## Some remarks on the combinatorics of $\mathcal{IS}_n$

Svante Janson and Volodymyr Mazorchuk

#### Abstract

We describe the asymptotic behavior of the cardinalities of the finite symmetric inverse semigroup  $\mathcal{IS}_n$  and its endomorphism semigroup. This is applied to show that  $|\mathcal{IS}_n|/|\text{End}(\mathcal{IS}_n)|$  is asymptotically 0, solving a problem of Schein and Teclezghi. We also apply our results to compute the distributions of elements from  $\mathcal{IS}_n$  with respect to certain combinatorial properties, and to compute the generating functions for  $|\mathcal{IS}_n|$  and for the number of nilpotent elements in  $\mathcal{IS}_n$ .

## 1 Introduction

For  $n \in \mathbb{N}$  let  $\mathcal{IS}_n$  denote the symmetric inverse semigroup of all partial injections on  $N_n = \{1, \ldots, n\}$ . We refer the reader to [GM1, GM2, Li] for the details and standard notation. For  $\alpha \in \mathcal{IS}_n$  we denote by dom( $\alpha$ ) the *domain* of  $\alpha$ , by im( $\alpha$ ) the *range* of  $\alpha$ , by rank( $\alpha$ ) =  $|\operatorname{dom}(\alpha)| = |\operatorname{im}(\alpha)|$  the *rank* of  $\alpha$ , and by def( $\alpha$ ) =  $n - \operatorname{rank}(\alpha)$  the *defect* of  $\alpha$ . For  $k = 0, 1, \ldots, n$  let  $R_{n,k}$  denote the cardinality of the set  $\{\alpha \in \mathcal{IS}_n : \operatorname{rank}(\alpha) = k\}$ . We immediately have

$$R_{n,k} = \binom{n}{k}^2 \cdot k!, \qquad |\mathcal{IS}_n| = \sum_{i=0}^k R_{n,k} = \sum_{i=0}^k \binom{n}{k}^2 \cdot k!.$$

For elements from  $\mathcal{IS}_n$  one can use their regular tableaux presentation

$$\alpha = \left(\begin{array}{cccc} i_1 & i_2 & \dots & i_k \\ j_1 & j_2 & \dots & j_k \end{array}\right),\,$$

where dom( $\alpha$ ) = { $i_1, \ldots, i_k$ } and im( $\alpha$ ) = { $j_1, \ldots, j_k$ }. However, sometimes it is more convenient to use the so-called *chain* (or *chart*) decomposition of  $\alpha$ , which is analogous to the cyclic decomposition for usual permutations. We refer the reader to [Li] for rigorous definitions, however, this decomposition is very easy to explain on the following example. The element

$$\alpha = \left(\begin{array}{rrrrr} 1 & 2 & 3 & 4 & 5 & 7 & 9 \\ 7 & 4 & 5 & 1 & 10 & 2 & 6 \end{array}\right) \in \mathcal{IS}_{10}$$

has the following graph of the action on  $\{1, 2, \ldots, 10\}$ :

and hence it is convenient to write it as  $\alpha = (1, 7, 2, 4)[3, 5, 10][9, 6][8]$ . We call (1, 7, 2, 4) a cycle and [3, 5, 10] (as well as [9, 6] and [8]) a chain of the element  $\alpha$ .

We denote by  $L_n$  the total number of chains in the chain decompositions of all elements in  $|\mathcal{IS}_n|$ . Each element of rank k has defect n-k and thus contains n-k chains implying  $L_n = \sum_{k=0}^n (n-k)R_{n,k}$ . The semigroup  $\mathcal{IS}_n$  contains the zero element 0, uniquely characterized by the property dom $(0) = \emptyset$ . We denote by  $T_n$  the set of all nilpotent elements in  $\mathcal{IS}_n$ , that is the set of all  $\alpha \in \mathcal{IS}_n$  satisfying  $\alpha^n = 0$ . We also denote by  $L^{(n)}$  the total number of chains in the chain decompositions of all elements in  $T_n$ .

In [GM2] various combinatorial relations between  $|\mathcal{IS}_n|$ ,  $|T_n|$ ,  $L_n$  and  $L^{(n)}$  were obtained in a purely combinatorial way. The paper [GM2] contains also various estimates of distributions of elements from  $\mathcal{IS}_n$  with respect to certain algebraic properties. These distributions are obtained using several technical lemmas. The most of the technical difficulties in [GM2] arise from the fact that the authors did not have any reasonable asymptotic formula for  $|\mathcal{IS}_n|$  available. The aim of the present paper is to fill this gap. In Section 2 we derive an asymptotic formula for  $|\mathcal{IS}_n|$ . In Section 4 we even show that analogous methods can be applied to derive an asymptotic formula for  $|\text{End}(\mathcal{IS}_n)|$ . These formulae happen to be enough to show that  $|\mathcal{IS}_n|/|\text{End}(\mathcal{IS}_n)| \to 0, n \to \infty$ , which solves a problem from [ST]. Our results can be used to recover (in hopefully an easier way) several asymptotic statements from [GM2]. This is done in Section 3. Our results can be also used to obtain several new statements about the distributions of elements of  $\mathcal{IS}_n$  with respect to such combinatorial properties as the defect, the stable rank, the order etc. This is done in Section 5. Finally, in Section 6 we compute exponential generating functions for  $|\mathcal{IS}_n|$ ,  $|T_n|$ ,  $L_n$  and  $L^{(n)}$  and use them to recover various combinatorial results from [GM2].

