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Abstract. We study a generalized Pólya urn with balls of two colours
and a triangular replacement matrix; the urn is not required to be bal-
anced. We prove limit theorems describing the asymptotic distribution
of the composition of the urn after a long time. Several different types
of asymptotics appear, depending on the ratio of the diagonal elements
in the replacement matrix; the limit laws include normal, stable and
Mittag-Leffler distributions as well as some less familiar ones. The re-
sults are in some cases similar to, but in other cases strikingly different
from, the results for irreducible replacement matrices.

1. Introduction

A generalized Pólya urn may contain balls of several different types (or
colours), say 1, . . . , q. The urn evolves according to a Markov process as
follows. At each time n ≥ 1, one of the balls in the urn is drawn at random.
The colour of the drawn ball is inspected and a set of balls, depending on
the drawn colour, is added to the urn (with or without replacement of the
drawn ball).

We will in this paper for simplicity assume that there are only two colours,
black and white. The composition of the urn after n draws may thus be
represented as a vector (Xn, Yn), whereXn [Yn] is the number of black [white]
balls in the urn. The urn starts with a given vector (X0, Y0) = (x0, y0), which
we assume is non-random. To fix the notation, we assume that if a black
ball is drawn, it is replaced together with α additional black balls and β
white balls; if a white ball is drawn, it is replaced together with γ black
and δ white balls. These numbers may conveniently be collected in the
replacement matrix

A :=
(
α β
γ δ

)
. (1.1)

(We may here allow α = −1 or δ = −1; this means that the drawn ball
is not replaced. Other negative entries are possible too in some cases, see
Remark 1.11 below.)

In Pólya’s original urn [7, 22], the added balls are always of the same
colour as the drawn ball, i.e. β = γ = 0; further, α = δ. The generalized case
described here has been studied by many authors, including [5, 12, 16]. An
important case, which includes many applications, is when the replacement
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matrix is irreducible; in our setting with two colours this means that β, γ >
0. Limit theorems for the irreducible case have been given by many authors,
for example [2, 3, 4]; see also [14] and the further references given there. In
contrast, we will here study the case of a triangular replacement matrix, i.e.
for two colours β = 0 or γ = 0; we will throughout assume that β = 0.
(If γ = 0, we interchange the two colours.) It has been known for a long
time that other phenomena arise in this case [4, 24, 20, 19]; the purpose of
this paper is to give a complete description of the asymptotic distribution
of (Xn, Yn) in the triangular case.

Remark 1.1. More generally, the replacement vectors (α, β) and (γ, δ) may
be random. It is possible that our methods can be extended to that case,
but we have not attempted it.

We will use the embedding method of Athreya and Karlin [2, 3]: Let
(X (t),Y(t)), t ≥ 0 be a continuous time Markov branching process with
particles of two types (black and white); each particle lives a random time
with an exponential distribution Exp(1), and on its death a black [white]
particle is replaced by 1 + α black and β white [γ black and 1 + δ white]
new particles. It is then easy to see that (X (t),Y(t)) observed at the (a.s.
distinct) times of deaths gives the urn process above.

Our main results are Theorems 1.3 and 1.4 below. Some degenerate cases
are studied in Section 2.

Note first that Xn and Yn are linearly dependent. Indeed, if δ = 0, then
Yn = y0 is non-random, and otherwise Yn determines Xn by the following
lemma. Hence we will mainly state results for Yn; the reader may easily
translate these into results for Xn.

Lemma 1.2. Suppose δ 6= 0. Then, for every n,

Xn − x0 +
α− γ

δ
(Yn − y0) = nα

Proof. Each draw increases the left hand side by α. �

We consider first the case δ, γ > 0. The limits below are as n→∞.

Theorem 1.3. Consider a generalized Pólya urn with two colours and a
triangular replacement matrix

(
α 0
γ δ

)
, i.e. β = 0. Suppose further that δ > 0,

γ > 0 and y0 > 0.

(i) If α < δ/2, then

n−1/2
(
Yn − δ

δ − α

δ − α+ γ
n
)

d→ N(0, σ2), (1.2)

where

σ2 =
γδ3(δ − α)

(δ − 2α)(δ − α+ γ)2
. (1.3)
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(ii) If α = δ/2, then

(n lnn)−1/2
(
Yn − δ

δ − α

δ − α+ γ
n
)

d→ N(0, σ2), (1.4)

where

σ2 =
αγδ2

(α+ γ)2
. (1.5)

(iii) If δ/2 < α < δ, then

n−α/δ
(
Yn − δ

δ − α

δ − α+ γ
n
)

d→W := − δ(δ − α)1+α/δ

α(δ − α+ γ)1+α/δ
Z, (1.6)

where Z is a random variable with the characteristic function given
by (7.4) and (7.5) below.

(iv) If α = δ, then

ln2 n

n

(
Yn−

α2

γ

n

lnn
− α2

γ

n ln lnn
ln2 n

)
d→W :=

α2

γ2

(
γ ln

γ

α
+ γ −α−Z

)
, (1.7)

where Z is a random variable with the characteristic function given
by (7.4) and (7.6) below.

(v) If α > δ, then

n−δ/αYn
d→W := δαδ/αZ−δ/α, (1.8)

where Z is a random variable with the characteristic function given
by (7.4) and (7.5) or (7.7) below.

In cases (iii) and (iv), the limit variable W is a linear function of Z,
and thus the characteristic function of W is immediately obtained from the
characteristic function of Z. Our formula (7.4) is so complicated, however,
that we refrain from stating the result explicitly; the main fact is that a non-
trivial limit exists. In case (v), we cannot give the characteristic function of
W , but its moments are calculated in Theorem 1.6 below. In some special
cases we have simpler results, see Theorems 1.7 and 1.8 and Section 8. In
particular, if x0 = γ and y0 = δ, then Z (and thus W in cases (iii) and (iv))
has a δ/α-stable distribution, see Theorem 8.6. The general case remains
rather elusive, however, see also Section 3.

Case (iv) of Theorem 1.3 has earlier been studied by Pemantle and Volkov
[20, Theorem 2.3]; their result easily implies ours, except that the limit W
is not identified.

In the diagonal case γ = β = 0, we have a companion result. Note that
the case α = δ [16] is the original Pólya urn [7, 22], and that the case α > δ
is as in Theorem 1.3, unlike the cases α ≤ δ. (Theorem 1.4 is much simpler
than Theorem 1.3, and has probably been observed before. It is included
here mainly for completeness and comparison. Except for the identification
of W , the case α 6= δ follows from [20, Theorem 2.2].)
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Theorem 1.4. Consider a generalized Pólya urn with two colours and a
diagonal replacement matrix

(
α 0
0 δ

)
, i.e. β = γ = 0. Suppose further that

α > 0, δ > 0, x0 > 0 and y0 > 0. Let U ∼ Γ(x0/α, 1) and V ∼ Γ(y0/δ, 1) be
two independent Gamma distributed random variables.

(i) If α < δ, then

n−α/δ(nδ − Yn) d→W := δUV −α/δ. (1.9)

(ii) If α = δ, then

n−1Yn
d→W := δ

V

U + V
; (1.10)

thus W/δ has a Beta(y0/δ, x0/α) distribution.
(iii) If α > δ, then

n−δ/αYn
d→W := δU−δ/αV. (1.11)

Another exceptional case is when δ = 0. Then the number of white balls
is constant y0. The number X (t) of black balls in the branching process
is a generalized Yule process (see Section 5) with immigration, see e.g. [13,
Chapter 7.1]. We have the following limit results.

Theorem 1.5. Consider a generalized Pólya urn with two colours and a
replacement matrix

(
α 0
γ 0

)
, i.e. δ = β = 0.

(i) If α < 0, γ > 0, and y0 > 0, then (Xn)n≥0 is a persistent irre-
ducible Markov chain with period γ/|α| + 1. Assume, for conve-
nience, α = −1, and let W have the compound Poisson distribution
with probability generating function

E zW =
∞∑

k=0

qkz
k = exp

(
y0

γ∑
j=1

zj − 1
j

)
, (1.12)

where thus qk = P(W = k). Then Xn ≡ x0 − n (mod γ + 1), and
for every k ≥ 0,

P(Xn = k)− 1[k ≡ x0 − n (mod γ + 1)]
k∑

j=k−γ

qj → 0,

with qj = 0 for j < 0. In other words, if Wi := (γ+1)d(W − i)/(γ+
1)e+ i is W rounded upwards to the nearest integer ≡ i (mod γ+1),
then X(γ+1)n+j

d→Wx0−j.
(ii) If α = 0, then

n−1/4
(
Xn −

√
2γy0 n

1/2
) d→ N

(
0,

√
2γ3y0/3

)
. (1.13)

(iii) If α > 0 and either x0 > 0 or γ > 0, then

(lnn)−1/2
(
Xn − αn− γ − α

α
y0 lnn

)
d→ N

(
0,

(γ − α)2

α
y0

)
. (1.14)
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Note that if α = −1 and γ = 1, then W ∼ Po(y0) in (i).
The limit distributions above are non-degenerate except in some trivial

cases, see Section 2. We add some results on the limit W in Theorem 1.3(v).

Theorem 1.6. In Theorem 1.3(v) (α > δ > 0 and γ > 0), the limit W has
moments of all orders given by, for r > 0,

EW r = δr Γ(y0/δ + r)
Γ(y0/δ)Γ(rδ/α)

∫ ∞

0
(1 + x)−x0/α

·
(
1 +

δ

α
xδ/α

∫ x

0

(
1− (1 + u)−γ/α

)
u−δ/α−1 du

)−y0/δ−r
xrδ/α−1 dx.

In the special case α = γ + δ, when the same number of balls are added
each time, this leads to a simple formula, first found by Puyhaubert [23].

Theorem 1.7. If α = γ + δ and γ, δ > 0, the moments of W in (1.8) are

EW r = δr Γ
(
(x0 + y0)/α

)
Γ(y0/δ + r)

Γ(y0/δ)Γ
(
(x0 + y0 + rδ)/α

) , r ≥ 0. (1.15)

Note that if we start with (x0, y0) = (γ, δ), then this formula simplifies
to E(W/δ)r = r!/Γ(1 + rδ/α), and thus W is a Mittag-Leffler distribution
with parameter δ/α, i.e. Z has a δ/α-stable distribution [21], [9, XIII.8(b)];
this also follows from Theorem 8.6. We can generalize this as follows. (See
also the special case in [10, Corollary 12], [11].)

Theorem 1.8. Suppose that α = γ+ δ with γ, δ > 0 Suppose further y0 > 0
and either x0 = 0 or x0 = γ. Then W in (1.8) has a density function
cxy0/δ−x0/γf(x/δ), x > 0, where c > 0 is a normalizing constant and f
is the density function of a Mittag-Leffler distribution with parameter δ/α
having moments Γ(1 + r)/Γ(1 + rδ/α).

Note that the density function f(x) = (α/δ)x−α/δ−1g(x−α/δ), where g
is the density function of a δ/α-stable distribution with Laplace transform
e−λδ/α

; thus f(x) = (α/δπ)
∑∞

k=1 Γ(kδ/α+1) sin(kπδ/α)(−x)k−1/k!, x > 0,
see [9, XIII.8(b) and XVII.6].

