�=n

(
n

r, k, !

)
gr(λ)E

[
Uk(1− U)�Y (Uλ)kỸ ((1− U)λ)�

]
= 2E [UnY (λU)n] + ψn(λ).

Note that ψn(λ) ≥ 0 for λ ≥ 0. Since Y is admissible, λ → fn(λ) = E [Y (λ)n] is
nonnegative and measurable. Thus, for λ > 0, we can rewrite the previous equation:

fn(λ) = 2
∫ 1

0

unfn(λu)du + ψn(λ)

= 2λ−n−1

∫ λ

0

vnfn(v)dv + ψn(λ).

Since fn(λ) is assumed to be finite and ψn(λ) ≥ 0, the integral on the right hand
side is convergent, and thus it is a continuous function of λ. As a consequence fn
belongs to C∞(0,+∞), and is solution, on (0,+∞), of the following differential
equation:

λf ′n(λ) + (n− 1)fn(λ) = (n + 1)ψn(λ) + λψ′n(λ).

As Y is admissible, λn−1fn(λ) → 0 as λ → 0, but the general solution of the
differential equation is Pn(λ) + C λ−n+1. Thus fn = Pn on (0,+∞).
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Computation of the first moments. The moments of Y (λ), and thus of X(λ),
can be computed up to arbitrary order with the help of (35). For the first two
moments, the calculations run as follows. Expanding

exp
(
λ

(
s

2!
+

s2

3!
+ . . .

))
,

in the proof of Lemma 6.10 we obtain

Lemma 6.12.

g1(λ) = E [ξ(λ)] =
1
2
λ and g2(λ) = E

[
ξ(λ)2

]
=

1
4
λ2 +

1
3
λ.

Proposition 6.13.

λE [X(λ)] = E [Ξ(λ)] = λ and λ2Var (X(λ)) = Var (Ξ(λ)) =
1
3
λ +

1
12

λ2.

Proof. Taking n = 1 in (36) and (37), we find, using Lemma 6.12,

ψ1(λ) = g1(λ) = 1
2λ,

P1(λ) = 3
1 · 1

2λ = 3
2λ.

Taking n = 2, we similarly find

ψ2(λ) = g2(λ) + 2 · 2g1(λ)
∫ 1

0

uP1(u) du + 2
∫ 1

0

u(1− u)P1(λu)P1(λ(1− u)) du

= 1
3λ + 7

5λ
2,

P2(λ) = 4
2 · 1

3λ + 5
3 · 7

5λ
2 = 2

3λ + 7
3λ

2.

Since Y (λ) = ξ(λ) + λX(λ), with independent summands,

P1(λ) = E [Y (λ)] = E [ξ(λ)] + λE [X(λ)] ,

which by Lemma 6.12 yields λE [X(λ)] = λ. Similarly,

λ2
E

[
X(λ)2

]
= P2(λ)− E

[
ξ(λ)2

]
− 2E [ξ(λ)]E [λX(λ)] = 1

3λ + 13
12λ

2,

which yields the variance formula.

The formulas for mean and variance of X(λ) can also be obtained directly from
(8) and Lemma 6.12; we leave this as an exercise.

7. Concluding remarks

We have presented a probabilistic analysis of Quicksort when some comparisons
can err. Analysing other sorting algorithms such as merge sort, insertion sort or
selection is even more intricate. They do not fit into the model presented in this
paper and further more involved probabilistic models/arguments are required. We
conjecture that the same normalization holds for the number of inversions in the
output of merge sort for n = 2m → +∞, p = λ/n, and that the limit law Ŷ (λ)
satisfies

E

[
Ŷ (λ)

]
=

∑
k≥0

2k

(2k + 2)(2k + 3)
= 0.454674373 · · · < E [X(λ)] .
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