## 2 An asymptotic for $|\mathcal{IS}_n|$

This section is devoted to the proof of the following

#### Theorem 1.

$$|\mathcal{IS}_n| \sim \frac{1}{2\sqrt{\pi e}} n^{-1/4} e^{2\sqrt{n}} n! \sim \frac{1}{\sqrt{2e}} \cdot e^{2\sqrt{n}-n} n^{n+1/4}.$$

*Proof.* For  $R_{n,k} = {\binom{n}{k}}^2 \cdot k! = \frac{n!^2}{(n-k)!^2 k!}$  we have the ratio  $\frac{R_{n,k+1}}{R_{n,k}} = \frac{(n-k)^2}{k+1}$ . Moreover, for large n we obtain that  $\frac{R_{n,k+1}}{R_{n,k}} \approx 1$  when  $k \approx n - \sqrt{n}$ , hence  $\max_k R_{n,k}$  is achieved for such a k. Note that  $\frac{R_{n,k+1}}{R_{n,k}}$  is decreasing with respect to k. Write

$$k = n - x\sqrt{n}, \qquad 0 \le x \le \sqrt{n}. \tag{1}$$

Using the Stirling formula we have

$$\ln\left(\frac{R_{n,k}}{n!}\right) = n\ln n - n + \frac{1}{2}\ln(2\pi n) - k\ln k + k - \frac{1}{2}\ln(2\pi k) - 2(n-k)\ln(n-k) + 2(n-k) - \ln(2\pi(n-k)) + O\left(\frac{1}{n} + \frac{1}{k} + \frac{1}{n-k}\right).$$
 (2)

Using the arguments above we have  $\frac{R_{n,k+1}}{R_{n,k}} < \frac{\left(\frac{1}{2}\sqrt{n}\right)^2}{n-\frac{1}{2}\sqrt{n}} < \frac{1}{2}$  for  $k > n - \frac{1}{2}\sqrt{n}$  and large n. Thus, for  $k \ge k_1 = \lceil n - \frac{1}{2}\sqrt{n} \rceil$  we have  $R_{n,k} \le 2^{-(k-k_1)}R_{n,k_1}$ . In particular,

$$\sum_{k \ge n - \frac{1}{4}\sqrt{n}} R_{n,k} \le 2^{2 - \frac{1}{4}\sqrt{n}} R_{n,k_1} = O\left(2^{-\sqrt{n}/4} R_{n,k_1}\right).$$

Similarly, for  $k \le n - 2\sqrt{n}$  we have  $\frac{R_{n,k}}{R_{n,k+1}} < \frac{n}{(2\sqrt{n})^2} = \frac{1}{4}$ , and

$$\sum_{k \le n-3\sqrt{n}} R_{n,k} = O\left(4^{-\sqrt{n}} R_{n,k_2}\right),$$

where  $k_2 = \lceil n - 2\sqrt{n} \rceil$ .

Hence, to estimate  $|\mathcal{IS}_n| = \sum_{k=0}^n R_{n,k}$  we can ignore  $k \ge n - \frac{1}{4}\sqrt{n}$  and  $k \le n - 3\sqrt{n}$ . We may thus assume that  $\frac{1}{4} \le x \le 3$ . For such x we have:

$$\ln\left(\frac{R_{n,k}}{n!}\right) = n\ln n - n - (n - x\sqrt{n})\ln(n - x\sqrt{n}) + n - x\sqrt{n} - \frac{1}{2}\ln\frac{n - x\sqrt{n}}{n} - 2x\sqrt{n}\ln x - 2x\sqrt{n}\ln(\sqrt{n}) + 2x\sqrt{n} - \ln(2\pi x\sqrt{n}) + O(n^{-1/2}) = \\ = -(n - x\sqrt{n})\ln\left(1 - \frac{x}{\sqrt{n}}\right) - 2\sqrt{n}x\ln x + x\sqrt{n} - \ln(2\pi x\sqrt{n}) + O(n^{-1/2}) = \\ = x\sqrt{n} - x^2 + \frac{x^2}{2} + x\sqrt{n} - 2\sqrt{n}x\ln x - \ln(2\pi x\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) = \\ = 2\sqrt{n}(x - x\ln x) - \frac{x^2}{2} - \ln x - \ln(2\pi\sqrt{n}) + O(n^{-1/2}) +$$

where all O are uniform in x and n.

Denote  $f(x) = x - x \ln x$  and we have  $f'(x) = -\ln x$ ,  $f''(x) = -\frac{1}{x}$ . Thus f(x) is concave on  $[0, +\infty)$  with a maximum at  $x_0 = 1$ . As  $f(x_0) = 1$ , we have the following Taylor expansion:

$$f(x) = 1 - \frac{1}{2}(x - x_0)^2 + O(|x - x_0|^3), \quad 0 \le x < \infty.$$
(3)

,

For  $\frac{1}{4} \le x \le 3$  we have  $f''(x) < -\frac{1}{3}$  and thus  $f(x) \le 1 - \frac{1}{6}(x - x_0)^2$ .

Further, let  $g(x) = -\frac{x^2}{2} - \ln x$ . Then for all  $\frac{1}{4} \le x \le 3$  such that  $x\sqrt{n} \in \mathbb{Z}$  we have

$$\frac{1}{n!}R_{n,n-x\sqrt{n}} = e^{2\sqrt{n}f(x)+g(x)} \cdot \frac{1+O(n^{-1/2})}{2\pi\sqrt{n}}.$$
(4)

Now we have:

$$\frac{1}{n!} \sum_{k=0}^{n} R_{n,k} = \int_{0}^{n+1} \frac{1}{n!} R_{n,n-\lfloor t \rfloor} dt \sim \int_{\sqrt{n}/4}^{3\sqrt{n}} \frac{1}{n!} R_{n,n-\lfloor t \rfloor} dt = \left[ t = \sqrt{n}y \right] = \\ = \sqrt{n} \int_{1/4}^{3} \frac{1}{n!} R_{n,n-\lfloor y\sqrt{n} \rfloor} dy = \left[ \tilde{y} = \frac{\lfloor y\sqrt{n} \rfloor}{\sqrt{n}} \right] = \sqrt{n} \int_{1/4}^{3} \frac{1 + O(n^{-1/2})}{2\pi\sqrt{n}} e^{2\sqrt{n}f(\tilde{y}) + g(\tilde{y})} dy \sim \\ \sim \frac{e^{2\sqrt{n}}}{2\pi} \int_{1/4}^{3} e^{2\sqrt{n}(f(\tilde{y}) - 1) + g(\tilde{y})} dy.$$