Theorem 1.8 covers only two values of x0. (These are clearly equivalent,
since starting with (0, y0), we necessarily first draw a white ball, and thus
the process is the same as starting with (γ, y0 + δ), with n shifted one step.)
It is possible to use Theorems 1.6 and 1.8 to find expressions for the density
of W also in some cases with other x0, for example if x0 = α or α+ γ. We
give an example illustrating this in Example 3.1.

For comparison, we give also the moments of the limit in the diagonal
case; these follow immediately from the standard formulas for the moments
of Gamma and Beta distributions. Note that in cases (i) and (iii), the
moments are infinite outside the indicated ranges.

Theorem 1.9. The moments of W in Theorem 1.4 (γ = 0) are given by:
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(i) If α < δ then

EW r = δr Γ(x0/α+ r)Γ(y0/δ − rα/δ)
Γ(x0/α)Γ(y0/δ)

, −x0/α < r < y0/α.

(ii) If α = δ, then (1.15) holds.
(iii) If α > δ then

EW r = δr Γ(x0/α− rδ/α)Γ(y0/δ + r)
Γ(x0/α)Γ(y0/δ)

, −y0/δ < r < x0/δ.

Remark 1.10. In the case of an irreducible replacement matrix, it is well-
known that the type of the asymptotics depends on the relation between
the eigenvalues of the replacement matrix, and in particular on whether
the largest eigenvalue is at least twice the real part of any other eigenvalue
(in which case we have asymptotic normality), see [2] and [14]. For two
colours we have two eigenvalues λ1 ≥ λ2, both real, and the three cases are
λ2 <

1
2λ1, λ2 = 1

2λ1, and λ2 >
1
2λ1; in the two first cases we have asymptotic

normality (with a log factor in the asymptotic variance in the second case),
but not in the third.

In the triangular case, the eigenvalues are simply the diagonal elements
α and δ, so λ1 = max(α, δ) and λ2 = min(α, δ). We thus see that for α < δ
and γ > 0 (Theorem 1.3(i)(ii)(iii)), we have the same behaviour as in the
irreducible case, while there are several differences when α > δ or γ = 0; in
particular, there is no normality when δ < 1

2α.
Indeed, the setting in [14] is somewhat more general than the irreducible

case (we really need only that the largest eigenvalue is simple and has a
strictly positive left eigenvector), and it is easily verified that a triangular
urn with γ, δ > 0 and α < δ satisfies the conditions in [14]. In particular,
Theorems 3.22–3.24 in [14] imply our Theorem 1.3(i)(ii)(iii), except for the
explicit (but complicated) description of the limit in (iii); the variances in
(1.3) and (1.5) can easily be computed as in Example 7.2 in [14], with minor
modifications because now β = 0.

As discussed in [14], an explanation for the asymptotic normality in the
irreducible case is that when λ2 ≤ 1

2λ1, the initial value and the results of the
first draws have a negligible effect in the long run. The composition is thus
effectively determined by the outcome of the large number of later draws,
each having a negligible effect, which is a typical situation for asymptotic
normality. On the other hand, if λ2 >

1
2λ1, then imbalances caused by the

first random draws magnify at a sufficient rate to remain important also
for large n; indeed, the composition even after a long time is essentially
determined by the results of the first few draws.

In a triangular urn, the same mechanism works if δ > α, so that the
largest eigenvalue is δ, which is connected to the white balls. On the other
hand, if α > δ, the largest eigenvalue is connected to the black balls. Since
β = 0, they do not communicate with the white balls and there is no similar
smooting effect on the number of white balls caused by the large number
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of black draws. Hence the mechanism fails, which explains why there is no
normal regime for δ < 1

2α. Similarly, there is no such smoothing mechanism
at all in the diagonal case.

In this connection, note that in the cases Theorem 1.3(i)(ii) (where we
have asymptotic normality), the limit distribution does not depend on the
initial composition (x0, y0), while it does depend on it in the other cases,
see (7.4) and Theorems 8.5 and 1.7. In fact, even the existence of mean and
variance may depend on x0 and y0, see Theorem 8.2.

Remark 1.11. In the definition of the generalized Pólya urn and the 2-type
branching process above, it is implicit that α, β, γ, δ are integers, since we
interpret them as numbers. However, this restriction is really not necessary;
we may let α, β, γ, δ be real numbers [15]. The urn process then can be
defined as a Markov process with state space {(x, y) ∈ R2 : x, y ≥ 0 and x+
y > 0}; the transitions are from (x, y) to (x + α, y + β) with probability
x/(x+ y) and from (x, y) to (x+ γ, y + δ) with probability y/(x+ y). The
branching process is defined with the same state space; if it reaches (or starts
in) a state (x, y), it waits a random time with an Exp(1/(x+y)) distribution
and then jumps according to the same transition probabilities. (In other
words, the two possible transitions from a state (x, y) have intensities x
and y, respectively.) Note that this “branching proceess” has a property
corresponding to the independence of the family histories of the descendants
of different individuals in a true branching process: if (x, y) = (x1, y1) +
(x2, y2), then the process started at (x, y) has the same distribution as the
sum of two independent processes started at (x1, y1) and (x2, y2).

In order for these definitions to be legitimate, we have to assume that
α, β, γ, δ are such that we never will leave the state space defined above
(which would mean that we are required to remove a ball from the urn
that does not exist). Such urns are called tenable. There is no problem
if α, β, γ, δ ≥ 0, but we may also allow negative numbers under certain
conditions, for example α < 0, β, γ, δ ≥ 0 such that γ and x0 are multiples
of |α|, and y0 > 0 (for example in Theorem 1.5(i)).

All our results and proofs (with proper interpretations) are valid in this
generality, although we for simplicity sometimes phrase the proofs as if we
counted balls.

One advantage of the extension to real α, β, γ, δ is that a homogeneity
becomes evident: For any λ > 0, the generalized Pólya urn with parameters
λα, λβ, λγ, λδ and initial value (λx0, λy0) is λ(Xn, Yn); this explains why
the parameters appear as ratios such as α/δ in our results. (One might use
this and assume e.g. δ = 1 in some proofs below in order to simplify the
notation.)

Remark 1.12. Another extension that is useful in some applications is to
let the different colours have different weights (or activities), say λ and µ:
we now assume that balls are drawn with probabilities proportional to their
weights. (This makes sense for any positive real weights. In the branching
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process, this means that particles of different types have different expected
life times, see [2] and [14].) We can reduce this to the extension in Re-
mark 1.11, since (λXn, µYn) is a process of that type with replacement
matrix

(
λα µβ
λγ µδ

)
. Hence all our results apply to the weighted case too, with

straightforward modifications.

Remark 1.13. Many authors have studied generalized Pólya urns under
the simplifying assumption that a fixed number of balls is added each time,
i.e. that the replacement matrix has constant row sums. (In our triangular
2-colour case, this is α = γ + δ.) Such urns are called balanced. This means
that the total number of balls is deterministic, which is very useful in some
methods, but not needed in ours (except in some special results such as
Theorem 1.7). Note that in our case, constant row sums can appear only in
Theorem 1.3(v) and Theorem 1.4(ii).

Kotz, Mahmoud and Robert [19] give exact formulas and some asymp-
totics for 2-type urns. They study two triangular examples in detail, and
comment that the case ( 1 0

1 1 ) gives asymptotics “of an essentially different
character” than cases with constant row sums. From our point of view, as
expressed in Theorem 1.3, this difference is due to the relation between the
eigenvalues (i.e., the diagonal elements α and δ) rather than having equal
row sums or not.

Remark 1.14. In [14] too, limit result for urns were proved using the em-
bedding in a multi-type branching process. However, the method there is
quite different: a functional limit theorem is proved for the branching pro-
cess and the result studied at the (random) time of the n:th death gives
limit results for the urn. In this paper, we instead use the embedding to
derive an exact formula for a generating function (not for Xn or Yn, but
for a related quantity; see Theorem 7.1), from which our results follow by
traditional methods. We do not prove corresponding limit results for the
branching process, although they undoubtedly exist. (When α < δ, such
results hold by [14], see Remark 1.10.)

By [14, Theorem 3.31], the normal limit results in Theorem 1.3(i)(ii) can
be extended to functional limit results, describing how Yn varies with n for
large n; we omit the details. Similarly, [14, Theorem 3.24] shows that in
Theorem 1.3(iii), we have convergence a.s. to some W (necessarily with the
distribution described above). The same is true in Theorem 1.3(iv) by [20,
Theorem 2.3], and in the diagonal case Theorem 1.4, as seen by the proof
in Section 11 or (when α 6= δ) by [20, Theorem 2.2]. We conjecture that the
same is true in Theorem 1.3(v), but this seems to remain an open problem.

Our results suggest two other problems:

Problem 1.15. Find better descriptions of the limits W and Z.

Problem 1.16. Extend the results of this paper to three or more colours!
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It is possible that the methods of this paper can be used, perhaps to-
gether with an induction on the number of colours, but certainly a non-trival
amount of further work would be needed.

The proofs of the results above (and some related results) are given in
Sections 4–12. In Section 13, we show how a version of our method gives
some exact results in a diagonal example.

Note that Flajolet, Gabarró and Pekari [10], see also [11], recently have
given a detailed study of two-colour urns, including triangular cases, by
different methods; the reader is encouraged to compare the papers. See
in particular [10, Section 5.5] and [11], which treat the case α = γ + δ,
γ = 1, and find a more refined version (a local limit theorem) of (1.8) and
Theorem 1.8 (when x0 = 0, y0 = 1) for that case.

A completely different set of limit theorems for branching processes (and
urns) with triangular replacement matrices are given by Drmota and Vatutin
[6]; they study a different problem (the number of particles of different
colours ever born for a process that dies out, conditioned on the sum over
all colours) and obtain several different asymptotic distributions in different
cases.

Acknowledgements. Part of this research was done during a visit to Uni-
versité de Versailles Saint-Quentin, Versailles, France. I thank Philippe Fla-
jolet, Nicolas Pouyanne and Vincent Puyhaubert for interesting discussions
and for sharing unpublished results with me, which have inspired some of
the results above. In particular, I would never have even attempted to find
the moments in Theorem 1.7, had I not known the result from Puyhaubert’s
work. I further thank a referee for helpful remarks.

2. Degenerate cases

For completeness, we discuss briefly some degenerate cases.
If y0 = 0, i.e. we start with black balls only, then we never will have any

white balls, and the urn is deterministic: (Xn, Yn) = (x0 + αn, 0).
The case x0 = γ = 0 is similar, with only white balls.
If δ < 0, the white balls will eventually disappear. This is obvious for

the branching process, and thus it is a.s. true for the urn model too. Hence,
for all n larger than some random value, using Lemma 1.2, (Xn, Yn) =
(αn+ x0 + (γ − α)y0/|δ|, 0).

The case α < 0, γ = 0 is similar.
If δ = 0, then Yn = y0 is constant. If further α = γ = 0, then nothing at

all is ever added and the urn is utterly trivial.
If α = γ, then Xn = x0 + αn is deterministic.
If α = γ = 0 and δ > 0, y0 > 0, we may interchange the colours and

obtain a normal limit for Yn from Theorem 1.5(iii).
In all other cases with β = 0, Theorems 1.3–1.5 yield non-degenerate

limits.
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3. Examples

We give three examples that illustrate what we can and cannot say about
the limit distributions, hoping that they may serve as inspiration for further
research.

