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Abstract. In the present paper we find necessary and sufficient conditions on
the coefficients of a parabolic equation for convexity to be preserved. A parabolic
equation is said to preserve convexity if given a convex initial condition, any
solution of moderate growth remains a convex function of the spatial variables for
each fixed time.

1. Introduction

We consider the Cauchy problem for second order parabolic operators on ΩT =
Rn × (0, T ]. Necessary and sufficient conditions on the operator are found that
guarantee that the solutions to the equation remain convex, for each fixed time t, if
the inital condition is a convex function, under appropriate growth conditions. Some
type of restriction of the growth of the solution is necessary due to the well-known
fact that the solutions to parabolic equations, in general, are not unique. There
are classical examples of solutions to the associated heat equation with zero initial
condition that grow faster than exp(a|x|2) for any a. Of course, subtracting such a
function from a solution with a given convex initial condition would typically change
the convexity properties for |x| large and convexity might be lost instantaneously at
infinity.

In [7], compare also [1] and [6], we study this problem, in the case of one spatial
variable, in connection with applications to finance and we show that convexity is
indeed preserved for solutions, given by the stochastic representation formula, to an
equation of the form

Ft = a2(x, t)Fxx (1.1)
where a(x, t) is measurable on R× [0,∞), locally Hölder(1/2) in the x-variable, and
satisfies the growth condition |a(x, t)| ≤ C(1 + |x|) for some constant C.

In the present paper, we study the case of several spatial variables. In this case
preservation of convexity is a rather rare property, in contrast to the case of one
spatial dimension. Note that convexity is always preserved (for the solution of
moderate growth) in the case of operators with constant coefficients since a solution
is obtained by integrating the initial condition against a translation invariant positive
kernel.

The question of preservation of convexity is formulated more precisely and some
basic definitions are introduced in Section 2. In Section 3 we consider the case
of regular coefficients, see (3.1). We give a necessary and sufficient condition for
the infinitesimal preservation of convexity at some point. We call this condition
LCP, an abbreviation for locally convexity preserving, see Definition 2.2. We find a
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characterization of LCP in terms of a differential inequality on the coefficients of the
operator, see Lemma 3.12. We then show that LCP holds if and only if convexity is
preserved for solutions to the equation that are of polynomial growth, see Theorem
3.1.

The convexity inequality of Lemma 3.12 is a pointwise condition in the leading
coefficients and their first two spatial derivatives. The algebraic properties of this
inequality are discussed in Section 4.

In Section 5 we give some explicit examples of convexity preserving operators and
in Section 6 we study non-homogeneous equations.

In Section 7 we show the perhaps surprising result that for operators with bounded
coefficients, it is only the operators with coefficients only depending on time that
preserve convexity, see Theorem 7.2.

In Section 8 we relax the regularity conditions for the coefficients of the opera-
tor to a customary Hölder condition. However, in this case we only show that the
obtained conditions for the preservation of convexity are sufficient. We conjecture
that these conditions also are necessary. The LCP condition, which applies to oper-
ators with regular coefficients is linear in the operator. Thus convex combinations of
LCP operators are also LCP, which easily extends to suitably defined infinite sums
and integrals. Thus convexity preserving operators with regular coefficients form a
positive convex cone, a property not apparent form the definition of preservation of
convexity. We have not been able to show the corresponding result for operators
with Hölder coefficients.

In the following section, see Theorem 9.1 we apply the property of convexity
preservation to study monotonicity properties of solutions to different parabolic
equations. In Section 10 we consider preservation of convexity for the Dirichlet
problem on bounded domains in Rn. In the section thereafter, we discuss extension
of our results to nonlinear equations.

In the appendix we have, for the benefit of the reader, collected results on second
order parabolic equations that we needed to obtain our results. These results, or at
least versions of them, are well-known, but for many of these statements we have
not found references for exactly the version that we have used.

Finally, some words about notation. Du denotes differentiation in the direction of
the vector u ∈ Rn and ∇x the gradient in the spatial directions. For typographical
convenience, we will write Di for Dei , where ei is the i:th coordinate vector. We will
use several spaces of functions on ΩT or Rn; for convenience we have collected the
definitions in the appendix, and urge the reader to check there when necessary.

When we say that a function on ΩT is convex, we always mean convex in the
spatial variables for every fixed t. If F ∈ C2,0(ΩT ), we similarly say that F is
convex at a point if the spatial Hessian matrix ∇2

xF ≥ 0 there, where A ≥ 0 for
a square matrix means positive semidefinite. We will several times use the obvious
fact that the pointwise limit of a sequence of convex functions is convex. Recall also
that Tr(AB) ≥ 0 if A ≥ 0 and B ≥ 0 are matrices of the same size.

2. Problem formulation and basic definitions

As stated in the introduction, we consider parabolic differential operators

M =
∂

∂t
− L
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where

LF =
n∑

i,j=1

aij(x, t)
∂2F

∂xi∂xj
+

n∑
i=1

bi(x, t)
∂F

∂xi
+ c(x, t)F. (2.1)

We assume that all coefficients aij , bi, c are real-valued functions defined on the
domain ΩT = Rn × (0, T ] for some given (finite) T > 0.

Our minimal assumptions on the operator, which hold throughout this article,
are the following.

(A1) M is parabolic (L is elliptic) everywhere, i.e. the matrix
(
aij(x, t)

)
ij

is
positive definite for every (x, t) ∈ ΩT . Explicitly,

∑n
i,j=1 aij(x, t)ξiξj > 0 for

every (x, t) ∈ ΩT and every ξ ∈ Rn \ {0}.
(C0) The coefficients aij , bi, c are continuous functions in ΩT .

Some stronger versions of these are defined in the appendix.
We study the Cauchy problem for M in the following form:

Given a continuous function f on Rn and a continuous function h on ΩT , find a
function u ∈ C(ΩT ) ∩ C2,1(ΩT ) such that

MF (x, t) = h(x, t), (x, t) ∈ ΩT ,

F (x, 0) = f(x), x ∈ Rn.
(2.2)

We would like to find conditions on the operator M and the function h that
guarantee that solutions to the equation remain convex as a function of x for any
fixed t if the initial condition is a convex function. Since we allow the coefficients of
the operator M to depend on time, it is natural to allow that the initial condition
can be given at any τ with 0 ≤ τ < T and ask that the solution remains convex for
any fixed t with τ ≤ t ≤ T . We therefore define Ω(τ,T ] = Rn × (τ, T ] and its closure
Ω[τ,T ] = Rn × [τ, T ], and introduce the following variation of Problem (2.2):
Given a continuous function f on Rn and a number τ ∈ [0, T ), find a function
F ∈ C(Ω[τ,T ]) ∩ C2,1(Ω(τ,T ]) such that

MF (x, t) = h(x, t), (x, t) ∈ Ω(τ,T ],

F (x, τ) = f(x), x ∈ Rn.
(2.3)

Usually we take h = 0 and thus consider the homogeneous equation

MF (x, t) = 0, (x, t) ∈ Ω(τ,T ],

F (x, τ) = f(x), x ∈ Rn.
(2.4)

We can now state our definition of convexity preserving operators.

Definition 2.1. Let F be a space of continuous functions on ΩT . Further, let Fτ

for 0 ≤ τ < T denote the space of obtained by restricting functions in F to Rn×{τ}
and let F[τ,T ] denote the space obtained by restricting function in F to Ω[τ,T ]. We
say that the operator M is convexity preserving in the function space F if for every
τ ∈ [0, T ) and every convex f ∈ Fτ there is unique solution to (2.4) in F[τ,T ] and
this solution is convex in the spatial variables for each t ∈ (τ, T ].

More generally, we say that the pair (M, h) is convexity preserving, where h ∈
C(ΩT ), if this holds for (2.3).

We note that the condition of unicity of the solution is redundant in the sense that
if there is more than one solution then convexity is easily seen not to be preserved.
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However, it seems natural to explicitly state that we consider spaces where there is
a unique solution.

A typical space F of functions is the class of functions of polynomial growth:

Cpol(ΩT ) =
⋃

C>0, p>0

{F ∈ C(ΩT ) : |F (x, t)| ≤ C(|x|p + 1), (x, t) ∈ ΩT }.

The corresponding initial conditions f then form the set

Cpol(Rn) =
⋃

C>0, p>0

{f ∈ C(Rn) : |f(x)| ≤ C(|x|p + 1), x ∈ Rn}.

We will, assuming that the coefficients are sufficiently smooth, connect the prop-
erty of convexity preserving with a certain local property. Intuitively, convexity
could be lost after some point in time at a point where the solution F has vanishing
second derivate in some spatial direction u. To ensure that convexity is not lost, the
infinitesimal change of F in time, i.e. LF in the case of h = 0, needs to be convex
in the direction of u. We formulate this idea in the following definition.

Definition 2.2. Assume that the operator M = ∂
∂t − L has coefficients that are

in C2,0(ΩT ). Then M (or L) is locally convexity preserving, abbreviated LCP, at
(x, t), if

Duu(Lf)(x, t) ≥ 0 (2.5)
whenever u ∈ Rn, f ∈ C∞(Rn) is convex in a neighborhood of x, and Duuf(x) = 0.

Remark 2.3. The LCP condition involves spatial derivatives but no derivatives with
respect to t. Hence the condition can be regarded as a condition for elliptic differ-
ential operators L on Rn, without any time parameter at all. A time dependent
operator L, as above, then is LCP if and only if it is LCP for every fixed t.

Remark 2.4. It is easy to show, using Lemma 3.8, that every parabolic (elliptic)
differential operator with constant coefficients is LCP.

The LCP condition will enable us to characterize convexity preserving operators
(under some mild technical conditions) using a certain differential inequality which
we simply refer to as the convexity inequality.

Definition 2.5. Let A(x, t) denote the n × n matrix (aij(x, t)), n ≥ 2, and also
the corresponding linear operator in Rn, and let Au denote the operator QuAQu

restricted to u⊥, where Qu is the orthogonal projection of Rn onto u⊥. Then the
correspondning operator M is said to satisfy the convexity inequality in ΩT if

〈M,DuuAu〉+ 2〈N,DuAu〉+ 2〈P,Au〉 ≥ 0 (2.6)

in ΩT , for every unit vector u ∈ Rn and all symmetric linear operators M , N and
P in u⊥ such that (

M N
N P

)
≥ 0. (2.7)

Unless the coefficients of M are C2, (2.6) is interpreted in the sense of distribu-
tions.

Remark 2.6. For the local conditions LCP and the convexity inequality, it is obvious
that the set of operators that satisfy them are convex cones. In other words, for
example, convex combinations of several LCP operators are LCP. This extends to
suitably convergent infinite sums and integrals. We thus note that if we convolve
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the entries of the matrix A with the same non-negative approximate identity, the
inequality (2.6) holds for the then obtained matrix if it holds for A.

3. The case of regular coefficients

In this section we assume the regularity condition

aij , bi, c ∈ C2,1
α (ΩT ), for some α > 0, (3.1)

where C2,1
α (ΩT ) is defined in the appendix, and the boundedness condition

(B2) The coefficients aij , bi, c satisfy the bounds

|aij(x, t)| ≤ B(|x|2 + 1), |bi(x, t)| ≤ B(|x|+ 1), |c(x, t)| ≤ B,

for some constant B and all (x, t) ∈ ΩT .
We further assume that the the right hand side h vanishes.

The main result of this section is the following theorem.

Theorem 3.1. Assume that the operator M is such that (A1), (B2) and (3.1) hold.
Then the following are equivalent.

(i) M is convexity preserving in Cpol(ΩT ).
(ii) M is LCP in ΩT .
(iii) (a) n = 1 or M satisfies the convexity inequality (2.6) in ΩT , and

(b) for each fixed t, each bi is an affine function of x and c is constant.

Proof. We will prove a series of lemmas, beginning with the following extension
lemma for convex functions.

Lemma 3.2. If f ∈ Cm(Rn) is convex in a neighborhood of x0 ∈ Rn, where 2 ≤
m ≤ ∞, then there exists a convex function g ∈ Cm(Rn) such that g(x) = f(x)
in a neighborhood of x0, g(x) = O(|x|) as |x| → ∞ and each derivative Dkg with
1 ≤ |k| ≤ m is bounded on Rn.

Proof. For notational convenience we assume that x0 = 0. From the assumptions
of the theorem we see that f is convex in U = {x : |x| < δ} for some δ > 0. Let
ϕ ∈ C∞0 (Rn) have support in U , with ϕ(x) = 1 when |x| ≤ δ/2. Let ψ ∈ C∞(R)
be an increasing function with ψ(t) = 0 for t ≤ δ/4, ψ(t) = 2t for δ/2 ≤ t ≤ 2δ and
ψ(t) = 5δ, for t ≥ 3δ. Let Ψ(t) =

∫ t
0 ψ(s) ds, which is increasing and convex. It is

then easily verified that if K is large enough, then

g(x) = ϕ(x)f(x) +KΨ(|x|) (3.2)

satisfies the requirements. �

The following lemma shows that the condition LCP of Definition 2.2 is necessary
for convexity to be preserved.

Lemma 3.3. Suppose that M satisfies (A2), (B2) and (3.1), and that for every
convex f ∈ C∞(Rn) with f(x) = O(1 + |x|) there exists a convex solution F (x, t) ∈
Cpol(ΩT ) to MF = f with F (x, 0) = f(x). Then M is LCP at (x, 0) for all x ∈ Rn.