Write

$$\int_{1/4}^{3} e^{2\sqrt{n}(f(\tilde{y})-1)+g(\tilde{y})} dy = \int_{I_1} e^{2\sqrt{n}(f(\tilde{y})-1)+g(\tilde{y})} dy + \int_{I_2} e^{2\sqrt{n}(f(\tilde{y})-1)+g(\tilde{y})} dy,$$

where  $I_1 = \{y \in [1/4, 3] : |y - 1| \ge n^{-1/5}\}$  and  $I_2 = \{y \in [1/4, 3] : |y - 1| \le n^{-1/5}\}$  and denote these integrals by  $X_1$  and  $X_2$  respectively. Since  $|\tilde{y} - y| < n^{-1/2}$ , for  $1/4 \le y \le 3$  we have

$$2\sqrt{n}(f(\tilde{y}) - 1) + g(\tilde{y}) \le -2\sqrt{n}\frac{(\tilde{y} - 1)^2}{6} + O(1) = -\frac{\sqrt{n}}{3}(y - 1)^2 + O(1)$$

Hence  $X_1 = O(e^{-n^{1/10}/3}).$ 

From (3) we also have, uniformly for  $y \in I_2$ , that

$$2\sqrt{n}(f(\tilde{y}) - 1) = 2\sqrt{n}\left(-\frac{1}{2}(\tilde{y} - 1)^2 + O(n^{-3/5})\right) = -\sqrt{n}(\tilde{y} - 1)^2 + O(n^{-1/10}) = -\sqrt{n}(y - 1)^2 + O(n^{1/2 - 1/5}|\tilde{y} - y| + n^{-1/10}) = -\sqrt{n}(y - 1)^2 + o(1),$$

and, similarly,  $g(\tilde{y}) = g(1) + O(n^{-1/5}) = -1/2 + o(1)$ . Now we calculate again:

$$\frac{1}{n!} \sum_{k=0}^{n} R_{n,k} \sim \frac{e^{2\sqrt{n}}}{2\pi} (X_1 + X_2) \sim \frac{e^{2\sqrt{n}}}{2\pi} X_2 \sim \frac{e^{2\sqrt{n}}}{2\pi} \int_{1-n^{-1/5}}^{1+n^{-1/5}} e^{-\sqrt{n}(y-1)^2 - 1/2} dy \sim \\ \sim \frac{e^{2\sqrt{n}-1/2}}{2\pi} \int_{-\infty}^{+\infty} e^{-\sqrt{n}(y-1)^2} dy = \frac{e^{2\sqrt{n}-1/2}}{2\pi} \sqrt{\frac{\pi}{\sqrt{n}}} = \frac{1}{2} \pi^{-1/2} e^{-1/2} n^{-1/4} e^{2\sqrt{n}}.$$

Finally, using the Stirling formula again, we obtain

$$|\mathcal{IS}_n| = \sum_{k=0}^n R_{n,k} \sim \frac{1}{2\sqrt{\pi e}} n^{-1/4} e^{2\sqrt{n}} n! \sim \frac{1}{\sqrt{2e}} n^{n+1/4} e^{2\sqrt{n}-n},$$

completing the proof.

### **3** Some applications of Theorem 1

An immediate corollary of Theorem 1 is the following statement, proved in [GM2, Theorem 8]:

Corollary 1.

$$\frac{|\mathcal{IS}_{n+1}|}{|\mathcal{IS}_n|} \sim n, \quad n \to \infty.$$

Another corollary is the following reinforcement of [GM2, Theorem 9]:

Corollary 2.  $|T_n| \sim \frac{1}{\sqrt{n}} |\mathcal{IS}_n|$ , in particular,

$$\frac{|T_n|}{|\mathcal{IS}_n|} \to 0, \quad n \to \infty.$$

*Proof.* From [GM2, Theorem 6] we know that  $|T_n| = \frac{1}{n}L_n$  (see a different proof in Section 6). By the definition,  $L_n = \sum_{k=0}^n (n-k)R_{n,k}$ . An argument, analogous to that of Theorem 1, yields

$$\frac{1}{n!}L_n \sim \int_{\sqrt{n}/4}^{3\sqrt{n}} \lfloor t \rfloor \frac{1}{n!} R_{n,n-\lfloor t \rfloor} dt.$$

The same estimates as in Theorem 1 show that most of the integral comes from  $y = t/\sqrt{n} = 1 + O(n^{-1/5})$ . Hence

$$\frac{1}{n!}L_n \sim \sqrt{n} \int_{\sqrt{n}/4}^{3\sqrt{n}} \frac{1}{n!} R_{n,n-\lfloor t \rfloor} dt \sim \sqrt{n} \frac{1}{n!} |\mathcal{IS}_n|.$$

This implies that  $L_n \sim \sqrt{n} |\mathcal{IS}_n|$  and completes the proof.

# 4 An asymptotic for $|\operatorname{End}(\mathcal{IS}_n)|$

In [ST] it is shown that for n > 6 the cardinality of the semigroup  $\operatorname{End}(\mathcal{IS}_n)$  of all endomorphisms of the semigroup  $\mathcal{IS}_n$  equals

$$|\operatorname{End}(\mathcal{IS}_n)| = 3^n + 3 \cdot n! + n! \sum_{m=0}^n \sum_{k=1}^{\lfloor m/2 \rfloor} \frac{2^{m-3k}}{(n-m)! \cdot (m-2k)! \cdot k!}$$

On [ST, Page 303] the following problem is formulated:

Find an asymptotic estimate for  $|\operatorname{End}(\mathcal{IS}_n)|$  when  $n \to \infty$ . Is  $|\operatorname{End}(\mathcal{IS}_n)|/|\mathcal{IS}_n|$  approaching 0?

In this section we answer both parts of this problem.

Theorem 2.  $|\operatorname{End}(\mathcal{IS}_n)| \sim 3n!$ .

