A NOTE ON THE VARIANCE CALCULATION FOR GENERALIZED POLYA URNS

SVANTE JANSON

1. Introduction

Limit theorems for generalized Pólya urns are given in [3]. In particular, a central limit theorem for the composition is shown under very general conditions, with an explicit but rather complicated formula for the covariance matrix of the asymptotic multi-dimensional normal distribution.

When computing the covariance matrix numerically in some applications (see [2] and [1]), Cecilia Holmgren and Axel Heimbürger found a minor simplification. The purpose of this note is to explain why this simplification works, in a general setting.

We use the assumptions and notation of [3]. In particular, all vectors are column vectors. Furthermore,

- $\xi_{i}=\left(\xi_{i j}\right)_{j}$ is the (possibly random) replacement vector when a ball of type (colour) i is drawn;
- $a=\left(a_{i}\right)_{i}$ is the vector of activities of the different types;
- $A:=\left(a_{j} \mathbb{E} \xi_{j i}\right)_{i, j} ; \lambda_{1}, \ldots$ are the eigenvalues of A, ordered with $\lambda_{1} \geqslant$ $\operatorname{Re} \lambda_{2} \geqslant \operatorname{Re} \lambda_{3} \ldots ;$
- u_{1}^{\prime} and v_{1} are left and right eigenvectors corresponding to the largest eigenvalue λ_{1}; these are normalized by $a \cdot v_{1}=a^{\prime} v_{1}=1$ and $u_{1} \cdot v_{1}=$ $u_{1}^{\prime} v_{1}=1$ and are then uniquely defined under the assumptions in [3].

2. Results

Lemma 1. Suppose that $a \cdot \xi_{i}=m$ deterministically for some $m>0$ and every i. (In other words, the activity increases deterministically by a fixed amount every time a ball is drawn.) Then

$$
\begin{equation*}
B u_{1}=m^{2} v_{1} . \tag{1}
\end{equation*}
$$

Proof. Note first that the condition implies $m=\lambda_{1}$ and $u_{1}=a$, see [3, Lemma 5.4]. By [3, (2.13)], $B_{i}:=\mathbb{E}\left(\xi_{i} \xi_{i}^{\prime}\right)$, and thus, since $\xi_{i}^{\prime} a=\xi \cdot a=m$,

$$
\begin{equation*}
B_{i} u_{1}=B_{i} a=\mathbb{E}\left(\xi_{i} \xi_{i}^{\prime} a\right)=m \mathbb{E} \xi_{i} . \tag{2}
\end{equation*}
$$

Date: October 1, 2014.
Partly supported by the Knut and Alice Wallenberg Foundation.

Furthermore, the matrix B is by $[3,(2.14)]$ defined by $B:=\sum_{i} v_{1 i} a_{i} B_{i}$, and thus (2) yields

$$
\begin{equation*}
B u_{1}=\sum_{i} v_{1 i} a_{i} m \mathbb{E} \xi_{i} \tag{3}
\end{equation*}
$$

where the j :th component is

$$
\begin{equation*}
\left(B u_{1}\right)_{j}=\sum_{i} v_{1 i} a_{i} m \mathbb{E} \xi_{i j}=m \sum_{i} v_{1 i} A_{j i}=m\left(A v_{1}\right)_{j}=m \lambda_{1}\left(v_{1}\right)_{j} \tag{4}
\end{equation*}
$$

Hence,

$$
B u_{1}=m \lambda_{1} v_{1}=m^{2} v_{1}
$$

Lemma 2. Suppose that $a \cdot \xi_{i}=m$ deterministically for some $m>0$ and every i. Suppose further that $\operatorname{Re} \lambda_{2}<\frac{1}{2} \lambda_{1}$. Then

$$
\begin{equation*}
P_{I} B P_{I}^{\prime}=P_{I} B=B P_{I}^{\prime}=B-m^{2} v_{1} v_{1}^{\prime} . \tag{5}
\end{equation*}
$$

Proof. When $\operatorname{Re} \lambda_{2}<\frac{1}{2} \lambda_{1}$, we have by definition and [3, (2.7)]

$$
P_{I}=I-P_{\lambda_{1}}=I-v_{1} u_{1}^{\prime}
$$

Consequently, $P_{I}^{\prime}=I-u_{1} v_{1}^{\prime}$ and, by Lemma 1,

$$
\begin{equation*}
B-B P_{I}^{\prime}=B\left(I-P_{I}^{\prime}\right)=B u_{1} v_{1}^{\prime}=m^{2} v_{1} v_{1}^{\prime} \tag{6}
\end{equation*}
$$

which yields

$$
P_{I} B-P_{I} B P_{I}^{\prime}=m^{2} P_{I} v_{1} v_{1}^{\prime}=0
$$

since $P_{I} v_{1}=v_{1}-v_{1} u_{1}^{\prime} v_{1}=0$ by the construction of P_{I}. Thus $P_{I} B=P_{I} B P_{I}^{\prime}$, and taking the transpose yields $B P_{I}^{\prime}=P_{I} B P_{I}^{\prime}$.