Proof. Suppose that u ∈ Rn and that f is C∞ and convex in a neighborhood of
x0 ∈ Rn, with Duuf(x0) = 0. By Lemma 3.2, there exists a convex function g ∈
C∞(Rn) with g(x) = O(|x| + 1) such that g = f in a neighborhood U of x0. By
assumption, there exists a convex solution F (x, t) ∈ Cpol(ΩT )∩C2,1(ΩT ) to MF = 0
with F (x, 0) = g(x), x ∈ Rn. In particular, for 0 < t < T , DuuF (x0, t) ≥ 0. Further,

DuuF (x0, 0) = Duug(x0) = Duuf(x0) = 0. (3.3)
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By Theorem A.18, F ∈ C4,1(ΩT ). Thus DtDuuF (x0, t) exists and we have by the
above DtDuuF (x0, 0) ≥ 0. Consequently, using (2.2),

Duu(Lf)(x0) = Duu(LF )(x0, 0) = Duu(DtF )(x0, 0) = DtDuuF (x0, 0) ≥ 0. �

The implication (i) =⇒ (ii) in Theorem 3.1 follows immediately from this lemma
by considering Ω[τ,T ]. To prove the converse, we first impose extra regularity condi-
tions on both the coefficients and the solution.

Lemma 3.4. Suppose that M is such that (A1), (B22,1) and (3.1) hold. Assume
that M is LCP everywhere in ΩT . If F (x, t) ∈ C4,0(ΩT )∩C2,0

pol(ΩT ) is a solution to
MF = 0 and F (x, 0) is convex, then F is convex in ΩT .

Proof. Letm be an even integer chosen so large that |F (x, t)|, |∇xF (x, t)|, |∇2
xF (x, t)| =

O(|x|m + 1), (x, t) ∈ ΩT . Let

g(x) = |x|2 + |x|m+4. (3.4)

Clearly,

Lg(x, t) =
n∑

i,j=1

aij(x, t) p
(2)
ij (x) +

n∑
i=1

bi(x, t) p
(1)
i (x) + c(x, t) p(0)(x), (3.5)

where p(l)
... are polynomials of degree m+4−l, and thus, uniformly for all unit vectors

u ∈ Rn, by (B22,1),
Duu(Lg)(x, t) = O(1 + |x|m+2).

Moreover,

Duug(x) = 2 + (m+ 4)|x|m+2 + (m+ 4)(m+ 2)〈x, u〉2|x|m

≥ 2 + (m+ 4)|x|m+2,
(3.6)

and thus there exists a constant C such that

1 + |Duu(Lg)(x, t)| ≤ C Duug(x), (3.7)

for all x, t and unit vectors u. Let ε > 0 and define

Fε(x, t) = F (x, t) + εeCtg(x).

Let E = {(x, t) ∈ Rn × [0, T ] : Fε is not convex at (x, t)} and suppose that E 6= ∅.
For all unit vectors u ∈ Rn, by (3.6),

DuuFε(x, t) = DuuF (x, t) + εeCtDuug(x) ≥ ε|x|m+2 +O(1 + |x|)m.

Hence, for some ρ <∞, DuuFε(x, t) ≥ 0 for all unit vectors u and |x| ≥ ρ. In other
words, E ⊆ B(0, ρ)× [0, T ]. Thus E is bounded and E is compact. Let

t0 = inf{t ≥ 0 : (x, t) ∈ E for some x ∈ Rn}. (3.8)

This infimum is attained and thus (x0, t0) ∈ E for some x0 ∈ Rn. If ∇2
xFε is strictly

positive definite at (x0, t0), then by continuity, it is positive in a neighborhood and
thus Fε is strictly convex there, which contradicts the fact that (x0, t0) ∈ E.

For t = 0 we have, by assumption, ∇2
xF (x, 0) ≥ 0, and thus ∇2

xFε ≥ ε∇2
xg, which

by (3.6) is strictly positive definite. Hence t0 > 0.
Since (x, t) /∈ E for 0 < t < t0, Fε is convex there and by continuity, Fε(x, t0) is

convex. Consequently, f(x) = Fε(x, t0) is convex, but Duuf(x0) = 0 for some unit
vector u ∈ Rn. By the LCP property,

Duu(LFε)(x0, t0) ≥ 0. (3.9)
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Moreover, DuuFε(x0, t) ≥ 0 for 0 < t < t0, and thus

DuuDtFε(x0, t0) = DtDuuFε(x0, t0) ≤ 0. (3.10)

However, since F solves (2.2), by (3.7),

Duu(DtFε − LFε) = Duu(εCeCtg − εeCtLg)
= εeCt(CDuug −Duu(Lg))
≥ εeCt > 0,

for all (x, t), which contradicts (3.9) and (3.10). Consequently, E = ∅, and thus Fε

is convex everywhere. Letting ε→ 0, we find that F is convex. �

To extend this result, we first note that the property of convexity preserving is
preserved under suitable pointwise limits.

Lemma 3.5. Suppose that M(m), m = 1, 2, . . . is a sequence of parabolic differential
operators in ΩT that are convexity preserving in Cpol(ΩT ) and such that:

(i) (A1) holds for M(m) uniformly in m, i.e. for every compact K ⊂ ΩT , all
operators M(m) satisfy (A.5) with some λK > 0 not depending on m.

(ii) (B2) holds uniformly in m, i.e. (A.3) holds for every M(m), for some B not
depending on m.

(iii) (C1) holds uniformly in m, i.e., for every compact K ⊂ ΩT , there ex-
ists C independent of m such that ‖a(m)

ij ‖Hα(K) ≤ C, ‖b(m)
i ‖Hα(K) ≤ C,

‖c(m)‖Hα(K) ≤ C.

(iv) M(m) →M as m→∞, in the sense that a(m)
ij → aij, b

(m)
i → bi, c(m) → c

pointwise in ΩT .
Then M is convexity preserving in Cpol(ΩT ).

Proof. Let f ∈ Cpol(Rn) be convex, and let F (m) ∈ Cpol(ΩT ) ∩ C2,1(ΩT ) solve the
Cauchy problem M(m)F (m) = 0 in ΩT with F (m) = f on Rn. By Theorem A.12,
F (m) converges in C2,1(ΩT ), as m→∞, to the solution F ∈ Cpol(ΩT ) of MF = 0
in ΩT with F = f on Rn.

By assumption, each F (m) is convex, and thus their pointwise limit F is too. �

Let G = O(n,R) × R+ × Rn be the group of similarity mappings of Rn; G acts
on Rn by (σ, t, y)x = tσ(x) + y. G acts naturally on functions on Rn and ΩT ; we
write both actions as f 7→ f ◦ γ with f ◦ γ(x) = f(x) and F ◦ γ(x, t) = F (γ(x), t),
respectively. This induces an action on differential operators, and we define

Mγ = M(f ◦ γ−1) ◦ γ.
Clearly Mγ is a parabolic differential operator and Mγ satisfies LCP if and only
if M does (we have just changed the coordinate system). We write G = G1 × G2

where G1 = O(n,R)×R+ is the subgroup that fixes 0 and G2 = Rn is the subgroup
of translations. If γ ∈ G, we write γ = (γ1, γ2) with the components γi ∈ Gi. Fix
Haar measures dγi on Gi. Let ϕi ∈ C∞0 (Gi) be non-negative with

∫
Gi
ϕi(γi) dγi = 1.

Define ϕ ∈ C∞0 (G) by ϕ(γ) = ϕ1(γ1)ϕ2(γ2) and let dγ = dγ1 dγ2, a right-invariant
Haar measure on G2. Then ϕ ≥ 0 and

∫
G ϕ(γ) dγ = 1. Finally, define

M̃ =
∫

G
ϕ(γ)Mγ dγ.

M̃ is a parabolic differential operator which satisfies LCP if M does, cf. Remark 2.6.
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Lemma 3.6. If M satisfies (B2), then M̃ satisfies (B2p,0) for every p ≥ 0.

Proof. We consider only the second order coefficients aij ; the lower order coefficients
bi and c are treated in the same way.

For γ ∈ G, let γ1 denote the component of γ in G1, i.e. γ = (γ1, y) for some
y ∈ G2 = Rn. We may regard γ1 as a matrix acting on Rn. Let A be the matrix (aij).
Then the corresponding matrix for Mγ is γ−1

1 (A ◦ γ)γ−1
1 . Thus the corresponding

matrix Ã for M̃ is given by

Ã(x, t) =
∫

G
γ−1

1 A(γx, t)γ−1
1 ϕ(γ) dγ. (3.11)

Hence, for g ∈ G, using the right-invariance of the measure,

Ã(gx, t) =
∫

G
γ−1

1 A(γgx, t)γ−1
1 ϕ(γ) dγ

=
∫

G
(γg−1)−1

1 A(γx, t)(γg−1)−1
1 ϕ(γg−1) dγ

=
∫

G
g1γ

−1
1 A(γx, t)g1γ−1

1 ϕ(γg−1) dγ.

The final integral is an infinitely differentiable function of g ∈ G, since we may
differentiate under the integral sign. Hence Ã(z, t) is an infinitely differentiable
function of z. (For this, it suffices to use the translation subgroup G2.)

To obtain the required bounds for the derivatives of A, it suffices to consider
|x| > 1. We now use the subgroup G1. We obtain from (3.11) by Fubini’s theorem

Ã(x, t) =
∫

G1

γ−1
1 A∗(γ1x, t)γ−1

1 ϕ1(γ1) dγ,

where

A∗(x, t) =
∫

G2

A(x+ y, t)ϕ2(y) dy.

Arguing as above, we find for g1 ∈ G1

Ã(g1x, t) =
∫

G1

g1γ
−1
1 A∗(γ1x, t)g1γ−1

1 ϕ1(γ1g
−1
1 ) dγ1.

Again, the final integral is an infinitely differentiable function of g. For fixed x0, the
mapping g 7→ gx0 : G1 → Rn has surjective differential at the unit e ∈ G1. Hence
this mapping has a right inverse in a neighborhood U of x0, and it follows that Ã is
infinitely differentiable in U (as we already know), with estimates of the type

|DkÃ(x, t)| ≤ Ck sup{|A∗(y, t)| : c1|x0| ≤ |y| ≤ c2|x0|}

in a smaller compact neighborhood U1 of x0. Here the constants may depend on x0,
but by covering the unit sphere by such neigborhood U1 and applying this inequality
to Ã(rx, t) and A∗(rx, t) for r > 0, it follows that for all x 6= 0

|x||k|DkÃ(x, t) ≤ C ′k sup{|A∗(y, t)| : c′1|x| ≤ |y| ≤ c′2|x|}.

For |x| > 1, the right hand side is O(|x|2) by (B2), and hence |DkÃ(x, t)| ≤
C ′′k |x|2−|k|. �
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Assume that M satisfies (A1), (B2), (3.1) and LCP. We have so far regularized
in the x directions. The t direction is much simpler; we define, for a given δ > 0,

M̃∗(x, t) = δ−1

∫ t+δ

t
M̃(x, u ∧ T ) du.

It is easy to see from Lemma 3.6 that M̃∗ satisfies (B22,1). Moreover, M̃∗ is LCP.
Finally, let ε > 0 and define

M̃∗∗ = M̃∗ + ε(1 + |x|2)∆.

Then M̃∗∗ satisfies both (A4) and (B22,1). Moreover, M̃∗∗ is LCP by Remark 2.6,
because (1 + |x|2)∆ is. The latter fact follows easily from Lemma 3.12 below, see
also Example 5.4; we omit the details.

Lemma 3.7. If M satisfies (B2) and LCP, then M̃∗∗ is convexity preserving in
Cpol(ΩT ), for each choice of ϕ1, ϕ2, δ, ε.

Proof. Suppose that f ∈ Cpol(Rn) and let F be the unique solution in Cpol to
M̃∗∗F = 0 with F (x, 0) = f(x).

First assume that f ∈ C5
pol(Rn). By Theorems A.18 and A.20, F ∈ C4,1(ΩT ) ∩

C2,1
pol(ΩT ). Thus F is convex by Lemma 3.4.
In general, we first regularize f in the usual way by convolution with a smooth

approximation of the identity. This gives us a sequence of functions f (m) ∈ C5
pol(Rn)

that converge to f uniformly on compact sets. We have just shown that the corre-
sponding solutions are convex, and by Theorem A.12 they converge pointwise to F .
Thus F is convex.

The same holds in every Ω(τ,T ]. �

We can now let first ε → 0, then δ → 0 and finally let the supports of ϕ1 and
ϕ2 shrink to {0}. It is easy to check that the conditions of Lemma 3.5 are satisfied
each time; hence M̃∗, M̃ and finally M are convexity preserving in Cpol(ΩT ). This
completes the proof of (ii) =⇒ (i) in Theorem 3.1.

Next we analyze the condition LCP. By translation invariance, it suffices to con-
sider (x, t) = (0, 0). We first take care of the lower order terms.

Lemma 3.8. If f ∈ C4(Rn) is convex in a neighborhood of 0 and Duuf(0) = 0,
then for any v ∈ Rn, Duvf(0) = 0, Duuvf(0) = 0, Duuvvf(0) ≥ 0.

