Some remarks on the combinatorics of $\mathcal{I} \mathcal{S}_{n}$

Svante Janson and Volodymyr Mazorchuk

Abstract

We describe the asymptotic behavior of the cardinalities of the finite symmetric inverse semigroup $\mathcal{I} \mathcal{S}_{n}$ and its endomorphism semigroup. This is applied to show that $\left|\mathcal{I} \mathcal{S}_{n}\right| /\left|\operatorname{End}\left(\mathcal{I} \mathcal{S}_{n}\right)\right|$ is asymptotically 0, solving a problem of Schein and Teclezghi. We also apply our results to compute the distributions of elements from $\mathcal{I} \mathcal{S}_{n}$ with respect to certain combinatorial properties, and to compute the generating functions for $\left|\mathcal{I} \mathcal{S}_{n}\right|$ and for the number of nilpotent elements in $\mathcal{I} \mathcal{S}_{n}$.

1 Introduction

For $n \in \mathbb{N}$ let $\mathcal{I} \mathcal{S}_{n}$ denote the symmetric inverse semigroup of all partial injections on $N_{n}=\{1, \ldots, n\}$. We refer the reader to [GM1, GM2, Li] for the details and standard notation. For $\alpha \in \mathcal{I} \mathcal{S}_{n}$ we denote by $\operatorname{dom}(\alpha)$ the domain of α, by $\operatorname{im}(\alpha)$ the range of α, by $\operatorname{rank}(\alpha)=|\operatorname{dom}(\alpha)|=|\operatorname{im}(\alpha)|$ the rank of α, and by $\operatorname{def}(\alpha)=n-\operatorname{rank}(\alpha)$ the defect of α. For $k=0,1, \ldots, n$ let $R_{n, k}$ denote the cardinality of the set $\left\{\alpha \in \mathcal{I} \mathcal{S}_{n}: \operatorname{rank}(\alpha)=k\right\}$. We immediately have

$$
R_{n, k}=\binom{n}{k}^{2} \cdot k!, \quad\left|\mathcal{I} \mathcal{S}_{n}\right|=\sum_{i=0}^{k} R_{n, k}=\sum_{i=0}^{k}\binom{n}{k}^{2} \cdot k!.
$$

For elements from $\mathcal{I} \mathcal{S}_{n}$ one can use their regular tableaux presentation

$$
\alpha=\left(\begin{array}{cccc}
i_{1} & i_{2} & \ldots & i_{k} \\
j_{1} & j_{2} & \ldots & j_{k}
\end{array}\right)
$$

where $\operatorname{dom}(\alpha)=\left\{i_{1}, \ldots, i_{k}\right\}$ and $\operatorname{im}(\alpha)=\left\{j_{1}, \ldots, j_{k}\right\}$. However, sometimes it is more convenient to use the so-called chain (or chart) decomposition of α, which is analogous to the cyclic decomposition for usual permutations. We refer the reader to [Li] for rigorous definitions, however, this decomposition is very easy to explain on the following example. The element

$$
\alpha=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 7 & 9 \\
7 & 4 & 5 & 1 & 10 & 2 & 6
\end{array}\right) \in \mathcal{I} \mathcal{S}_{10}
$$

has the following graph of the action on $\{1,2, \ldots, 10\}$:

$$
\begin{aligned}
& 1 \\
& \uparrow \\
& \uparrow \\
& 4 \\
& 4
\end{aligned} \quad \begin{aligned}
& 7 \\
& 2
\end{aligned} \quad 3 \rightarrow 5 \rightarrow 10 \quad 9 \rightarrow 6 \quad 8
$$

and hence it is convenient to write it as $\alpha=(1,7,2,4)[3,5,10][9,6][8]$. We call $(1,7,2,4)$ a cycle and $[3,5,10]$ (as well as $[9,6]$ and [8]) a chain of the element α.

We denote by L_{n} the total number of chains in the chain decompositions of all elements in $\left|\mathcal{I} \mathcal{S}_{n}\right|$. Each element of rank k has defect $n-k$ and thus contains $n-k$ chains implying $L_{n}=\sum_{k=0}^{n}(n-k) R_{n, k}$. The semigroup $\mathcal{I} \mathcal{S}_{n}$ contains the zero element 0 , uniquely characterized by the property $\operatorname{dom}(0)=\varnothing$. We denote by T_{n} the set of all nilpotent elements in $\mathcal{I} \mathcal{S}_{n}$, that is the set of all $\alpha \in \mathcal{I} \mathcal{S}_{n}$ satisfying $\alpha^{n}=0$. We also denote by $L^{(n)}$ the total number of chains in the chain decompositions of all elements in T_{n}.

In [GM2] various combinatorial relations between $\left|\mathcal{I} \mathcal{S}_{n}\right|,\left|T_{n}\right|, L_{n}$ and $L^{(n)}$ were obtained in a purely combinatorial way. The paper [GM2] contains also various estimates of distributions of elements from $\mathcal{I} \mathcal{S}_{n}$ with respect to certain algebraic properties. These distributions are obtained using several technical lemmas. The most of the technical difficulties in [GM2] arise from the fact that the authors did not have any reasonable asymptotic formula for $\left|\mathcal{I} \mathcal{S}_{n}\right|$ available. The aim of the present paper is to fill this gap. In Section 2 we derive an asymptotic formula for $\left|\mathcal{I} \mathcal{S}_{n}\right|$. In Section 4 we even show that analogous methods can be applied to derive an asymptotic formula for $\left|\operatorname{End}\left(\mathcal{I} \mathcal{S}_{n}\right)\right|$. These formulae happen to be enough to show that $\left|\mathcal{I} \mathcal{S}_{n}\right| /\left|\operatorname{End}\left(\mathcal{I S}_{n}\right)\right| \rightarrow 0, n \rightarrow \infty$, which solves a problem from $[\mathrm{ST}]$. Our results can be used to recover (in hopefully an easier way) several asymptotic statements from [GM2]. This is done in Section 3. Our results can be also used to obtain several new statements about the distributions of elements of $\mathcal{I} \mathcal{S}_{n}$ with respect to such combinatorial properties as the defect, the stable rank, the order etc. This is done in Section 5. Finally, in Section 6 we compute exponential generating functions for $\left|\mathcal{I} \mathcal{S}_{n}\right|,\left|T_{n}\right|$, L_{n} and $L^{(n)}$ and use them to recover various combinatorial results from [GM2].

