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Abstract. We extend a result by Füredi and Komlós and show that the first
eigenvalue of a random graph is asymptotically normal, both for Gn,p and Gn,m,
provided np ≥ nδ or m/n ≥ nδ for some δ > 0. The asymptotic variance is of
order p for Gn,p, and n−1 for Gn,m. This gives a (partial) solution to a problem
raised by Krivelevich and Sudakov.

The formula for the asymptotic mean involves a mysterious power series.

1. Introduction

Füredi and Komlós [2] investigated the eigenvalues of random symmetric matrices.
In particular, their result shows that for constant p ∈ (0, 1), the first eigenvalue λ1

of the adjacency matrix of the random graph Gn,p is asymptotically normal, with

λ1(Gn,p) − (n − 1)p − 1 + p
d
→ N

(
0, 2p(1 − p)

)
as n → ∞. (1.1)

In fact, [2] showed that the random fluctuation of of λ1(Gn,p) asymptotically can
be completely explained by the fluctuation of the number of edges in Gn,p. More
precisely, they showed that if e(Gn,p) ∼ N

((n
2

)
, p

)
is the number of edges in Gn,p,

then

λ1(Gn,p) −
2e(Gn,p)

n
− (1 − p) = Op

(
n−1/2

)
p
→ 0,

which immediately implies (1.1) by the central limit theorem.
This suggests studying λ1(Gn,p) conditioned on a given e(Gn,p), or, equivalently,

λ1(Gn,m), where m is a given function of n. Assume first, in analogy to the case
studied by Füredi and Komlós, that m/

(n
2

)
→ p, with p ∈ (0, 1) fixed. We will show

that then λ1(Gn,m) too is asymptotically normal, but with an asymptotic variance
of order only n−1.

We will also extend the results to p → 0 and m/
(n
2

)
→ 0, as long as np � nδ and

m � n1+δ for some δ > 0.
Krivelevich and Sudakov [6] have found the first order asymptotics of λ1(Gn,p)

for all p = p(n); in particular, for p in the range treated here, their result gives

λ1(Gn,p)/(np)
p
→ 1. They leave the question of the limit distribution as an open

problem, which we thus (partially) answer. Note also the large deviation result by
Alon, Krivelevich and Vu [1].

Our main results are the following. Here and elsewhere in this paper, (ai)
∞
i=0 is a

certain sequence of integers, defined in Section 4. We have computed aj for j ≤ 10
by calculations with Pascal and Maple and found (unless we made a mistake)

A(z) :=
∞∑

0

ajz
j = 1 + z + z2 + z5 + z7 + 5z8 + 2z9 + 17z10 + . . .
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No simple form is evident.

Theorem 1.1. Suppose that n → ∞, p → p0 ∈ [0, 1) and n1−δp → ∞, for some
fixed δ > 0. Let, for some integer J with 2J + 1 ≥ 1/δ,

αn,p := (n − 2)p +

J∑

j=1

aj(np)1−j =

J∑

j=0

aj(np)1−j − 2p.

Then

p−1/2
(
λ1(Gn,p) − αn,p

) d
→ N

(
0, 2(1 − p0)

)
.

Theorem 1.2. Suppose that n → ∞, m/
(n
2

)
→ p0 ∈ [0, 1) and n−1−δm → ∞ for

some fixed δ > 0. Let, for some integer J with 2J ≥ 1/δ,

αn,m :=
2m

n
+

J∑

j=1

aj

(2m

n

)1−j
−

2m

n2
=

2m

n

( J∑

j=0

aj

(2m

n

)−j
−

1

n

)
.

Then

n1/2
(
λ1(Gn,m) − αn,m

) d
→ N

(
0, 2(1 − p0)

2
)
.

Note that J is chosen such that terms aj(np)1−j or aj(2m/n)1−j with j > J can
be ignored.

The definition of (ai)
∞
i=0 in Section 4 is rather involved, and we find the numbers aj

quite mysterious. Lemma 3.1 exhibits the combinatorial significance of these num-
bers perhaps better than the theorems above. Nevertheless we are lacking a simple
combinatorial interpretation of aj , and leave it as an open problem to understand
these numbers better.

Theorem 1.1 follows easily from Theorem 1.2. We will, however, prove both in
parallel by the same method. Not surprisingly, the details are somewhat simpler for
Theorem 1.1, but we will see that with our methods, the difference is not great.