Proof. Set

$$X_n = n! \sum_{m=0}^{n} \sum_{k=1}^{\lfloor m/2 \rfloor} \frac{2^{m-3k}}{(n-m)! \cdot (m-2k)! \cdot k!}$$

It would be enough to show that  $X_n/n! \to 0$ ,  $n \to \infty$ . To do this we remark that  $X_n$  equals the number of ways to perform the following procedure:

- (i) choose  $X \subset N_n$ ;
- (ii) choose  $Y \subset X$  such that |Y| = 2k > 0;
- (iii) decompose  $Y = \bigcup Y_i$ ,  $|Y_i| = 2$ ,  $Y_i \cap Y_j = \emptyset$  for  $i \neq j$ , the order of  $Y_i$  is not important;
- (iv) Choose  $Z \subset X \setminus Y$ .

Now let |X| = m,  $0 \le m \le n$ , and note that (i) can be done in  $\binom{n}{m}$  different ways, each of (ii) and (iv) can be done in at most  $2^m$  different ways, and, finally, (iii) can be done in at most m!! different ways. Hence

$$X_n \le \sum_{m=0}^n \binom{n}{m} \cdot 2^m \cdot 2^m \cdot m!! \le \left(\sum_{m=0}^n \binom{n}{m} \cdot 4^m\right) (2\lceil n/2\rceil)!! = 5^n 2^{\lceil n/2\rceil} \lceil n/2\rceil!.$$

To complete the proof it is enough to show that  $5^n 2^{\lceil n/2 \rceil} \lceil n/2 \rceil! / n! \to 0, n \to \infty$ . Using the Stirling formula we have

$$5^{n}2^{\lceil n/2\rceil}\lceil n/2\rceil! \le 5^{n}2^{(n+1)/2}\lceil n/2\rceil! \sim \frac{1}{\sqrt{\pi}}e^{n\ln 5\sqrt{2} - \frac{1}{2}\ln\lceil n/2\rceil + \lceil n/2\rceil \ln\lceil n/2\rceil - \lceil n/2\rceil},$$

and thus

$$\frac{5^n 2^{\lceil n/2 \rceil} \lceil n/2 \rceil!}{n!} \sim \frac{1}{\sqrt{2}} e^{n \ln 5\sqrt{2} - \frac{1}{2} \ln \lceil n/2 \rceil + \lceil n/2 \rceil \ln \lceil n/2 \rceil - \lceil n/2 \rceil - \frac{1}{2} \ln n - n \ln n + n}.$$

Since the exponent is  $-\frac{1}{2}n \ln n + O(n)$ , we obtain that the expression approaches 0 for large n. This completes the proof.

#### Corollary 3.

$$\frac{|\operatorname{End}(\mathcal{IS}_n)|}{|\mathcal{IS}_n|} \to 0, \quad n \to \infty.$$

*Proof.* Follows immediately from the formulae of Theorem 1 and Theorem 2.

Using the methods, analogous to those of Theorem 1, one can even estimate the asymptotic for the "problematic" term  $X_n$  above.

#### Theorem 3.

$$X_n \sim \frac{1}{\sqrt{2}} \cdot e^{\frac{1}{2}n \ln n - \frac{1}{2}n + 3\sqrt{n} - \frac{9}{4}}.$$

Proof. We can write

$$n! \sum_{m=0}^{n} \sum_{k=1}^{\lfloor m/2 \rfloor} \frac{2^{m-3k}}{(n-m)! \cdot (m-2k)! \cdot k!} = n! \sum_{m=0}^{n} \frac{2^m}{(n-m)!} \sum_{k=1}^{\lfloor m/2 \rfloor} \frac{2^{-3k}}{(m-2k)! \cdot k!},$$

and we denote  $a_k = \frac{2^{-3k}}{(m-2k)! \cdot k!}$ ,  $b_m = \sum_{k=1}^{\lfloor m/2 \rfloor} a_k$ ,  $c_m = \frac{2^m}{(n-m)!} b_k$ . Remark that  $\frac{a_{k+1}}{a_k} = \frac{2^{-3}}{k+1}(m-2k)(m-2k-1)$  decreases on [0, m/2) and  $a_k$  has on [0, m/2) a unique maximum at  $\approx \frac{m}{2} - \sqrt{m}$ . Let  $k = \frac{m}{2} - x\sqrt{m}$ , that is  $m - 2k = 2x\sqrt{m}$ , where  $\varepsilon \leq x \leq C$ . Then we have

$$\frac{a_{k+1}}{a_k} = \frac{1}{8} \cdot \frac{1}{m/2} \cdot 4x^2 m(1+o(1)) = x^2 + o(1).$$

This implies that  $\sum_{x<1/2} a_k$  and  $\sum_{x>2} a_k$  belong to  $O\left(e^{-c\sqrt{m}}a_{m/2-\sqrt{m}}\right)$ , that is relatively very small and can be neglected. Assume now that  $1/2 \le x \le 2$ . Taking into account that

$$\ln k = \ln \frac{m}{2} + \ln \left( 1 - \frac{2x}{\sqrt{m}} \right) = \ln \frac{m}{2} - \frac{2x}{\sqrt{m}} - \frac{2x^2}{m} + O(m^{-3/2})$$

and using the Stirling formula we obtain the following:

$$\ln a_k = -3k\ln 2 - \ln(2x\sqrt{m})! - \ln k! = -\frac{3\ln 2}{2}m + 3\ln 2\sqrt{m}x - 2x\sqrt{m}\ln 2 - 2x\sqrt{m}\ln x - x\sqrt{m}\ln m + 2x\sqrt{m} - \ln(2\pi) - \frac{1}{2}\ln(2x\sqrt{m}) - k\ln k + k - \frac{1}{2}\ln k + o(1) = -\frac{3\ln 2}{2}m + (\ln 2 + 2)x\sqrt{m} - 2x\sqrt{m}\ln x - x\sqrt{m}\ln m - \ln(2\pi) - \frac{1}{2}\ln(2x\sqrt{m}) - k\ln\frac{m}{2} + \frac{2kx}{\sqrt{m}} + \frac{mx^2}{m} + \frac{m}{2} - x\sqrt{m} - \frac{1}{2}\ln\frac{m}{2} + o(1) = -m\ln 2 + 2x\sqrt{m} - 2x\sqrt{m}\ln x - \frac{1}{2}\ln(4\pi^2 xm^{3/2}) - \frac{1}{2}m\ln m - x^2 + \frac{m}{2} + o(1).$$