2 An asymptotic for $\left|\mathcal{I} \mathcal{S}_{n}\right|$

This section is devoted to the proof of the following
Theorem 1.

$$
\left|\mathcal{I} \mathcal{S}_{n}\right| \sim \frac{1}{2 \sqrt{\pi e}} n^{-1 / 4} e^{2 \sqrt{n}} n!\sim \frac{1}{\sqrt{2 e}} \cdot e^{2 \sqrt{n}-n} n^{n+1 / 4}
$$

Proof. For $R_{n, k}=\binom{n}{k}^{2} \cdot k!=\frac{n!)^{2}}{(n-k)!!^{2} k!}$ we have the ratio $\frac{R_{n, k+1}}{R_{n, k}}=\frac{(n-k)^{2}}{k+1}$. Moreover, for large n we obtain that $\frac{R_{n, k+1}}{R_{n, k}} \approx 1$ when $k \approx n-\sqrt{n}$, hence $\max _{k} R_{n, k}$ is achieved for such a k. Note that $\frac{R_{n, k+1}}{R_{n, k}}$ is decreasing with respect to k. Write

$$
\begin{equation*}
k=n-x \sqrt{n}, \quad 0 \leq x \leq \sqrt{n} \tag{1}
\end{equation*}
$$

Using the Stirling formula we have

$$
\begin{align*}
\ln \left(\frac{R_{n, k}}{n!}\right) & =n \ln n-n+\frac{1}{2} \ln (2 \pi n)-k \ln k+k-\frac{1}{2} \ln (2 \pi k)- \\
& -2(n-k) \ln (n-k)+2(n-k)-\ln (2 \pi(n-k))+O\left(\frac{1}{n}+\frac{1}{k}+\frac{1}{n-k}\right) . \tag{2}
\end{align*}
$$

Using the arguments above we have $\frac{R_{n, k+1}}{R_{n, k}}<\frac{\left(\frac{1}{2} \sqrt{n}\right)^{2}}{n-\frac{1}{2} \sqrt{n}}<\frac{1}{2}$ for $k>n-\frac{1}{2} \sqrt{n}$ and large n. Thus, for $k \geq k_{1}=\left\lceil n-\frac{1}{2} \sqrt{n}\right\rceil$ we have $R_{n, k} \leq 2^{-\left(k-k_{1}\right)} R_{n, k_{1}}$. In particular,

$$
\sum_{k \geq n-\frac{1}{4} \sqrt{n}} R_{n, k} \leq 2^{2-\frac{1}{4} \sqrt{n}} R_{n, k_{1}}=O\left(2^{-\sqrt{n} / 4} R_{n, k_{1}}\right)
$$

Similarly, for $k \leq n-2 \sqrt{n}$ we have $\frac{R_{n, k}}{R_{n, k+1}}<\frac{n}{(2 \sqrt{n})^{2}}=\frac{1}{4}$, and

$$
\sum_{k \leq n-3 \sqrt{n}} R_{n, k}=O\left(4^{-\sqrt{n}} R_{n, k_{2}}\right),
$$

where $k_{2}=\lceil n-2 \sqrt{n}\rceil$.
Hence, to estimate $\left|\mathcal{I} \mathcal{S}_{n}\right|=\sum_{k=0}^{n} R_{n, k}$ we can ignore $k \geq n-\frac{1}{4} \sqrt{n}$ and $k \leq n-3 \sqrt{n}$. We may thus assume that $\frac{1}{4} \leq x \leq 3$. For such x we have:

$$
\begin{aligned}
& \ln \left(\frac{R_{n, k}}{n!}\right)= n \ln n-n-(n-x \sqrt{n}) \ln (n-x \sqrt{n})+n-x \sqrt{n}-\frac{1}{2} \ln \frac{n-x \sqrt{n}}{n}- \\
&-2 x \sqrt{n} \ln x-2 x \sqrt{n} \ln (\sqrt{n})+2 x \sqrt{n}-\ln (2 \pi x \sqrt{n})+O\left(n^{-1 / 2}\right)= \\
&=-(n-x \sqrt{n}) \ln \left(1-\frac{x}{\sqrt{n}}\right)-2 \sqrt{n} x \ln x+x \sqrt{n}-\ln (2 \pi x \sqrt{n})+O\left(n^{-1 / 2}\right)= \\
&= x \sqrt{n}-x^{2}+\frac{x^{2}}{2}+x \sqrt{n}-2 \sqrt{n} x \ln x-\ln (2 \pi x \sqrt{n})+O\left(n^{-1 / 2}\right)= \\
&= 2 \sqrt{n}(x-x \ln x)-\frac{x^{2}}{2}-\ln x-\ln (2 \pi \sqrt{n})+O\left(n^{-1 / 2}\right)
\end{aligned}
$$

where all O are uniform in x and n.
Denote $f(x)=x-x \ln x$ and we have $f^{\prime}(x)=-\ln x, f^{\prime \prime}(x)=-\frac{1}{x}$. Thus $f(x)$ is concave on $[0,+\infty)$ with a maximum at $x_{0}=1$. As $f\left(x_{0}\right)=1$, we have the following Taylor expansion:

$$
\begin{equation*}
f(x)=1-\frac{1}{2}\left(x-x_{0}\right)^{2}+O\left(\left|x-x_{0}\right|^{3}\right), \quad 0 \leq x<\infty \tag{3}
\end{equation*}
$$

For $\frac{1}{4} \leq x \leq 3$ we have $f^{\prime \prime}(x)<-\frac{1}{3}$ and thus $f(x) \leq 1-\frac{1}{6}\left(x-x_{0}\right)^{2}$.

Further, let $g(x)=-\frac{x^{2}}{2}-\ln x$. Then for all $\frac{1}{4} \leq x \leq 3$ such that $x \sqrt{n} \in \mathbb{Z}$ we have

$$
\begin{equation*}
\frac{1}{n!} R_{n, n-x \sqrt{n}}=e^{2 \sqrt{n} f(x)+g(x)} \cdot \frac{1+O\left(n^{-1 / 2}\right)}{2 \pi \sqrt{n}} . \tag{4}
\end{equation*}
$$

Now we have:

$$
\begin{aligned}
& \frac{1}{n!} \sum_{k=0}^{n} R_{n, k}=\int_{0}^{n+1} \frac{1}{n!} R_{n, n-\lfloor t\rfloor} d t \sim \int_{\sqrt{n} / 4}^{3 \sqrt{n}} \frac{1}{n!} R_{n, n-\lfloor t\rfloor} d t=[t=\sqrt{n} y]= \\
& =\sqrt{n} \int_{1 / 4}^{3} \frac{1}{n!} R_{n, n-\lfloor y \sqrt{n}\rfloor} d y=\left[\tilde{y}=\frac{\lfloor y \sqrt{n}\rfloor}{\sqrt{n}}\right]=\sqrt{n} \int_{1 / 4}^{3} \frac{1+O\left(n^{-1 / 2}\right)}{2 \pi \sqrt{n}} e^{2 \sqrt{n} f(\tilde{y})+g(\tilde{y})} d y \sim \\
& \\
& \sim \frac{e^{2 \sqrt{n}}}{2 \pi} \int_{1 / 4}^{3} e^{2 \sqrt{n}(f(\tilde{y})-1)+g(\tilde{y})} d y
\end{aligned}
$$

Write

$$
\int_{1 / 4}^{3} e^{2 \sqrt{n}(f(\tilde{y})-1)+g(\tilde{y})} d y=\int_{I_{1}} e^{2 \sqrt{n}(f(\tilde{y})-1)+g(\tilde{y})} d y+\int_{I_{2}} e^{2 \sqrt{n}(f(\tilde{y})-1)+g(\tilde{y})} d y
$$

where $I_{1}=\left\{y \in[1 / 4,3]:|y-1| \geq n^{-1 / 5}\right\}$ and $I_{2}=\left\{y \in[1 / 4,3]:|y-1| \leq n^{-1 / 5}\right\}$ and denote these integrals by X_{1} and X_{2} respectively.