Remark 1.3. Also for p → 0, the random variation of λ1(Gn,p) is explained by the
variation of the number of edges e(Gn,p) in the sense of linear regression. I.e., we have
λ1(Gn,p) = a(n, p)e(Gn,p)+b(n, p)+R for certain constants a(n, p) and b(n, p) and a

random error term R such that p−1/2R
p
→ 0 while p−1/2a(n, p)(e(Gn,p) − E e(Gn,p))

converges in distribution.
For Gn,m, where the number of edges is constant and explains nothing, the proof

shows that the variation is explained in this way by the number of paths of length 2
(or, equivalently, by the sum of the squares of the vertex degrees).

The proof uses the traditional method of computing the trace of a suitable power
of the adjacency matrix as the number of closed walks of a given length in the graph.
This number is closely related to subgraph counts, and we use methods from [3] to
find the required asymptotics.

We consider the case np � nδ (m/n � nδ) for some δ > 0. It turns out that the
smaller δ is, the higher matrix powers and the longer walks have to be employed
(otherwise we cannot ignore the other eigenvalues); we also need more terms in the
sums defining αn,p and αn,m. We thus give general arguments treating arbitrarily

long walks below. If we restricted ourselves to, say, p ≥ n−1/2, we would only have
to consider a few small values of this length, and the general arguments could be
replaced by explicit calculations, which would make the proof simpler but perhaps
less interesting.
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Remark 1.4. Note that we only study the case when p or m is so large that there is
a large gap between the first and second eigenvalue. It seems that different methods
are needed in the case of sparser graphs. Perhaps the methods of [6] could be useful.

Remark 1.5. Füredi and Komlós [2] studied more general random symmetric ma-
trices where the entries are not restricted to 0 and 1. We leave it to the reader to
extend the results of this paper to such matrices.

Remark 1.6. Note that λ1(G) ≥ 2e(G)/n for every graph G with n vertices, since

vAvt = 2e(G)/n if v = n−1/2(1, . . . , 1) and A is the adjacency matrix of G. The
results above show that, with high probability, we almost have equality for the
random graphs studied here, which witnesses that the eigenvector for λ1 is close to
v.

If Xn are random variables and cn positive numbers, we write Xn = op(cn) if

Xn/cn
p
→ 0, and Xn = Op(cn) if the sequence Xn/cn is stochastically bounded

(tight).
If H is a graph, v(H), e(H) and aut(H) denote the numbers of vertices, edges

and automorphisms of H.

Acknowledgement. Part of this research was done on a previous visit to Cam-
bridge. I thank Béla Bollobás for interesting discussions.

2. Matrices

We denote the eigenvalues (with multiplicities) of a real symmetric matrix M by
λ1(M) ≥ λ2(M) ≥ · · · ≥ λν(M). For a graph G, we similarly denote the eigenvalues
of its adjacency matrix by λ1(G) ≥ . . . .

The algebraic part of our proofs is the following lemma.

Lemma 2.1. Let M be a real symmetric matrix and let Tk := Tr(Mk) =
∑

i λi(M)k.
Suppose that, for some even k ≥ 2 and µ > 0,

λ1(M) ≥ µ, (2.1)

Tk ≤ µk(1 + 2−k). (2.2)

Then

Tk

(
2 −

Tk−2Tk+2

T 2
k

)
≤ λ1(M)k ≤ Tk.

Proof. Let δi = λi/λ1, 1 ≤ i ≤ ν, where ν is the size of M . First, by (2.1) and (2.2),

1 +

ν∑

i=2

δk
i = Tk/λ

k
1 ≤ 1 + 2−k.

Hence |δi| ≤ 1/2 for i ≥ 2. In particular,

(1 − δ2
i )2 ≥

(
3
4

)2
> 1

2 ≥ 2δ2
i .
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Consequently,

Tk−2Tk+2 − T 2
k =

ν∑

i,j=1

(
λk−2

i λk+2
j − λk

i λ
k
j

)
=

∑

i<j

(
λk−2

i λk+2
j + λk+2

i λk−2
j − 2λk

i λ
k
j

)

=
∑

i<j

λk−2
i λk−2

j

(
λ2

i − λ2
j

)2
≥

ν∑

j=2

λk+2
1 λk−2

j

(
1 − δ2

j

)2

≥
ν∑

j=2

λk+2
1 λk−2

j · 2δ2
j = 2λk

1

ν∑

j=2

λk
j = 2λk

1

(
Tk − λk

1

)

≥ Tk

(
Tk − λk

1

)
.