Further, assuming  $x = 1 + m^{-1/4}y$  yields  $x \ln x - x = -1 + \frac{1}{2}(x-1)^2 + O((x-1)^3) = -1 + \frac{y^2}{2\sqrt{m}} + O\left(\frac{y^3}{m^{3/4}}\right)$  and thus

$$\ln a_k = -\frac{1}{2}m\ln m + m\left(\frac{1}{2} - \ln 2\right) - 1 + O(ym^{-1/4}) + 2\sqrt{m} - y^2 + O(y^3m^{-1/4}) - \frac{3}{4}\ln m - \ln(2\pi).$$

Therefore  $k = \frac{m}{2} - \sqrt{m} - m^{1/4}y$  yields

$$a_k = \frac{1}{2\pi} e^{\left(\frac{1}{2} - \ln 2\right)m - \frac{1}{2}m\ln m - \frac{3}{4}\ln m + 2\sqrt{m} - 1} e^{-y^2} \left(1 + O\left(\frac{y+y^3}{m^{1/4}}\right)\right).$$

We can assume that, say,  $y = O(m^{1/12})$  and ignore larger y. In this way we obtain

$$b_m = \sum_{k=1}^{\lfloor m/2 \rfloor} a_k = \frac{1}{2\pi} e^{\left(\frac{1}{2} - \ln 2\right)m - \frac{1}{2}m\ln m - \frac{3}{4}\ln m + 2\sqrt{m} - 1} m^{1/4} \int_{-\infty}^{\infty} e^{-y^2} dy \left(1 + o(1)\right) \sim \frac{1}{2\sqrt{\pi}} e^{\left(\frac{1}{2} - \ln 2\right)m - \frac{1}{2}m\ln m - \frac{1}{2}\ln m + 2\sqrt{m} - 1} dx$$

The latter implies

$$\ln b_m = \left(\frac{1}{2} - \ln 2\right) m - \frac{1}{2}m\ln m - \frac{1}{2}\ln m + 2\sqrt{m} - 1 - \ln(2\sqrt{\pi}) + o(1)$$
(5)

and also

$$\ln c_m = \ln b_m + m \ln 2 - \ln((n-m)!).$$
(6)

Further, for  $m \to \infty$  we compute  $\ln \frac{b_{m+1}}{b_m} = \frac{1}{2} - \ln 2 - \frac{1}{2} \ln m - \frac{1}{2} + o(1) = -\ln 2 - \frac{1}{2} \ln m + o(1)$  and also  $\ln \frac{c_{m+1}}{c_m} = -\frac{1}{2} \ln m + \ln(n-m) + o(1)$ . This gives us that for large n the value of  $c_m$  is largest when  $\frac{1}{2} \ln m \approx \ln(n-m)$  that is  $m \approx n - \sqrt{n}$ . In particular, it follows easily that  $m \leq n/2$  can be ignored and thus we obtain that  $o(1), m \to \infty$ , is small even if  $n \to \infty$ .

Let us now show that even  $m < n - 3\sqrt{n}$  can be ignored. If  $m < n - 2\sqrt{n}$  then we have  $-\frac{1}{2}\ln m + \ln(n-m) > -\frac{1}{2}\ln n + \ln(2\sqrt{n}) = \ln 2$  and thus for large n we derive  $\ln \frac{c_{m+1}}{c_m} > 1/2$  and hence  $\frac{c_{m+1}}{c_m} > e^{1/2}$ . Set  $M = \lceil n - 2\sqrt{n} \rceil$ . Then  $\frac{c_m}{c_M} < e^{-(M-m)/2}$  and thus

$$\sum_{m < n-3\sqrt{n}} c_m < e^{-\sqrt{n}/2} \frac{1}{1 - e^{-1/2}} c_M.$$

The latter implies that all terms with  $m < n - 3\sqrt{n}$  can be ignored. Similarly, all terms with  $m > n - \sqrt{n/2}$  can be ignored.

Thus we can assume  $m = n - x\sqrt{n}$ , where  $1/2 \le x \le 3$ . Under such assumption we have  $\ln \frac{c_{m+1}}{c_m} = -\frac{1}{2} \ln n + \ln(x\sqrt{n}) + o(1) = \ln x + o(1)$ .

For  $1/2 \le x \le 3$  we have, using the Stirling formula, that

$$\ln m = \ln n + \ln \left(1 - \frac{x}{\sqrt{n}}\right) = \ln n - \frac{x}{\sqrt{n}} - \frac{x^2}{2n} + O(n^{-3/2}),$$
$$m \ln m = n \ln n - x\sqrt{n} \ln n - x\sqrt{n} + x^2 - \frac{x^2}{2} + O(n^{-1/2}),$$
$$\ln(n-m)! = \ln(x\sqrt{n})! = x\sqrt{n} \ln x + \frac{1}{2}x\sqrt{n} \ln n - x\sqrt{n} + \frac{1}{2}\ln x + \frac{1}{4}\ln n + \ln\sqrt{2\pi} + o(1),$$
$$\sqrt{m} = \sqrt{n}(1 - x/\sqrt{n})^{1/2} = \sqrt{n} - x/2 + o(1).$$

Hence, using (5) and (6), we obtain

$$\ln c_m = \frac{1}{2}n - \frac{1}{2}x\sqrt{n} - \frac{1}{2}n\ln n + \frac{1}{2}x\sqrt{n}\ln n + \frac{1}{2}x\sqrt{n} - \frac{x^2}{4} - \frac{1}{2}\ln n + 2\sqrt{n} - x - 1 - \ln(2\sqrt{\pi}) - x\sqrt{n}\ln x - \frac{1}{2}x\sqrt{n}\ln n + x\sqrt{n} - \frac{1}{2}\ln x - \frac{1}{4}\ln n - \ln\sqrt{2\pi} + o(1) = \frac{1}{2}n - \frac{1}{2}n\ln n - \frac{3}{4}\ln n + 2\sqrt{n} - 1 - \ln(2^{3/2}\pi) + \sqrt{n}(x - x\ln x) - \frac{x^2}{4} - x - \frac{1}{2}\ln x + o(1).$$