Since $|\tilde{y}-y|<n^{-1 / 2}$, for $1 / 4 \leq y \leq 3$ we have

$$
2 \sqrt{n}(f(\tilde{y})-1)+g(\tilde{y}) \leq-2 \sqrt{n} \frac{(\tilde{y}-1)^{2}}{6}+O(1)=-\frac{\sqrt{n}}{3}(y-1)^{2}+O(1)
$$

Hence $X_{1}=O\left(e^{-n^{1 / 10} / 3}\right)$.
From (3) we also have, uniformly for $y \in I_{2}$, that

$$
\begin{aligned}
2 \sqrt{n}(f(\tilde{y})-1)= & 2 \sqrt{n}\left(-\frac{1}{2}(\tilde{y}-1)^{2}+O\left(n^{-3 / 5}\right)\right)=-\sqrt{n}(\tilde{y}-1)^{2}+O\left(n^{-1 / 10}\right)= \\
& =-\sqrt{n}(y-1)^{2}+O\left(n^{1 / 2-1 / 5}|\tilde{y}-y|+n^{-1 / 10}\right)=-\sqrt{n}(y-1)^{2}+o(1),
\end{aligned}
$$

and, similarly, $g(\tilde{y})=g(1)+O\left(n^{-1 / 5}\right)=-1 / 2+o(1)$.
Now we calculate again:

$$
\begin{aligned}
\frac{1}{n!} \sum_{k=0}^{n} R_{n, k} & \sim \frac{e^{2 \sqrt{n}}}{2 \pi}\left(X_{1}+X_{2}\right) \sim \frac{e^{2 \sqrt{n}}}{2 \pi} X_{2} \sim \frac{e^{2 \sqrt{n}}}{2 \pi} \int_{1-n^{-1 / 5}}^{1+n^{-1 / 5}} e^{-\sqrt{n}(y-1)^{2}-1 / 2} d y \sim \\
& \sim \frac{e^{2 \sqrt{n}-1 / 2}}{2 \pi} \int_{-\infty}^{+\infty} e^{-\sqrt{n}(y-1)^{2}} d y=\frac{e^{2 \sqrt{n}-1 / 2}}{2 \pi} \sqrt{\frac{\pi}{\sqrt{n}}}=\frac{1}{2} \pi^{-1 / 2} e^{-1 / 2} n^{-1 / 4} e^{2 \sqrt{n}}
\end{aligned}
$$

Finally, using the Stirling formula again, we obtain

$$
\left|\mathcal{I S}_{n}\right|=\sum_{k=0}^{n} R_{n, k} \sim \frac{1}{2 \sqrt{\pi e}} n^{-1 / 4} e^{2 \sqrt{n}} n!\sim \frac{1}{\sqrt{2 e}} n^{n+1 / 4} e^{2 \sqrt{n}-n},
$$

completing the proof.

3 Some applications of Theorem 1

An immediate corollary of Theorem 1 is the following statement, proved in [GM2, Theorem 8]:

Corollary 1.

$$
\frac{\left|\mathcal{I} \mathcal{S}_{n+1}\right|}{\left|\mathcal{I} \mathcal{S}_{n}\right|} \sim n, \quad n \rightarrow \infty
$$

Another corollary is the following reinforcement of [GM2, Theorem 9]:
Corollary 2. $\left|T_{n}\right| \sim \frac{1}{\sqrt{n}}\left|\mathcal{I} \mathcal{S}_{n}\right|$, in particular,

$$
\frac{\left|T_{n}\right|}{\left|\mathcal{I} \mathcal{S}_{n}\right|} \rightarrow 0, \quad n \rightarrow \infty
$$

Proof. From [GM2, Theorem 6] we know that $\left|T_{n}\right|=\frac{1}{n} L_{n}$ (see a different proof in Section 6). By the definition, $L_{n}=\sum_{k=0}^{n}(n-k) R_{n, k}$. An argument, analogous to that of Theorem 1, yields

$$
\frac{1}{n!} L_{n} \sim \int_{\sqrt{n} / 4}^{3 \sqrt{n}}\lfloor t\rfloor \frac{1}{n!} R_{n, n-\lfloor t\rfloor} d t
$$

The same estimates as in Theorem 1 show that most of the integral comes from $y=t / \sqrt{n}=$ $1+O\left(n^{-1 / 5}\right)$. Hence

$$
\frac{1}{n!} L_{n} \sim \sqrt{n} \int_{\sqrt{n} / 4}^{3 \sqrt{n}} \frac{1}{n!} R_{n, n-\lfloor t\rfloor} d t \sim \sqrt{n} \frac{1}{n!}\left|\mathcal{I} \mathcal{S}_{n}\right|
$$

This implies that $L_{n} \sim \sqrt{n}\left|\mathcal{I} \mathcal{S}_{n}\right|$ and completes the proof.

4 An asymptotic for $\left|\operatorname{End}\left(\mathcal{I} \mathcal{S}_{n}\right)\right|$

In $[\mathrm{ST}]$ it is shown that for $n>6$ the cardinality of the semigroup $\operatorname{End}\left(\mathcal{I} \mathcal{S}_{n}\right)$ of all endomorphisms of the semigroup $\mathcal{I} \mathcal{S}_{n}$ equals

$$
\left|\operatorname{End}\left(\mathcal{I S}_{n}\right)\right|=3^{n}+3 \cdot n!+n!\sum_{m=0}^{n} \sum_{k=1}^{\lfloor m / 2\rfloor} \frac{2^{m-3 k}}{(n-m)!\cdot(m-2 k)!\cdot k!}
$$

On [ST, Page 303] the following problem is formulated:
Find an asymptotic estimate for $\left|\operatorname{End}\left(\mathcal{I S}_{n}\right)\right|$ when $n \rightarrow \infty$. Is $\left|\operatorname{End}\left(\mathcal{I} \mathcal{S}_{n}\right)\right| /\left|\mathcal{I} \mathcal{S}_{n}\right|$ approaching 0?