The left inequality follows. The right one is immediate. �

Lemma 2.2. Let Mn, n ≥ 1, be random symmetric matrices (of arbitrary sizes),
and let Tk,n := Tr(Mk

n). Suppose that µn > 0 are real numbers such that for every
η > 0

P
(
λ1(Mn) ≥ (1 − η)µn

)
→ 1 as n → ∞, (2.3)

and that Y is a random variable and εn → 0 are positive numbers such that

ε−1
n

(
Tk,n

µk
n

− 1

)
d
→ kY as n → ∞, (2.4)

jointly for three fixed consecutive even values of k. Then

ε−1
n

(
λ1(Mn)

µn
− 1

)
d
→ Y as n → ∞.

Proof. Write

Tk,n = µk
n

(
1 + εnkYk,n

)
. (2.5)

Thus Yk,n
d
→ Y jointly for three even values of k, say k = m− 2, m and m + 2, and

hence (m − 2)Ym−2,n + (m + 2)Ym+2,n − 2mYm,n
p
→ 0. Then

Qn :=
Tm−2,nTm+2,n

T 2
m,n

=

(
1 + εn(m − 2)Ym−2,n

)(
1 + εn(m + 2)Ym+2,n

)
(
1 + εnmYm,n

)2

= 1 + εn

(
(m − 2)Ym−2,n + (m + 2)Ym+2,n − 2mYm,n

)
+ op(εn)

= 1 + op(εn).

(2.6)

(The reader that prefers may use the Skorohod representation theorem [5, Theorem
4.30] and assume for simplicity that Yk,n → Y a.s. for k = m − 2,m,m + 2; then op

may be replaced by o.)
Moreover, with µ̃ := µn(1− η), where η > 0 is so small that (1 − η)−k < 1 + 2−k,

P
(
Tk,n ≤ µ̃k(1 + 2−k)

)
= P

(
1 + εnkYn ≤ (1 − η)k(1 + 2−k)

)
→ 1 as n → ∞.

Since P
(
λ1(Mn) ≥ µ̃

)
→ 1 as n → ∞ by (2.3), we see that with probability tending

to 1 as n → ∞, Mn satisfies the assumptions of Lemma 2.1 (with m and µ̃) and thus

P
[
Tm,n(2 − Qn) ≤ λ1(Mn)m ≤ Tm,n

]
→ 1. (2.7)

Combined with (2.6), this yields

λ1(Mn)m = Tm,n

(
1 + op(εn)

)
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and thus

λ1(Mn) = T 1/m
m,n

(
1 + op(εn)

)
= µn

(
1 + εnmYm,n

)1/m(
1 + op(εn)

)

= µn

(
1 + εnYm,n + op(εn)

)
.

The result follows. �

We apply Lemma 2.2 to Gn,p and Gn,m, with µn = αn,p and µn = αn,m, respec-

tively. Note that αn,p = np
(
1 + o(1)

)
and αn,m = 2m

n

(
1 + o(1)

)
. By Remark 1.6,

λ1(Gn,m) ≥ 2m/n, and (2.3) follows. For Gn,p, similarly, λ1 ≥ 2e(Gn,p)/n and

2e(Gn,p)/(n
2p)

p
→ 1 by the law of large numbers; again (2.3) follows.

Note further that if M is the adjacency matrix of a graph G, then Tr(M k) equals
the number of closed walks of length k in G; i.e. sequences v0, . . . , vk of vertices such
that v0 = vk and vi−1 and vi are adjacent for 1 ≤ i ≤ k; we denote this number
by Wk(G). Theorems 1.1 and 1.2 therefore follow by Lemma 2.2 from the following
two lemmas. (The assumptions k ≥ 6/δ are made for convenience and could be
weakened. However, the results are not true for, say, k = 2 or k = 4, even for
constant p.)

Lemma 2.3. Under the hypotheses of Theorem 1.1, if Y ∼ N
(
0, 2(1 − p0)

)
, then

for every k ≥ 6/δ,

np1/2

(
Wk(Gn,p)

αk
n,p

− 1

)
d
→ kY

and the convergence holds jointly for any set of such k.

Lemma 2.4. Under the hypotheses of Theorem 1.2, if Y ∼ N
(
0, 2(1 − p0)

2
)
, then

for every k ≥ 6/δ,

2mn−1/2

(
Wk(Gn,m)

αk
n,m

− 1

)
d
→ kY

and the convergence holds jointly for any set of such k.