Example 3.1. The simplest non-normal case is ( 2 0
1 1 ), i.e. α = 2, γ = δ = 1.

We assume y0 > 0, and Theorem 1.3(v) yields n−1/2Yn
d→W .

If x0 = 0 or 1, Theorem 1.8 applies. In this case (δ/α = 1/2), the Mittag-
Leffler density f(x) = π−1/2e−x2/4, and thus W has density cxy0−x0e−x2/4,
x > 0. (In this example c stands for unspecified positive constants.) (Hence,
W/

√
2 has the Chi distribution χ(y0+1−x0), i.e.W 2 ∼ Γ((y0+1−x0)/2, 4).)

In particular, if x0 = 0 and y0 = 1, W has a Rayleigh distribution [10,
Corollary 12], [11]. If x0 = y0 = 1, W d= |U | with U ∼ N(0, 2).

If x0 > 1, the description of the limit W is less simple. If x0 = α =
2, the moment in Theorem 1.7 differs from the case x0 = 0 by a factor
y0/(y0 + r), which is the r:th moment of a random variable V with density
g(x) := y0x

y0−1 on (0, 1), i.e. V ∼ Beta(y0, 1). Consequently W
d= W0V ,

where W0 is as in the case x0 = 0, i.e. has a density h0(x) := cxy0e−x2/4,
x > 0, and V has the density g(x), with U and V independent. It follows
that W has density

∫∞
x h0(y)g(x/y)y−1 dy = cxy0−1

∫∞
x e−y2/4 dy, x > 0.

In the same way, we can find the density for every integer x0, but the
formulas become more complicated for larger x0.

Example 3.2. A related, non-balanced, case is ( 2 0
3 1 ), i.e. α = 2, γ = 3,

δ = 1. Assume for simplicity x0 = 0 and y0 = 1. Again Theorem 1.3(v)
yields n−1/2Yn

d→W , but now we have no simple description of W .
The moments can be calculated from Theorem 1.6 in this case too. The

inner integral in Theorem 1.6 is 2(1+2x)x−1/2(1+x)−1/2−2x−1/2, and thus

EW r =
r!

Γ(r/2)

∫ ∞

0
(1 + x)(r+1)/2(1 + 2x)−r−1xr/2−1 dx. (3.1)

This is easily calculated by Maple for small r; we find EW = 3
8

√
2π, EW 2 =

7
8 + 3

16

√
2 ln(

√
2 + 1), EW 3 = 39

64

√
2π, EW 4 = 219

128 + 135
256

√
2 ln(

√
2 + 1),

EW 5 = 825
512

√
2π, . . . , but no simple formula is evident.

It is easily seen that all odd moments are rational multiples of
√

2π; if
r = 2k − 1, expand (1 + x)k = ((1 + 2x) − x)k in (3.1) by the binomial
theorem, let y = 2x and apply (4.2) below. This gives an explicit formula
for the odd moments, but we do not find any simple form for them, and
leave further investigations to the reader.

Example 3.3. Consider ( 1 0
1 1 ), i.e. α = γ = δ = 1, a case studied in [19].

By Theorem 1.3(iv),

ln2 n

n
Yn − lnn− ln lnn d→W = −Z.
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It follows easily from e.g. (8.5) and (8.8) below that

E e−τZ =
1

Γ(y0)

∫ ∞

0
(τ + x)τ−x0xx0+y0−1e−x dx, τ ≥ 0.

Moments of Z and W can be calculated from this formula. For example, cf.
Theorem 8.2,

−EW = EZ =
x0

y0 − 1
− Γ′(y0)

Γ(y0)
if x0 = 0 or y0 > 1 (and ∞ otherwise).

4. Preliminaries

Infinitely divisible distributions. For the general theory of infinitely
divisible distributions, we refer to a general probability book such as [9] or
[17]. We will here only need a special case.

Suppose that ν is a measure on R \ {0} such that
∫
x2 dν(x) < ∞ and

that λ ∈ R. We say that a random variable Y has an infinitely divisible
distribution with Lévy measure ν and mean λ if its characteristic function is
given by

E eitY = eitλ+
R

(eitx−1−itx) dν(x). (4.1)
In this case, EY = λ and VarY =

∫
x2 dν(x).

In our cases, the Lévy measure is supported on {x > 0}; such infinitely
divisible distribution are called spectrally positive. It is easily seen that in
this case, E e−tY < ∞ for every t > 0, and that (4.1) extends to complex t
with Im t ≥ 0 (thus giving a formula for E e−tY for Re t ≥ 0).

A well-known example is the Gamma distribution Γ(p, a) (where a, p > 0).
The characteristic function is (1 − iat)−p, which is of the form (4.1) with
λ = ap and dν(y) = py−1e−a−1y dy, y > 0 [9, XVII.3(d)].

Some Beta integrals. Recall that the Beta function is defined byB(z, w) =
Γ(z)Γ(w)/Γ(z+w). We have the well-known and classical formula [1, 6.2.1]∫ ∞

0
(1 + x)−axb−1 dx = B(a− b, b) =

Γ(a− b)Γ(b)
Γ(a)

, a > b > 0. (4.2)

For b < 0, we have the following related results, which perhaps are less
well-known, although they too undoubtedly have been known for a long
time. (The formulas extend to complex a and b, with real parts satisfying
the corresponding inequalities, but we only need real parameters in this
paper.)

Lemma 4.1. (i) If −1 < b < 0 and a > b, then∫ ∞

0

(
(1 + x)−a − 1

)
xb−1 dx = B(a− b, b) = Γ(a− b)Γ(b)/Γ(a).

(ii) If −2 < b < −1 and a > b, then∫ ∞

0

(
(1 + x)−a − 1 + ax

)
xb−1 dx = B(a− b, b) = Γ(a− b)Γ(b)/Γ(a).
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(iii) If a > −1, then, with ψ(z) = Γ′(z)/Γ(z),∫ 1

0

(
(1+x)−a−1+ax

)
x−2 dx+

∫ ∞

1

(
(1+x)−a−1

)
x−2 dx = a

(
ψ(a+1)−ψ(2)

)
.

Proof. (i) and (ii) follow from (4.2) by one and two integrations by parts,
respectively; we omit the details. For (iii), note that if 0 < ε < 1, then,
using (i),∫ 1

0

(
(1 + x)−a − 1 + ax

)
xε−2 dx+

∫ ∞

1

(
(1 + x)−a − 1

)
xε−2 dx

=
∫ ∞

0

(
(1 + x)−a − 1

)
xε−2 dx+

∫ 1

0
axε−1 dx

=
Γ(a− ε+ 1)Γ(ε− 1)

Γ(a)
+
a

ε
=

Γ(a− ε+ 1)Γ(ε+ 1) + (ε− 1)aΓ(a)
ε(ε− 1)Γ(a)

.

As ε→ 0, this converges, by l’Hôpital’s rule, to
−Γ′(a+ 1) + Γ(a+ 1)Γ′(1) + aΓ(a)

−Γ(a)
= a

(
ψ(a+ 1)− ψ(1)− 1

)
,

and (iii) follows because ψ(2) = ψ(1) + 1. �

5. The case of one colour

As a preparation, we start by studying the one-colour case with replace-
ment matrix (α). The urn process is trivial; we add α new balls each time,
so Xn = x0 + αn. The corresponding continuous time branching process is
more interesting; it is a pure birth process where each particle has an Exp(1)
lifetime and then splits into α + 1 particles. For α = 1, this is known as
the Yule process. The generating function is easily determined, see e.g. [3,
Remark III.5.1].

Lemma 5.1. Let X (t) be a generalized Yule process, where each particle
splits into α + 1 after an Exp(1) lifetime, and suppose X (0) = x0. Then,
for each t ≥ 0 and 0 < |z| ≤ 1, E zX (t) = Φ(z; t)x0, where

Φ(z; t) := z
(
(1− zα)eαt + zα

)−1/α =
(
1 + (z−α − 1)eαt

)−1/α (5.1)

if α 6= 0, while Φ(z; t) := z if α = 0.

Remark 5.2. In accordance with Remark 1.11, α and x0 may here be real
numbers, assuming x0 ≥ 0 and either α ≥ 0 or α < 0 with x0 a multiple of
|α|.

Remark 5.3. For, say, 0 < z ≤ 1, there is no problem to interpret the
fractional powers in (5.1). Later, however, we want to take z complex, and
we then have to choose the right branches. There is no serious problem;
we will take z = eis with s real, and then there is a unique branch of (5.1)
that is a continuous function of s with value 1 for s = 0. We will use this
interpretation of Φ(eis; t) without further comment, and Lemma 5.1 then
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gives the characteristic function of X (t). The same applies to Gm(z) and
Ψ(z; t) in Theorem 6.1 below.

Proof. As said above, this is well-known, at least when α is an integer. For
completeness we give a simple proof valid for all α 6= 0 and x0 > 0 (the cases
α = 0 or x0 = 0 are trivial).

Define pk(t) := P(X (t) = kα+ x0). Then

p′k(t) =
(
(k − 1)α+ x0

)
pk−1(t)− (kα+ x0)pk(t),

with p−1(t) = 0 and pk(0) = δk0. This system is solved by

pk(t) =
Γ(k + x0/α)
Γ(x0/α)k!

e−x0t
(
1− e−αt

)k
, (5.2)

and the result follows by

E zX (t) =
∞∑

k=0

pk(t)zkα+x0 = zx0e−x0t
∞∑

k=0

(
−x0/α

k

)(
−zα(1− e−αt)

)k

= zx0e−x0t
(
1− zα(1− e−αt)

)−x0/α
. �

6. Stopping after m white draws

Let X(m) be the number of black balls when m white balls have been
drawn, i.e. (assuming δ 6= 0) Xn for the smallest n such that the number
Yn of white balls is y0 + mδ, and let Gm(z) := E zX(m)

be its probability
generating function. We will give an explicit formula for Gm(z). This will
in the next section be used to derive a limit theorem for X(m).

Theorem 6.1. Consider a generalized Pólya urn with triangular replace-
ment matrix

(
α 0
γ δ

)
and initial composition (x0, y0), with δ > 0 and y0 > 0.

Then, for 0 < |z| ≤ 1,

Gm(z) = δ
Γ(y0/δ +m)
Γ(y0/δ)Γ(m)

zγ

∫ ∞

0
e−y0tΦ(z; t)x0Ψ(z; t)m−1 dt

for any m ≥ 1, where Φ(z; t) is given by (5.1) (and Φ(z; t) := z if α = 0),
and

Ψ(z; t) := δ

∫ t

0
e−δuΦ(z;u)γ du. (6.1)

Remark 6.2. Recall that non-integer parameters are possible, see Re-
mark 1.11. See also Remark 5.3.

Proof. Let Px,y(t) := P
(
X (t) = x and Y(t) = y

)
and P̃x,y := P

(
X (t) =

x and Y(t) = y for some t ≥ 0
)
.