In this section we answer both parts of this problem.
Theorem 2. $\left|\operatorname{End}\left(\mathcal{I} \mathcal{S}_{n}\right)\right| \sim 3 n!$.

Proof. Set

$$
X_{n}=n!\sum_{m=0}^{n} \sum_{k=1}^{\lfloor m / 2\rfloor} \frac{2^{m-3 k}}{(n-m)!\cdot(m-2 k)!\cdot k!} .
$$

It would be enough to show that $X_{n} / n!\rightarrow 0, n \rightarrow \infty$. To do this we remark that X_{n} equals the number of ways to perform the following procedure:
(i) choose $X \subset N_{n}$;
(ii) choose $Y \subset X$ such that $|Y|=2 k>0$;
(iii) decompose $Y=\cup Y_{i},\left|Y_{i}\right|=2, Y_{i} \cap Y_{j}=\varnothing$ for $i \neq j$, the order of Y_{i} is not important;
(iv) Choose $Z \subset X \backslash Y$.

Now let $|X|=m, 0 \leq m \leq n$, and note that (i) can be done in $\binom{n}{m}$ different ways, each of (ii) and (iv) can be done in at most 2^{m} different ways, and, finally, (iii) can be done in at most m !! different ways. Hence

$$
X_{n} \leq \sum_{m=0}^{n}\binom{n}{m} \cdot 2^{m} \cdot 2^{m} \cdot m!!\leq\left(\sum_{m=0}^{n}\binom{n}{m} \cdot 4^{m}\right)(2\lceil n / 2\rceil)!!=5^{n} 2^{\lceil n / 2\rceil}\lceil n / 2\rceil!.
$$

To complete the proof it is enough to show that $5^{n} 2^{\lceil n / 2\rceil}\lceil n / 2\rceil!/ n!\rightarrow 0, n \rightarrow \infty$. Using the Stirling formula we have

$$
5^{n} 2^{\lceil n / 2\rceil}\lceil n / 2\rceil!\leq 5^{n} 2^{(n+1) / 2}\lceil n / 2\rceil!\sim \frac{1}{\sqrt{\pi}} e^{n \ln 5 \sqrt{2}-\frac{1}{2} \ln \lceil n / 2\rceil+\lceil n / 2\rceil \ln \lceil n / 2\rceil-\lceil n / 2\rceil},
$$

and thus

$$
\frac{5^{n} 2^{\lceil n / 2\rceil}\lceil n / 2\rceil!}{n!} \sim \frac{1}{\sqrt{2}} e^{n \ln 5 \sqrt{2}-\frac{1}{2} \ln \lceil n / 2\rceil+\lceil n / 2\rceil \ln \lceil n / 2\rceil-\lceil n / 2\rceil-\frac{1}{2} \ln n-n \ln n+n}
$$

Since the exponent is $-\frac{1}{2} n \ln n+O(n)$, we obtain that the expression approaches 0 for large n. This completes the proof.

Corollary 3.

$$
\frac{\left|\operatorname{End}\left(\mathcal{I S}_{n}\right)\right|}{\left|\mathcal{I} \mathcal{S}_{n}\right|} \rightarrow 0, \quad n \rightarrow \infty
$$

Proof. Follows immediately from the formulae of Theorem 1 and Theorem 2.
Using the methods, analogous to those of Theorem 1, one can even estimate the asymptotic for the "problematic" term X_{n} above.

Theorem 3.

$$
X_{n} \sim \frac{1}{\sqrt{2}} \cdot e^{\frac{1}{2} n \ln n-\frac{1}{2} n+3 \sqrt{n}-\frac{9}{4}} .
$$

Proof. We can write

$$
n!\sum_{m=0}^{n} \sum_{k=1}^{\lfloor m / 2\rfloor} \frac{2^{m-3 k}}{(n-m)!\cdot(m-2 k)!\cdot k!}=n!\sum_{m=0}^{n} \frac{2^{m}}{(n-m)!} \sum_{k=1}^{\lfloor m / 2\rfloor} \frac{2^{-3 k}}{(m-2 k)!\cdot k!},
$$

and we denote $a_{k}=\frac{2^{-3 k}}{(m-2 k)!\cdot k!}, b_{m}=\sum_{k=1}^{\lfloor m / 2\rfloor} a_{k}, c_{m}=\frac{2^{m}}{(n-m)!} b_{k}$. Remark that $\frac{a_{k+1}}{a_{k}}=$ $\frac{2^{-3}}{k+1}(m-2 k)(m-2 k-1)$ decreases on $[0, m / 2)$ and a_{k} has on $[0, m / 2)$ a unique maximum at $\approx \frac{m}{2}-\sqrt{m}$. Let $k=\frac{m}{2}-x \sqrt{m}$, that is $m-2 k=2 x \sqrt{m}$, where $\varepsilon \leq x \leq C$. Then we have

$$
\frac{a_{k+1}}{a_{k}}=\frac{1}{8} \cdot \frac{1}{m / 2} \cdot 4 x^{2} m(1+o(1))=x^{2}+o(1) .
$$

This implies that $\sum_{x<1 / 2} a_{k}$ and $\sum_{x>2} a_{k}$ belong to $O\left(e^{-c \sqrt{m}} a_{m / 2-\sqrt{m}}\right)$, that is relatively very small and can be neglected. Assume now that $1 / 2 \leq x \leq 2$. Taking into account that

$$
\ln k=\ln \frac{m}{2}+\ln \left(1-\frac{2 x}{\sqrt{m}}\right)=\ln \frac{m}{2}-\frac{2 x}{\sqrt{m}}-\frac{2 x^{2}}{m}+O\left(m^{-3 / 2}\right)
$$

and using the Stirling formula we obtain the following:

$$
\begin{aligned}
& \ln a_{k}=-3 k \ln 2-\ln (2 x \sqrt{m})!-\ln k!=-\frac{3 \ln 2}{2} m+3 \ln 2 \sqrt{m} x-2 x \sqrt{m} \ln 2- \\
& \begin{aligned}
&-2 x \sqrt{m} \ln x-x \sqrt{m} \ln m+2 x \sqrt{m}-\ln (2 \pi)-\frac{1}{2} \ln (2 x \sqrt{m})-k \ln k+k-\frac{1}{2} \ln k+o(1)= \\
&=-\frac{3 \ln 2}{2} m+(\ln 2+2) x \sqrt{m}-2 x \sqrt{m} \ln x-x \sqrt{m} \ln m-\ln (2 \pi)-\frac{1}{2} \ln (2 x \sqrt{m})- \\
& \quad-k \ln \frac{m}{2}+\frac{2 k x}{\sqrt{m}}+\frac{m x^{2}}{m}+\frac{m}{2}-x \sqrt{m}-\frac{1}{2} \ln \frac{m}{2}+o(1)= \\
&=-m \ln 2+2 x \sqrt{m}-2 x \sqrt{m} \ln x-\frac{1}{2} \ln \left(4 \pi^{2} x m^{3 / 2}\right)-\frac{1}{2} m \ln m-x^{2}+\frac{m}{2}+o(1) .
\end{aligned}
\end{aligned}
$$