3. Random graphs

We prove Lemmas 2.3 and 2.4 using the orthogonal decomposition method of [3],
summarized in [4, Section 6.4]. For convenience, we repeat the main definitions and
results here, referring to [3] for proofs. We begin by defining an orthogonal family
of functionals of Gn,p.

Let H be a graph. Consider the (n)vH
injective mappings from the vertex set of

H into {1, . . . , n}. Each such mapping ϕ maps H onto a copy ϕ(H) of H in Kn,
and we define

Sn,p(H) :=
∑

ϕ

∏

e∈ϕ(H)

(Ie − p), (3.1)

where Ie = 1[e ∈ Gn,p] is the indicator that the edge e is present. In other words, we
sum

∏
e∈H′(Ie − p) over all copies of H in Gn,p, counted with multiplicities aut(H).

Note that if XH(G) denotes the number of copies of H in G, each counted with
multiplicity aut(H), we have the similar formula

XH(Gn,p) =
∑

ϕ

∏

e∈ϕ(H)

Ie, (3.2)

where, however, the terms in the sum not are orthogonal.
Sn,p(H) depends on H only up to isomorphism. Hence we may regard H as an

unlabelled graph.
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Let U0 denote the set of unlabelled graphs without isolated vertices. Then the
random variables {Sn,p(H)}H∈U0 are orthogonal, and each functional of Gn,p that
depends only on the isomorphism type is a linear combination of these variables. In
particular,

Wk(Gn,p) =
∑

H∈U0

ŵk(n, p;H)Sn,p(H) (3.3)

for some coefficients ŵk.
We allow here H to be the empty graph ∅ with v(∅) = e(∅) = 0; then Sn,p(∅) = 1.

Since ESn,p(H) = 0 when H 6= ∅, we have

ŵk(n, p; ∅) = E Wk(Gn,p). (3.4)

We can find the decomposition (3.3) as follows. A closed walk of length k may
have a finite number (depending on k) different shapes, since one or several vertices
may be repeated. Hence Wk can be written as a linear combination of different
subgraph counts XH . For example, with k = 4 we can have a 4-cycle, a path of
length 2 with each edge traversed twice, or a single edge traversed four times, and
we find

W4 = XC4
+ 2XP2

+ XK2
.

(Pl denotes the path with l edges and thus l + 1 vertices.)
Next, substituting Ie = (Ie − p) + p in (3.2) and expanding, each XH becomes a

linear combination of Sn,p(K) for K ⊆ H. For example, straightforward calculations
yield, with (n)k = n(n − 1) · · · (n − k + 1),

XK2
(Gn,p) = Sn,p(K2) + (n)2p

XP2
(Gn,p) = Sn,p(P2) + 2(n − 2)pSn,p(K2) + (n)3p

2

XC4
(Gn,p) = Sn,p(C4) + 4pSn,p(P3) + 4(n − 3)p2Sn,p(P2) + 2p2Sn,p(2K2)

+ 4(n − 2)(n − 3)p3Sn,p(K2) + (n)4p
4.

In this way, we can obtain a decomposition (3.3) for any k explicitly (but the amount
of work increases rapidly with k). Note that only terms with e(H) ≤ k appears.

For H ∈ U0,

Sn,p(H) = Op

(
nv(H)/2pe(H)/2

)
. (3.5)

Hence we also define

S∗
n,p(H) := n−v(H)/2p−e(H)/2Sn,p(H), (3.6)

ŵ∗
k(n, p;H) := nv(H)/2pe(H)/2ŵk(n, p;H); (3.7)

thus (3.3) can be rewritten

Wk(Gn,p) =
∑

H∈U0

ŵ∗
k(n, p;H)S∗

n,p(H), (3.8)

where by (3.5), for every H,

S∗
n,p(H) = Op(1). (3.9)

If further H 6= ∅ and H is connected, we have the limit result [3, Theorem

1], [4, Theorem 6.43] that if n → ∞, p → p0 ∈ [0, 1] and npm(H) → ∞, where
m(H) := max{e(F )/v(F ) : F ⊆ H, v(F ) > 0}, then, for some random variables
U(H),