Lemma 6.3. Assume δ > 0, α 6= 0 and x, y ≥ 0 with x+ y > 0. Then

P̃x,y = (x+ y)
∫ ∞

0
Px,y(t) dt.
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Proof. If the composition (x, y) occurs during the evolution, it remains for
a period of time with an Exp(1/(x+ y)) distribution, and then never occurs
again. Thus, the expected time the composition equals (x, y) is P̃x,y ·1/(x+
y). Finally, by Fubini’s theorem, this expected time equals

E
∫ ∞

0
1[X (t) = x and Y(t) = y] dt =

∫ ∞

0
Px,y(t) dt. �

Now consider X(m+1). It equals x if some white draw (necessarily the
(m + 1):th) leads to (x, y0 + (m + 1)δ), i.e. if at some time we reach (x −
γ, y0 + mδ) and the next draw is white. Consequently, using Lemma 6.3
(with a minor modification if α = 0),

P(X(m+1) = x) = P̃x−γ,y0+mδ ·
y0 +mδ

x− γ + y0 +mδ

= (y0 +mδ)
∫ ∞

0
Px−γ,y0+mδ(t) dt.

Thus, if we define

Hm(z; t) := E
(
zX (t);Y(t) = y0 +mδ

)
=

∑
x

zxPx,y0+mδ(t),

we have, for every m ≥ 0,

Gm+1(x) =
∑

x

P(X(m+1) = x)zx

= (y0 +mδ)zγ

∫ ∞

0

∑
x

Px−γ,y0+mδ(t)zx−γ dt

= (y0 +mδ)zγ

∫ ∞

0
Hm(z; t) dt.

(6.2)

Lemma 6.4. Assume δ > 0 and y0 > 0. Then, for every m ≥ 0,

Hm(z; t) =
Γ(y0/δ +m)
Γ(y0/δ)m!

e−y0tΦ(z; t)x0Ψ(z; t)m.

Proof. The idea is to look at the black and white balls separately, as two
different (but dependent) processes. Suppose that m white balls are drawn
before time t, at times t1 < · · · < tm < t. The γ black balls added at ti
increase by drawings of these balls and their offspring; the total size of their
families at time t has, by Lemma 5.1, the probability generating function
Φ(z; t−ti)γ . Considering also the offspring of the original x0 black balls, and
noting that different groups evolve independently (by the additive property
of the branching process), we see that the probability generating function
of the number of black balls at time t, conditioned on the number m and
times t1, . . . , tm of white draws, is

Φ(z; t)x0

m∏
i=1

Φ(z; t− ti)γ . (6.3)
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Let us now ignore the black balls. The white balls form a pure birth process,
and the joint density of the first m jumps is

y0e
−y0t1(y0 + δ)e−(y0+δ)(t2−t1) · · · (y0 + (m− 1)δ)e−(y0+(m−1)δ)(tm−tm−1)

= δm Γ(y0/δ +m)
Γ(y0/δ)

eδt1+···+δtm−1−(y0+(m−1)δ)tm

on 0 < t1 < · · · < tm.
Restricting to tm < t and multiplying by e−(y0+mδ)(t−tm), the probability

of no further white draw before t, we obtain the density of white draws
at t1, . . . , tm, and only then before t. Multiplying by (6.3) and integrating
yields

Hm(z, t) =
∫
· · ·

∫
0<t1<···<tm<t

δm Γ(y0/δ +m)
Γ(y0/δ)

eδ(t1+···+tm)−(y0+mδ)t

· Φ(z, t)x0

m∏
i=1

Φ(z; t− ti)γ dt1 · · · dtm.

Since the integrand is symmetric in t1, . . . , tm, we may integrate over [0, t]m

instead and divide by m!; this integral factors and we obtain

Hm(z, t) =
Γ(y0/δ +m)
m! Γ(y0/δ)

e−y0tΦ(z, t)x0

(
δ

∫ t

0
eδ(t1−t)Φ(z; t− t1)γ dt1

)m
.

The lemma follows by (6.1) and the change of variables u = t1 − t. �

Theorem 6.1 now follows from (6.2) and Lemma 6.4, if we replace m by
m− 1. �

7. A limit theorem for X(m)

We use the exact formula in Theorem 6.1 to obtain the asymptotic dis-
tribution of X(m) as m→∞. We have to distinguish between the same five
cases as in Theorem 1.3. In two cases we find a normal limit distribution.
In the other cases, we give an explicit but complicated formula for the char-
acteristic function of the limit. In Section 8 we will derive other expressions
for the characteristic function and moment generating function, and we will
compute the mean and variance of the limit. In some special cases, we find
much simpler results (in particular, a stable distribution in Theorem 8.6);
in general all our expressions are complicated and perhaps mainly useful to
show the existence of a limit. (It is quite possible that there might exist a
much simpler formula than the ones we have found, or some other simple
description of the limit distribution that we have failed to see.)

Define for convenience, (using the principal branch)

R1(z) = (1 + z)−γ/α − 1, (7.1)

R2(z) = (1 + z)−γ/α − 1 + (γ/α)z = R1(z) + (γ/α)z. (7.2)
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Theorem 7.1. Consider a generalized Pólya urn with triangular replace-
ment matrix

(
α 0
γ δ

)
and initial composition (x0, y0), with δ > 0 and y0 > 0,

and let m→∞.

(i) If α < δ/2, then

m−1/2
(
X(m) − γ

1− α/δ
m

)
d→ N(0, σ2

1),

where

σ2
1 =

α2γδ(δ + γ − α)
(δ − 2α)(δ − α)2

. (7.3)

(ii) If α = δ/2, then

(m lnm)−1/2
(
X(m) − γ

1− α/δ
m

)
d→ N

(
0, γ(γ + α)

)
.

(iii) If δ/2 < α < δ, then

m−α/δ
(
X(m) − γ

1− α/δ
m

)
d→ Z,

where Z is a random variable with the characteristic function

E eitZ =
1

Γ(y0/δ)

∫ ∞

0
(1− iαtx−α/δ)−x0/αeg(t,x)xy0/δ−1 dx, (7.4)

with

g(t, x) :=
∫ ∞

x
R2(−iαtu−α/δ) du− i

γ

1− α/δ
tx1−α/δ − x. (7.5)

(iv) If α = δ, then

m−1
(
X(m) − γm lnm

)
d→ Z,

where Z is a random variable with the characteristic function (7.4),
where now

g(t, x) :=
∫ ∞

x
R2(−iαtu−1) du− iγt lnx− x. (7.6)

(v) If α > δ, then

m−α/δX(m) d→ Z,

where Z is a random variable with the characteristic function (7.4),
with g given by (7.5) or, equivalently,

g(t, x) :=
∫ ∞

x
R1(−iαtu−α/δ) du− x. (7.7)

Proof. In order to prove the five parts together, we begin with a lemma. Let
Φ and Ψ be as above, see (5.1), (6.1) and Remark 5.3.
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Lemma 7.2. Let am, bm and ρ be real numbers with am → 0 and bm/m1/2 →
ρ as m→∞. Define, for 0 < x < m, tm(x) := (lnm−lnx)/δ = δ−1 ln(m/x)
and Φ∗m(s, x) := Φ

(
eisam ; tm(x)

)
, Ψ∗

m(s, x) := Ψ
(
eisam ; tm(x)

)
. Suppose that

for some functions f, g : R×R+ → R and every s ∈ R and x > 0, as m→∞,

Φ∗m(s, x) = f(s, x) + o(1), (7.8)

Ψ∗
m(s, x) = 1 +

isbm
m

+
g(s, x)
m

+ o
( 1
m

)
. (7.9)

Suppose further that f(s, x) and g(s, x) are continuous in s for every fixed
x. Then

amX
(m) − bm

d→ Z

for a random variable Z with the characteristic function

E eisZ =
1

Γ(y0/δ)

∫ ∞

0
f(s, x)x0eg(s,x)+ρ2s2/2xy0/δ−1 dx. (7.10)

Proof. The characteristic function of amX
(m) − bm is by Theorem 6.1 and

the change of variable t = tm(x),

E eis(amX(m)−bm) = e−isbmGm(eisam)

=
Γ(y0/δ +m)
Γ(y0/δ)Γ(m)

m−y0/δeisamγ

∫ m

0
e−isbmxy0/δΦ∗m(s, x)x0Ψ∗

m(s, x)m−1 dx

x
.

(7.11)

As m→∞, the factor in front of the integral tends to 1/Γ(y0/δ), and, by
assumption, Φ∗m(s, x) → f(s, x), while Ψ∗

m(s, x)− 1 = O(m−1/2) and thus

(m− 1) ln Ψ∗
m(s, x) = m(Ψ∗

m − 1)−m1
2(Ψ∗

m − 1)2 + o(1)

= isbm + g(s, x) + s2ρ2/2 + o(1)

and
e−isbmΨ∗

m(s, x)m−1 → eg(s,x)+s2ρ2/2.

Consequently, the integrand in (7.11) tends to the integrand in (7.10). More-
over, Φ∗m(s, x) is a characteristic function by Lemma 5.1, so it is bounded
by 1. This also implies, by (6.1),

|Ψ(eis; t)| ≤ δ

∫ t

0
e−δu|Φ(eis;u)|γ du ≤ δ

∫ t

0
e−δu du = 1− e−δt,

so for m ≥ 2,

|Ψ∗
m(s, x)|m−1 ≤ (1− e−δtm(x))m−1 =

(
1− x

m

)m−1
≤ e−(m−1)x/m ≤ e−x/2.

Consequently, the integrand in (7.11) is bounded by xy0/δ−1e−x/2; hence
also its limit, the integrand in (7.10), is bounded by the same function.
We can thus apply dominated convergence to (7.11), which shows that
E eis(amX(m)−bm) converges as m→∞, for every fixed real s, to the right
hand side of (7.10). Further, dominated convergence again shows that this
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right hand side is a continuous function of s. The lemma follows by the
continuity theorem for characteristic functions [17, Theorem 5.22]. �

Note that, by (5.1) and (6.1), setting y = e−δu, when α 6= 0,

Φ∗m(s, x) = Φ
(
eisam ; tm(x)

)
=

(
1 + (e−iαsam − 1)(m/x)α/δ

)−1/α
, (7.12)

Ψ∗
m(s, x) = Ψ

(
eisam ; tm(x)

)
= δ

∫ tm(x)

0
e−δuΦ(eisam ;u)γ du

=
∫ 1

x/m
Φ

(
eisam ;− ln y

δ

)γ
dy =

∫ 1

x/m

(
1 + (e−iαsam − 1)y−α/δ

)−γ/α
dy;

(7.13)

when α = 0 we easily obtain Φ∗m(s, x) = eisam and Ψ∗
m(s, x) = eiγsam(1 −

x/m).
We will apply Lemma 7.2, with the following choices of am and bm in the

five different cases:

(i) α < δ/2: am = m−1/2, bm = γ(1− α/δ)−1m1/2;
(ii) α = δ/2: am = (m lnm)−1/2, bm = 2γ(m/ lnm)1/2;
(iii) δ/2 < α < δ: am = m−α/δ, bm = γ(1− α/δ)−1m1−α/δ;
(iv) α = δ: am = m−α/δ = m−1, bm = γ lnm;
(v) α > δ: am = m−α/δ, bm = 0.