Further, assuming $x=1+m^{-1 / 4} y$ yields $x \ln x-x=-1+\frac{1}{2}(x-1)^{2}+O\left((x-1)^{3}\right)=$ $-1+\frac{y^{2}}{2 \sqrt{m}}+O\left(\frac{y^{3}}{m^{3 / 4}}\right)$ and thus
$\ln a_{k}=-\frac{1}{2} m \ln m+m\left(\frac{1}{2}-\ln 2\right)-1+O\left(y m^{-1 / 4}\right)+2 \sqrt{m}-y^{2}+O\left(y^{3} m^{-1 / 4}\right)-\frac{3}{4} \ln m-\ln (2 \pi)$.
Therefore $k=\frac{m}{2}-\sqrt{m}-m^{1 / 4} y$ yields

$$
a_{k}=\frac{1}{2 \pi} e^{\left(\frac{1}{2}-\ln 2\right) m-\frac{1}{2} m \ln m-\frac{3}{4} \ln m+2 \sqrt{m}-1} e^{-y^{2}}\left(1+O\left(\frac{y+y^{3}}{m^{1 / 4}}\right)\right) .
$$

We can assume that, say, $y=O\left(m^{1 / 12}\right)$ and ignore larger y. In this way we obtain

$$
\begin{aligned}
& b_{m}=\sum_{k=1}^{\lfloor m / 2\rfloor} a_{k}=\frac{1}{2 \pi} e^{\left(\frac{1}{2}-\ln 2\right) m-\frac{1}{2} m \ln m-\frac{3}{4} \ln m+2 \sqrt{m}-1} m^{1 / 4} \int_{-\infty}^{\infty} e^{-y^{2}} d y(1+o(1)) \sim \\
& \sim \frac{1}{2 \sqrt{\pi}} e^{\left(\frac{1}{2}-\ln 2\right) m-\frac{1}{2} m \ln m-\frac{1}{2} \ln m+2 \sqrt{m}-1} .
\end{aligned}
$$

The latter implies

$$
\begin{equation*}
\ln b_{m}=\left(\frac{1}{2}-\ln 2\right) m-\frac{1}{2} m \ln m-\frac{1}{2} \ln m+2 \sqrt{m}-1-\ln (2 \sqrt{\pi})+o(1) \tag{5}
\end{equation*}
$$

and also

$$
\begin{equation*}
\ln c_{m}=\ln b_{m}+m \ln 2-\ln ((n-m)!) . \tag{6}
\end{equation*}
$$

Further, for $m \rightarrow \infty$ we compute $\ln \frac{b_{m+1}}{b_{m}}=\frac{1}{2}-\ln 2-\frac{1}{2} \ln m-\frac{1}{2}+o(1)=-\ln 2-$ $\frac{1}{2} \ln m+o(1)$ and also $\ln \frac{c_{m+1}}{c_{m}}=-\frac{1}{2} \ln m+\ln (n-m)+o(1)$. This gives us that for large n the value of c_{m} is largest when $\frac{1}{2} \ln m \approx \ln (n-m)$ that is $m \approx n-\sqrt{n}$. In particular, it follows easily that $m \leq n / 2$ can be ignored and thus we obtain that $o(1), m \rightarrow \infty$, is small even if $n \rightarrow \infty$.

Let us now show that even $m<n-3 \sqrt{n}$ can be ignored. If $m<n-2 \sqrt{n}$ then we have $-\frac{1}{2} \ln m+\ln (n-m)>-\frac{1}{2} \ln n+\ln (2 \sqrt{n})=\ln 2$ and thus for large n we derive $\ln \frac{c_{m+1}}{c_{m}}>1 / 2$ and hence $\frac{c_{m+1}}{c_{m}}>e^{1 / 2}$. Set $M=\lceil n-2 \sqrt{n}\rceil$. Then $\frac{c_{m}}{c_{M}}<e^{-(M-m) / 2}$ and thus

$$
\sum_{m<n-3 \sqrt{n}} c_{m}<e^{-\sqrt{n} / 2} \frac{1}{1-e^{-1 / 2}} c_{M}
$$

The latter implies that all terms with $m<n-3 \sqrt{n}$ can be ignored. Similarly, all terms with $m>n-\sqrt{n} / 2$ can be ignored.

Thus we can assume $m=n-x \sqrt{n}$, where $1 / 2 \leq x \leq 3$. Under such assumption we have $\ln \frac{c_{m+1}}{c_{m}}=-\frac{1}{2} \ln n+\ln (x \sqrt{n})+o(1)=\ln x+o(1)$.

For $1 / 2 \leq x \leq 3$ we have, using the Stirling formula, that

$$
\begin{gathered}
\ln m=\ln n+\ln \left(1-\frac{x}{\sqrt{n}}\right)=\ln n-\frac{x}{\sqrt{n}}-\frac{x^{2}}{2 n}+O\left(n^{-3 / 2}\right), \\
m \ln m=n \ln n-x \sqrt{n} \ln n-x \sqrt{n}+x^{2}-\frac{x^{2}}{2}+O\left(n^{-1 / 2}\right), \\
\ln (n-m)!=\ln (x \sqrt{n})!=x \sqrt{n} \ln x+\frac{1}{2} x \sqrt{n} \ln n-x \sqrt{n}+\frac{1}{2} \ln x+\frac{1}{4} \ln n+\ln \sqrt{2 \pi}+o(1), \\
\sqrt{m}=\sqrt{n}(1-x / \sqrt{n})^{1 / 2}=\sqrt{n}-x / 2+o(1) .
\end{gathered}
$$

Hence, using (5) and (6), we obtain

$$
\begin{aligned}
\ln c_{m}= & \frac{1}{2} n-\frac{1}{2} x \sqrt{n}-\frac{1}{2} n \ln n+\frac{1}{2} x \sqrt{n} \ln n+\frac{1}{2} x \sqrt{n}-\frac{x^{2}}{4}-\frac{1}{2} \ln n+2 \sqrt{n}-x-1-\ln (2 \sqrt{\pi})- \\
& -x \sqrt{n} \ln x-\frac{1}{2} x \sqrt{n} \ln n+x \sqrt{n}-\frac{1}{2} \ln x-\frac{1}{4} \ln n-\ln \sqrt{2 \pi}+o(1)= \\
= & \frac{1}{2} n-\frac{1}{2} n \ln n-\frac{3}{4} \ln n+2 \sqrt{n}-1-\ln \left(2^{3 / 2} \pi\right)+\sqrt{n}(x-x \ln x)-\frac{x^{2}}{4}-x-\frac{1}{2} \ln x+o(1) .
\end{aligned}
$$