S∗
n,p(H)

d
→ U(H) ∼ N

(
0, aut(H)(1 − p0)

e(H)
)
. (3.10)
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To prove Lemma 2.3, it is now sufficient to verify, for k ≥ 6/δ,

E Wk(Gn,p) = αk
n,p

(
1 + o(n−1p−1/2)

)
(3.11)

ŵ∗
k(n, p;K2) = αk

n,pn
−1p−1/2

(
k + o(1)

)
(3.12)

ŵ∗
k(n, p;H) = o(αk

n,pn
−1p−1/2), H ∈ U0, v(H) ≥ 3, (3.13)

because then (3.8) yields by (3.4), (3.9)

α−k
n,pWk(Gn,p) = α−k

n,p E Wk(Gn,p) + α−k
n,pŵ

∗
k(n, p;K2)S

∗
n,p(K2) + op(n

−1p−1/2)

= 1 + n−1p−1/2kS∗
n,p(K2) + op(n

−1p−1/2),

and Lemma 2.3 follows by (3.10), with Y = U(K2).
To prove Lemma 2.4, we define p := m/

(n
2

)
and note that

αn,p = αn,m + O(1/n) = αn,m

(
1 + O(n−2p−1)

)
= αn,m

(
1 + o(n−3/2p−1)

)
.

For Lemma 2.4, we now need, for k ≥ 6/δ,

E Wk(Gn,p) = αk
n,p

(
1 + o(n−3/2p−1)

)
(3.14)

ŵ∗
k(n, p;P2) = αk

n,pn
−3/2p−1

(
k + o(1)

)
(3.15)

ŵ∗
k(n, p;H) = o(αk

n,pn
−3/2p−1), H ∈ U0,H 6= ∅,K2, P2. (3.16)

(No condition on ŵ∗
k(n, p;K2) is needed.) Indeed, using these estimates, [3, Theorem

7] or [4, Theorem 6.54], with βn := n−3/2p−1αk
n,m, shows that

n3/2p

(
Wk(Gn,m)

αk
n,m

− 1

)
d
→ kU(P2)

(again jointly for different k), which yields Lemma 2.4 and thus Theorem 1.2.
It is important to note that we here draw a conclusion for Gn,m from the estimates

(3.14)–(3.16) for Gn,p. In the remainder of the paper, we thus consider Gn,p only.
It remains to prove the estimates (3.11)–(3.13) and (3.14)–(3.16). Using αn,p ∼ np

and changing J , we restate (and partly improve) them slightly as the following
lemmas, which thus contain the combinatorial part of the proof of Theorems 1.1
and 1.2. (We treat ŵk(n, p; ∅) = E Wk(Gn,p) separately because a much smaller
relative error is required.)

Lemma 3.1. Let δ > 0 and let k and J be fixed integers with J ≥ 1/δ and k ≥ 6/δ.
If n → ∞ and np/nδ → ∞, then

EWk(Gn,p) = (np)k
(
1 −

2

n
+

J∑

j=1

aj(np)−j + O(n−2p−1)
)k

.

Lemma 3.2. Let δ > 0 and k ≥ 4/δ be fixed, and suppose that H ∈ U 0 with H 6= ∅.
If n → ∞ and np/nδ → ∞, then

(np)−kŵk(n, p;H) =





kn−2p−1 + o(n−2p−1), H = K2,

kn−3p−2 + o(n−3p−2), H = P2,

o
(
n−v(H)/2−3/2p−e(H)/2−1

)
, H 6= ∅,K2, P2.
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4. Proof of Lemma 3.1

We begin by giving an explicit, although rather opaque, definition of the numbers
aj in Theorems 1.1 and 1.2.

For a tree T , let bk(T ) be the number of (not necessarily closed) walks of length
k on T that traverse every edge at least twice. Let Tn be the set of the nn−2 trees
on {1, . . . , n}, and let T :=

⋃∞
n=1 Tn, and define the formal power series

Ψ(ε, z) :=
∞∑

k=0

∞∑

n=1

1

n!

∑

T∈Tn

bk(T )εk−e(T )zk =
∞∑

k=0

∑

T∈T

1

v(T )!
bk(T )εk−e(T )zk.

By symmetry, we can eliminate the factor 1/n! by only considering walks on T ∈ Tn

such that the first visits to the vertices come in order 1, 2, . . . , n. Thus Ψ has integer
coefficients.