Proof. The first claim follows because ∇2f(0) ≥ 0. The second and third follow
because Duuf ≥ 0 and thus 0 is a minimum point of Duuf . �

Lemma 3.9. Let M have C2 coefficients in a domain D. Then M is LCP at a
point Q ∈ D if and only if the principal part M0 is LCP at Q and, at Q,

∇2
x(bi + xic) = 0, i = 1, . . . , n, (3.12)

∇2
xc = 0. (3.13)

Proof. Suppose first thatM is LCP at Q. If f is affine, the f is convex andDuuf = 0
for every u, so Duu(Lf)(Q) ≥ 0 by the LCP condition. Since −f too is affine, this
yields Duu(Lf)(Q) = 0, and thus ∇2

x(Lf)(Q) = 0, Taking f = 1 and f = xi, we
obtain (3.13) and (3.12).
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Next, suppose that (3.13) and (3.12) hold and that f is convex with Duuf(Q) = 0.
Then, by Lemma 3.8, at Q,

Duu(Lf − L0f) = Duu

(∑
i

biDif + cf
)

=
∑

i

(
Duubi ·Dif + 2Dubi ·Duif + biDuuif

)
+Duuc · f + 2Duc ·Duf + cDuuf

=
∑

i

Duubi ·Dif +Duuc · f + 2Duc ·Duf

=
∑

i

Duu(bi + xic) ·Dif = 0

The lemma follows. �

Note that (3.12) and (3.13) hold in ΩT (or in another cylindrical domain) if and
only if, for each fixed t, c and bi + xic are affine, i.e.

c(x, t) = c0(t) + 〈c1(t), x〉
bi(x, t) = bi0(t) + 〈bi1(t), x〉 − xi〈c1(t), x〉,

for some c0(t), bi0(t) ∈ R and c1(t), bi1(t) ∈ Rn. In our case, the growth condition
c(x, t) = O(1) forces c1(t) = 0, and we obtain c constant and bi affine as asserted in
(iii) in Theorem 3.1.

To complete the proof of the theorem, it is thus sufficient to show that (ii) ⇐⇒ (iii)
for the principal part M0. In other words, we may and will in the remainder of this
section assume bi = c = 0.

We next narrow down the class of test functions in the definition.of LCP. We
begin by considering the function f defined by

f(x) = 〈x, y〉4, (3.14)

for a vector y ∈ Rn. Clearly, f is smooth and convex and

Duuf(x) = 12〈u, y〉2〈x, y〉2, (3.15)

so Duuf(0) = 0. Moreover,

Lf(x, t) =
n∑

i,j=1

aij(x, t)12yiyj〈x, y〉2, (3.16)

and thus

Duu(Lf)(0, 0) = 24
n∑

i,j=1

aij(0, 0)yiyj〈u, y〉2 ≥ 0, (3.17)

because L is assumed to be elliptic, see (A1).

Remark 3.10. We have assumed that L is elliptic in order to guarantee the solvability
of the initial value problem (2.2) with F (x, 0) = f(x). The calculation leading to
(3.17) shows that even if we took care of this problem in another way, we would at
least have the weak ellipticity condition

n∑
i,j=1

aij(x, t)yiyj ≥ 0, y ∈ Rn, (3.18)

as a necessary condition.
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We note that for n = 1, the condition LCP is automatically satisfied (for the
principal part). To see this let L = a(x, t)Dxx with a ≥ 0 and let f be as in Definition
2.2. It suffices to consider u = e1, so Du = Dx. The condition Duuf(x) = 0 thus
says that f ′′(x) = 0. Furthermore, by Lemma 3.8, f ′′′(x) = 0 and f ′′′′(x) ≥ 0 and
we have

Duu

(
Lf

)
(x, t) = Dxx(a(x, t)f ′′)(x, t)

= axx(x, t)f ′′(x) + 2ax(x, t)f ′′′(x) + a(x, t)f ′′′′(x)

= a(x, t)f ′′′′(x) ≥ 0,

i.e. the LCP condition holds.
Hovever, for n ≥ 2, LCP is no longer automatic. To study higher dimension we

let n ≥ 2 and for u ∈ Rn \ {0}, we define u⊥ as the (n − 1)-dimensional space
{v ∈ Rn : 〈u, v〉 = 0}. We introduce an arbitrary ON-basis in u⊥, and can thus
identify linear operators on u⊥ with (n− 1)× (n− 1) matrices.

Lemma 3.11. Let M = M0 with coefficients in C2,0. Then M is LCP at (0, t) if
and only if

Duu(Lg)(0, t) ≥ 0, (3.19)
for every u ∈ Rn \ {0}, where n ≥ 2 and every function g on Rn of the form

g(su+ v) = 〈Mv, v〉+ s〈Nv, v〉+ s2〈Pv, v〉, (3.20)

where s ∈ R, v ∈ u⊥ and M,N and P , are symmetric linear operators on u⊥

satisfying
〈Mw,w〉+ 〈Pv, v〉+ 2〈Nv,w〉 ≥ 0, (3.21)

for all v, w ∈ u⊥; equivalently, the (2n− 2)× (2n− 2) matrix(
M N
N P

)
is positive semidefinite.

Proof. If g is given by (3.20), its Hessian matrix at the point su + v, in the basis
given by u and the chosen basis for u⊥, has the block form

Hess(g) =
(

2〈Pv, v〉 2Nv + 4sPv
2Nv + 4sPv 2M + 2sN + 2s2P

)
. (3.22)

Suppose that (3.20) and (3.21) hold. Let

gε(su+ v) = g(su+ v) + εk(su+ v), (3.23)

where 0 < ε < 1 and k(su+ v) = |v|2 + s2|v|2, i.e. gε is given by (3.20) with M and
P replaced by M + εI and P + εI, respectively. By (3.22) we find, for r ∈ R and
w ∈ u⊥ and with ∗ denoting transpose,

(r, w) Hess(gε)(r, w)∗ = 2〈(P + εI)v, v〉r2 + 4r〈Nv,w〉
+ 8rs〈(P + εI)v, w〉+ 2〈(M + εI)w,w〉
+ 2s〈Nw,w〉+ 2s2〈(P + εI)w,w〉

= 2
(
〈P (rv), rv〉+ 〈Mw,w〉+ 2〈N(rv), w〉

)
+ 2ε(r2|v|2 + |w|2) +O(|s||rv||w|+ |s||w|2 + s2|w|2),

which by (3.21) is nonnegative for sufficiently small |s| and all r, v and w. Hence
Hess(gε) ≥ 0 in a neighborhood of 0, i.e. gε is convex in a neighborhood of 0.
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Moreover, at the point 0, for which s = v = 0, Duu(gε) = 2〈(P + ε)v, v〉 = 0. If M
is LCP at (0, t) we thus have

0 ≤ Duu(Lgε)(0, t) = Duu(Lg)(0, t) + εDuu(Lk)(0, t),
and letting ε→ 0, we obtain Duu(Lg)(0, t) ≥ 0.

Conversely, suppose that f ∈ C4 is convex in a neighborhood U of 0 and that
Duuf(0) = 0. The Taylor expansion of f to order 4 can be written

f(x) = p0 + p1(x) + p2(x) + p3(x) + p4(x) +R(x),

where pk, k = 0, 1, . . . , 4, is a homogeneous polynomial of order k and |∇jR| =
o(|x|4−j) as x → 0, for 0 ≤ j ≤ 4. By Lemma 3.8, several of the Taylor coefficients
vanish, and thus

p2(su+ v) = α2(v),

p3(su+ v) = sβ2(v) + β3(v),

p4(su+ v) = as4 + s3〈b, v〉+ s2γ2(v) + sγ3(v) + γ4(v),

for some a ∈ R, b ∈ u⊥ and homogeneous polynomials αk, βk and γk of degree k;
moreover, a = 1

24Duuuu ≥ 0. Suppose first that a > 0. Then, with b̃ = b/4a,

p4(su+ v) = a(s+ 〈b̃, v〉)4 + s2γ̃2(v) + sγ̃3(v) + γ̃4(v)
= ah(su+ v) + s2γ̃2(v) + sγ̃3(v) + γ̃4(v),

where h(x) = 〈x, u+b̃〉4 and γ̃k, k = 2, 3 and 4, have the same homogeneity properties
as γk and are defined so that the equation above holds. Consequently,

f(su+ v) = p0 + p1(su+ v) + g(su+ v) + β3(v) + ah(su+ v)

+ sγ̃3(v) + γ̃4(v) +R(su+ v), (3.24)

where g is as in (3.20) for some M,N,P . Letting r ∈ R and w ∈ u⊥, we have for
|su+ v| ≤ 1, say, using (3.22),

0 ≤ D2
ru+wf(su+ v) = D2

ru+wg(su+ v) + 12a(s+ 〈b̃, v〉)2(r + 〈b̃, w〉)2

+O(|v||w|2 + |r||v|2|w|) + o(|su+ v|2|ru+ w|2)
= 2r2〈Pv, v〉+ 4r〈Nv,w〉+ 2〈Mw,w〉

+ 12a(s+ 〈b̃, v〉)2)(r + 〈b̃, w〉)2 +O(|s||rv||w|)
+O(|s||w|2 + |v||w|2 + |r||v|2|w|) + o(|su+ v|2|ru+ w|2).

Take s = −〈b̃, v〉 and v = v/r, for some fixed vector v, and let r → ∞ and thus
v → 0 and s→ 0. In the limit we obtain,

2〈Pv, v〉+ 4〈Nv,w〉+ 2〈Mw,w〉 ≥ 0

and thus (3.21) holds for g. Assuming the condition in the lemma, we thus have
(3.19), i.e. Duu(Lg)(0, t) ≥ 0.
DuuL is a partial differential operator with continuous coefficients containing

derivatives of order 2, 3 and 4, but no term with more than two derivatives in
directions orthogonal to u. Hence at (0, t),

DuuL
(
p0 + p1(su+ v) + β3(v) + sγ̃3(v) + γ̃4(v) +R(su+ v)

)
= 0.

and consequently, by (3.24),

Duu(Lf)(0, t) = Duu(Lg)(0, t) + aDuu(Lh)(0, t) ≥ 0
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by (3.19) and (3.17). In the case a = 0, we obtain the same conclusion by considering
fε = f(x) + ε〈x, u〉4 and letting ε→ 0. �

Let A(x, t) denote the n × n matrix (aij(x, t)), and the corresponding linear op-
erator in Rn and let Au denote the operator QuAQu restricted to u⊥, where Qu is
the orthogonal projection of Rn onto u⊥. Now, let g be as in (3.20). If we rotate
the system so that u = e1, we have

Lg(x, t) =
n∑

i,j=2

2aij(x, t)(Mij + x1Nij + x2
1Pij)

+
n∑

i=2

2a1i(x, t)
n∑

j=2

(2Nijxj + 4x1Pijxj)

+ 2a11(x, t)
n∑

i,j=2

Pijxixj

and thus

Duu(Lg)(0, 0) = 2
n∑

i,j=2

(
Duuaij(0, 0)Mij + 2Duaij(0, 0)Nij + 2aij(0, 0)Pij

)
.

Lemma 3.11 thus implies the following, which completes the proof of Theorem 3.1.

Lemma 3.12. Let M = M0 with coefficients in C2,0, and let the spatial dimension
n ≥ 2. Then M is LCP at (x0, t) if and only if

〈M,DuuAu〉+ 2〈N,DuAu〉+ 2〈P,Au〉 ≥ 0 (3.25)

at (x0, t) for every unit vector u ∈ Rn and every symmetric linear operators M,N
and P in u⊥ such that (

M N
N P

)
≥ 0. (3.26)

�

4. An algebraic digression

The convexity inequality in Definition 2.5 and Lemma 3.12 is a pointwise algebraic
condition on the coefficients aij and their first two x-derivatives. As we will see in
the next section, this makes it easy to investigate some examples. Nevertheless, the
algebraic condition is somewhat implicit, and it would be nice to simplify it. We
have not been able to do so, in general, but in order to stimulate the reader to
further research, we describe the algebraic situation in some detail. (Note that n
below corresponds to n− 1 elsewhere.)

Let M(n) be the set of (real) n×n matrices, and let S(n) and P(n) be the subsets
of symmetric and positive semidefinite matrices, respectively, and let Q(2n) ⊆ S(2n)
be the set of 2n× 2n matrices of the form

(
A B
B C

)
with A,B,C ∈ S(n).

Let PQ(2n) = P(2n) ∩Q(2n) and let

PQ∗(2n) = {T ∈M(2n) : Tr(TU) ≥ 0 when U ∈ PQ(2n)}.
Thus the convexity inequality in Definition 2.5 says(

DuuAu DuAu

DuAu 2Au

)
∈ PQ∗(2(n− 1)), (4.1)
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so the problem is to find a simple characterization of PQ∗(2n), or at least PQ∗(2n)∩
Q(2n) (since the matrix in (4.1) evidently belongs to Q(2n)).

For n = 1, this is simple. Q(2) = S(2) ⊃ P(2) and thus PQ(2) = P(2), and it is
easy to see (and well known) that PQ∗(2) ∩Q(2) = P∗(2) ∩ S(2) = P(2).

For n ≥ 2, it is still true that P∗(2n) ∩ S(2n) = P(2n), and thus PQ∗(2n) ⊇
P∗(2n) ⊇ P(2n). However, the following example (for n = 2 but easily extended to
n > 2) shows that PQ∗(2n) ∩Q(2n) ) PQ(2n) when n ≥ 2.