Setting $x=1+y n^{-1 / 4}$ yields

$$
\ln c_{m}=\frac{1}{2} n-\frac{1}{2} n \ln n-\frac{3}{4} \ln n+3 \sqrt{n}-1-\ln \left(2^{3 / 2} \pi\right)-\frac{5}{4}-\frac{y^{2}}{2}+O\left(\frac{y^{3}}{n^{1 / 4}}\right)+o(1)
$$

and thus

$$
\begin{aligned}
\sum_{m=0}^{n} c_{m}=\exp \left(\frac{1}{2} n-\frac{1}{2} n\right. & \left.\ln n-\frac{3}{4} \ln n+3 \sqrt{n}-\frac{9}{4}-\ln \left(2^{3 / 2} \pi\right)\right) n^{1 / 4} \times \\
& \times \int_{-\infty}^{+\infty} e^{-y^{2} / 2} d y(1+o(1))=\frac{1}{2 \sqrt{\pi}} e^{\frac{1}{2} n-\frac{1}{2} n \ln n-\frac{1}{2} \ln n+3 \sqrt{n}-\frac{9}{4}+o(1)}
\end{aligned}
$$

This implies that

$$
X_{n} \sim \frac{n!}{2 \sqrt{\pi n}} e^{\frac{1}{2} n-\frac{1}{2} n \ln n+3 \sqrt{n}-\frac{9}{4}} \sim \frac{1}{\sqrt{2}} e^{\frac{1}{2} n \ln n-\frac{1}{2} n+3 \sqrt{n}-\frac{9}{4}},
$$

and completes the proof.

5 Some distributions

Denote by D_{n} the defect of a random element of $\mathcal{I} \mathcal{S}_{n}$, by X_{n} the stable rank of a random element of $\mathcal{I} \mathcal{S}_{n}$, by C_{n} the number of cycles of a random element of $\mathcal{I} \mathcal{S}_{n}$, and by $K_{n}=$ $C_{n}+D_{n}$ the total number of components (i.e. cycles and chains) of a random element of $\mathcal{I} \mathcal{S}_{n}$.

Proposition 1. If $n \rightarrow \infty$ and $\frac{k-\sqrt{n}}{n^{1 / 4}} \rightarrow z$ with $-\infty<z<\infty$, then

$$
P\left(D_{n}=k\right) \sim \frac{1}{\sqrt{\pi} n^{1 / 4}} e^{-z^{2}}
$$

In particular,

$$
\frac{D_{n}-\sqrt{n}}{n^{1 / 4}} \xrightarrow{d} N(0,1 / 2) .
$$

Proof. We have $P\left(D_{n}=k\right)=\frac{R_{n, n-k}}{\left|\mathcal{I} \mathcal{S}_{n}\right|}$ by definition and $\frac{R_{n, n-k}}{\left|\mathcal{I} \mathcal{S}_{n}\right|} \sim \frac{1}{\sqrt{\pi} n^{1 / 4}} e^{-z^{2}}$, follows from (3) and (4).

Proposition 2.

$$
P\left(X_{n}=k\right) \sim \frac{1}{\sqrt{n}} e^{-k / \sqrt{n}} \text { if } k=o\left(n^{3 / 4}\right),
$$

in particular,

$$
\frac{X_{n}}{\sqrt{n}} \xrightarrow{d} \exp (1) .
$$

Proof. We have

$$
P\left(X_{n}=k\right)=\binom{n}{k} \cdot k!\cdot \frac{\left|T_{n-k}\right|}{\left|\mathcal{I} \mathcal{S}_{n}\right|}=\frac{\left|T_{n-k}\right| /(n-k)!}{\left|\mathcal{I} \mathcal{S}_{n}\right| / n!}
$$

Hence, if $k=o(n)$ we have, using Section 2 and Section 3, that

$$
\begin{aligned}
& P\left(X_{n}=k\right) \sim \frac{(n-k)^{-3 / 4} e^{2 \sqrt{n-k}}}{n^{-1 / 4} e^{2 \sqrt{n}}} \sim \frac{1}{\sqrt{n}} e^{2(\sqrt{n-k}-\sqrt{n})}= \\
&=\frac{1}{\sqrt{n}} e^{2 \sqrt{n}\left((1-k / n)^{1 / 2}-1\right)}=\frac{1}{\sqrt{n}} e^{-2 \sqrt{n} \cdot \frac{k}{2 n}+O\left(k^{2} / n^{3 / 2}\right)}
\end{aligned}
$$

and the statement follows.

Proposition 3.

$$
\frac{C_{n}-\frac{1}{2} \ln n}{\sqrt{\frac{1}{2} \ln n}} \xrightarrow{d} N(0,1) .
$$

Proof. Given X_{n}, the number of cycles for the permutational part of size X_{n} is approximately $\ln X_{n}$. More precisely, by [Go], we have

$$
\frac{C_{n}-\ln X_{n}}{\sqrt{\ln X_{n}}} \xrightarrow{d} N(0,1) .
$$

Further, we have $\ln X_{n}=\frac{1}{2} \ln n+\ln \frac{X_{n}}{\sqrt{n}}$ and $\ln \frac{X_{n}}{\sqrt{n}} \xrightarrow{d} \ln \exp (1)$ by Proposition 2. Hence, in

$$
\frac{C_{n}-\frac{1}{2} \ln n}{\sqrt{\frac{1}{2} \ln n}}=\frac{\sqrt{\ln X_{n}}}{\sqrt{\frac{1}{2} \ln n}} \cdot \frac{C_{n}-\ln X_{n}}{\sqrt{\ln X_{n}}}+\frac{\ln X_{n}-\frac{1}{2} \ln n}{\sqrt{\frac{1}{2} \ln n}}
$$

we have $\frac{\sqrt{\ln X_{n}}}{\sqrt{\frac{1}{2} \ln n}} \xrightarrow{p} 1$ and $\frac{\ln X_{n}-\frac{1}{2} \ln n}{\sqrt{\frac{1}{2} \ln n}} \xrightarrow{p} 0$, completing the proof.
More precisely, we can show that C_{n} is almost Poisson distributed. Let $d_{T V}$ denote the total variation distance between two distributions, see e.g. [BHJ].