Note that ρ = γ(1− α/δ)−1 in case (i), and ρ = 0 in cases (ii)–(v).
In cases (i) and (ii),

(e−iαsam − 1)(m/x)α/δ = O(amm
α/δ) → 0,

and thus (7.12) shows that (7.8) holds with f(s, x) = 1.
In cases (iii), (iv), (v),

(e−iαsam − 1)(m/x)α/δ → −iαsx−α/δ,

and hence, by (7.12), (7.8) holds with

f(s, x) = (1− iαsx−α/δ)−1/α. (7.14)

Next, in cases (i) and (ii), for x/m ≤ y ≤ 1,

(e−iαsam − 1)y−α/δ = O
(
am(1 +mα/δ)

)
→ 0.
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If α 6= 0, we make a Taylor expansion in (7.13) and obtain, as m→∞,

Ψ∗
m(s, x) =

∫ 1

x/m

(
1− γ

α
(e−iαsam − 1)y−α/δ

+
1
2
γ

α

(γ
α

+ 1
)
(e−iαsam − 1)2y−2α/δ +O(a3

my
−3α/δ)

)
dy

= 1− x

m
− γ

α
(e−iαsam − 1)

1
1− α/δ

(
1−

( x
m

)1−α/δ)
+

1
2
γ(γ + α)

α2
(e−iαsam − 1)2

∫ 1

x/m
y−2α/δ dy + o(m−1)

= 1− x

m
+

γ

1− α/δ

(
isam + α

s2a2
m

2

)
− γ(γ + α)

s2a2
m

2

∫ 1

x/m
y−2α/δ dy + o(m−1). (7.15)

Hence, for case (i) (α 6= 0),

m
(
Ψ∗

m(s, x)− 1
)

= −x+
iγs

1− α/δ
m1/2 +

αγ

1− α/δ

s2

2
− γ(γ + α)

1− 2α/δ
s2

2
+ o(1).

It is easily checked that this holds for α = 0 too.
In case (i), thus (7.9) holds with

g(s, x) = −x+
( αγ

1− α/δ
− γ(γ + α)

1− 2α/δ

)s2
2
.

We obtain from (7.10), recalling f(s, x) = 1 in this case,

E eisZ =
1

Γ(y0/δ)

∫ ∞

0
e−σ2

1s2/2−xxy0/δ−1 dx = e−σ2
1s2/2 (7.16)

with

σ2
1 =

γ(γ + α)
1− 2α/δ

− αγ

1− α/δ
− ρ2 =

γ(γ + α)
1− 2α/δ

− αγ

1− α/δ
− γ2

(1− α/δ)2
,

which is equivalent to (7.3). Hence Z ∼ N(0, σ2
1). This proves case (i).

For case (ii), (7.15) yields

Ψ∗
m(s, x) = 1− x

m
+

iγs

1− α/δ
am − γ(γ + α)

s2

2m lnm

∫ 1

x/m
y−1 dy + o(m−1)

and thus

m
(
Ψ∗

m(s, x)− 1
)

= −x+ 2iγs
( m

lnm

)1/2
− γ(γ + α)

s2

2
+ o(1).

Hence, (7.9) holds with g(s, x) = −x−γ(γ+α)s2/2. Thus (7.16) holds with
σ2

1 = γ(γ + α), so Z ∼ N(0, γ(γ + α)) and Theorem 7.1(ii) follows.
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In cases (iii), (iv), (v), use (7.1) to rewrite (7.13) as

Ψ∗
m(s, x) =

∫ 1

x/m

(
1 +R1

(
(e−iαsam − 1)y−α/δ

))
dy

= 1− x

m
+

1
m

∫ m

x
R1

(
(e−iαsam − 1)mα/δt−α/δ

)
dt,

(7.17)

where (e−iαsam − 1)mα/δt−α/δ → −iαst−α/δ as m→∞.
Now, |R1(z)| = O(z) when z = O(1) and Re z > −1

2 , say. Hence, the last
integrand is O(t−α/δ). In case (v), we thus can use dominated convergence,
and find

m
(
Ψ∗

m(s, x)− 1
)
→ −x+

∫ ∞

x
R1(−iαst−α/δ) dt,

so (7.9) holds with

g(s, x) = −x+
∫ ∞

x
R1(−iαst−α/δ) dt. (7.18)

Lemma 7.2 now gives part (v) of Theorem 7.1; (7.4) follows from (7.10) and
(7.14), and (7.18) gives (7.7), which (because α/δ > 1) implies (7.5).

In cases (iii) and (iv), rewrite (7.17) using (7.2) as

m(Ψ∗
m(s, x)− 1) = −x+

∫ m

x
R2

(
(e−iαsam − 1)mα/δt−α/δ

)
dt

− γ

α

∫ m

x

(
e−iαsam − 1

)
mα/δt−α/δ dt.

Since R2(z) = O(|z|2) for z = O(1) and Re z > −1/2, we can use dominated
convergence in the first integral. Further, (e−iαsam − 1)mα/δ = −iαs +
O(m−α/δ), and we obtain

m(Ψ∗
m(s, x)− 1) = −x+

∫ ∞

x
R2

(
−iαst−α/δ

)
dt+ iγs

∫ m

x
t−α/δ dt+ o(1).

In case (iii),
∫ m
x t−α/δ dt = (1−α/δ)−1

(
m1−α/δ − x1−α/δ

)
and (7.9) holds

with

g(s, x) = −x+
∫ ∞

x
R2

(
−iαst−α/δ

)
dt− iγs

1− α/δ
x1−α/δ.

In case (iv),
∫ m
x t−α/δ dt = lnm− lnx, and (7.9) holds with

g(s, x) = −x+
∫ ∞

x
R2

(
−iαst−α/δ

)
dt− iγs lnx.

In both cases the result follows by Lemma 7.2. �
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8. More on the limit Z

In this section we derive some properties and alternative descriptions of
the distribution of the limit Z in Theorem 7.1(iii)(iv)(v), including simpler
formulas in special cases. Note that the limit distribution depends not only
on the parameters α, γ, δ, but also on the initial values x0 and y0. We assume
throughout the section that we are in cases (iii)–(v); thus α > δ/2, further
δ > 0 and y0 > 0. We allow γ = 0 or x0 = 0, but the case γ = x0 = 0 is
trivial, since then the urn never contains any black ball, so X(m) = 0 and
Z = 0.

The characteristic function (7.4) in Theorem 7.1(iii)(iv)(v) can be written

E eitZ = Γ(y0/δ)−1

∫ ∞

0
φx(t)xy0/δ−1e−x dx,

where

φx(t) := (1− iαtx−α/δ)−x0/αeg(t,x)+x. (8.1)

Theorem 8.1. Assume α > δ/2 > 0. For each x > 0, φx is the character-
istic function of a spectrally positive infinitely divisible distribution µx with
mean

λ(x) = x0x
−α/δ − γ(1− α/δ)−1x1−α/δ (8.2)

(replaced by x0x
−α/δ − γ lnx if α = δ), and Lévy measure νx with density,

on y > 0,

dνx(y)
dy

=
x0

α
e−α−1xα/δyy−1 +

α−γ/α

Γ(γ/α)
yγ/α−1

∫ ∞

x
uγ/δe−α−1uα/δy du. (8.3)

Hence, the distribution of Z is the mixture Γ(y0/δ)−1
∫∞
0 xy0/δ−1e−xµx dx of

infinitely divisible distributions. (For γ = 0 we interpret 1/Γ(0) = 0, so the
second term in (8.3) vanishes.)

Proof. The first factor in (8.1) is the characteristic function of a Gamma
distribution Γ(x0/α, αx

−α/δ), which by Section 4 has mean x0x
−α/δ and

Lévy measure x0
α y

−1e−α−1xα/δy dy.
For the second factor, note first that if γ = 0, then g(t, x) = −x and thus

the second factor equals 1, which trivially is an infinitely divisible charac-
teristic function with mean 0 and Lévy measure 0.

Thus assume γ > 0. Then, for v > 0,

(1− ivt)−γ/α = Γ(γ/α)−1

∫ ∞

0
eivtyyγ/α−1e−y dy
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and thus, writing h(t) = eit − 1− it,

R1(−ivt) = Γ(γ/α)−1

∫ ∞

0

(
eivty − 1

)
yγ/α−1e−y dy

R2(−ivt) = Γ(γ/α)−1

∫ ∞

0
h(vty)yγ/α−1e−y dy

=
v−γ/α

Γ(γ/α)

∫ ∞

0
h(tz)zγ/α−1e−v−1z dz.

Hence, by Fubini’s theorem,∫ ∞

x
R2(−iαtu−α/δ) du =

α−γ/α

Γ(γ/α)

∫ ∞

x

∫ ∞

0
h(tz)uγ/δzγ/α−1e−α−1uα/δz dz du

=
∫ ∞

0
h(tz) dν1

x(z),

where ν1
x is the measure on (0,∞) with density

dν1
x(z)
dz

=
α−γ/α

Γ(γ/α)
zγ/α−1

∫ ∞

x
uγ/δe−α−1uα/δz du;

by Fubini’s theorem again we have∫ ∞

0
z2 dν1

x(z) =
α−γ/α

Γ(γ/α)

∫ ∞

x

∫ ∞

0
zγ/α+1uγ/δe−α−1uα/δz dz du

=
α2Γ(γ/α+ 2)

Γ(γ/α)

∫ ∞

x
uγ/δ−(γ/α+2)α/δ du

= γ(γ + α)
∫ ∞

x
u−2α/δ du

=
γ(α+ γ)
2α/δ − 1

x1−2α/δ <∞.

(8.4)

Thus, by (7.5) and (7.6), the second factor in (8.1) is the characteristic func-
tion of an infinitely divisible distribution with mean −γ(1 − α/δ)−1x1−α/δ

(or −γ lnx if α = δ) and Lévy measure ν1
x. The result follows. �

It will be convenient to work mainly with real variables. We first extend
the definitions (7.5)–(7.7) of g to all complex t with Re it ≤ 0, and then
define, for Re τ ≥ 0,

g̃(τ, x) := g(iα−1τ, x) =
∫ ∞

x
R2(τu−α/δ) du+

γ/α

1− α/δ
τx1−α/δ − x (8.5)

(with the usual modification if α = δ). By Section 4,
∫
e−ty dµx(y) is finite

for every x, t > 0, and (8.1) extends to∫
e−τy dµx(y) = (1 + ατx−α/δ)−x0/αeg̃(ατ,x)+x, Re τ ≥ 0. (8.6)
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By Theorem 8.1,

E f(Z) = Γ(y0/δ)−1

∫ ∞

0
xy0/δ−1e−x

∫
f(y) dµx(y) dx (8.7)

for every measurable function f such that E f(Z) makes sense; for example
if f ≥ 0 or E |f(Z)| <∞. In particular, by (8.6), for τ ≥ 0,

E e−τZ = Γ(y0/δ)−1

∫ ∞

0
(1 + ατx−α/δ)−x0/αeg̃(ατ,x)xy0/δ−1 dx. (8.8)

Since g̃(τ, x) < −x/2 for large x by (8.5), it follows that E e−τZ is finite for
all τ ≥ 0. (Hence it is a continuous function of τ for Re τ ≥ 0, and analytic
for Re τ > 0.) Hence (8.7) and (8.6) show that (8.8) holds for all complex τ
with Re τ ≥ 0.

It is now straightforward to compute the first moments of Z, and in
particular to see when they are finite. Similar criteria for finiteness of higher
moments, and similar (but more complicated) formulas for them, can be
derived by the same method.