If a term εjzk appears in Ψ(ε, z) with non-zero coefficient, then j = k − e(T )
for some tree with a walk of length k that uses every edge at least twice. Thus
k ≥ 2e(T ), so k/2 ≤ j ≤ k. We can thus regard Ψ(ε, z) as a power series in ε, with
coefficients that are polynomials in z with integer coefficients. Note also that the
constant term Ψ(0, z) = 1. It follows that there exists a unique power series Z(ε)
such that

Z(ε)Ψ
(
ε, Z(ε)

)
= 1. (4.1)

Z has integer coefficients and Z(0) = 1. Finally, define the formal power series

A(ε) =

∞∑

k=0

akε
k :=

1

Z(ε)
. (4.2)

Note that each ak is an integer and a0 = 1.

Proof of Lemma 3.1. A closed walk with k steps defines a connected graph F con-
sisting of all vertices and edges in the walk. Since e(F ) ≤ k, there is only a fi-
nite number of possible F (regarded as unlabelled graphs). The contribution to
(np)−k

E Wk(Gn,p) for a given unlabelled F is clearly

(np)−kO
(
nv(F )pe(F )

)
= O

(
nv(F )−kpe(F )−k

)
. (4.3)

We consider three cases separately.
Case 1: F is a tree, v(F ) = e(F ) + 1.
Since a closed walk on a tree has to traverse each edge at least twice, we have

2e(F ) ≤ k and thus the contribution is, by (4.3),

O
(
nv(F )−kpe(F )−k

)
= O

(
n(np)e(F )−k

)
= O

(
n(np)−k/2

)
= O

(
n−2

)
(4.4)

because (np)k/2 ≥ (np)3/δ � n3.
Case 2: F has more that one cycle, v(F ) < e(F ).
The contribution from F is by (4.3)

O
(
n−(e(F )−v(F ))(np)e(F )−k

)

which is O
(
n−2p−1

)
except when v(F ) = e(F ) − 1 and e(F ) = k. The latter case

means that the edges of the walk are distinct but one vertex is repeated. Labelling
the vertices v1, . . . , vk, we thus have vi = vj for two indices i and j, while the vi’s
otherwise are distinct. Moreover, 3 ≤ |i − j| ≤ k − 3 since each of the two cycles
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in F has at least 3 vertices. The indices i and j may thus be chosen in k(k − 5)/2
ways, and thus the contribution from such walks is

(np)−k k(k − 5)

2
(n)k−1p

k =
k(k − 5)

2
n−1 + O(n−2).

The total contribution from F with v(F ) < e(F ) is thus

k(k − 5)

2
n−1 + O(n−2p−1). (4.5)

Case 3: F is unicyclic, v(F ) = e(F ).
Then F consists of a cycle with attached trees. Given a closed walk on F traversing

all edges, colour all edges of F that are traversed at least twice red and colour the
remaining edges green. Each edge in the attached trees is red, while the edges in
the cycle may be either red or green. Let l ≥ 0 be the number of green edges.

If there are l ≥ 1 green edges, the removal of them from F leaves l red components

T1, . . . , Tl. Each Tl is a tree (possibly a single vertex only) and v(F ) =
∑l

i=1 v(Ti);
moreover, the green edges join the red components into a cycle.

Fix l ≥ 3 and trees T1, . . . , Tl (regarded as disjoint subgraphs of Kn), and consider
together all F that are obtained by joining the trees by l edges, one from each Ti

to Ti+1 (and from Tl to T1). A closed walk on one of these F with red subtrees
T1, . . . , Tl, that starts with the green edge leading from Tl to T1, is called special.
A special closed walk thus consists of a walk in each Ti that traverses each edge at
least twice, together with single (green) steps linking the walks. The green links are
determined by the walks in the trees, and thus the number of special walks with ki

steps inside Ti, i = 1, . . . , l, is
∏l

i=1 bki
(Ti); summing we find that the number of

special walks with length k, for given T1, . . . , Tl, is, with B(x;T ) :=
∑∞

k=0 xkbk(T )
and using [xj ]f(x) to denote the coefficient of xj in a power series f(x),

∑

k1+···+kl=k−l

l∏

i=1

bki
(Ti) = [xk−l]B(x;T1) · · ·B(x;Tl). (4.6)

Each of these walks uses
∑l

1 v(Ti) edges, so to get the contribution to (np)−k
E Wk(Gn,p)

we multiply by (np)−kp
P

v(Ti).
Summing first over all choices of T1, . . . , Tl with given vertex sets and then over

all ways to choose these vertex sets in {1, . . . , n} we obtain

(np)−k
∑

n1,...,nl≥1

(
n

n1, . . . , nl

) ∑

Ti∈Tni

[xk−l]B(x;T1) · · ·B(x;Tl)p
P

i v(Ti)

= (np)−k[xk−l]

(∑

T∈T

B(x;T )

v(T )!
(np)v(T )

)l(
1 + O

( 1

n

))
.