We leave it as an open problem to find a simple characterization of PQ∗(2n) ∩
Q(2n), n ≥ 2. A related problem is to find the extremal rays in PQ(2n).

Example 4.1. Let a and b be real with a > 0 and define

A =


1 0 0 b
0 a b 0
0 b a 0
b 0 0 1

 ∈ Q(4). (4.2)

If
(

M N
N P

)
∈ PQ(4), then

(
M22 N12
N12 P11

)
and

(
M11 N12
N12 P22

)
∈ P(2). Conversely, if M11,

M22, P11, P22, N12 are given with these two matrices in P(2), we can take M12 =
N11 = N22 = P12 = 0 and obtain

(
M N
N P

)
∈ PQ(4). Hence A ∈ PQ∗(4) if and only if

M11 + aM22 + aP11 + P22 + 4bN12 ≥ 0 (4.3)

whenever M11,M22, P11, P22 ≥ 0, and N2
12 ≤ M22P11, N2

12 ≤ M11P22. Fixing N12,
the left side of (4.3) is minimized, under these restrictions, by M11 = P22 = M22 =
P11 = |N12|. Consequently,

A ∈ PQ∗(4) ⇐⇒ 2 + 2a± 4b ≥ 0 ⇐⇒ 2|b| ≤ 1 + a.

For example, b = 2 and a = 3 gives A ∈ PQ∗(4) ∩Q(4), but A /∈ P(4).

5. Examples

We use the results in Section 3 to give explicit characterizations of the con-
vexity preserving differential operators in some cases. More precisely, we assume
that the coefficients are in C2,0 and characterize the operators that are LCP (using
Lemma 3.12). Assuming the slightly stronger regularity hypotheses in Theorem 3.1,
this characterizes the operators that are convexity preserving.

Since the condition LCP is expressed only in the spatial variables, see Remark 2.3,
it is enough to study equations without explicit time dependence; we could let the
coefficients depend on t too without changing anything else in the examples. More-
over, we will mainly consider equations without lower order terms, since equations
with such terms then have a simple characterization by Lemma 3.9 (locally) and
Theorem 3.1 (globally).

Example 5.1. An operator in divergence form

∂F

∂t
=

n∑
i,j=1

∂

∂xi

(
aij(x)

∂F

∂xj

)
is LCP if and only if (aij) satisfies the convexity inequality and

∑n
i=1

∂
∂xi
aij(x) is

affine for each j = 1, . . . , n.
If n = 1, this holds only if a is a quadratic polynomial in x.
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Recall first that if n = 1, the LCP condition holds for any operator a(x)Dxx.
For n = 2, Au is 1-dimensional, i.e. real valued, and the discussion in Section 4

shows that the convexity inequality holds if and only if(
DuuAu DuAu

DuAu 2Au

)
≥ 0, (5.1)

or, equivalently, since Au > 0 by the parabolicity,

2AuDuuAu ≥ (DuAu)2. (5.2)

Moreover, if u = (u1, u2), then u⊥ is spanned by (u2,−u1), and the restriction of
QuAQu to u⊥ equals multiplication by (u2,−u1)A(u2,−u1)′. Consequently, we have
a simple characterization.

Corollary 5.2. Let n = 2. The parabolic equation DtF = a11D11F + 2a12D12F +
a22D22F with coefficients in C2,0 is LCP if and only if, for every (unit) vector
u ∈ R2, (5.2) or, equivalently,

Duu(A1/2
u ) ≥ 0 (5.3)

holds, where Au = a11u
2
2 − 2a12u1u2 + a22u

2
1. �

Example 5.3. Consider an equation of the form

DtF = g2(x)DxxF + h2(y)DyyF

where F = F (x, y, t) and g and h are twice continuously differentiable and non-zero.
In other words, the matrix A is given, in the xy-coordinates by

A =
(
g2(x) 0

0 h2(y)

)
.

Let a direction u in (5.3) be given in the same coordinates by u = (a, b). Condition
(5.3) is thus given by

(a2∂2
x + 2ab∂x∂y + b2∂2

y)
√
b2g2(x) + a2h2(y) ≥ 0. (5.4)

By direct computation we see that the left-hand-side of (5.4) equals

(b2g2(x) + a2h2(x))−3/2 ·
((
a2bg′(x)h(y)− ab2g(x)h′(y)

)2

+ a2b2
(
b2g2(x) + a2h2(y)

)(
g(x)g′′(x) + h(y)h′′(y)

))
When ab 6= 0, this is equivalent to(

ag′(x)h(y) − bg(x)h′(y)
)2 +

(
b2g2(x) + a2h2(y)

)(
g(x)g′′(x) + h(y)h′′(y)

)
≥ 0,

which by continuity must hold for ab = 0 too. Since we always may choose a and b
such that the first parenthesis vanishes, the operator is LCP if and only if

g(x)g′′(x) + h(y)h′′(y) ≥ 0. (5.5)

Thus, for example, the operator x ∂2

∂x2 + y ∂2

∂y2 defined on the first quadrant is not

LCP, but the operator x2 ∂2

∂x2 + y2 ∂2

∂y2 is.

For n > 2, on the other hand, the condition (3.25) does not reduce to (5.1), see
Section 4. Hence we can only say that (5.1) is sufficient for LCP (when there are no
lower order terms), and we have to use Definition 2.5.
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Example 5.4. In this example we consider an equation of the form

DtF = g2(x)∆F, (5.6)

where ∆ is the Laplacian on Rn, n ≥ 2 and x = (x1, . . . , xn). We assume that g > 0
and g ∈ C2. Using the notation of Lemma 3.12 we see that in this case A = g2(x)I,
where I is the identity matrix on Rn. Thus Au = g2Iu⊥ , with Iu⊥ denoting the
identity matrix on u⊥. Thus (3.25) reduces to

(TrM)Duu(g2) + 2(TrN)Du(g2) + 2(TrP )g2 ≥ 0. (5.7)

If M,N,P satisfy (3.26), then, for each i, the submatrix
(

Mii Nii
Nii Pii

)
≥ 0 and thus

N2
ii ≤MiiPii. Consequently, by the Cauchy–Schwarz inequality,

|TrN | ≤
∑

i

|Nii| ≤
∑

i

|Mii|1/2|Pii|1/2 ≤ (TrM)(TrP ).

Conversely, given any real numbers µ, ν and π with µ, π ≥ 0 and ν2 ≤ µπ, let M , N
and P be suitable multiples of the identity such that TrM = µ, TrN = ν, TrP = π.
It then follows from the Cauchy–Schwarz inequality that (3.26) holds.

Consequently, (5.7) holds for all M,N,P satisfying (3.26) if and only if

µDuu(g2) + 2νDu(g2) + 2πg2 ≥ 0

for all µ, ν, π with µ, π ≥ 0 and ν2 ≤ µπ. This is equivalent to

2g2Duu(g2) ≥
(
Du(g2)

)2
,

which by simple calculations can be written

gDuug ≥ 0. (5.8)

(The last steps are the same as the ones leading to (5.2) and (5.3) for n = 2.)
Consequently, when n ≥ 2, the equation (5.6) is LCP if and only if g is convex.

The stochastic representation of a solution to (5.6) is given by

F (x, t) = EF (X(t), 0),

where X is a vector valued stochastic process satisfying X(0) = x and

dX =
√

2g(X)dW,

where W is a Wiener process. From this point of view it is thus rather natural to
have convexity conditions on g rather than g2.

6. Non-homogeneous equations

In this section we show that the case of a non-homogeneous equation (2.3) easily
is reduced to the homogeneous case treated above.

Theorem 6.1. Assume (A1), (B2), (C1) and let h ∈ Cpol(ΩT ) be locally Hölder(α)
in ΩT . Then (M, h) is convexity preserving on Cp(ΩT ) if and only if M is convexity
preserving on Cp(ΩT ) and h is convex (for each t ∈ (0, T ]).

Proof. We use the formula (and notation) in Theorem A.15.
IfM is convexity preserving and h(x, τ) is convex for every τ , then, for each convex

f ∈ Cpol(Rn), F0(x, t) and Hτ (x, t) are convex, so F (x, t) is convex by (A.11). Thus,
translating to domains Ω(τ,T ], (M, h) is convexity preserving.

Conversely, assume that (M, h) is convexity preserving. Let f ∈ Cpol(Rn) be
convex and let r > 0. The solution with boundary values rf is by (A.11) rF0+

∫ t
0 Hτ .
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By assumption this is convex. We divide by r and let r → ∞; thus F0 is convex.
Consequently, M is convexity preserving.

Now consider (2.3) with 0 < τ < T and f = 0. By Theorem A.15, the solution is

F (x, t) =
∫ t

τ
Hs(x, t) ds.

It follows from Theorem A.9 and (C1) that for given x, τ > 0 and ε > 0, there exists
η > 0 such that for τ ≤ s ≤ t < τ + η,

|Hs(x, t)− h(x, τ)| ≤ |Hs(x, t)− h(x, s)|+ |h(x, s)− h(x, τ)| < 3ε.

Consequently, (t− τ)−1F (x, t) → h(x, τ) as t ↓ τ , and h(x, τ) is convex. �

7. Bounded coefficients

It is common in studies of parabolic partial differential equations to assume that
the coefficients are bounded. The following, perhaps surprising, result shows that
when n ≥ 2, the only such operators that are LCP are the operators with coefficients
depending on t only. (Recall that this does not hold for n = 1, when a can be any
bounded sufficiently smooth function.)

Theorem 7.1. Assume that n ≥ 2 and that M has coefficients in C2,0 and satisfies
(A1) and (B3). Then M is LCP if and only if aij and c depend on t only, and
bi(x, t) = bi0(t) + 〈bi1(t), x〉 for some functions bi0(t) ∈ R and bi1(t) ∈ Rn.

In particular, if M has bounded coefficients, it is LCP if and only if the coefficients
do not depend on x.

Proof. The claims for bi and c follow from Lemma 3.9 and the assumed bounds.
For a, we for convenience assume that n = 2. The case n > 2 is similar, or follows

by considering two-dimensional subspaces. Moreover, we fix t.
Using the function f(x1, x2) = x2

1 in the definition of LCP, we conclude that a11

is convex as a function of x2. However, by assumption a11 is bounded. Thus a11 can
only depend on x1. Similarly, a22 can only depend on x2. Now, consider instead the
function f(x1, x2) = (sx1 − x2)2 for some fixed s. We compute

2∑
i,j=1

aijDijf = 2(s2a11 − 2sa12 + a22) (7.1)

On lines of the form x2 = x2,0+sx1 where x2,0 is a constant, f is constant. Thus using
again the LCP condition, we conclude that the expression in equation (7.1) is convex
along such lines. However, this expression is, by assumption on the coefficients aij ,
bounded and hence constant along these lines. Recalling that a11 only depends on
x1 and a22 only depends on x2 = x2,0 + sx1 whereas a12 = a12(x1, x2,0 + sx1), we
take the partial derivative of the right hand side of (7.1) with respect to x1 arriving
at

s2a′11(x1) + sa′22(x2)− 2s
∂a12

∂x1
(x1, x2)− 2s2

∂a12

∂x2
(x1, x2) = 0. (7.2)

Now, this holds for any s. Identifying the coefficients we thus conclude that

a′11(x1) = 2
∂a12

∂x2
(x1, x2), (7.3)

a′22(x2) = 2
∂a12

∂x1
(x1, x2). (7.4)
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From equation (7.3) we conclude that a12 = f1(x1) + x2f2(x1) for some functions
f1 and f2. Inserting this into equation (7.4) we conclude that f1 and f2 are affine.
However, since a12 is bounded we deduce that f1 is a constant and that f2 vanishes,
so a12 is a constant. Finally, (7.3) and (7.4) yield that a11 and a22 are constants.

The converse is easy, see Remark 2.4. �

If we require the entries of the matrix (aij) to be bounded, or more generally that
(B3) holds, we can enlarge the space of functions we allow as initial conditions. We
thus define

Cexp(ΩT ) = {F ∈ C(ΩT ) : |F (x, t)| = exp(o(|x|2)), (x, t) ∈ ΩT }.

We then have the following result, showing that only very special operators of the
studied class preserve convexity when the spatial dimension n is at least two. (The
case n = 1 is, again, different.)

Theorem 7.2. Assume that n ≥ 2 and that the operator M is such that (A1), (B3),
(C1) hold and aij , bi, c ∈ C2,0

α . Then the following are equivalent.

(i) M is convexity preserving in Cexp(ΩT ).
(ii) M is LCP in ΩT .
(iii) for each fixed t, a and c are constant and each bi is an affine function of x.

Proof. (i) =⇒ (ii). Let FC2,1 ∩Cexp(ΩT ) solve MF = 0 with F (x, 0) = f(x), where
f ∈ C∞(Rn) ∩ Cexp is convex. By Theorem A.19, F ∈ C4,1

α (ΩT ) and the proof of
Lemma 3.3 applies.

(ii) =⇒ (iii). By Theorem 7.1.
(iii) =⇒ (i). We could argue as in Lemma 3.4 and so on, but since the operators

are so special, we use an alternative.
If the coefficients are functions of t only, there exists a fundamental solution

Γ(x, t, ξ, τ) = Γ(x − ξ, t, τ) that depends only on x − ξ [4, Theorems 9.1], and thus
the Cauchy problem (2.2) with h = 0 and f ∈ Cexp(Rn), has a solution that, for
fixed t, is a convolution on f with a certain kernel, see [4, 1.12].