Theorem 8.2. Assume α > δ/2 > 0 and y0 > 0. Then −∞ < EZ ≤ +∞,
and

E |Z| <∞ ⇐⇒

{
y0 > α if x0 > 0,
y0 + δ > α if x0 = 0 and γ > 0;

EZ2 <∞ ⇐⇒

{
y0 > 2α if x0 > 0,
y0 + δ > 2α if x0 = 0 and γ > 0.

When the moments are finite, they are given by, provided α 6= δ,

EZ = x0
Γ
(
(y0 − α)/δ

)
Γ(y0/δ)

+ γ
Γ
(
(y0 + δ − α)/δ

)
(α/δ − 1)Γ(y0/δ)

,

EZ2 = x0(x0 + α)
Γ
(
(y0 − 2α)/δ

)
Γ(y0/δ)

+ γ
( α+ γ

2α/δ − 1
+

2x0

α/δ − 1

)Γ
(
(y0 + δ − 2α)/δ

)
Γ(y0/δ)

+ γ2 Γ
(
(y0 + 2δ − 2α)/δ

)
(α/δ − 1)2Γ(y0/δ)

.

When α = δ, the moments are given by appropriate limits of the expres-
sions above; we leave the details to the reader.

Proof. Let Z+ := max(Z, 0) and Z− := max(−Z, 0). As remarked above,
E e−Z <∞, and thus EZ− <∞. Consequently, (8.7) applied to f(Z) = Z+

and Z− separately shows that we can take f(Z) = Z too; thus

EZ = Γ(y0/δ)−1

∫ ∞

0
xy0/δ−1e−xλ(x) dx (8.9)
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with both sides finite or +∞, where λ(x) is given by (8.2). For small x, we
have by (8.2) λ(x) � x−α/δ if x0 > 0, while λ(x) � x1−α/δ if x0 = 0 and
γ > 0 (and α 6= δ; otherwise λ(x) � | lnx|); the criterion for E |Z| < ∞
follows. When EZ is finite, its value follows from (8.9) and (8.2).

Similarly, (8.7) yields, since
∫
y2 dµx(y) = λ(x)2 +

∫
y2 dνx(y),

EZ2 = Γ(y0/δ)−1

∫ ∞

0
xy0/δ−1e−x

(
λ(x)2 +

∫
y2 dνx(y)

)
dx.

By (8.3) and (8.4), we have∫ ∞

0
y2 dνx(y) = x0αx

−2α/δ +
γ(α+ γ)
2α/δ − 1

x1−2α/δ,

and the results for EZ2 follow, using (8.2) and straightforward calculations.
�

Observe next that by (8.5), or by (7.5), (7.6), (7.7), also when α = δ,
∂

∂x
g̃(τ, x) = −R2(τx−α/δ) + (γ/α)τx−α/δ − 1

= −(1 + τx−α/δ)−γ/α.

(8.10)

Hence | ∂
∂x g̃(τ, x)| ≤ 1 for x > 0, Re τ ≥ 0, and thus the limit g̃(τ, 0) :=

limx→0 g̃(τ, x) exists uniformly for Re τ ≥ 0, and

g̃(τ, x) = g̃(τ, 0)−
∫ x

0
(1 + τu−α/δ)−γ/α du. (8.11)

The integral in (8.5) is, for fixed x > 0, a continuous function of τ for
Re τ ≥ 0, and analytic for Re τ > 0. Hence, so is g̃(τ, x) for every fixed
x > 0, and, by uniform convergence, also g̃(τ, 0).

Lemma 8.3. Suppose α > δ/2 > 0 and Re τ ≥ 0.
(i) If α 6= δ, then

g̃(τ, 0) =
δ

α
B

(γ + δ

α
,
−δ
α

)
τ δ/α = −

Γ
(

γ+δ
α

)
Γ
(
1− δ

α

)
Γ
(

γ
α

) τ δ/α.

(ii) If α = δ, then

g̃(τ, 0) =
γ

α

(
ψ

(γ
α

+ 1
)
− ψ(2)

)
τ +

γ

α
τ ln τ.

Proof. By analytic continuation, it suffices to consider real τ > 0.
If α < δ, then (8.5) and Lemma 4.1(ii) yield, with v = τu−α/δ,

g̃(τ, 0) =
∫ ∞

0
R2(τu−α/δ) du =

δ

α
τ δ/α

∫ ∞

0
R2(v)v−δ/α−1 dv

=
δ

α
τ δ/αB

(γ + δ

α
,
−δ
α

)
.

The case α > δ is similar, using (7.7) and Lemma 4.1(i).
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If α = δ, finally, for 0 < x < τ ,

g̃(τ, x) + x =
∫ ∞

x
R2(τu−1) du+

γ

α
τ lnx = τ

∫ τ/x

0
R2(v)v−2 dv +

γ

α
τ lnx

= τ

∫ 1

0
R2(v)v−2 dv + τ

∫ τ/x

1
R1(v)v−2 dv + τ

γ

α
ln
τ

x
+
γ

α
τ lnx.

Hence,

g̃(τ, 0) = τ

(∫ 1

0
R2(v)v−2 dv +

∫ ∞

1
R1(v)v−2 dv

)
+
γ

α
τ ln τ,

and the result follows by Lemma 4.1(iii). �

Lemma 8.4. Suppose α > δ/2 > 0 and α 6= δ. If τ > 0 and x > 0, then
g̃(τ, τ δ/αx) = τ δ/αg̃(1, x).

Proof. Follows by (8.11) with the change of variables u = τ δ/α and Lemma 8.3.
�

The formulas (7.4) and (8.8) can be transformed in various ways using
changes of variables and the formulas for g̃ above, for example as follows.

Theorem 8.5. Assume α > δ/2 > 0 and y0 > 0. If Re τ ≥ 0 and (redun-
dant for α > δ) | arg τ | < απ/2δ, then

E e−τZ/α =
δ/α

Γ(y0/δ)
τy0/α

∫ ∞

0
(1 + x)−x0/αeg̃(τ,τδ/αx−δ/α)x−y0/α−1 dx (8.12)

where

g̃(τ, τ δ/αx−δ/α) = g̃(τ, 0)− δ

α
τ δ/α

∫ ∞

x
(1 + u)−γ/αu−δ/α−1 du (8.13)

with g̃(τ, 0) given by Lemma 8.3.

Proof. Assume first τ > 0. Then (8.12) follows from (8.8) by the change
of variables y = τx−α/δ (and then replacing y by x), while (8.13) similarly
follows from (8.11) and v = τu−α/δ. The general case, with (8.13) as a
definition of g̃(τ, τ δ/αx−δ/α), follows by analytic continuation. �

In a special case, we find a simple form for the limit.

Theorem 8.6. If α > δ/2, x0 = γ > 0 and y0 = δ > 0, then the limit Z
has a spectrally positive δ/α-stable distribution with

E e−τZ = eg̃(ατ,0), Re τ ≥ 0, (8.14)

where g̃(ατ, 0) is given by Lemma 8.3. The Lévy measure has density

αδ/α δΓ
(γ+δ

α

)
αΓ

( γ
α

) x−δ/α−1, x > 0.
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Proof. Assume τ > 0. By (8.10),

∂

∂x
g̃(τ, τ δ/αx−δ/α) =

δ

α
(1 + x)−γ/ατ δ/αx−δ/α−1

and thus (8.12) can be written

E e−τZ/α =
∫ ∞

0

∂

∂x
eg̃(τ,τδ/αx−δ/α) dx = eg̃(τ,0) − eg̃(τ,∞) = eg̃(τ,0),

because g̃(τ,∞) = −∞ by (8.11).
This proves (8.14) for τ > 0, and the general case follows by analytic

continuation. The formulas in Lemma 8.3 now show that Z is δ/α-stable
with the given Lévy measure, see e.g. [9, XVII.3(g)]. �

In Theorem 7.1(v), X(m) is normalized without subtraction of a constant;
thus the limit Z ≥ 0 a.s. We can sharpen this and prove that all negative
moments of Z are finite.

Theorem 8.7. Suppose α > δ > 0 and y0 > 0. Then Z > 0 a.s., and if
r > 0, then EZ−r <∞. More precisely,

EZ−r = α−r Γ(y0/δ + rα/δ)
Γ(y0/δ)Γ(r)

∫ ∞

0
f(x)−y0/δ−rα/δ(1 + x)−x0/αx−y0/α−1 dx,

(8.15)
where

f(x) := x−δ/α +
δ

α

∫ x

0

(
1− (1 + v)−γ/α

)
v−δ/α−1 dv

= −g̃(1, 0) +
δ

α

∫ ∞

x
(1 + v)−γ/αv−δ/α−1 dv.

(8.16)

Proof. We define f(x) = −g̃(1, x−δ/α); then (8.16) follows from (8.5) (with
v = u−δ/α) and (8.13). Note that f(x) > 0.

By Fubini’s theorem twice, (8.12) and Lemma 8.4,

E(Z/α)−rΓ(r) = E
∫ ∞

0
e−τZ/ατ r−1 dτ

=
δ/α

Γ(y0/δ)

∫ ∞

0

∫ ∞

0
τy0/α+r−1(1 + x)−x0/αe−τδ/αf(x)x−y0/α−1 dx dτ

=
Γ(y0/δ + rα/δ)

Γ(y0/δ)

∫ ∞

0
f(x)−y0/α−r(1 + x)−x0/αx−y0/α−1 dx.

To see that the integral is finite, we observe from (8.16) that f(x) ∼ x−δ/α

as x→ 0, and f(x) ∼ −g̃(1, 0) > 0 as x→∞. �

In the special case of a balanced urn, we can evaluate the integral in
(8.15).
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Theorem 8.8. Suppose α = δ + γ with γ, δ > 0 and y0 > 0. Then, for
every r > 0,

EZ−r = α−r Γ(y0/δ + rα/δ)Γ(x0/α+ y0/α)
Γ(x0/α+ y0/α+ r)Γ(y0/δ)

.

Proof. By Lemma 8.3, g̃(1, 0) = −1. Further,
∂

∂v

(
1 + v−1

)δ/α = − δ
α

(
1 + v−1

)δ/α−1
v−2 = − δ

α

(
1 + v

)−γ/α
v−1−δ/α

and thus (8.16) yields f(x) = (1 + x−1)δ/α = (1 + x)δ/αx−δ/α. Hence, the
integral in (8.15) becomes the Beta integral∫ ∞

0
(1 + x)−y0/α−r−x0/αxy0/α+r−y0/α−1 dx,

and the result follows by Theorem 8.7 and (4.2). �

9. Proof of Theorem 1.3

Proof. We may now obtain limit results for Xn and Yn by using the following
lemma to invert the results for X(m) in Theorem 7.1.

Lemma 9.1. Suppose δ > 0 and that m,n ≥ 0 are integers. If α > 0, then
the following are equivalent.

(i) Yn < mδ + y0,
(ii) X(m) > αn+ (γ − α)m+ x0.

If α < 0, (i) is instead equivalent the opposite inequality
(ii)′ X(m) < αn+ (γ − α)m+ x0.

Proof. Let N be the time of the m:th white draw. (i) means that N > n,
i.e., by Lemma 1.2 used at time N , if α > 0,

X(m) − x0 +
α− γ

δ
(mδ + y0 − y0) = Nα > nα.

