A NOTE ON THE VARIANCE CALCULATION FOR GENERALIZED POLYA URNS

SVANTE JANSON

1. INTRODUCTION

Limit theorems for generalized Pólya urns are given in [3]. In particular, a central limit theorem for the composition is shown under very general conditions, with an explicit but rather complicated formula for the covariance matrix of the asymptotic multi-dimensional normal distribution.

When computing the covariance matrix numerically in some applications (see [2] and [1]), Cecilia Holmgren and Axel Heimbürger found a minor simplification. The purpose of this note is to explain why this simplification works, in a general setting.

We use the assumptions and notation of [3]. In particular, all vectors are column vectors. Furthermore,

- $\xi_i = (\xi_{ij})_j$ is the (possibly random) replacement vector when a ball of type (colour) *i* is drawn;
- $a = (a_i)_i$ is the vector of activities of the different types;
- $A := (a_j \mathbb{E} \xi_{ji})_{i,j}; \lambda_1, \dots$ are the eigenvalues of A, ordered with $\lambda_1 \ge \operatorname{Re} \lambda_2 \ge \operatorname{Re} \lambda_3 \dots;$
- u'_1 and v_1 are left and right eigenvectors corresponding to the largest eigenvalue λ_1 ; these are normalized by $a \cdot v_1 = a'v_1 = 1$ and $u_1 \cdot v_1 = u'_1v_1 = 1$ and are then uniquely defined under the assumptions in [3].

2. Results

Lemma 1. Suppose that $a \cdot \xi_i = m$ deterministically for some m > 0 and every *i*. (In other words, the activity increases deterministically by a fixed amount every time a ball is drawn.) Then

$$Bu_1 = m^2 v_1. \tag{1}$$

Proof. Note first that the condition implies $m = \lambda_1$ and $u_1 = a$, see [3, Lemma 5.4]. By [3, (2.13)], $B_i := \mathbb{E}(\xi_i \xi'_i)$, and thus, since $\xi'_i a = \xi \cdot a = m$,

$$B_i u_1 = B_i a = \mathbb{E}(\xi_i \xi'_i a) = m \mathbb{E} \xi_i.$$
⁽²⁾

Date: October 1, 2014.

Partly supported by the Knut and Alice Wallenberg Foundation.

Furthermore, the matrix B is by [3, (2.14)] defined by $B := \sum_i v_{1i} a_i B_i$, and thus (2) yields

$$Bu_1 = \sum_i v_{1i} a_i m \mathbb{E} \xi_i, \tag{3}$$

where the j:th component is

$$(Bu_1)_j = \sum_i v_{1i} a_i m \mathbb{E} \xi_{ij} = m \sum_i v_{1i} A_{ji} = m (Av_1)_j = m\lambda_1(v_1)_j.$$
(4)

Hence,

$$Bu_1 = m\lambda_1 v_1 = m^2 v_1.$$

Lemma 2. Suppose that $a \cdot \xi_i = m$ deterministically for some m > 0 and every *i*. Suppose further that $\operatorname{Re} \lambda_2 < \frac{1}{2}\lambda_1$. Then

$$P_I B P'_I = P_I B = B P'_I = B - m^2 v_1 v'_1.$$
(5)

Proof. When $\operatorname{Re} \lambda_2 < \frac{1}{2}\lambda_1$, we have by definition and [3, (2.7)]

$$P_I = I - P_{\lambda_1} = I - v_1 u_1'.$$

Consequently, $P'_I = I - u_1 v'_1$ and, by Lemma 1,

$$B - BP'_{I} = B(I - P'_{I}) = Bu_{1}v'_{1} = m^{2}v_{1}v'_{1},$$
(6)

which yields

$$P_I B - P_I B P'_I = m^2 P_I v_1 v'_1 = 0,$$

since $P_I v_1 = v_1 - v_1 u'_1 v_1 = 0$ by the construction of P_I . Thus $P_I B = P_I B P'_I$, and taking the transpose yields $BP'_I = P_I BP'_I$.

The final equation in (5) follows by (6).

Under the conditions in Lemma 2, the asymptotic covariance matrix Σ in [3, Theorem 3.22] equals by [3, Lemma 5.4] $m\Sigma_1$, where by [3, (2.15)] and the fact that P_I commutes with A,

$$\Sigma_I := \int_0^\infty P_I e^{sA} B e^{sA'} P_I' e^{-\lambda_1 s} \,\mathrm{d}s = \int_0^\infty e^{sA} P_I B P_I' e^{sA'} e^{-\lambda_1 s} \,\mathrm{d}s.$$
(7)

Theorem 3. Suppose that $a \cdot \xi_i = m$ deterministically for some m > 0 and every i. Suppose further that $\operatorname{Re} \lambda_2 < \frac{1}{2}\lambda_1$. Then we may drop either P_I or P'_{I} (but not both) from (7). Furthermore,

$$\Sigma_I = \int_0^\infty \left(e^{-\lambda_1 s} e^{sA} B e^{sA'} - m^2 e^{\lambda_1 s} v_1 v_1' \right) \,\mathrm{d}s. \tag{8}$$

Proof. That we can drop P_I or P'_I is an immediate consequence of (5) in Lemma 2. To see that we cannot drop both P_I and P'_I , note that by $A'u_1 =$ $\lambda_1 u_1$ and thus $e^{sA'} u_1 = e^{s\lambda_1} u_1$, which by transposing also yields $u'_1 e^{sA} =$ $e^{s\lambda_1}u'_1$. Hence, by Lemma 1,

$$u_{1}'(e^{sA}Be^{sA'}e^{-\lambda_{1}s})u_{1}e^{-\lambda_{1}s}e^{\lambda_{1}s}u_{1}'B(e^{\lambda_{1}s}u_{1}) = e^{\lambda_{1}s}u_{1}'Bu_{1}$$
$$= m^{2}e^{\lambda_{1}s}u_{1}'v_{1} = m^{2}e^{\lambda_{1}s}.$$
(9)

Thus the integral (7) diverges without P_I or P'_I .

Finally, (8) follows from (7) and (5), recalling that $e^{sA}v_1 = e^{s\lambda_1}v_1$ and $v'_1e^{sA'} = e^{s\lambda_1}v'_1$.

Remark 4. It is easily seen that, for some $q \ge 0$, $P_I e^{sA} = O((1+s^q)e^{\operatorname{Re}\lambda_2 s})$, and thus the integrand in (7) is $O((1+s^{2q})e^{(2\operatorname{Re}\lambda_2-\lambda_1)s})$, which is integrable because $2\operatorname{Re}\lambda_2 - \lambda_1 < 0$. The same holds for (8), since its integrand is the same, by the proof above.

Acknowledgement. I thank Cecilia Holmgren for noting this property and discussing it with me.

References

- [1] Axel Heimbürger, Asymptotic distribution of two-protected nodes in *m*ary search trees. Master thesis, Stockholm University and KTH, 2014.
- [2] Cecilia Holmgren and Svante Janson, Asymptotic distribution of two-protected nodes in ternary search trees. Preprint, 2014. arxiv:1403.5573
- [3] Svante Janson, Functional limit theorems for multitype branching processes and generalized Pólya urns. Stoch. Process. Appl. 110 (2004), 177–245.

Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala, Sweden

E-mail address: svante.janson@math.uu.se *URL*: http://www2.math.uu.se/~svante/