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1. Introduction

Limit theorems for generalized Pólya urns are given in [3]. In particular,
a central limit theorem for the composition is shown under very general con-
ditions, with an explicit but rather complicated formula for the covariance
matrix of the asymptotic multi-dimensional normal distribution.

When computing the covariance matrix numerically in some applications
(see [2] and [1]), Cecilia Holmgren and Axel Heimbürger found a minor
simplification. The purpose of this note is to explain why this simplification
works, in a general setting.

We use the assumptions and notation of [3]. In particular, all vectors are
column vectors. Furthermore,

• ξi = (ξij)j is the (possibly random) replacement vector when a ball
of type (colour) i is drawn;

• a = (ai)i is the vector of activities of the different types;
• A := (aj E ξji)i,j ; λ1, . . . are the eigenvalues of A, ordered with λ1 >

Reλ2 > Reλ3 . . . ;
• u′1 and v1 are left and right eigenvectors corresponding to the largest

eigenvalue λ1; these are normalized by a ·v1 = a′v1 = 1 and u1 ·v1 =
u′1v1 = 1 and are then uniquely defined under the assumptions in
[3].

2. Results

Lemma 1. Suppose that a · ξi = m deterministically for some m > 0 and
every i. (In other words, the activity increases deterministically by a fixed
amount every time a ball is drawn.) Then

Bu1 = m2v1. (1)

Proof. Note first that the condition implies m = λ1 and u1 = a, see [3,
Lemma 5.4]. By [3, (2.13)], Bi := E(ξiξ

′
i), and thus, since ξ′ia = ξ · a = m,

Biu1 = Bia = E
(
ξiξ
′
ia
)

= mE ξi. (2)
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Furthermore, the matrix B is by [3, (2.14)] defined by B :=
∑

i v1iaiBi, and
thus (2) yields

Bu1 =
∑
i

v1iaimE ξi, (3)

where the j:th component is

(Bu1)j =
∑
i

v1iaimE ξij = m
∑
i

v1iAji = m(Av1)j = mλ1(v1)j . (4)

Hence,
Bu1 = mλ1v1 = m2v1. �

Lemma 2. Suppose that a · ξi = m deterministically for some m > 0 and
every i. Suppose further that Reλ2 <

1
2λ1. Then

PIBP
′
I = PIB = BP ′I = B −m2v1v

′
1. (5)

Proof. When Reλ2 <
1
2λ1, we have by definition and [3, (2.7)]

PI = I − Pλ1 = I − v1u
′
1.

Consequently, P ′I = I − u1v
′
1 and, by Lemma 1,

B −BP ′I = B(I − P ′I) = Bu1v
′
1 = m2v1v

′
1, (6)

which yields
PIB − PIBP

′
I = m2PIv1v

′
1 = 0,

since PIv1 = v1−v1u′1v1 = 0 by the construction of PI . Thus PIB = PIBP
′
I ,

and taking the transpose yields BP ′I = PIBP
′
I .

The final equation in (5) follows by (6). �

Under the conditions in Lemma 2, the asymptotic covariance matrix Σ in
[3, Theorem 3.22] equals by [3, Lemma 5.4] mΣ1, where by [3, (2.15)] and
the fact that PI commutes with A,

ΣI :=

∫ ∞
0

PIe
sABesA

′
P ′Ie
−λ1s ds =

∫ ∞
0

esAPIBP
′
Ie
sA′
e−λ1s ds. (7)

Theorem 3. Suppose that a · ξi = m deterministically for some m > 0 and
every i. Suppose further that Reλ2 <

1
2λ1. Then we may drop either PI or

P ′I (but not both) from (7). Furthermore,

ΣI =

∫ ∞
0

(
e−λ1sesABesA

′ −m2eλ1sv1v
′
1

)
ds. (8)

Proof. That we can drop PI or P ′I is an immediate consequence of (5) in
Lemma 2. To see that we cannot drop both PI and P ′I , note that by A′u1 =

λ1u1 and thus esA
′
u1 = esλ1u1, which by transposing also yields u′1e

sA =
esλ1u′1. Hence, by Lemma 1,

u′1
(
esABesA

′
e−λ1s

)
u1e
−λ1seλ1su′1B

(
eλ1su1

)
= eλ1su′1Bu1

= m2eλ1su′1v1 = m2eλ1s. (9)

Thus the integral (7) diverges without PI or P ′I .
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Finally, (8) follows from (7) and (5), recalling that esAv1 = esλ1v1 and

v′1e
sA′

= esλ1v′1. �

Remark 4. It is easily seen that, for some q > 0, PIe
sA = O

(
(1+sq)eReλ2s

)
,

and thus the integrand in (7) is O
(
(1+s2q)e(2Reλ2−λ1)s

)
, which is integrable

because 2 Reλ2 − λ1 < 0. The same holds for (8), since its integrand is the
same, by the proof above.
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