By the maximum principle, Theorem A.5, the solution is non-negative when f is,
so this kernel is non-negative. Consequently, the solution is convex whenever f is.

The case when each bi is affine can be reduced to the previous case by a change
of coordinates: if G(x, t) = F (V (t)x, t) for a suitable matrix valued function V (t),
then M̃G = 0 for a parabolic operator M̃ with coefficients depending on t only.
Hence G is convex, and thus F is convex. We omit the details. �

8. The case of Hölder coefficients

In Theorem 3.1 we assumed the smoothness condition (3.1) for the coefficients.
Assuming instead only Hölder continuity, (C1), we can give a partial result.

Theorem 8.1. Assume that M is such that (A1), (B2) and (C1) hold. If M
satisfies the convexity inequality, see Definition 2.5, in ΩT , and, for fixed t, each
bi is an affine function of x and c is constant, then M is convexity preserving on
Cpol(ΩT ).

Proof. We regularize the coefficients of M. Thus, let ϕ ∈ C∞0 be nonnegative with∫
ϕ = 1, and let M̃ be the parabolic differential operator with coefficients ãij =

ϕ ∗ aij , b̃i = bi, c̃ = c. Then M̃ satisfies the convexity inequality, cf. Remark 2.6, so
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M̃ is convexity preserving by Theorem 3.1. The result follows from Lemma 3.5 by
taking a sequence ϕm with supports shrinking to {0}. �

We conjecture that the converse holds too, but we have been unable to show it.
(The major technical problem is to show that if M is convexity preserving, then so
are suitable regularizations of it. For smooth coefficients, this follows by Theorem 3.1
and Remark 2.6.)

9. Monotonicity of solutions

For one spatial dimension, it was shown in [7] that a certain monotonicity prop-
erty follow from the convexity preserving. We give here a corresponding result for
arbitrary dimensions.

Theorem 9.1. Assume that the first and zeroth order terms of the operators M and
M̃ are identical, and that their respective second order terms satisfy, using natural
notation,

(aij) ≥ (ãij) (9.1)
as quadratic forms. Assume also in that these operators are such that the conditions
(A1), (B2) and (C1) hold for both operators and that at least one of the operators
is convexity preserving on Cpol(ΩT ). Now, consider the Cauchy problem (2.2) for
these two operators where the corresponding non-homogeneous terms h and h̃ are
in Cpol(ΩT ), locally Hölder(α) in ΩT , and satisfy the inequality h ≥ h̃. Let the
corresponding initial conditions f and f̃ be convex functions in Cpol(Rn) satisfying
f(x) ≥ f̃(x). Let F (x, t) and F̃ (x, t) be the corresponding solutions to (2.2) in
Cpol(ΩT ). Then

F (x, t) ≥ F̃ (x, t) (9.2)
for all (x, t) in ΩT .

Proof. Let m be an even integer so large that |F (x, t)| + |F̃ (x, t)| = O(|x|m + 1).
Define

Fε(x, t) = F (x, t) + εeCtg(x), (9.3)
where g(x) = 1 + |x|m+2. We can choose C so large that

Cg(x) > Lg(x) + 1, (9.4)

due to the assumed growth rate of the coefficients of L. Let E = {(x, t) ∈ Rn×[0, T ] :
Fε(x, t) < F̃ (x, t)} and suppose that E 6= ∅. By the construction of g, for some
ρ <∞, E ⊆ B(0, ρ)× [0, T ]. Thus E is bounded and E is compact. By continuity,
Fε ≤ F̃ in E. Let

t0 = inf{t ≥ 0 : (x, t) ∈ E for some x ∈ Rn}.
This infimum is attained and thus (x0, t0) ∈ E for some x0 ∈ Rn.

For t = 0 we have Fε(x, 0) = f(x) + εg(x) > f̃(x) = F̃ (x, 0). Hence (x, 0) /∈ E
and thus t0 > 0. Since (x, t) /∈ E for 0 < t < t0, by continuity we have Fε(x, t0) ≥
F̃ (x, t0). Hence Fε(x0, t0) = F̃ (x0, t0), and x0 has to be a local minimum point for
Fε(·, t0)− F̃ (·, t0), so the first order derivatives agree at this point and the Hessian
matrix of Fε − F̃ is positive semi-definite.

Since (x, t) /∈ E for 0 < t < t0, we further must have

Dt(Fε − F̃ )(x0, t0) ≤ 0. (9.5)
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On the other hand, since F and F̃ solve (2.2) for the operators M and M̃, we have
at (x0, t0), using (9.4) and h ≥ h̃,

Dt(Fε − F̃ ) =
n∑

i,j=1

(
aijDij(Fε)− ãijDij(F̃ )

)
+ εCeCtg − εeCtLg + h− h̃

≥
n∑

i,j=1

(aij − ãij)Dij(Fε) +
n∑

i,j=1

ãijDij(Fε − F̃ ) + εeCt.

(9.6)

Let us first assume that the operator M is convexity preserving. Since f and g
are convex, then F and Fε are convex. Hence the Hessian matrix (DijFε)ij ≥ 0.
By the assumption (9.1), also (aij − ãij)ij ≥ 0, and thus the first sum in the last
line is non-negative. The same is true for the second sum because (ãij)ij ≥ 0 by
(A1) and, as shown above,

(
Dij(Fε − F̃ )

)
ij
≥ 0 at (x0, t0). Consequently, Dt(Fε −

F̃ )(x0, t0) ≥ εeCt0 > 0 which contradicts (9.5). Consequently, E = ∅, and thus
Fε ≥ F̃ everywhere. Letting ε→ 0, we find that F ≥ F̃ .

If instead we assume that M̃ is convexity preserving we change the second line of
(9.6) to

∑n
i,j=1(aij−ãij)Dij(F̃ )+

∑n
i,j=1 aijDij(Fε−F̃ )+εeCt and argue similarly. �

10. Bounded domains

In this section we give some comments on the case of a bounded domain. We
study a boundary value problem for M in the following form: Let B be a bounded
convex domain in Rn and let D = B × (0, T ].
Given a continuous function f on the closure B of B with f = 0 on the boundary
∂B, find a function F ∈ C(D) ∩ C2,1(D) such that

MF (x, t) = 0, (x, t) ∈ D,
F (x, 0) = f(x), x ∈ D,
F (x, t) = 0, x ∈ ∂B, 0 ≤ t ≤ T.

(10.1)

We assume that the coeffients of M are defined and continuous on D and that the
parabolicity condition (A1) holds on D as well as condition (C1). Since we assume
that D is bounded we thus in fact have uniform parabolicity and uniform Hölder
estimates. We now define preservation of convexity for these problems in complete
analogy with Definition 2.1.

In problem (10.1) we only consider convex domains B and zero boundary condi-
tions. The motivation for this restriction is as follows. Let B be a bounded domain,
not necessarily convex, in Rn and and consider the problem above, with for simplic-
ity all lower order terms of M vanishing, but with a more general time-independent
boundary condition. Let us assume that convexity is preserved for all t. Then,
with a denoting the matrix (aij), DtF = LF = Tr

(
a∇2

xF
)
≥ 0 and thus F (x, t)

is increasing in time, but on the other hand F is bounded by the maximum of the
prescribed values on ∂B. Thus we can form the function

ϕ(x) = sup
t
F (x, t) = lim

t→∞
F (x, t).

Then ϕ is convex since it is the supremum of convex functions. Hovever, ϕ also
solves Lϕ = 0, being the steady-state solution of our equation. The only possibility
is then that ∇2

xϕ = 0 so ϕ is affine. Thus the boundary conditions have to be affine.
Since the function f assuming these boundary values is convex, the domain B has
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to be convex. Further, since the boundary conditions are affine we can subtract
the corresponding affine function and instead assume that we have zero boundary
values. Thus convex domains and zero boundary conditions is a natural class to
consider. The next example shows that even for these problems, convexity is often
not preserved.

Example 10.1. Let B be a ball in Euclidean space and the operator L = ∆ the
standard Laplacian where the spatial dimension n is at least two. We assume that
the initial condition f is a given convex function with vanishing boundary values. In
this particular example, convexity is lost for any initial condition. To see this let λi

and ϕi be the eigenvalues and eigenfunctions of −∆ on B (with Dirichlet condition).
Then the solution F (x, t) to the heat equation can be written

F (x, t) =
∞∑
i=1

cie
−λitϕi(x),

where the constants ci are chosen so that F (x, 0) = f(x). We then note that
eλ1tF (x, t) converges uniformly to c1ϕ1(x) as t tends to infinity. But the first eigen-
function of the Laplacian for a ball in Rn, n ≥ 2, is not convex (or concave if one
makes the standard choice with a positive first eigenfunction). Indeed, for the unit
ball, ϕ1(x) = ψ(|x|), where ψ′′(r) + n−1

r ψ′(r) + λ1ψ(r) = 0. ψ is smooth also at
r = 1, and there ψ(1) = 0 and ψ′(1) > 0; hence ψ′′(1) = (1 − n)ψ′(1) < 0, so ϕ is
not convex close to the boundary.

Thus the convexity of f is not preserved for all t, regardless of the choice of the
convex initial condition.

In contrast to the example above we have a positive result in the case of one
spatial dimension. In this case the operator L reduces to

LF = a(x, t)Fxx + b(x, t)Fx + c(x, t)F.

We study problem (10.1) for M = ∂
∂t − L on a bounded interval on the real axis.

For notational convenience, we let the interval be [0, 1]. In this case we need also
conditions at the boundary.

Theorem 10.2. Consider problem (10.1) with n = 1 and B = (0, 1). Assume
that the operator L has continuous coefficients that are Hölder(α) on [0, 1]× [0, T ].
Assume that

(i) The function b satisfies b(0, t) ≥ 0 and b(1, t) ≤ 0.
(ii) b ∈ C1,0(D) and 2c+ bx is a function of t only.
(iii) As a function of x, c is concave for each fixed t.

Then M is convexity preserving in the set of continuous functions on [0, 1]× [0, T ]
that vanish on {0} × [0, T ] and {1} × [0, T ].

Proof. We begin by reducing to the case of smooth initial conditions f with the
property that Lf(x) vanishes at 0 and 1. (Smooth means infinitely differentiable in
this proof.) Let f be convex on [0, 1]. We first replace the graph of f close to 0 by
a secant connecting the origin with the graph of f . Then we perform the analogous
construction at 1. The thus obtained function can be approximated arbitrarily well
with a smooth convex function f̃ which still is affine near the endpoints and vanishes
there. To f̃ we then add a convex function, vanishing at the endpoints, having slope
−1 at 0 and 1 at 1 but having second derivates at the endpoints chosen such that
the resulting sum ϕ has the property that Lϕ(x) vanishes at 0 and 1. (This uses
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f̃ ′(0) ≤ 0, f̃ ′(1) ≥ 0 and (i).) This construction can be made so that the supremum
norm of f − ϕ is bounded by any given ε > 0. Let Φ be the solution to problem
(10.1) with initial value given by ϕ. By the maximum principle Theorem A.3

|F (x, t)− Φ(x, t)| ≤ εeµt

where µ equals supremum norm of c. Since ε is arbitrary, we thus see that if every
such Φ is convex, then F is convex too.

For initial conditions ϕ with Lϕ(x) vanishing at the boundary at 0 and 1, problem
(10.1) is uniquely solvable and F ∈ C2,1

α (D), see [4, Theorem 3.7]. Moreover, [4,
Theorem 3.6] shows that the norm of F in C2,1

α (D) can be bounded by a constant
depending only on ϕ, α, the norms of a, b and c in Cα(D), and the parabolicity
constant. We can then argue as in the proof of Theorem A.12 (with the simplification
that no special argument is required to guarantee the boundary conditions) to show
that the solution depends continuously on the coefficients a, b, c. Thus, if we can show
that convexity is preserved in the case of smooth coefficents and initial condition f
with Lf vanishing at the endpoints, the general case is obtained by taking uniform
limits of such solutions, and are thus also convex.

Let therefore F (x, t) ∈ C2,1
α (D) be a solution to equation (10.1) where the coeffi-

cients and f are smooth, f is convex, and f(0) = f(1) = Lf(0) = Lf(1) = 0. Since
then f ≤ 0, the maximum principle Theorem A.2 yields F ≤ 0.

The function Fxx is continuous on D and smooth in D, see [4, Theorem 3.11,
Corollary 2] or Theorem A.11. For t = 0, Fxx = fxx ≥ 0. Further, for 0 ≤ t ≤ T ,
F (0, t) = 0 and since F (x, t) ≤ 0 for all x, Fx(0, t) ≤ 0. Since LF (0, t) = DtF (0, t) =
0, assumption (i) yields a(0, t)Fxx(0, t) = −b(0, t)Fx(0, t) ≥ 0. Thus Fxx(0, t) ≥ 0.
Similarly Fxx(1, t) ≥ 0. Moreover,

DtFxx = DxxDtF = Dxx(LF )
= axxFxx + 2axFxxx + aFxxxx + bxxFx + 2bxFxx + bFxxx

+ cxxF + 2cxFx + cFxx

= aFxxxx + (2ax + b)Fxxx + (axx + 2bx + c)Fxx + cxxF,

where we used assumption (ii). Consequently, Fxx satisfies the parabolic differential
equation (

Dt − aDxx − (2ax + b)Dxx − (axx + 2bx + c)
)
Fxx = cxxF.