Setting  $x = 1 + yn^{-1/4}$  yields

$$\ln c_m = \frac{1}{2}n - \frac{1}{2}n\ln n - \frac{3}{4}\ln n + 3\sqrt{n} - 1 - \ln(2^{3/2}\pi) - \frac{5}{4} - \frac{y^2}{2} + O\left(\frac{y^3}{n^{1/4}}\right) + o(1)$$

and thus

$$\sum_{m=0}^{n} c_m = \exp\left(\frac{1}{2}n - \frac{1}{2}n\ln n - \frac{3}{4}\ln n + 3\sqrt{n} - \frac{9}{4} - \ln(2^{3/2}\pi)\right)n^{1/4} \times \int_{-\infty}^{+\infty} e^{-y^2/2} dy \left(1 + o(1)\right) = \frac{1}{2\sqrt{\pi}} e^{\frac{1}{2}n - \frac{1}{2}n\ln n - \frac{1}{2}\ln n + 3\sqrt{n} - \frac{9}{4} + o(1)}.$$

This implies that

$$X_n \sim \frac{n!}{2\sqrt{\pi n}} e^{\frac{1}{2}n - \frac{1}{2}n\ln n + 3\sqrt{n} - \frac{9}{4}} \sim \frac{1}{\sqrt{2}} e^{\frac{1}{2}n\ln n - \frac{1}{2}n + 3\sqrt{n} - \frac{9}{4}},$$

and completes the proof.

## 5 Some distributions

Denote by  $D_n$  the defect of a random element of  $\mathcal{IS}_n$ , by  $X_n$  the stable rank of a random element of  $\mathcal{IS}_n$ , by  $C_n$  the number of cycles of a random element of  $\mathcal{IS}_n$ , and by  $K_n = C_n + D_n$  the total number of components (i.e. cycles and chains) of a random element of  $\mathcal{IS}_n$ .

**Proposition 1.** If  $n \to \infty$  and  $\frac{k-\sqrt{n}}{n^{1/4}} \to z$  with  $-\infty < z < \infty$ , then

$$P(D_n = k) \sim \frac{1}{\sqrt{\pi}n^{1/4}}e^{-z^2}.$$

In particular,

$$\frac{D_n - \sqrt{n}}{n^{1/4}} \stackrel{d}{\longrightarrow} N(0, 1/2).$$

*Proof.* We have  $P(D_n = k) = \frac{R_{n,n-k}}{|\mathcal{IS}_n|}$  by definition and  $\frac{R_{n,n-k}}{|\mathcal{IS}_n|} \sim \frac{1}{\sqrt{\pi}n^{1/4}}e^{-z^2}$ , follows from (3) and (4).

Proposition 2.

$$P(X_n = k) \sim \frac{1}{\sqrt{n}} e^{-k/\sqrt{n}} \text{ if } k = o(n^{3/4}),$$

in particular,

$$\frac{X_n}{\sqrt{n}} \stackrel{d}{\longrightarrow} \exp(1)$$

*Proof.* We have

$$P(X_n = k) = \binom{n}{k} \cdot k! \cdot \frac{|T_{n-k}|}{|\mathcal{IS}_n|} = \frac{|T_{n-k}|/(n-k)!}{|\mathcal{IS}_n|/n!}$$

Hence, if k = o(n) we have, using Section 2 and Section 3, that

$$P(X_n = k) \sim \frac{(n-k)^{-3/4} e^{2\sqrt{n-k}}}{n^{-1/4} e^{2\sqrt{n}}} \sim \frac{1}{\sqrt{n}} e^{2(\sqrt{n-k}-\sqrt{n})} = \frac{1}{\sqrt{n}} e^{2\sqrt{n}\left((1-k/n)^{1/2}-1\right)} = \frac{1}{\sqrt{n}} e^{-2\sqrt{n}\cdot\frac{k}{2n} + O(k^2/n^{3/2})}$$

and the statement follows.

**Proposition 3.** 

$$\frac{C_n - \frac{1}{2}\ln n}{\sqrt{\frac{1}{2}\ln n}} \xrightarrow{d} N(0, 1)$$

*Proof.* Given  $X_n$ , the number of cycles for the permutational part of size  $X_n$  is approximately  $\ln X_n$ . More precisely, by [Go], we have

$$\frac{C_n - \ln X_n}{\sqrt{\ln X_n}} \xrightarrow{d} N(0, 1)$$

Further, we have  $\ln X_n = \frac{1}{2} \ln n + \ln \frac{X_n}{\sqrt{n}}$  and  $\ln \frac{X_n}{\sqrt{n}} \stackrel{d}{\longrightarrow} \ln \exp(1)$  by Proposition 2. Hence, in

$$\frac{C_n - \frac{1}{2}\ln n}{\sqrt{\frac{1}{2}\ln n}} = \frac{\sqrt{\ln X_n}}{\sqrt{\frac{1}{2}\ln n}} \cdot \frac{C_n - \ln X_n}{\sqrt{\ln X_n}} + \frac{\ln X_n - \frac{1}{2}\ln n}{\sqrt{\frac{1}{2}\ln n}}$$

we have  $\frac{\sqrt{\ln X_n}}{\sqrt{\frac{1}{2}\ln n}} \xrightarrow{p} 1$  and  $\frac{\ln X_n - \frac{1}{2}\ln n}{\sqrt{\frac{1}{2}\ln n}} \xrightarrow{p} 0$ , completing the proof.

More precisely, we can show that  $C_n$  is almost Poisson distributed. Let  $d_{TV}$  denote the total variation distance between two distributions, see e.g. [BHJ].