This is the same as (ii). If α < 0, the inequalities are reversed. �

To prove Theorem 1.3, let in each of the five cases, Ỹn denote the left
hand side of the corresponding equation (1.2)–(1.8), and let x be a fixed
real number. (We exclude the at most countably many values of x that are
discontinuity points of the distribution of W below. We doubt that there
may be any such points, but we do not know.) The idea of the proof is
to define an integer m, depending on n, such that Ỹn < x is equivalent to
Yn < mδ + y0 and then use Lemma 9.1 and Theorem 7.1. The details will
vary slightly between the different cases.

In cases (i), (ii), (iii), let an := n1/2, (n lnn)1/2 and nα/δ, respectively;
thus Ỹn = a−1

n

(
Yn − δ δ−α

δ−α+γn
)
. We define

m :=
⌈ δ − α

δ − α+ γ
n+ δ−1(anx− y0)

⌉
=

δ − α

δ − α+ γ
n+ δ−1anx+O(1). (9.1)
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Thus, because (Yn − y0)/δ always is an integer,

Ỹn < x ⇐⇒ Yn < δ
δ − α

δ − α+ γ
n+ anx ⇐⇒ Yn − y0

δ
< m,

which by Lemma 9.1, temporarily assuming α > 0, is equivalent to X(m) >
αn+ (γ − α)m+ x0. By (9.1),

n =
δ − α+ γ

δ − α
(m− δ−1anx) +O(1)

and thus

αn+ (γ − α)m+ x0 =
(
α
δ + (γ − α)
δ − α

+ (γ − α)
)
m− α(δ − α+ γ)

δ(δ − α)
anx+O(1)

=
δγ

δ − α
m− α(δ − α+ γ)

δ(δ − α)
anx+O(1).

Further, as n→∞, (9.1) shows that m ∼ δ−α
δ−α+γn so m → ∞ and am →

∞. Defining λ :=
(

δ−α
δ−α+γ

)1/2 in cases (i) and (ii) and λ :=
(

δ−α
δ−α+γ

)α/δ

in case (iii), we further have am/an → λ. Consequently, Lemma 9.1 and
Theorem 7.1 show that

P(Ỹn < x) = P(Yn < mδ + y0)

= P
(
X(m) >

δγ

δ − α
m− α(δ − α+ γ)

δ(δ − α)
anx+O(1)

)
= P

(
a−1

m

(
X(m) − δγ

δ − α
m

)
> −α(δ − α+ γ)

δ(δ − α)
an

am
x+ o(1)

)
→ P

(
Z > −α(δ − α+ γ)

δ(δ − α)
λ−1x

)
= P

(
−λ δ(δ − α)

α(δ − α+ γ)
Z < x

)
,

where Z ∼ N(0, σ2
1) in case (i) and Z ∼ N(0, γ(γ + α)) in case (ii); hence

Ỹn
d→W := −λ δ(δ − α)

α(δ − α+ γ)
Z.

If α < 0, the same argument works with some of the inequalities above
reversed (but the final result is the same); we omit the details.

In the exceptional case α = 0, X(m) is deterministic and Theorem 7.1
does not help. Instead, we may argue directly and note that the proportion
of white balls stays close to δ/(γ+δ), and thus the number of white draws is
has approximatively a Bi(n, δ/(δ+γ)) distribution, which leads to (1.2). We
omit the details, since as remarked in Remark 1.10, the result also follows
from [14].

In case (iv), the most complicated case, we define

m :=
⌈α
γ

n

lnn

(
1 +

ln lnn
lnn

+
γx

α2 lnn

)
− y0

α

⌉
=
α

γ

n

lnn

(
1 +

ln lnn
lnn

+
γx

α2 lnn
+O

( lnn
n

))
.
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Thus

lnm = lnn− ln lnn+ ln
α

γ
+ o(1) = lnn

(
1− ln lnn

lnn
+

ln(α/γ)
lnn

+ o
( 1

lnn

))
and, multiplying these equations,

m lnm =
α

γ
n
(
1 +

γx/α2 + ln(α/γ) + o(1)
lnn

)
.

Hence

αn = γm lnm− α
n

lnn

(γx
α2

+ ln
α

γ
+ o(1)

)
= γm lnm− γm

(γx
α2

+ ln
α

γ
+ o(1)

)
.

Consequently, by Lemma 9.1 and Theorem 7.1(iv),

P(Ỹn < x) = P(Yn < mδ + y0) = P
(
X(m) > αn+ (γ − α)m+ x0

)
= P

(
X(m) > γm lnm+m

(
−γ

2x

α2
− γ ln

α

γ
+ γ − α+ o(1)

))
→ P

(
Z > −γ

2x

α2
− γ ln

α

γ
+ γ − α

)
= P(W < x).

Finally, in case (v), for x > 0, define

m := dδ−1(nδ/αx− y0)e = δ−1nδ/αx+O(1).

We now have

αn+ (γ − α)m+ x0 = αn+ o(n) = α(x/δ)−α/δmα/δ(1 + o(1))

and, recalling that Z > 0 a.s. by Theorem 8.7,

P(Ỹn < x) = P(Yn < mδ + y0) = P
(
X(m) > αn+ (γ − α)m+ x0

)
= P

(
m−α/δX(m) > α(x/δ)−α/δ + o(1)

)
→ P

(
Z > α(x/δ)−α/δ

)
= P

(
(Z/α)−δ/α < x/δ

)
= P(W < x).

This completes the proof of Theorem 1.3. �

10. Proofs of Theorems 1.6–1.8

Proof of Theorem 1.6. An immediate consequence of (1.8) and Theorem 8.7.
�

Proof of Theorem 1.7. An immediate consequence of (1.8) and Theorem 8.8.
�
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Proof of Theorem 1.8. Let U have a Mittag-Leffler distribution with density
function f . Thus

∫∞
0 xrf(x) dx = EU r = Γ(1 + r)/Γ(1 + rδ/α) for every

r > −1. Consequently, for every r ≥ 0,∫ ∞

0
xrcxy0/δ−x0/γf(x/δ) dx = δr EU r+y0/δ−x0/γ

EUy0/δ−x0/γ

= δr Γ(1 + r + y0/δ − x0/γ)Γ(1 + y0/α− x0δ/αγ)
Γ(1 + rδ/α+ y0/α− x0δ/αγ)Γ(1 + y0/δ − x0/γ)

.

It is easily verified that this equals EW r in Theorem 1.7 in the two cases
x0 = 0 and x0 = γ. The result follows, since Theorem 1.7 also implies that
W has a finite Laplace transform, and thus its distribution is determined by
its moments. �

11. The diagonal case

In this section we consider the diagonal case β = γ = 0, i.e. only balls
of the same colour as the drawn one are added. To avoid trivialities, we
assume α, δ, x0, y0 > 0.

Theorem 7.1 is valid in this case too, but the limits in (i) and (ii) are
degenerate, which means that the normalization is wrong. In cases (iii)–(v),
we have g(t, x) = −x, since now R1(z) = R2(z) = 0, and (7.4) implies easily
that Z d= αUV −α/δ, where U and V are independent Gamma variables as
in Theorem 1.4; thus (in all three cases)

m−α/δX(m) d→ αUV −α/δ as m→∞. (11.1)

This can be seen more easily as follows, which also includes cases (i) and
(ii).

In the diagonal case, the branching process
(
X (t),Y(t)

)
consists of two

independent generalized Yule processes. As is well-known,

e−αtX (t)/α a.s.→ U ∼ Γ(x0/α, 1) as t→∞; (11.2)

indeed, the a.s. convergence follows because e−αtX (t) is a positive martingale
[3, Theorem III.7.1], and the distribution of the limit is easily found from
(5.1). Similarly, interchanging the colours,

e−δtY(t)/δ a.s.→ V ∼ Γ(y0/δ, 1) as t→∞.

Here U and V are independent, because the processes X (t) and Y(t) are.
Consequently,

X (t)/α
(Y(t)/δ)α/δ

a.s.→ U

V α/δ
as t→∞. (11.3)

Letting t be the time of the m:th white death, we obtain (11.1). We can
argue as in Section 9 to obtain Theorem 1.4 from (11.1), but it is easier to
use (11.3) directly as follows.
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Proof of Theorem 1.4. Let tn be the time of the n:th death; thus (Xn, Yn) =(
X (tn),Y(tn)

)
, and since tn →∞ we obtain

Xn/α

(Yn/δ)α/δ

a.s.→ U

V α/δ
as n→∞. (11.4)

Note also that (Lemma 1.2)

Xn/α+ Yn/δ = n+ x0/α+ y0/δ = n+O(1). (11.5)

It follows from (11.4) and (11.5) that Xn
a.s.→ ∞ and Yn

a.s.→ ∞.
If α < δ, then (11.4) implies that Xn/Yn

a.s.→ 0. Thus, by (11.5), Yn/δ ∼ n,
so (11.4) again yields

n−α/δXn/α
a.s.→ UV −α/δ as n→∞. (11.6)

This yields (1.9) by (11.5).
If α > δ, we interchange the colours; (11.6) then yields (1.11).
If α = δ, (11.4) and (11.5) yield (1.10). �

12. The case δ = 0

Proof of Theorem 1.5. Since Yn = y0, (Xn)n is a Markov chain with tran-
sitions x → x + α and x → x + γ. We also consider the branching process(
X (t),Y(t)

)
, where now Y(t) = y0 is constant while X (t) is a generalized

Yule process as in Section 5 but with immigration: bunches of γ black balls
are added at the white draws, which occur according to a Poisson process
with intensity y0.

(i): We may assume α = −1 by Remark 1.11; then γ ≥ 1 and x0 ≥
0 are integers. It is easily seen that the Markov chain (with state space
{0, 1, 2, . . . }) is irreducible, and that it has period γ+1 becauseXn−x0 ≡ −n
(mod γ + 1).

Consider next the branching process X (t). In this case, the branching
process originating from each new black ball trivially is subcritical and dies
out. As a special case of [13, Theorem (7.1.1)] (and not difficult to verify
directly), then X (t) d→ W as t→∞, where W is a compound Poisson
distribution with probability generating function

E zW = exp
(∫ ∞

0

(
Φ(z; t)γ − 1

)
y0 dt

)
, (12.1)

with Φ given by (5.1). Since α = −1, we have

Φ(z; t)γ − 1 =
(
ze−t + (1− e−t)

)γ − 1 =
γ∑

j=0

(
γ

j

)
(zj − 1)e−jt(1− e−t)γ−j
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and thus∫ ∞

0

(
Φ(z; t)γ − 1

)
dt =

γ∑
j=1

(
γ

j

)
(zj − 1)

∫ ∞

0
e−jt(1− e−t)γ−j dt

=
γ∑

j=1

(
γ

j

)
(zj − 1)B(j, γ − j + 1) =

γ∑
j=1

zj − 1
j

,

which by (12.1) gives (1.12).
The branching process X (t) and the Markov chain Xn have the same

transitions, but the intensity of a transition (x, y) → (x′, y′) is (x+ y) times
larger in the branching process. Hence, if pk = c(k + y0)qk, with c > 0 such
that

∑∞
0 pk = 1, then (pk)k is a stationary distribution for Xn. We have

the probability generating function, with Q(z) := E zW =
∑

k qkz
k,

P (z) :=
∞∑

k=0

pkz
k = c

(
zQ′(z) + y0Q(z)

)
= c

(
y0

γ∑
j=1

zj + y0

)
Q(z)

= cy0

γ∑
j=0

zjQ(z).