(4.7)

This is, for a given l ≥ 3, the contribution from the walks that generate a unicyclic
F with l red subgraphs, and that begin with a green edge. A walk generating such
an F may be shifted (cyclically) in k ways by changing the starting point, and l of
these shifts begin with a green edge; hence, the contribution from the walks that
begin with a green edge is l/k times the total contribution for this F . Consequently,
the contribution from all walks that generate a unicyclic F with l red subgraphs (for
given l ≥ 3) is k/l times the value in (4.7).
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If l < k, then v(Ti) > 1 for some i so F contains a red edge. This means that
k > e(F ) = v(F ) =

∑
i v(Ti). Since each term in the sum in (4.7) then is

O
(
(np)

P

i v(Ti)−k
)

= O
(
(np)−1

)
,

the contribution of the term O(1/n) in (4.7) then is O
(
(n2p)−1

)
. Moreover,

∑

T∈T

B(x;T )

v(T )!
(np)v(T ) =

∞∑

k=1

∑

T∈T

bk(T )xk

v(T )!
(np)e(T )+1 = npΨ

( 1

np
, npx

)
.

Hence we find from (4.7) that the contribution to (np)−k
E Wk(Gn,p) from all walks

that generate a unicyclic F with l red subtrees is, for 3 ≤ l < k,

k

l
(np)−k[xk−l](np)lΨ

( 1

np
, npx

)l
+ O

(
(n2p)−1

)
=

k

l
[xk−l]Ψ

( 1

np
, x

)l
+ O

(
(n2p)−1

)
.

(4.8)
For l = k we are considering walks without repeated edges, i.e. cycles. Clearly,

the contribution from them is

(np)−k(n)kp
k = 1 −

(
k

2

)
1

n
+ O

(
n−2

)
= [x0]Ψ

( 1

np
, x

)k
−

(
k

2

)
1

n
+ O

(
n−2

)
. (4.9)

For l ≤ 2, the formulas above are not quite correct. However, with l ≥ 0 green
edges and thus e(F ) − l red edges, we have k ≥ l + 2(e(F ) − l) and thus e(F ) ≤
(k + l)/2. If l ≤ 2 we thus have e(F ) ≤ 1 + k/2, and by (4.3), the contribution from
such F is, since k/2 ≥ 3/δ,

O
(
(np)e(F )−k

)
= O

(
(np)1−k/2

)
= O

(
n(np)−3/δ

)
= O

(
n−2

)
. (4.10)

Summing (4.4), (4.5), (4.8) for 3 ≤ l < k and (4.9), (4.10) we find

(np)−k
E Wk(Gn,p) =

k∑

l=3

k

l
[xk−l]Ψ

( 1

np
, x

)l
− 2

k

n
+ O

(
n−2p−1

)
.

Lemma 3.1 now follows from the following algebraic lemma. �

Lemma 4.1. If J ≥ 0 and k ≥ m ≥ 2J , then

k∑

l=k−m

k

l
[zk−l]Ψ(ε, z)l =




J∑

j=0

ajε
j




k

+ O
(
εJ+1

)
.

Here and in the proof, O(εa), with a real, denotes a polynomial or power series
in ε containing only powers εj with j ≥ a.

Proof. Define Φε as the power series that solves the equation

Ψ(ε, z) = Φε

(
zΨ(ε, z)

)
. (4.11)

Since Ψ(ε, 0) = 1, it is easily seen that Φε exists and is unique; moreover, by an easy
induction, each coefficient [zk]Φε(z) is a polynomial in ε with nonzero terms cjε

j for
k/2 ≤ j ≤ k only, because Ψ is of this type. The same then is true for any power of
Φε(z).