We apply the maximum principle Theorem A.2 to this equation. Since Fxx ≥ 0 on
∂0D = B × {0} ∪ {0, 1} × [0, T ] as shown above, and cxxF ≥ 0 by (iii) and F ≤ 0,
this shows Fxx ≥ 0. Thus F is convex in x for each t and the proof is complete. �

Remark 10.3. We note that the conditions of Theorem 10.2 are necessary too, at
least assuming sufficient smoothness. If convexity is preserved and F ∈ C2,1(D),
then F = 0 and LF = DtF = 0 on {0, 1} × [0, T ] and we see that condition (i)
has to hold since F is convex with negative x-derivate at 0 and positive x-derivative
at 1 (unless F vanishes identically). Furthermore, formulating the LCP condition
for this operator, which amounts to the same calculation as we did before Lemma
3.11 with added lower order terms (and also, for several variables, in the proof of
Lemma 3.9), we see that the additional terms are f ′(x)(bxx + 2cx) + cxxf , using
the notation of that calculation. Since f is non-positive and f ′(x) can be chosen
arbitrarily, we arrive at conditions (ii) and (iii) of the statement of the theorem.
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11. Nonlinear equations

It is challenging to try to extend our results to a suitable class of non-linear
operators. The following theorem shows that a large class of quasilinear operators
automatically are LCP. We therefore conjecture that, under suitable boundedness
and regularity conditions, they are convexity preserving too. However, our proof for
the linear case that LCP implies convexity preserving does not apply. (At least not
without modification; there are several technical problems.) Hence we leave this as
an open problem.

Theorem 11.1. Consider the operator M = ∂
∂t − L where L is a a quasilinear

elliptic operator of the form

LF =
n∑

i,j=1

aij(∇F, t)
∂2F

∂xi∂xj
+G(∇F, t) +H(F, t),

where we assume that the functions aij, G and H are twice differentiable and the
matrix aij is positive definite. If further H is a convex function of the first variable,
then M is LCP.

Proof. Take a smooth convex function f satisfying Duuf(x0) = 0 at some point
x0 and evaluate Duu(Lf) at this point. Lemma 3.9 implies that Duaij(∇f, t) and
Duuaij(∇f, t) vanish at x0, and similarly for G. Hence, at x0 and fixing t,

Duu(Lf) =
n∑

i,j=1

aij(∇f, t)Dijuuf +H ′(f, t)Duuf +H ′′(f, t)(Duf)2.

Now, again by Lemma 3.9, the matrix
(
Dijuuf(x0)

)
ij
≥ 0. Since further (aij)ij ≥ 0,

and Duuf = 0 and H ′′ ≥ 0, it follows that Duu(Lf) ≥ 0. �

Example 11.2. In [9, Proposition 2.1] the equation for the mean curvature flow is
given as

DtF =
n∑

i,j=1

gijDijF,

where (gij) = (gij)−1 and gij = δij +DiFDjF . Theorem 11.1 says that this equation
is LCP. It is therefore natural to conjecture that it is convexity preserving, i.e. if
we consider this flow on Rn and the initial surface is convex, then each surface is
convex.

Example 11.3. Various models in physics, chemistry and biology lead to a non-
linear parabolic equation of the form

Ft = δ4F +H(F )

where for instance in biology H can be related to the rate of reproduction of a certain
species. The theorem above says that this equation is LCP, and thus presumably
preserves convexity, if H is convex.

12. Higher order operators

Finally we note that the problem of preservation of convexity is not natural to
pose for parabolic operators of an order greater than two. To see this consider
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the mth power ∆m of the Laplace operator. We note that the function f(x) =
x2m

1 − x2m+2
1 + cx2m+4

1 is convex for a suitably large constant c, and that

D11(∆mf)(0) = −(2n+ 2)! (12.1)

For n ≥ 2, D11f(0) = 0 and thus for those n equation (12.1) shows that the LCP
condition is not satisfied. Moreover, the Cauchy problem is solved by F (x, t) =
f(x) + t∆mf(x) + 1

2 t
2∆2mf(x), which is not convex at x = 0 for any t > 0 be-

cause D11F (0, t) = tD11(∆mf)(0) = −t(2n + 2)! by (12.1). Hence convexity is not
preserved even for these simple operators.

Appendix A. Some general facts for partial differential equations

We consider a parabolic differential operator

M =
∂

∂t
− L

where

LF =
n∑

i,j=1

aij(x, t)
∂2F

∂xi∂xj
+

n∑
i=1

bi(x, t)
∂F

∂xi
+ c(x, t)F. (A.1)

We assume that all coefficients aij , bi, c are real-valued functions defined in the
domain ΩT = Rn × (0, T ] for some given (finite) T > 0. We will use the notations
Dt = ∂/∂t, Di = ∂/∂xi; we let Dk

x, where k is a multiindex, denote multiple x-
derivatives.

Our minimal assumptions on the operator are the following, which we always
assume.

(A0) M is weakly parabolic (L is weakly elliptic) everywhere, i.e. the matrix(
aij(x, t)

)
ij

is positive semidefinite for every (x, t) ∈ ΩT . Explicitly,∑n
i,j=1 aij(x, t)uiuj ≥ 0 for every (x, t) ∈ ΩT and every u ∈ Rn.

(C0) The coefficients aij , bi, c are continuous functions in ΩT .
We will later require both stronger regularity conditions and boundedness condi-

tions; we list below various conditions that will be used in different combinations.
We first need some definitions. We assume that 0 < α < 1. We consider only

real-valued functions.
• For any metric (or topological) space E, C(E) is the space of all continuous

functions on E. If E is compact, this is a Banach space with the norm

‖f‖C(E) = sup
x∈E

|f(x)|.

• A function f on a metric space E is (uniformly) Hölder(α) if |f(x)−f(y)| ≤
Cd(x, y)α for some constant C and all x, y ∈ E. We define

‖f‖Hα(E) = sup
x∈E

|f(x)|+ sup
x,y∈E

|f(x)− f(y)|
d(x, y)α

and observe that ‖f‖Hα(E) <∞ if and only if f is bounded and uniformly
Hölder(α) on E. (If E is bounded, this holds if and only if f is uniformly
Hölder(α).)

• We say that f is locally Hölder(α) on E if it is Hölder(α) on every compact
subset of E. We let Cα(E) denote the space of all locally Hölder(α) functions
on E. If E is compact, this equals the space of all uniformly Hölder(α)
functions; in this case we let ‖f‖Cα(E) = ‖f‖Hα(E).



PRESERVATION OF CONVEXITY 25

We will only consider sets E ⊆ Rn, with usual Euclidean metric, or E ⊆ Rn+1,
with the parabolic metric d

(
(x, t), (y, s)

)
= (|x− y|2 + |t− s|)1/2. In these cases we

further define the following spaces, for p, q ∈ {0, 1, 2, . . . } and 0 < α < 1.

• Cpol(E), where E ⊆ Rn or E ⊆ Rn+1, is the space of f ∈ C(E) of at most
polynomial growth (in x). Thus (for E ⊆ Rn+1),
Cpol(E) =

⋃
p>0{f ∈ C(E) : |f(x, t)| = O(|x|p + 1), x ∈ E}.

• CExp(E), where E ⊆ Rn or E ⊆ Rn+1, is the space of f ∈ C(E) that are
bounded by exp

(
O(|x|2)

)
. Thus (for E ⊆ Rn+1),

CExp(E) =
⋃

β>0{f ∈ C(E) : |f(x, t)| = O(eβ|x|
2
), x ∈ E}.

• Cexp(E), where E ⊆ Rn or E ⊆ Rn+1, is the space of f ∈ C(E) that are
bounded by exp

(
o(|x|2)

)
. Thus (for E ⊆ Rn+1),

Cexp(E) =
⋂

β>0{f ∈ C(E) : |f(x, t)| = O(eβ|x|
2
), x ∈ E}.

• Cp(E), where E ⊆ Rn, is the space of f ∈ C(E) such that all derivatives
Dkf with 0 ≤ |k| ≤ p exist in the interior E◦ and have extensions to
continuous functions on E.

• Cp
α(E), where E ⊆ Rn, is the space of f ∈ Cp(E) such that Dkf ∈ Cα(E)

when 0 ≤ |k| ≤ p.
• Cp

α,b(E), where E ⊆ Rn, is the space of all f ∈ Cp
α(E) such that Dkf are

bounded and uniformly Hölder(α) for 0 ≤ |k| ≤ p.
• Cp

pol(E), where E ⊆ Rn, is the space of all f ∈ Cp(E) such that Dkf ∈
Cpol(E) for 0 ≤ |k| ≤ p.

• Cp,q(E)where E ⊆ Rn+1, is the space of all functions f in C(E) such that
all derivatives Dk

xD
l
tf with |k| + 2l ≤ p and 0 ≤ l ≤ q exist in the interior

E◦ and have extensions to continuous functions on E.
• Cp,q

α (E), where E ⊆ Rn+1, is the space of all f ∈ Cp,q(E) such thatDk
xD

l
tf ∈

Cα(E) for |k|+ 2l ≤ p and 0 ≤ l ≤ q.
• Cp,q

α,b(E), where E ⊆ Rn+1, is the space of all f ∈ Cp,q
α (E) such that Dk

xD
l
tf

are bounded and uniformly Hölder(α) for |k|+ 2l ≤ p and 0 ≤ l ≤ q.
• Cp,q

pol(E), where E ⊆ Rn+1, is the space of all f ∈ Cp,q(E) such thatDk
xD

l
tf ∈

Cpol(E) for |k|+ 2l ≤ p and 0 ≤ l ≤ q.

We give Cp,q(E) the topology of uniform convergence on compact sets of the function
together with the derivatives in the definition. In other words, the topology is defined
by the seminorms supK |Dk

xD
l
tF | where |k| + l ≤ p, l ≤ q, and K ranges over the

compact subsets of E. It is easy to see Cp,q(E) is metrizable and complete, and
thus a Fréchet space. (Argue as in [8, Example 10.I].) When E is compact, Cp,q

α is
a Banach space with the norm

‖f‖Cp,q
α (E) =

∑
|k|+l≤p, l≤q

‖Dk
xD

l
t‖Hα(E)

The other spaces defined above may be given topologies defined by similar seminorms
or norms (and inductive limits for the polynomially or exponentially bounded cases),
but we do not need them.

Our conditions are the following. In the sequel, α is a fixed number with 0 < α < 1.

(A1) M is parabolic (L is elliptic) everywhere, i.e. the matrix
(
aij(x, t)

)
ij

is
positive definite for every (x, t) ∈ ΩT . Explicitly,

∑n
i,j=1 aij(x, t)ξiξj > 0 for

every (x, t) ∈ ΩT and every ξ ∈ Rn \ {0}.
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(A2) M is uniformly parabolic (L is uniformly elliptic) in each bounded subset
of ΩT , i.e. the matrix

(
aij(x, t)

)
ij

is uniformly positive definite for |x| ≤ R

and 0 < t ≤ T for each R.
(A3) M is uniformly parabolic (L is uniformly elliptic) in ΩT , i.e. the matrix(

aij(x, t)
)
ij

is uniformly positive definite for (x, t) ∈ ΩT . Explicitly, for
some λ > 0,

n∑
i,j=1

aij(x, t)ξiξj ≥ λ|ξ|2 (A.2)

for every (x, t) ∈ ΩT and every ξ ∈ Rn.
(A4) (1+ |x|2)−1M is uniformly parabolic ((1+ |x|2)−1L is uniformly elliptic) in

ΩT .
(B1) The coefficients aij , bi, c are bounded functions in ΩT .
(B2) The coefficients aij , bi, c satisfy the bounds

|aij(x, t)| ≤ B(|x|2 + 1), |bi(x, t)| ≤ B(|x|+ 1), |c(x, t)| ≤ B, (A.3)

for some constant B and all (x, t) ∈ ΩT .
(B2p,q) The coefficients aij , bi, c ∈ Cp,q(ΩT ) and satisfy the bounds

|Dk
xD

l
taij(x, t)| ≤ B(|x|+ 1)2−|k|,

|Dk
xD

l
tbi(x, t)| ≤ B(|x|+ 1)1−|k|,

|Dk
xD

l
tc(x, t)| ≤ B(|x|+ 1)−|k|,

for some constant B and all (x, t) ∈ ΩT . and all k and l with |k| + 2l ≤ p
and 0 ≤ l ≤ q.

(B3) The coefficients aij , bi, c satisfy the bounds

|aij(x, t)| ≤ B, |bi(x, t)| ≤ B(1 + |x|), |c(x, t)| ≤ B(1 + |x|2), (A.4)

for some constant B and all (x, t) ∈ ΩT .
(C1) The coefficients aij , bi, c are locally Hölder(α) in ΩT .
(C2) The coefficients aij , bi, c are uniformly Hölder(α) in ΩT .

Note that if (A1) holds, then for every compact K ⊂ ΩT , there exists a constant
λK > 0 such that

n∑
i,j=1

aij(x, t)ξiξj ≥ λK |ξ|2, x ∈ K. (A.5)

(By continuity and compactness, first considering |ξ| = 1 only.) In other words,
(A.2) holds locally.