Proposition 4.

$$
d_{T V}\left(C_{n}, \operatorname{Po}\left(\frac{1}{2} \ln n\right)\right) \rightarrow 0, \quad n \rightarrow \infty
$$

Proof. Let $h_{k}=\sum_{i=1}^{k} 1 / i=\ln k+O(1)$. Given $X_{n}=k$, the number of cycles is distributed as the number of cycles in a random permutation of length k. Using [BH], we obtain

$$
d_{T V}\left(\mathcal{L}\left(C_{n} \mid X_{n}=k\right), \operatorname{Po}\left(h_{k}\right)\right) \leq \frac{c}{h_{k}} \leq \frac{c}{\ln k}
$$

for some constant $c \leq \pi^{2} / 6$. Further, by [BHJ, Remark 1.1.4], we have

$$
d_{T V}\left(\operatorname{Po}\left(h_{k}\right), \operatorname{Po}(\ln \sqrt{n})\right) \leq \frac{\left|h_{k}-\ln \sqrt{n}\right|}{\sqrt{\ln \sqrt{n}}} \leq \frac{|\ln k-\ln \sqrt{n}|+1}{\sqrt{\ln \sqrt{n}}} .
$$

Consequently,

$$
d_{T V}\left(\mathcal{L}\left(C_{n} \mid X_{n}=k\right), \operatorname{Po}(\ln \sqrt{n})\right) \leq f(k):=\frac{\pi^{2}}{6 \ln k}+\frac{|\ln k-\ln \sqrt{n}|+1}{\sqrt{\ln \sqrt{n}}} .
$$

Since also $d_{T V} \leq 1$, we obtain $d_{T V}\left(C_{n}, \operatorname{Po}(\ln \sqrt{n})\right) \leq E\left(f\left(X_{n}\right) \wedge 1\right)$. From the proof of Proposition 3 it follows that $f\left(X_{n}\right) \xrightarrow{p} 0$ and thus $E\left(f\left(X_{n}\right) \wedge 1\right) \xrightarrow{p} 0$, completing the proof.

Corollary 4.

$$
\frac{K_{n}-\sqrt{n}}{n^{1 / 4}} \xrightarrow{d} N(0,1 / 2) .
$$

Proof. Follows from Propositions 1 and 3.
Recall that for $\sigma \in \mathcal{I} \mathcal{S}_{n}$ the order $\mathrm{O}(\sigma)$ of σ is defined as the cardinality of the monoid, generated by σ, and the inverse order $\mathrm{IO}(\sigma)$ of σ is defined as the cardinality of the inverse monoid, generated by σ, that is

$$
\mathrm{O}(\sigma)=\left|\left\{\sigma^{l}: l \in\{0,1,2, \ldots\}\right\}\right|, \quad \mathrm{IO}(\sigma)=\left|\left\{\sigma^{l}: l \in \mathbb{Z}\right\}\right|
$$

Let O_{n} and I_{n} denote the order and the inverse order of a random element of $\mathcal{I} \mathcal{S}_{n}$ respectively.

Proposition 5.

$$
\frac{\ln O_{n}-\frac{1}{8} \ln ^{2} n}{\sqrt{\frac{1}{24} \ln ^{3} n}} \xrightarrow{d} N(0,1), \quad \frac{\ln I_{n}-\frac{1}{8} \ln ^{2} n}{\sqrt{\frac{1}{24} \ln ^{3} n}} \xrightarrow{d} N(0,1) .
$$

Proof. For $\sigma \in \mathcal{I} \mathcal{S}_{n}$ denote $X(\sigma)=\left\{i \in\{1, \ldots, n\}: \sigma^{l}(i)=i\right.$ for some $\left.l>0\right\}$. Then $|X(\sigma)|$ is the stable rank of σ. Moreover, any $\sigma \in \mathcal{I} \mathcal{S}_{n}$ can be written as a product $\sigma=\sigma_{1} \cdot \sigma_{2}$, where $\operatorname{dom}\left(\sigma_{1}\right)=\{1, \ldots, n\}$ and $\sigma_{1}(i)=\sigma(i), i \in X(\sigma), \sigma_{1}(i)=i, i \notin X(\sigma)$; $\operatorname{dom}\left(\sigma_{2}\right)=\operatorname{dom}(\sigma)$ and $\sigma_{2}(i)=i, i \in X(\sigma), \sigma_{2}(i)=\sigma(i), i \in \operatorname{dom}(\sigma) \backslash X(\sigma)$. It follows immediately from the definition that $\sigma_{1} \cdot \sigma_{2}=\sigma_{2} \cdot \sigma_{1}$. It is further easy to see (see e.g. [GK]) that

$$
\begin{equation*}
\mathrm{O}\left(\sigma_{1}\right) \leq \mathrm{O}(\sigma) \leq \mathrm{O}\left(\sigma_{1}\right)+n-|X(\sigma)|, \quad \mathrm{O}\left(\sigma_{1}\right) \leq \mathrm{IO}(\sigma) \leq \mathrm{O}\left(\sigma_{1}\right)+2(n-|X(\sigma)|) \tag{7}
\end{equation*}
$$

For a random element $\sigma \in \mathcal{I} \mathcal{S}_{n}$, let $\mathrm{O}_{n}^{\prime}(\sigma)=\mathrm{O}\left(\sigma_{1}\right)$. Given $X_{n}=X(\sigma)=k$, this has the same distribution as the order $\tilde{\mathrm{O}}_{k}$ of a random permutation of length k. In [ET] it was shown that, as $k \rightarrow \infty$,

$$
\frac{\ln \tilde{\mathrm{O}}_{k}-\frac{1}{2} \ln ^{2} k}{\sqrt{\frac{1}{3} \ln ^{3} k}} \xrightarrow{d} N(0,1) .
$$

Hence, as $n \rightarrow \infty$,

$$
\frac{\ln \mathrm{O}_{n}^{\prime}-\frac{1}{2} \ln ^{2} X_{n}}{\sqrt{\frac{1}{3} \ln ^{3} X_{n}}} \xrightarrow{d} N(0,1),
$$

and it follows as in the proof of Proposition 3 that

$$
\begin{equation*}
\frac{\ln \mathrm{O}_{n}^{\prime}-\frac{1}{8} \ln ^{2} n}{\sqrt{\frac{1}{24} \ln ^{3} n}} \xrightarrow{d} N(0,1) . \tag{8}
\end{equation*}
$$

In particular, for almost all $\sigma \in \mathcal{I} \mathcal{S}_{n}$ we have that $\mathrm{O}\left(\sigma_{1}\right) \approx n^{(\ln n) / 8}$. Since the difference between the left and the right sides of the inequalities in (7) is less than $2 n$, in particular is $o\left(n^{(\ln n) / 9}\right)$, we obtain that, asymptotically, the left and the right sides of inequalities in (7) are the same. Now the necessary statement follows from (8).

6 Some generating functions

Consider some "objects" consisting of "components", whose order in the objects is not important. Assume that there are a_{m} possible components containing exactly m elements. Let f_{n} denote the total number of objects, which consist of exactly n elements. The following well-known statement can be easily derived for example from [Wi, Theorem 3.4.1]

Proposition 6. The exponential generating function for $\left\{f_{n}, n \geq 0\right\}$ is $F(z)=e^{A(z)}$, where $A(z)=\sum_{m=1}^{\infty} \frac{a_{m}}{m!} z^{m}$.