The final equation in (5) follows by (6).
Under the conditions in Lemma 2, the asymptotic covariance matrix Σ in [3, Theorem 3.22] equals by [3, Lemma 5.4] $m \Sigma_{1}$, where by $[3,(2.15)]$ and the fact that P_{I} commutes with A,

$$
\begin{equation*}
\Sigma_{I}:=\int_{0}^{\infty} P_{I} e^{s A} B e^{s A^{\prime}} P_{I}^{\prime} e^{-\lambda_{1} s} \mathrm{~d} s=\int_{0}^{\infty} e^{s A} P_{I} B P_{I}^{\prime} e^{s A^{\prime}} e^{-\lambda_{1} s} \mathrm{~d} s \tag{7}
\end{equation*}
$$

Theorem 3. Suppose that $a \cdot \xi_{i}=m$ deterministically for some $m>0$ and every i. Suppose further that $\operatorname{Re} \lambda_{2}<\frac{1}{2} \lambda_{1}$. Then we may drop either P_{I} or P_{I}^{\prime} (but not both) from (7). Furthermore,

$$
\begin{equation*}
\Sigma_{I}=\int_{0}^{\infty}\left(e^{-\lambda_{1} s} e^{s A} B e^{s A^{\prime}}-m^{2} e^{\lambda_{1} s} v_{1} v_{1}^{\prime}\right) \mathrm{d} s \tag{8}
\end{equation*}
$$

Proof. That we can drop P_{I} or P_{I}^{\prime} is an immediate consequence of (5) in Lemma 2. To see that we cannot drop both P_{I} and P_{I}^{\prime}, note that by $A^{\prime} u_{1}=$ $\lambda_{1} u_{1}$ and thus $e^{s A^{\prime}} u_{1}=e^{s \lambda_{1}} u_{1}$, which by transposing also yields $u_{1}^{\prime} e^{s A}=$ $e^{s \lambda_{1}} u_{1}^{\prime}$. Hence, by Lemma 1 ,

$$
\begin{gather*}
u_{1}^{\prime}\left(e^{s A} B e^{s A^{\prime}} e^{-\lambda_{1} s}\right) u_{1} e^{-\lambda_{1} s} e^{\lambda_{1} s} u_{1}^{\prime} B\left(e^{\lambda_{1} s} u_{1}\right)=e^{\lambda_{1} s} u_{1}^{\prime} B u_{1} \\
=m^{2} e^{\lambda_{1} s} u_{1}^{\prime} v_{1}=m^{2} e^{\lambda_{1} s} . \tag{9}
\end{gather*}
$$

Thus the integral (7) diverges without P_{I} or P_{I}^{\prime}.

Finally, (8) follows from (7) and (5), recalling that $e^{s A} v_{1}=e^{s \lambda_{1}} v_{1}$ and $v_{1}^{\prime} e^{s A^{\prime}}=e^{s \lambda_{1}} v_{1}^{\prime}$.
Remark 4. It is easily seen that, for some $q \geqslant 0, P_{I} e^{s A}=O\left(\left(1+s^{q}\right) e^{\operatorname{Re} \lambda_{2} s}\right)$, and thus the integrand in (7) is $O\left(\left(1+s^{2 q}\right) e^{\left(2 \operatorname{Re} \lambda_{2}-\lambda_{1}\right) s}\right)$, which is integrable because $2 \operatorname{Re} \lambda_{2}-\lambda_{1}<0$. The same holds for (8), since its integrand is the same, by the proof above.

Acknowledgement. I thank Cecilia Holmgren for noting this property and discussing it with me.

References

[1] Axel Heimbürger, Asymptotic distribution of two-protected nodes in m ary search trees. Master thesis, Stockholm University and KTH, 2014.
[2] Cecilia Holmgren and Svante Janson, Asymptotic distribution of two-protected nodes in ternary search trees. Preprint, 2014. arxiv:1403.5573
[3] Svante Janson, Functional limit theorems for multitype branching processes and generalized Pólya urns. Stoch. Process. Appl. 110 (2004), 177-245.

Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala, SWEdEn

E-mail address: svante.janson@math.uu.se
URL: http://www2.math.uu.se/~svante/