We study the Cauchy problem for M in the following form:
Given a continuous function f on Rn and a continuous function h on ΩT , find a

function F ∈ C(ΩT ) ∩ C2,1(ΩT ) such that

MF (x, t) = h(x, t), (x, t) ∈ ΩT ,

F (x, 0) = f(x), x ∈ Rn.
(A.6)
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A.1. Maximum principle. Recall the weak maximum principle for bounded do-
mains. For simplicity we consider only domains of the type D = B × (0, T ] with
B ⊂ Rn open. We let S = ∂B× (0, T ] and ∂0D = B∪S (this subset of ∂D is known
as the parabolic boundary). A standard form of the (weak) maximum principle is
as follows, see [5, Theorem 6.3.1] or [4, Theorem 2.6] (with a different sign of M).

Theorem A.1. Assume that (A0) and (C0) hold in a bounded domain D = B ×
(0, T ], and that c(x, t) ≤ 0 in D. If F ∈ C(D) ∩ C2,1(D) satisfies MF ≤ 0 in D,
then

sup
D
F ≤ max

(
0, sup

∂0D
F

)
. �

As a simple consequence we have the following, where no condition on c is needed.

Theorem A.2. Assume that (A0) and (C0) hold in a bounded domain D = B ×
(0, T ]. If F ∈ C(D) ∩ C2,1(D) satisfies MF ≥ 0 in D and F ≥ 0 on ∂0D, then
F ≥ 0 in D.

Proof. Let M′F = MF +KF with K = supD |c(x, t)|. M′ is a partial differential
operator of the type in Theorem A.1; note that the coefficient of F is c′(x, t) =
c(x, t) − K ≤ 0. We have M′(e−KtF (x, t)

)
= e−KtMF (x, t) ≥ 0, and the result

follows from Theorem A.1 applied to M′ and and −e−KtF (x, t). �

Other simple consequences are estimates such as the following, cf. [4, Section 2.3].

Theorem A.3. Assume that (A0) and (C0) hold in a bounded domain D = B ×
(0, T ], and let K = supD |c(x, t)|. If F ∈ C(D) ∩ C2,1(D) satisfies MF = h in D,
then

sup
D
|F | ≤ eKT sup

∂0D
|F |+ TeKT sup

D
|h|.

Proof. Let againM′F = MF+KF , so thatM′ is a partial differential operator with
zeroth order coefficient c′(x, t) = c(x, t) −K ≤ 0. We have M′t = 1 − c′(x, t)t ≥ 1
and thus, with A = supD |h|,

M′(e−KtF (x, t)−At
)
≤M′(e−KtF (x, t)

)
−A = e−KtMF (x, t)−A

= e−Kth(x, t)−A ≤ 0.

Hence Theorem A.1 applies and yields, for any (x, t) ∈ D,

e−KtF (x, t)−At ≤ max
(
0, sup

∂0D

(
e−KtF (x, t)−At

))
≤ sup

∂0D
|F |,

which yields F (x, t) ≤ eKT sup∂0D |F | + TeKTA. Considering also −F , we get the
result. �

Further simple consequences are maximum principles for ΩT under suitable growth
conditions, for example the two following, see e.g. [5, Theorems 6.4.3 and 6.4.1].

Theorem A.4. Assume (A0), (B2), (C0). If F ∈ Cpol(ΩT ) ∩ C2,1(ΩT ) satisfies
MF ≥ 0 in ΩT and F ≥ 0 on Rn, then F ≥ 0 in ΩT . �

Theorem A.5. Assume (A0), (B3), (C0). If F ∈ CExp(ΩT ) ∩ C2,1(ΩT ) satisfies
MF ≥ 0 in ΩT and F ≥ 0 on Rn, then F ≥ 0 in ΩT . �
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Corollary A.6. (i) Assume (A0), (B2), (C0). If f and h are given, the Cauchy
problem (A.6) has at most one solution F ∈ Cpol(ΩT ).

(ii) Assume (A0), (B3), (C0). If f and h are given, the Cauchy problem (A.6)
has at most one solution F ∈ CExp(ΩT ). �

The same method easily yields a bound for the solution (if it exists).

Theorem A.7. Assume (A0), (B2), (C0). If F ∈ Cpol(ΩT ) ∩ C2,1(ΩT ) solves the
Cauchy problem (A.6), and

|f(x)| ≤ A(|x|p + 1), x ∈ Rn, (A.7)

|h(x, t)| ≤ A(|x|p + 1), (x, t) ∈ ΩT , (A.8)

for some constants A and p ≥ 0, then

|F (x, t)| ≤ CA(|x|p + 1), (x, t) ∈ ΩT ,

where C is a constant depending on n, T , p and B in (B2).

Proof. Let w(x, t) = (1+ |x|2)p/2eγt, where γ will be chosen later. Then, using (B2),

−Mw = p(p− 2)
n∑

i,j=1

aijxixj(1 + |x|2)−2w + p
n∑

i=1

aii(1 + |x|2)−1w

+ p

n∑
i=1

bixi(1 + |x|2)−1w + cw − γw

≤ C1p(p+ 2)Bw + C2pBw +Bw − γw in ΩT ,

(A.9)

for some constants C1 and C2 depending on n only. If γ = 1+
(
C1p(p+2)+C2p+1

)
B,

we thus have Mw ≥ w. Hence, with G = 2Aw + F , the assumptions (A.7), (A.8)
imply

MG = 2AMw +MF ≥ 2Aw + h ≥ 0 in ΩT ,

and
G(x, 0) = 2A(1 + |x|2)p/2 + f(x) ≥ 0, x ∈ Rn.

Consequently, Theorem A.4 yields G ≥ 0 in ΩT , i.e. F ≥ −2Aw. The same argument
applied to −F yields −F ≥ −2Aw. Hence |F | ≤ 2Aw ≤ 2AeγT (1 + |x|2)p/2. �

Theorem A.8. Assume (A0), (B3), (C0). If F ∈ CExp(ΩT ) ∩ C2,1(ΩT ) solves the
Cauchy problem (A.6), and

|f(x)| ≤ Aeβ|x|
2
, x ∈ Rn,

|h(x, t)| ≤ Aeβ|x|
2
, (x, t) ∈ ΩT ,

for some constants A and β ≥ 0, then

|F (x, t)| ≤ 2Ae2β|x|2 , 0 ≤ t ≤ t0,

where t0 > 0 is a constant depending on n, T , β and B in (B3).

Proof. Similar to Theorem A.7, using G = Aw ± F and w(x, t) = exp
(β|x|2

1−µt + νt
)
,

where µ and ν are large constants depending on B and β (CB(β + 1) + 1 will do),
and t0 = min(1/2µ, ln 2/ν). �

We also need an estimate for the modulus of continuity at the boundary.
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Theorem A.9. Assume (A0), (B2), (C0). Suppose that F ∈ Cpol(ΩT ) ∩ C2,1(ΩT )
solves the Cauchy problem (A.6), and that (A.7)–(A.8) hold. If x0 ∈ Rn, ε > 0 and
δ > 0 are such that |f(x) − f(x0)| < ε for |x − x0| < δ, then there exists η > 0,
depending on x0, ε, δ, p, A and B in (B2), such that

|F (x, t)− f(x0)| < 2ε for |x− x0| < η and 0 ≤ t < η.

Proof. Translating everything by x0, which preserves the conditions if we multiply
A and B by factors 2p(|x0|p + 1) and 2(|x0|2 + 1), we may assume x0 = 0.

This time we use two auxiliary functions, w1(x, t) = (1 + |x|2)p/2(eγt − 1) and
w2(x, t) = (|x|2 + Ct)p/2eγt. By calculations similar to (A.9), it is seen that if we
choose first C and then γ large enough (depending on n, p and B), then Mw1 ≥
(1 + |x|2)p/2 and Mw2 ≥ 0 in ΩT .

Let C1 = 2A+AB + εB and C2 = 3A(1 + δ−2)p/2, and define

G(x, t) = −F (x, t) + f(0) + ε+ C1w1(x, t) + C2w2(x, t).

Then
MG = −h− cf(0)− cε+ C1Mw1 + C2Mw2

≥ −A(|x|p + 1)−BA−Bε+ C1(1 + |x|2)p/2 ≥ 0

in ΩT . On Rn we observe first that if |x| < δ, then |F (x, 0)−f(0)| = |f(x)−f(0)| < ε,
and thus G(x, 0) > 0. If |x| ≥ δ, then

C2w2(x, 0) = 3A(1 + δ−2)p/2|x|p ≥ 3A(1 + |x|−2)p/2|x|p = 3A(1 + |x|2)p/2,

and G(x, 0) > 0 follows in this case too. Consequently, Theorem A.4 applies to G,
and shows that G ≥ 0 in ΩT , and thus F (x, t) ≤ f(0) + ε + C1w1 + C2w2. Since
w1(0, 0) = w2(0, 0) = 0, there exists η < δ such that if |x| < η and 0 ≤ t < η,
then C1w1(x, t) +C2w2(x, t) < ε and thus F (x, t) < f(0) + 2ε. The same argument
applied to −F (and −f , −h) completes the proof. �

A.2. Regularity. We will use the following regularity theorem, see e.g. [3, Sections
II.1.7 and II.1.3] or [4, Theorems 3.10 and 3.5]. (But note that the proof in [4] of
Theorem 3.10 contains a gap, since it uses a consequence of Theorem 3.9, which
is incorrect as stated). We state the theorem for ΩT only, although it is valid for
any domain Ω ⊆ Rn+1 with obvious extensions of the definitions. (Actually, the
theorems in [3] and [4] yields more precise information close to the boundary of the
domain; our version is an immediate corollary.)

Theorem A.10. Assume (A1) and (C1). If F ∈ C2,1(ΩT ) satisfies MF = h and h
is locally Hölder(α) in ΩT , then F ∈ C2,1

α (ΩT ). Moreover, for any compact K ⊂ ΩT

and any relatively compact domain U ⊂ ΩT with K ⊂ U , there exists a constant C
depending on α, K, U , ‖aij‖Hα(U), ‖bi‖Hα(U), ‖c‖Hα(U), and λU in (A.5), such that

‖F‖
C2,1

α (K)
≤ C sup

U
|F |+ C‖h‖Hα(U). �

With higher differentiability of the coefficients and h, we get corresponding higher
differentiability of the solution F . The following theorem (also valid for any domain
Ω) is [4, Theorem 3.10]; see also [3, Theorem 3.2, p. 206].

Theorem A.11. Let p ≥ 0. Assume (A1) and (C1), and assume further that the
coefficients aij , bi, c and h belong to Cp,0

α (ΩT ). If F ∈ C2,1(ΩT ) satisfies MF = h,
then F ∈ Cp+2,1

α (ΩT ). �
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A.3. Approximation. The next theorem shows that the solution to the Cauchy
problem behaves continuously if we change the coefficients of the equation or the
data f and h in an appropriate way.

Theorem A.12. Suppose that M(m), m = 1, 2, . . . is a sequence of parabolic dif-
ferential operators in ΩT such that:

(i) (A1) holds for M(m) uniformly in m, i.e. for every compact K ⊂ ΩT , all
operators M(m) satisfy (A.5) with some λK > 0 not depending on m.

(ii) (B2) holds uniformly in m, i.e. (A.3) holds for every M(m), for some B not
depending on m.

(iii) (C1) holds uniformly in m, i.e., for every compact K ⊂ ΩT , there ex-
ists C independent of m such that ‖a(m)

ij ‖Hα(K) ≤ C, ‖b(m)
i ‖Hα(K) ≤ C,

‖c(m)‖Hα(K) ≤ C.

(iv) M(m) →M as m→∞, in the sense that a(m)
ij → aij, b

(m)
i → bi, c(m) → c

pointwise in ΩT .
Suppose further that f (m) ∈ C(Rn) and h(m) ∈ C(ΩT ) with h(m) locally Hölder(α),
and that for some A and p not depending on m

|f (m)(x)| ≤ A(|x|p + 1), x ∈ Rn,

|h(m)(x, t)| ≤ A(|x|p + 1), (x, t) ∈ ΩT ,

and that for every compact K ⊂ ΩT

‖h(m)‖Hα(K) ≤ AK

for some AK , independent of m. Finally, suppose that f (m) → f uniformly on
compact sets and h(m) → h pointwise, for some functions f ∈ C(Rn) and h ∈ C(ΩT ).

If F (m) ∈ Cpol(ΩT ) ∩ C2,1(ΩT ) solves the Cauchy problem M(m)F (m) = h(m) in
ΩT with F (m) = f (m) on Rn, then F (m) converges in C2,1(ΩT ), as m→∞, to a
solution F ∈ Cpol(ΩT ) of (A.6).

Proof. Let K be a compact subset of ΩT , and let U be a relatively compact domain
with K ⊂ U ⊂ ΩT . By Theorem A.7,

|F (m)(x, t)| ≤ CA(|x|p + 1), (A.10)

and thus supm supU |F (m)| <∞. It follows by Theorem A.10 that

‖F (m)‖
C2,1

α (K)
≤ CK

for some constant CK . It is an easy consequence of the Arzela–Ascoli theorem [8,
Theorem 14.1] that this implies that the sequence (F (m)) is relatively compact in
C2,1(ΩT ), i.e. every subsequence has a subsequence that converges in C2,1(ΩT ).