Proposition 6 now can be used to compute the exponential generating functions for $\left|T_{n}\right|,\left|\mathcal{I} \mathcal{S}_{n}\right|$.

Theorem 4. 1. The exponential generating function for $a_{n}=\left|T_{n}\right|$ is $E_{T_{n}}(z)=e^{z /(1-z)}$.
2. The exponential generating function for $b_{n}=\left|\mathcal{I} \mathcal{S}_{n}\right|$ is $E_{\mathcal{I} \mathcal{S}_{n}}(z)=\frac{1}{1-z} z^{z /(1-z)}$.

Proof. For T_{n} we have that components are chains and $a_{m}=m$!. Hence $A(z)=\sum_{m \geq 1} z^{m}=$ $z /(1-z)$ and we get $F(z)=e^{z /(1-z)}$.

For $\mathcal{I S}_{n}$ we have two types of components: cycles and chains, and thus $a_{m}=m!+$ $(m-1)!$. This gives $A(z)=\frac{1}{1-z}-\ln (1-z)$ and therefore $F(z)=\frac{1}{1-z} e^{z /(1-z)}$.

Analogous arguments can be used to compute the exponential generating function for $L^{(n)}$ and L_{n} :

Theorem 5. 1. The exponential generating function for the sequence $c_{n}=\left|L^{(n)}\right|$ is $E_{L^{(n)}}(z)=\frac{z}{1-z} e^{z /(1-z)}$.
2. The exponential generating function for $d_{n}=\left|L_{n}\right|$ is $E_{L_{n}}(z)=\frac{z}{(1-z)^{2}} 2^{z /(1-z)}$.

Proof. A fixed chain of length m is contained in exactly $\left|T_{n-m}\right|$ elements of T_{n}, and in exactly $\left|\mathcal{I} \mathcal{S}_{n-m}\right|$ elements of $\mathcal{I} \mathcal{S}_{n}$. This implies that $E_{L^{(n)}}(z)=\frac{z}{1-z} E_{T_{n}}(z)=\frac{z}{1-z} e^{z /(1-z)}$ and $E_{L_{n}}(z)=\frac{z}{1-z} E_{\mathcal{I} \mathcal{S}_{n}}(z)=\frac{z}{(1-z)^{2}} e^{z /(1-z)}$.

Theorem 4 and the first part of Theorem 5 can now be used to derive the following corollaries:

Corollary 5. ([GM2, Theorem 7(2)]) $\left|\mathcal{I} \mathcal{S}_{n}\right|=\left|T_{n}\right|+L^{(n)}$.
Proof. Follows from $E_{\mathcal{I} \mathcal{S}_{n}}(z)=E_{T_{n}}(z)+E_{L^{(n)}}(z)$.
Corollary 6. ([GM2, Theorem 6(1)]) $\left|T_{n}\right|=\frac{1}{n} L_{n}$.
Proof. For the sequence $n\left|T_{n}\right|$ we have

$$
E_{n\left|T_{n}\right|}(z)=z E_{\left|T_{n}\right|}^{\prime}(z)=\frac{z}{(1-z)^{2}} e^{z /(1-z)}=E_{L_{n}}(z)
$$

and the statement follows.
Corollary 7. ([GM2, Theorem 6(2)]) $\left|\mathcal{I} \mathcal{S}_{n}\right|=\frac{1}{n+1} L^{(n+1)}$.
Proof. The statement is equivalent to $z E_{\mathcal{I} \mathcal{S}_{n}}(z)=E_{L^{(n)}}(z)$, which is straightforward.
We also obtain one relation, which seems to be missing in [GM2].
Corollary 8. The total number P_{n} of fixed points for all elements from $\mathcal{I S}_{n}$ satisfies $P_{n}=L^{(n)}$.

Proof. For $x \in\{1, \ldots, n\}$, the point x is fixed in exactly $\left|\mathcal{I} \mathcal{S}_{n-1}\right|$ elements of $\mathcal{I} \mathcal{S}_{n}$, which implies that $E_{P_{n}}(z)=z E_{\mathcal{I} \mathcal{S}_{n}}(z)$. Further $z E_{\mathcal{I} \mathcal{S}_{n}}(z)=E_{L^{(n)}}(z)$ by Corollary 7 and the statement follows.

Acknowledgments

For the second author the research was partially supported by The Swedish Research Council and The Swedish Institute.

References

[BH] A.D.Barbour, P.Hall, On the rate of Poisson convergence. Math. Proc. Cambridge Philos. Soc. 95 (1984), no. 3, 473-480.
[BHJ] A.Barbour, L.Holst, S.Janson, Poisson approximation. Oxford Studies in Probability, 2. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1992. x+277 pp.
[ET] P.Erdös, P.Turán, On some problems of a statistical group theory. I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 41965 175-186 (1965).
[GK] O.G.Ganyushkin, T.V.Kormysheva, Chain decomposition of partial permutations and classes of conjugated elements of the semigroup $\mathcal{I} \mathcal{S}_{n}$, Proc. Kyiv University, Ser. Math.-Mech. 27 (1992), 10-18.
[GM1] O.Ganyushkin, V.Mazorchuk, The full finite Inverse symmetric semigroup $\mathcal{I S}_{n}$, Preprint 2001:37, Chalmers University of Technology and Göteborg University, Göteborg, 2001.
[GM2] O.Ganyushkin, V.Mazorchuk, Combinatorics and distributions of partial injections, Preprint 2003:14, Uppsala University, Sweden, 2003.
[Go] V.L.Goncharov, Some facts from combinatorics, Izvestia Akad. Nauk. SSSR, Ser. Mat. 8: 3-48 (1944).
[Li] S.Lipscomb, Symmetric inverse semigroups. Mathematical Surveys and Monographs, 46. American Mathematical Society, Providence, RI, 1996.
[ST] B.M.Schein, B.Teclezghi, Endomorphisms of finite symmetric inverse semigroups. J. Algebra 198 (1997), no. 1, 300-310.
[Wi] H.S.Wilf, Generatingfunctionology. Second edition. Academic Press, Inc., Boston, MA, 1994. $\mathrm{x}+228 \mathrm{pp}$.
S.J.: Department of Mathematics, Uppsala University, Box 480, SE 751 06, Uppsala, SWEDEN, e-mail: svante@math.uu.se, web: "http://www.math.uu.se/~svante"
V.M.: Department of Mathematics, Uppsala University, Box 480, SE 751 06, Uppsala, SWEDEN, e-mail: mazor@math.uu.se, web: "http://www.math.uu.se/~mazor"