#### **Proposition 4.**

$$d_{TV}\left(C_n, \operatorname{Po}\left(\frac{1}{2}\ln n\right)\right) \to 0, \qquad n \to \infty.$$

*Proof.* Let  $h_k = \sum_{i=1}^k 1/i = \ln k + O(1)$ . Given  $X_n = k$ , the number of cycles is distributed as the number of cycles in a random permutation of length k. Using [BH], we obtain

$$d_{TV}\left(\mathcal{L}(C_n|X_n=k), \operatorname{Po}(h_k)\right) \le \frac{c}{h_k} \le \frac{c}{\ln k}$$

for some constant  $c \leq \pi^2/6$ . Further, by [BHJ, Remark 1.1.4], we have

$$d_{TV}\left(\operatorname{Po}(h_k), \operatorname{Po}(\ln\sqrt{n})\right) \leq \frac{|h_k - \ln\sqrt{n}|}{\sqrt{\ln\sqrt{n}}} \leq \frac{|\ln k - \ln\sqrt{n}| + 1}{\sqrt{\ln\sqrt{n}}}.$$

Consequently,

$$d_{TV}\left(\mathcal{L}(C_n|X_n=k), \operatorname{Po}(\ln\sqrt{n})\right) \le f(k) := \frac{\pi^2}{6\ln k} + \frac{|\ln k - \ln\sqrt{n}| + 1}{\sqrt{\ln\sqrt{n}}}.$$

Since also  $d_{TV} \leq 1$ , we obtain  $d_{TV}(C_n, \operatorname{Po}(\ln \sqrt{n})) \leq E(f(X_n) \wedge 1)$ . From the proof of Proposition 3 it follows that  $f(X_n) \xrightarrow{p} 0$  and thus  $E(f(X_n) \wedge 1) \xrightarrow{p} 0$ , completing the proof.

#### Corollary 4.

$$\frac{K_n - \sqrt{n}}{n^{1/4}} \stackrel{d}{\longrightarrow} N(0, 1/2)$$

*Proof.* Follows from Propositions 1 and 3.

Recall that for  $\sigma \in \mathcal{IS}_n$  the order  $O(\sigma)$  of  $\sigma$  is defined as the cardinality of the monoid, generated by  $\sigma$ , and the *inverse order*  $IO(\sigma)$  of  $\sigma$  is defined as the cardinality of the inverse monoid, generated by  $\sigma$ , that is

$$O(\sigma) = |\{\sigma^{l} : l \in \{0, 1, 2, \dots\}\}|, \qquad IO(\sigma) = |\{\sigma^{l} : l \in \mathbb{Z}\}|.$$

Let  $O_n$  and  $I_n$  denote the order and the inverse order of a random element of  $\mathcal{IS}_n$  respectively.

#### Proposition 5.

$$\frac{\ln O_n - \frac{1}{8}\ln^2 n}{\sqrt{\frac{1}{24}\ln^3 n}} \xrightarrow{d} N(0,1), \qquad \qquad \frac{\ln I_n - \frac{1}{8}\ln^2 n}{\sqrt{\frac{1}{24}\ln^3 n}} \xrightarrow{d} N(0,1)$$

Proof. For  $\sigma \in \mathcal{IS}_n$  denote  $X(\sigma) = \{i \in \{1, \ldots, n\} : \sigma^l(i) = i \text{ for some } l > 0\}$ . Then  $|X(\sigma)|$  is the stable rank of  $\sigma$ . Moreover, any  $\sigma \in \mathcal{IS}_n$  can be written as a product  $\sigma = \sigma_1 \cdot \sigma_2$ , where dom $(\sigma_1) = \{1, \ldots, n\}$  and  $\sigma_1(i) = \sigma(i), i \in X(\sigma), \sigma_1(i) = i, i \notin X(\sigma);$  dom $(\sigma_2) = \text{dom}(\sigma)$  and  $\sigma_2(i) = i, i \in X(\sigma), \sigma_2(i) = \sigma(i), i \in \text{dom}(\sigma) \setminus X(\sigma)$ . It follows immediately from the definition that  $\sigma_1 \cdot \sigma_2 = \sigma_2 \cdot \sigma_1$ . It is further easy to see (see e.g. [GK]) that

$$O(\sigma_1) \le O(\sigma) \le O(\sigma_1) + n - |X(\sigma)|, \quad O(\sigma_1) \le IO(\sigma) \le O(\sigma_1) + 2(n - |X(\sigma)|).$$
(7)

For a random element  $\sigma \in \mathcal{IS}_n$ , let  $O'_n(\sigma) = O(\sigma_1)$ . Given  $X_n = X(\sigma) = k$ , this has the same distribution as the order  $\tilde{O}_k$  of a random permutation of length k. In [ET] it was shown that, as  $k \to \infty$ ,

$$\frac{\ln \tilde{\mathcal{O}}_k - \frac{1}{2}\ln^2 k}{\sqrt{\frac{1}{3}\ln^3 k}} \xrightarrow{d} N(0, 1).$$

Hence, as  $n \to \infty$ ,

$$\frac{\ln \mathcal{O}'_n - \frac{1}{2}\ln^2 X_n}{\sqrt{\frac{1}{3}\ln^3 X_n}} \xrightarrow{d} N(0, 1),$$

and it follows as in the proof of Proposition 3 that

$$\frac{\ln O'_n - \frac{1}{8}\ln^2 n}{\sqrt{\frac{1}{24}\ln^3 n}} \xrightarrow{d} N(0, 1).$$
(8)

In particular, for almost all  $\sigma \in \mathcal{IS}_n$  we have that  $O(\sigma_1) \approx n^{(\ln n)/8}$ . Since the difference between the left and the right sides of the inequalities in (7) is less than 2n, in particular is  $o(n^{(\ln n)/9})$ , we obtain that, asymptotically, the left and the right sides of inequalities in (7) are the same. Now the necessary statement follows from (8).

## 6 Some generating functions

Consider some "objects" consisting of "components", whose order in the objects is not important. Assume that there are  $a_m$  possible components containing exactly *m* elements. Let  $f_n$  denote the total number of objects, which consist of exactly *n* elements. The following well-known statement can be easily derived for example from [Wi, Theorem 3.4.1]

**Proposition 6.** The exponential generating function for  $\{f_n, n \ge 0\}$  is  $F(z) = e^{A(z)}$ , where  $A(z) = \sum_{m=1}^{\infty} \frac{a_m}{m!} z^m$ .