Let F ∈ C2,1(ΩT ) be the limit of such a convergent subsequence. Taking the
pointwise limit in M(m)F (m) = h(m), we see that MF = h in ΩT .

Let x0 ∈ Rn and ε > 0. Since f (m) → f uniformly on compact sets, and f is
continuous, there exists a δ > 0 such that |f (m)(x)−f (m)(x0)| < ε for |x−x0| < δ and
every m. By Theorem A.9, there exists η > 0 such that |F (m)(x, t)− f (m)(x0)| < 2ε
for |x−x0| < η, t < η and everym. Lettingm→∞, it follows that |F (x, t)−f(x0)| ≤
2ε for |x− x0| < η, t < η.

Since ε was arbitrary, this shows that if we define F (x, 0) = f(x), then F is
continuous at x0. Thus F ∈ C(ΩT ) with F = f on Rn. Consequently, F solves the
Cauchy problem.
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Since the assumptions (i)–(iv) imply that (A1), (B2) and (C1) hold, and (A.10)
implies |F (x, t)| ≤ CA(|x|p + 1) and thus F ∈ Cpol(ΩT ), Corollary A.6 shows that
the solution F is unique. Hence every convergent subsequence of (F (m)) has the
same limit F ; since the sequence is relatively compact, this implies that F (m) → F
in C2,1(ΩT ). �

A.4. Existence. We begin with a standard result.

Theorem A.13. Assume (A3), (B1), (C2). If f ∈ C(Rn) and h ∈ C(ΩT ) are
bounded with h locally Hölder(α) in ΩT , then the Cauchy problem (A.6) has a unique
bounded solution.

Proof. The existence is an immediate consequence of [4, Theorem 1.12 and (1.6.12)].
The uniqueness follows by Corollary A.6. �

Theorem A.14. Assume (A1), (B2), (C1). Then the Cauchy problem (A.6) has a
unique solution F ∈ Cpol(ΩT ) ∩ C2,1(ΩT ) for every f ∈ Cpol(Rn) and h ∈ Cpol(ΩT )
with h locally Hölder(α).

Proof. Let ψ ∈ C∞c (R) be a test function with compact support with ψ(x) = 1
for |x| ≤ 1. Let ψ(m)(x) = ψ(x/m) and Ψ(m)(x, t) = ψ(x/m)ψ(1/mt), and define
L(m) = Ψ(m)L+ (1−Ψ(m))∆, M(m) = ∂/∂t− L(m), f (m) = ψ(m)f , h(m) = Ψ(m)h.

The conditions of Theorem A.13 are satisfied with M(m), f (m), h(m) for each m,
and thus the Cauchy problem M(m)F (m) = h(m) in ΩT with F (m) = f (m) on Rn

has a (unique) bounded solution. Theorem A.12 now applies, and shows that F (m)

converges to a solution F ∈ Cpol(ΩT ) ∩ C2,1(ΩT ) of (A.6).
Uniqueness follows by Corollary A.6. �

The general solution can be expressed in solutions to the homogeneous equation
as follows.

Theorem A.15. Assume (A1), (B2), (C1) and let f ∈ Cpol(Rn) and h ∈ Cpol(ΩT )
with h locally Hölder(α). Let F0 ∈ Cpol(ΩT ) ∩ C2,1(ΩT ) solve MF0 = 0 with
F0(x, 0) = f(x) and let, for 0 < τ < T , Hτ ∈ Cpol(Ω[τ,T ]) ∩ C2,1(Ω(τ,T ]) solve
MHτ = 0 in Ω(τ,T ] with Hτ (x, τ) = h(x, τ). Then the unique solution F ∈
Cpol(ΩT ) ∩ C2,1(ΩT ) to the Cauchy problem (A.6) is

F (x, t) = F0(x, t) +
∫ t

0
Hτ (x, t) dτ. (A.11)

Proof. This is well known if the stronger conditions (A3), (B1), (C2) hold, by the
formula for the solution in terms of a fundamental solution, see [4, Theorem 1.12].
In general, we define M(m), f (m), h(m) as in Theorem A.14 and denote the corre-
sponding solutions by F (m), F (m)

0 , H(m)
τ . Thus

F (m)(x, t) = F
(m)
0 (x, t) +

∫ t

0
H(m)

τ (x, t) dτ. (A.12)

By Theorem A.12, F (m) → F , F (m)
0 → F0 and H

(m)
τ → Hτ pointwise, and by

Theorem A.7 (applied to Ω(τ,T ]), |H
(m)
τ (x, t)| ≤ C(|x|p + 1) for some C and p and

all m and τ . Hence (A.11) follows from (A.12) by dominated convergence. �
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A.5. Regularity at the boundary. We begin with an a priori estimate for bounded
domains. Let Br = {x ∈ Rn : |x| < r} and Dr = Br × (0, T ].

Lemma A.16. Let 0 < r0 < r and let p ≥ 0. Suppose that the coefficients aij, bi,
c belong to Cp,0

α (Dr) and that M is uniformly parabolic in Dr, i.e. (A.2) holds for
some λ > 0 and all (x, t) ∈ Dr.

If F ∈ Cp+2,1
α (Dr) satisfies MF = h in Dr and F = f on Br, where h ∈ Cp,0

α (Dr)
and f ∈ Cp+2

α (Br), then

‖F‖
Cp+2,1

α (Dr0 )
≤ K

(
‖F‖C(Dr) + ‖f‖

Cp+2
α (Br)

+ ‖h‖
Cp,0

α (Dr)

)
, (A.13)

where K is a constant depending only on n, r, r0, α, p, the norms of the coefficients
in Cp,0

α (Dr), and the parabolicity constant λ.

Proof. We use induction on p. The case p = 0 follows from [4, Theorem 4.4], taking
there D = Dr, R0 = Br0 and R = Br1 , where r1 = (r + r0)/2, say. More precisely,
this theorem as stated in [4] yields the estimate (A.13) for the norm in C2,0

α ; since
DtF = LF + h, the required estimates for DtF follow too.

If p ≥ 1, fix l ∈ {1, . . . , n}. Then

M(DlF ) =
∂

∂t
DlF − L(DlF ) = Dl

∂

∂t
F − L(DlF ) = Dl(LF )− L(DlF ) +Dlh

=
n∑

i,j=1

(Dlaij)DijF +
n∑

i=1

(Dlbi)DiF + (Dlc)F +Dlh. (A.14)

Denoting the right hand side by Hl, it follow by Leibniz’ rule that Hl ∈ Cp−1,0
α (Dr)

and, again with r1 = (r + r0)/2,

‖Hl‖Cp−1,0
α (Dr1 )

≤ K1‖F‖Cp+1,0
α (Dr1 )

+ ‖h‖
Cp,0

α (Dr1 )
. (A.15)

The induction hypothesis applied to DlF yields, using (A.15),

‖DlF‖Cp+1,1
α (Dr0 )

≤ K2

(
‖DlF‖C(Dr1 ) + ‖Dlf‖Cp+1

α (Br1 )
+ ‖Hl‖Cp−1,0

α (Dr1 )

)
≤ K3

(
‖F‖

Cp+1,0
α (Dr1 )

+ ‖f‖
Cp+2

α (Br)
+ ‖h‖

Cp,0
α (Dr1 )

)
.

The induction hypothesis again shows that this is dominated by the right hand side
of (A.13). The result follows. �

Lemma A.17. Let p ≥ 0. Assume (A3), (B1), (C2), and assume furthermore that
the coefficients aij , bi, c and h belong to Cp,0

α,b(ΩT ) and that f ∈ Cp+2
α,b (Rn). Suppose

that F is the bounded solution of the Cauchy problem (A.6). Then F ∈ Cp+2,1
α,b (ΩT ).

Proof. For p = 0, [3, Theorem 5.3, p. 283] yields F ∈ C2,0
α,b(ΩT ), and the conclusion

follows because DtF = LF + h.
For p ≥ 1 we use induction. By Theorem A.11, F ∈ Cp+2,1

α (ΩT ). Hence (A.14)
holds as above. The induction hypothesis implies F ∈ Cp+1,1

α,b (ΩT ), and thus Hl ∈
Cp−1,1

α,b (ΩT ). Since DlF is bounded and in C(ΩT ) by the case p = 0, the induction
hypothesis and (A.14) show that DlF ∈ Cp+1,1

α (ΩT ) for every l, and the result
follows. �

Theorem A.18. Assume (A2), (B2), (C1), and that h ∈ Cpol(ΩT ). Let p ≥ 0 and
assume furthermore that the coefficients aij , bi, c and h belong to Cp,0

α (ΩT ) and that
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f ∈ Cpol(Rn) ∩ Cp+2
α (Rn). If F ∈ Cpol(ΩT ) ∩ C2,1(ΩT ) solves the Cauchy problem

(A.6), then F ∈ Cp+2,1
α (ΩT ).

Proof. Let again ψ ∈ C∞c (R) be a test function with compact support with ψ(x) = 1
for |x| ≤ 1. This time, let Ψ(m)(x, t) = ψ(m)(x) = ψ(x/m), and define as before
L(m) = Ψ(m)L+ (1−Ψ(m))∆, M(m) = ∂/∂t− L(m), f (m) = ψ(m)f , h(m) = Ψ(m)h.

For each m, the Cauchy problem M(m)F (m) = h(m) in ΩT with F (m) = f (m) on
Rn has a (unique) bounded solution by Theorem A.13, and Lemma A.17 shows that
F (m) ∈ Cp+2,1

α (ΩT ).
Moreover, Lemma A.16 shows, together with Theorem A.7, that for every fixed r0,

‖F (m)‖
Cp+2,1

α (Dr0 )
stays bounded as m→∞. By the Arzela–Ascoli theorem we may

thus select a subsequence such that every derivative Dk
xD

l
tF

(m) with |k|+2l ≤ p+2
and l ≤ 1 converges uniformly on Dr0 . Since F (m) → F by Theorem A.12, this
implies that F ∈ Cp+2,1

α (Dr0). Since r0 is arbitrary, this completes the proof. �

Theorem A.19. Assume (A2), (B3), (C1), and that h ∈ CExp(ΩT ). Let p ≥ 0 and
assume furthermore that the coefficients aij , bi, c and h belong to Cp,0

α (ΩT ) and that
f ∈ CExp(Rn) ∩ Cp+2

α (Rn). If F ∈ CExp(ΩT ) ∩ C2,1(ΩT ) solves the Cauchy problem
(A.6), then F ∈ Cp+2,1

α (ΩT ).

Proof. First note that for any real κ, F̃ (x, t) = e−κ|x|2F (x, t) satisfies a similar
differential equation M̃F̃ = e−κ|x|2h(x, t), where M̃ too satisfies (A2), (B3), (C1).
(This is an advantage of (B3).) Consequently we may assume that f , F and h are
bounded.

If, further, c is bounded, also (B2) holds, and the result follows by Theorem A.18.
In general, we replace c by c(m) = cψ(x/m), with ψ as in the previous proof, and
find a solution F (m) ∈ Cp+2,1

α (ΩT ). Using Lemma A.16 and the maximum principle
Theorem A.8 to obtain norm estimates not depending on m, reducing T to t0 if
necessary, we see by a limit argument as in Theorem A.12 that F (m) → F in Rn ×
[0, t0] and that F ∈ Cp+2,1

α (Rn× [0, t0]). The extension to the whole strip ΩT follows
by Theorem A.11. �

Theorem A.20. Assume (A4) and (B22,1), and that f ∈ C3
pol(Rn) and h ∈ C1,1

pol(ΩT ).
Then the Cauchy problem (A.6) has a unique solution F ∈ Cpol(ΩT )∩C2,1(ΩT ) and
F ∈ C2,1

pol(ΩT ).

Proof. Let 0 < α < 1. Note that (B22,1) entails both (B2) and (C1). Clearly,
f ∈ C2

α(Rn) and aij , bi, c, h ∈ Cα(ΩT ). Theorem A.14 thus shows that F exists and
is unique, and Theorem A.18 (with p = 0) shows that F ∈ C2,1

α (ΩT ).
Fix x0 with R = |x0| ≥ 1. Define f̃(y) = f(x0 + Ry), F̃ (y, t) = F (x0 + Ry, t),

h̃(y, t) = h(x0 + Ry, t), ãij(y, t) = R−2aij(x0 + Ry, t), b̃i(y, t) = R−1bi(x0 + Ry, t),
c̃(y, t) = c(x0 +Ry, t). The corresponding operator M̃ satisfies M̃F̃ = h̃ in ΩT and
F̃ (y, 0) = f̃(y).

We apply Lemma A.16 with p = 0, r0 = 1/4 and r = 1/2, and note that the
norms of ãij etc. that enter in the constant are bounded uniformly in x0 and R by
(B22,1). Hence, with K, K1 independent of x0, if 0 ≤ k + 2l ≤ 2,

Rk|Dk
xD

l
tF (x0, t)| ≤ ‖F̃‖

C2,1
α (D1/4)

≤ K
(
‖F̃‖C(D1/2) + ‖f̃‖C2

α(B1/2) + ‖h̃‖Cα(D1/2)

)
≤ K1

(
‖F‖C(D2R) +R3‖f‖C3

α(B2R) +R‖h‖C1,1(D2R)

)
.
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The right hand side is bounded by a polynomial in R = |x0|, and it follows that
F ∈ C2,1

pol(ΩT ). �

Remark A.21. We did not use the full strength of (B22,1).
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