Setting z = 1 we find c = 1/(y0(γ + 1)), and thus P (z) = F (z)Q(z), where
F (z) :=

∑γ
j=0 z

j/(γ + 1) is the probability generating function of a random
variable U that is uniformly distributed on {0, 1, . . . , γ}. It follows that
pk is the distribution of U + W , with U and W independent. Since the
Markov chain has a stationary distribution, it is persistent, and if k ≡ x0−j
(mod γ + 1), then

P(X(γ+1)n+j = k) → (γ + 1)pk =
γ∑

j=0

qk−j ,

see [8, Chapter XV.6,7], which shows our claims.
Note that the branching process and the embedded urn process have

different limits.
(ii): Let the white draws have numbers N1 < N2 < . . . , and let N0 = 0.

For Nk ≤ n < Nk+1, we have (Xn, Yn) = (x0+kγ, y0). Hence, Nk+1−Nk−1
has a geometric distribution Ge(y0/(x0 + y0 + kγ)), whence

E(Nk+1 −Nk) =
x0 + y0 + kγ

y0
=

γ

y0
k +O(1),

Var(Nk+1 −Nk) =
x0 + y0 + kγ

y0

x0 + kγ

y0
=
γ2

y2
0

k2 +O(k),

E(Nk+1 −Nk)3 = O(k3).

Further, the variables Nk+1 −Nk, k ≥ 0, are independent. Consequently,

ENk =
γ

2y0
k2 +O(k), VarNk =

γ2

3y2
0

k3 +O(k2),
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and, by the central limit theorem with Lyapunov’s condition,

Nk − (γ/2y0)k2

k3/2

d→ N(0, γ2/3y2
0), as k →∞. (12.2)

We invert this result by a standard argument from renewal theory. We may
assume γ > 0 (otherwise no balls are ever added, and the result is trivial).

Let x be a real number and let k := d
√

2y0/γn
1/2 + (x/γ)n1/4 − x0/γe.

Then,

P(Xn <
√

2y0γn
1/2 + xn1/4) = P(Xn < x0 + kγ) = P(Nk > n)

= P
(Nk − (γ/2y0)k2

k3/2
>
n− (γ/2y0)k2

k3/2

)
.

As n→∞,

n− (γ/2y0)k2

k3/2
→ − x

y0

(2y0

γ

)−1/4
,

and (1.13) follows from (12.2) by simple calculations.
(iii): In this case (α > 0), X (t) is a supercritical branching process with

immigration. It follows that

e−αtX (t) a.s.→ Z, (12.3)

for some random variable Z ≥ 0, see [13, Theorem(7.1.6)]. (In our case, this
can be seen easily by verifying that e−αt(X (t) + y0γ/α) is an L2-bounded
martingale, which implies (12.3).) Further, considering just the black balls
descending from the original x0 black balls, or (if x0 = 0) from the first γ
added, we see by (11.2) that Z > 0 a.s.

Let M(t) be the number of white draws up to time t, and let τn be the
time of the n:th draw. Then

X (τn) = Xn = x0 + (n−M(τn))α+M(τn)γ. (12.4)

Since M(t) is a Poisson process with intensity y0,

M(t)/t a.s.→ y0, t→∞.

In particular, e−αtM(t) → 0 a.s., and (12.4) and (12.3) yield, since τn →∞,
a.s.,

e−ατnnα = e−ατnX(τn) + o(1) → Z

and thus −ατn + lnn→ ln(Z/α). Consequently, if we define t±n := lnn/α±
ln lnn, a.s. t−n < τn < t+n and thus M(t−n ) ≤M(τn) ≤M(t+n ) for all large n.

Since M(t) ∼ Po(y0t), we have (M(t)− y0t))/t1/2 d→ N(0, y0) as t→∞,
and thus, with tn := lnn/α, (M(t±n )−y0tn))/t1/2

n
d→ N(0, y0). Consequently,

(M(τn)− y0tn))/t1/2
n

d→ N(0, y0), and (1.14) follows from (12.4). �
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13. The diagonal case again

In the diagonal case β = γ = 0, we can also use the embedding in a
multi-type branching process in a somewhat different way. Let pk,l be the
probability that of the first k + l drawn balls, k are black and l are white.
In the notation of Section 6 (if α, δ 6= 0), pk,l = P̃x0+kα, y0+lδ. We then have
the following formula.

Theorem 13.1. Assume α, δ > 0, β = γ = 0 and x0, y0 > 0. Then

pk,l = (x0 + y0 + kα+ lδ)
Γ(k + x0/α)Γ(l + y0/δ)
Γ(x0/α)Γ(l + y0/δ) k! l!

·
∫ ∞

0
e−(x0+y0)t(1− e−αt)k(1− e−δt)l dt. (13.1)

Proof. The corresponding branching process
(
X (t),Y(t)

)
consists of two in-

dependent generalized Yule processes as in Section 5, since the black and
white balls act independently. Hence, by (5.2),

Px0+kα,y0+lδ(t) = P(X (t) = x0 + kα) P(Y(t) = y0 + lδ)

=
Γ(k + x0/α)
Γ(x0/α) k!

Γ(l + y0/δ)
Γ(l + y0/δ) l!

e−(x0+y0)t(1− e−αt)k(1− e−δt)l.

The result follows by Lemma 6.3. �

By expanding the powers inside the integral in (13.1), we obtain a closed
form expression for pk,l as a complicated alternating double sum; we doubt
that this formula is of much use and leave the details to the interested reader.

It ought to be possible to derive local limit theorems from (13.1); again
we leave this to the reader.

Instead we will use Theorem 13.1 to give an exact formula for EYn in a
special example. (At least a few other examples can be treated in the same
way, but the general case seems difficult.) Note that if x0 = α and y0 = δ,
(13.1) simplifies to

pk,l =
(
(k + 1)α + (l + 1)δ

) ∫ ∞

0
e−(α+δ)t(1 − e−αt)k(1 − e−δt)l dt. (13.2)

Example 13.2. Let α = x0 = 2, δ = y0 = 1, β = γ = 0. Thus a black
[white] ball is replaced together with 2 [1] of the same colour. (Equivalently,
see Remark 1.12, we take α = δ = x0 = y0 = 1 and weights 2 and 1; this is
an urn where each drawn ball is replaced together with another of the same
colour, as in Pólya’s original urn, but each black ball is chosen with twice
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the probability of each white ball.) By (13.2),

P(Yn = k + 1) = pn−k,k = (2n− k + 3)
∫ ∞

0
e−3t(1− e−2t)n−k(1− e−t)k dt

= (2n− k + 3)
∫ 1

0
x2(1− x2)n−k(1− x)k dx

= (2n− k + 3)
∫ 1

0
(1 + x)n−k(1− x)nx2 dx. (13.3)

Define, for fixed n and r ≥ 0, the polynomials

Sr(x) :=
n∑

k=0

(k + 1)r(1 + x)n−k, (13.4)

Tr(x) :=
n∑

k=0

(2n+ 3− k)(k + 1)r(1 + x)n−k. (13.5)

Then, by (13.3),

EY r
n =

n∑
k=0

(k + 1)r P(Yn = k + 1) =
∫ 1

0
Tr(x)(1− x)nx2 dx. (13.6)

From the definitions,

S0(x) =
(1 + x)n+1 − 1

x
,

Sr+1(x) = (n+ 1)Sr(x)− (1 + x)S′r(x),

Tr(x) = (n+ 3)Sr(x) + (1 + x)S′r(x),

which after some calculations give

x2T1(x) =
(
(2n+3)x2+4(n+1)x+2n−1−2x−1

)
(1+x)n−(n+2)2x+1+2x−1.

(13.7)
We have, for a > −1, by (4.2),∫ 1

0
xa(1− x)n dx =

Γ(a+ 1)n!
Γ(n+ a+ 2)∫ 1

0
xa(1 + x)n(1− x)n dx =

∫ 1

0
xa(1− x2)n dx = 1

2

∫ 1

0
y(a−1)/2(1− y)n dy

=
Γ
(
(a+ 1)/2

)
n!

2Γ(n+ a/2 + 3/2)
.
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Thus also, with ψ(z) = Γ′(z)/Γ(z) as in Section 4 and Hn :=
∑n

1 k
−1, using

ψ(n+ 1) = ψ(n) + 1/n,∫ 1

0

(1 + x)n − 1
x

(1− x)n dx = lim
ε↓0

∫ 1

0
xε−1

(
(1− x2)n − (1− x)n

)
dx

= lim
ε↓0

( Γ(ε/2)n!
2Γ(n+ 1 + ε/2)

− Γ(ε)n!
Γ(n+ 1 + ε)

)
= lim

ε↓0

n!
ε

( Γ(1 + ε/2)
Γ(n+ 1 + ε/2)

− Γ(1 + ε)
Γ(n+ 1 + ε)

)
= −1

2

d

dt

n! Γ(1 + t)
Γ(n+ 1 + t)

∣∣∣∣
t=0

= 1
2

(
−ψ(1) + ψ(n+ 1)

)
= 1

2Hn.

Consequently, we find by (13.6) and (13.7)

EYn = (2n+ 3)
Γ(3/2)n!

2Γ(n+ 5/2)
+ 4(n+ 1)

Γ(1)n!
2Γ(n+ 2)

+ (2n− 1)
Γ(1/2)n!

2Γ(n+ 3/2)

− (n+ 2)2
Γ(2)n!

Γ(n+ 3)
+

1
n+ 1

−Hn

=
√
π

n · n!
Γ(n+ 3/2)

−Hn + 1. (13.8)

This exact formula leads to the asymptotics (where γ is Euler’s constant)

EYn =
√
πn− lnn+ 1− γ +O(n−1/2); (13.9)

further terms can be found at will, cf. [18, 1.2.11.2]. Note that Theorem 1.4
yields n−1/2Yn

d→W , where by Theorem 1.9 EW =
√
π; this fits nicely with

the leading term in (13.9), although we have not proved moment convergence
in general.

Exact and asymptotic formulas for the second and higher moments can
be found in the same way.

The logarithmic second order term in (13.9) is a surprise, and shows that
even the diagonal case is far from simple.

For some non-diagonal cases with γ > 0 and α = γ+ δ, similar exact and
asymptotic formulas for the mean are given by [19] and [10], [11]. ([10] also
treats the second moment.) In the examples worked out in these references,
the asymptotic expansions contain only powers of n and no logarithmic term
as in our example.

It would be interesting to find similar refined asymptotic results for a
non-diagonal case with α 6= γ + δ.
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[10] P. Flajolet, J. Gabarró & H. Pekari, Analytic urns. Preprint, 2003. Available from
http://algo.inria.fr/flajolet/Publications/publist.html (The original ver-
sion; not the revised!)

[11] P. Flajolet & V. Puyhaubert, in preparation.
[12] B. Friedman, A simple urn model. Comm. Pure Appl. Math. 2 (1949), 59–70.
[13] P. Jagers, Branching Processes with Biological Applications. Wiley, Chichester, Lon-

don, 1975.
[14] S. Janson, Functional limit theorems for multitype branching processes and general-
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