Proposition 6 now can be used to compute the exponential generating functions for  $|T_n|, |\mathcal{IS}_n|.$ 

**Theorem 4.** 1. The exponential generating function for  $a_n = |T_n|$  is  $E_{T_n}(z) = e^{z/(1-z)}$ .

2. The exponential generating function for  $b_n = |\mathcal{IS}_n|$  is  $E_{\mathcal{IS}_n}(z) = \frac{1}{1-z}e^{z/(1-z)}$ .

*Proof.* For  $T_n$  we have that components are chains and  $a_m = m!$ . Hence  $A(z) = \sum_{m \ge 1} z^m = z/(1-z)$  and we get  $F(z) = e^{z/(1-z)}$ .

For  $\mathcal{IS}_n$  we have two types of components: cycles and chains, and thus  $a_m = m! + (m-1)!$ . This gives  $A(z) = \frac{1}{1-z} - \ln(1-z)$  and therefore  $F(z) = \frac{1}{1-z}e^{z/(1-z)}$ .

Analogous arguments can be used to compute the exponential generating function for  $L^{(n)}$  and  $L_n$ :

**Theorem 5.** 1. The exponential generating function for the sequence  $c_n = |L^{(n)}|$  is  $E_{L^{(n)}}(z) = \frac{z}{1-z}e^{z/(1-z)}$ .

2. The exponential generating function for  $d_n = |L_n|$  is  $E_{L_n}(z) = \frac{z}{(1-z)^2} e^{z/(1-z)}$ .

Proof. A fixed chain of length m is contained in exactly  $|T_{n-m}|$  elements of  $T_n$ , and in exactly  $|\mathcal{IS}_{n-m}|$  elements of  $\mathcal{IS}_n$ . This implies that  $E_{L^{(n)}}(z) = \frac{z}{1-z} E_{T_n}(z) = \frac{z}{1-z} e^{z/(1-z)}$  and  $E_{L_n}(z) = \frac{z}{1-z} E_{\mathcal{IS}_n}(z) = \frac{z}{(1-z)^2} e^{z/(1-z)}$ .

Theorem 4 and the first part of Theorem 5 can now be used to derive the following corollaries:

Corollary 5. ([GM2, Theorem 7(2)])  $|\mathcal{IS}_n| = |T_n| + L^{(n)}$ .

*Proof.* Follows from  $E_{\mathcal{IS}_n}(z) = E_{T_n}(z) + E_{L^{(n)}}(z)$ .

Corollary 6. ([GM2, Theorem 6(1)])  $|T_n| = \frac{1}{n}L_n$ .

*Proof.* For the sequence  $n|T_n|$  we have

$$E_{n|T_n|}(z) = zE'_{|T_n|}(z) = \frac{z}{(1-z)^2}e^{z/(1-z)} = E_{L_n}(z)$$

and the statement follows.

Corollary 7. ([GM2, Theorem 6(2)])  $|\mathcal{IS}_n| = \frac{1}{n+1}L^{(n+1)}$ .

*Proof.* The statement is equivalent to  $zE_{\mathcal{IS}_n}(z) = E_{L^{(n)}}(z)$ , which is straightforward.  $\Box$ 

We also obtain one relation, which seems to be missing in [GM2].

**Corollary 8.** The total number  $P_n$  of fixed points for all elements from  $\mathcal{IS}_n$  satisfies  $P_n = L^{(n)}$ .

*Proof.* For  $x \in \{1, \ldots, n\}$ , the point x is fixed in exactly  $|\mathcal{IS}_{n-1}|$  elements of  $\mathcal{IS}_n$ , which implies that  $E_{P_n}(z) = z E_{\mathcal{IS}_n}(z)$ . Further  $z E_{\mathcal{IS}_n}(z) = E_{L^{(n)}}(z)$  by Corollary 7 and the statement follows.

#### Acknowledgments

For the second author the research was partially supported by The Swedish Research Council and The Swedish Institute.

## References

- [BH] A.D.Barbour, P.Hall, On the rate of Poisson convergence. Math. Proc. Cambridge Philos. Soc. 95 (1984), no. 3, 473–480.
- [BHJ] A.Barbour, L.Holst, S.Janson, Poisson approximation. Oxford Studies in Probability, 2. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1992. x+277 pp.
- [ET] P.Erdös, P.Turán, On some problems of a statistical group theory. I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 1965 175–186 (1965).
- [GK] O.G.Ganyushkin, T.V.Kormysheva, Chain decomposition of partial permutations and classes of conjugated elements of the semigroup  $\mathcal{IS}_n$ , Proc. Kyiv University, Ser. Math.-Mech. 27 (1992), 10-18.
- [GM1] O.Ganyushkin, V.Mazorchuk, The full finite Inverse symmetric semigroup  $\mathcal{IS}_n$ , Preprint 2001:37, Chalmers University of Technology and Göteborg University, Göteborg, 2001.
- [GM2] O.Ganyushkin, V.Mazorchuk, Combinatorics and distributions of partial injections, Preprint 2003:14, Uppsala University, Sweden, 2003.
- [Go] V.L.Goncharov, Some facts from combinatorics, Izvestia Akad. Nauk. SSSR, Ser. Mat. 8: 3-48 (1944).
- [Li] S.Lipscomb, Symmetric inverse semigroups. Mathematical Surveys and Monographs, 46. American Mathematical Society, Providence, RI, 1996.
- [ST] B.M.Schein, B.Teclezghi, Endomorphisms of finite symmetric inverse semigroups. J. Algebra 198 (1997), no. 1, 300–310.
- [Wi] H.S.Wilf, Generatingfunctionology. Second edition. Academic Press, Inc., Boston, MA, 1994. x+228 pp.

S.J.: Department of Mathematics, Uppsala University, Box 480, SE 751 06, Uppsala, SWEDEN, e-mail: svante@math.uu.se, web: "http://www.math.uu.se/~svante"

V.M.: Department of Mathematics, Uppsala University, Box 480, SE 751 06, Uppsala, SWEDEN, e-mail: mazor@math.uu.se, web: "http://www.math.uu.se/~mazor"