By Lagrange’s inversion formula [7, Theorem 5.4.2], for 1 ≤ l ≤ k,

k

l
[zk−l]Ψ(ε, z)l =

k

l
[zk]

(
zΨ(ε, z)

)l
= [uk−l]Φε(u)k.
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This is a polynomial in ε and is O(ε(k−l)/2). Hence,

k∑

l=k−m

k

l
[zk−l]Ψ(ε, z)l =

m∑

j=0

[uj]Φε(u)k =

∞∑

j=0

[uj ]Φk
ε(u) + O

(
ε(m+1)/2

)
,

where the infinite sum is well defined as a power series in ε. This sum of all coeffi-
cients of Φk

ε is

Φk
ε(1) = Φε(1)

k

and, substituting (4.1) in (4.11) and using (4.1) and (4.2),

Φε(1) = Φε

(
Z(ε)Ψ

(
ε, Z(ε)

))
= Ψ

(
ε, Z(ε)

)
=

1

Z(ε)
= A(ε).

(These manipulations are easily justified modulo εN for any fixed N .) The lemma
follows. �

5. Proof of Lemma 3.2

It is easily seen from the discussion if Section 3 that ŵk(n, p;H) can be computed
as follows. Fix a copy H0 of H in Kn and consider the set W of closed walks of
length k in Kn that use every edge in H0 at least once. If γ ∈ W, let γ̄ denote its
trace, i.e. the subgraph of Kn consisting of the edges and vertices in γ. Then

ŵk(n, p;H) =
1

aut(H)

∑

γ∈W

pe(γ̄)−e(H). (5.1)

Let c = c(H) be the number of components of H, and note that v(H) ≤ c + e(H).
Fix j ≥ 0 and consider the closed walks γ in this sum that pass through j vertices

outside H0. Clearly, the number of such γ is O(nj).
Since γ̄ connects the j vertices outside H0 and the c components of H0, it has at

least j + c − 1 edges outside H0, i.e.

e(γ̄) − e(H) ≥ j + c − 1.

Case 1: e(γ̄) − e(H) = j + c − 1.
In this case, if we collapse each component of H0 to a single point, γ̄ becomes a

connected graph with j + c vertices and j + c− 1 edges, i.e. a tree. The closed walk
γ has to traverse each edge in this tree an even number of times, and thus

k ≥ 2(j + c − 1) + e(H).

The contribution to (np)−kŵk(n, p;H) from all γ in Case 1 is thus, using (5.1),

O
(
(np)−knjpj+c−1

)
= O

(
(np)−k/2n1−c−e(H)/2p−e(H)/2

)

= o
(
n−kδ/2+1−c/2−v(H)/2p−e(H)/2

)

= o
(
n−3/2−v(H)/2p−e(H)/2

)
.

This is covered by the o term in the lemma.
Case 2: e(γ̄) − e(H) ≥ j + c.
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Then k ≥ e(γ̄) ≥ j + c + e(H). The contribution to (np)−kŵk(n, p;H) is, using
(5.1),

O
(
(np)−knjpj+c

)
= O

(
n−c−e(H)p−e(H)

)

= O
(
(np)−e(H)/2n−c/2−v(H)/2p−e(H)/2

)
.

(5.2)

If e(H) ≥ 3, or if e(H) = 2 and c > 1, this is o
(
n−3/2p−1n−v(H)/2p−e(H)/2

)
, which

verifies the lemma for these H, i.e. all H except K2 and P2.
For H = P2, the calculation in (5.2) yields O

(
n−3p−2

)
, and o

(
n−3p−2

)
unless

k = e(γ̄) = j + c+ e(H) = j +3. We thus only have to consider γ that go through k
different vertices, i.e. cycles of length k. The number of such cycles passing through
H0 is 2k(n)k/(n)3, since there are (n)k/(n)3 choices of the cycle γ̄, and for each γ̄,
γ may start at k places and in 2 directions. Thus, (5.1) yields

(np)−kŵk(n, p;P2) = (np)−k k(n)k

(n)3
pk−2 + o

(
n−3p−2

)
= kn−3p−2 + o

(
n−3p−2

)
.

Finally, for H = K2, (5.2) yields O
(
n−2p−1

)
, and again we have o unless k =

e(γ̄) = j + c + e(H) = j + v(H). Thus, again, we only have to consider γ that go
through k different vertices, i.e. cycles of length k. Arguing as for P2 we find that
the number of such cycles passing through H0 is 2k(n)k/(n)2, and

(np)−kŵk(n, p;K2) = (np)−k k(n)k

(n)2
pk−1 + o

(
n−2p−1

)
= kn−2p−1 + o

(
n−2p−1

)
.

�
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