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Abstract

It has been known for a long time that the height and width of a random labelled
rooted tree, or of any other conditioned Galton�Watson tree, after suitable normalizations
converge to the same limit distribution. Moreover, Chassaing, Marckert and Yor [7] have
proved joint convergence of height and width. The resulting two-dimensional limit dis-
tribution has been studied by Donati-Martin [10]. We extend her results and give new
formulas for joint moments. As an example, we calculate the covariance. We also show
that the two-dimensional distribution is not symmetric, although the marginals are the
same.

1. Introduction

If T is a rooted tree, the depth d(v) of a vertex v is the distance from
v to the root, the pro�le of T is the sequence wk := #

{
v : d(v) = k

}
,

k = 0, 1, . . . , of sizes of the levels in T , the height h(T ) of T is the maxi-
mal depth, i.e. h(T ) := maxv d(v) = max{k : wk > 0}, and the width w(T )
of T is the maximal size of a level in T , i.e. w(T ) := maxk wk.

Let Tn be a random conditioned Galton�Watson tree with n vertices,
i.e. a random tree obtained as the family tree of a Galton�Watson process
conditioned on a given total population of n. (See e.g. [1, 9] for details.)
The Galton�Watson process is de�ned using an o�spring distribution; let
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ξ denotes a random variable with this distribution. We assume, as usual,
E ξ = 1 (the Galton�Watson process is critical) and 0 < σ2 = Var ξ < ∞.

It is well-known [1] that the conditioned Galton�Watson trees are the
same as the simply generated trees [19]. Many combinatorially interest-
ing random trees are of this type, with di�erent choices of ξ, for exam-
ple labelled trees (ξ ∼ Po(1), σ2 = 1); ordered (=plane) trees (P(ξ = k) =
2−k−1, σ2 = 2); binary trees (ξ ∼ Bi(2, 1/2), σ2 = 1/2); strict binary trees
(P (ξ = 0) = P (ξ = 2) = 1/2, σ2 = 1).

It is also well-known that many asymptotic properties are the same for
di�erent conditioned Galton�Watson trees, except that the o�spring variance
σ2 appears as a scale parameter; this is explained by Aldous' theory of the
continuum random tree [1, 2]. In particular, there exist random variablesH
and W such that for any conditioned Galton�Watson treeTn

(1.1) n−1/2
(
h(Tn), w(Tn)

) d−→ (σ−1H, σW ).

The joint convergence (1.1) was �rst given by Chassaing, Marckert and
Yor [7], see also [15]. The separate convergencesn−1/2h(Tn) d−→ σ−1H and
n−1/2w(Tn) d−→ σW have been known for a long time, see [1, 2, 3, 6, 11, 12,
13, 21, 23].

The joint distribution of H and W can be expressed using a normalized
Brownian excursion Bex in (at least) two di�erent ways, both explained in
[7] as consequences of two di�erent proofs of (1.1).

First, using the depth-�rst walk of the tree, one obtains (1.1) with

(1.2) (H,W ) d=
(

2max
t

Bex(t),
1
2

max
x=0

`(x)
)

,

where ` is the local time of Bex, see [1, 3, 11].
Secondly, using instead the breadth-�rst walk, one obtains (1.1) with

(1.3) (H, W ) d=

( 1∫

0

dt

Bex(t)
, max

t
Bex(t)

)
,

see [7, 15]. Of course, the right hand sides of (1.2) and (1.3) are not the
same, but we see that they are equal in distribution. The relation between
them can be explained by Jeulin's description [16] of 1

2`(x) as a time change
of another Brownian excursion, see [7].
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In particular, (1.2) and (1.3) imply the identity by Biane and Yor [5]

(1.4) 2max
t

Bex(t)
d=

1∫

0

dt

Bex(t)
,

which by (1.3) yields the well-known

(1.5) H
d= 2W.

H and W thus have the same distribution, except for a scale factor. This
distribution has been much studied, see for example [8, 17, 18, 21] and, with
many connections to other random variables and functions, [4]. In particular,
it is known that

P(W 5 x) =
∞∑

k=−∞
(1− 4k2x2)e−2k2x2

, x > 0;

further, the momentEW s is �nite for every real (positive or negative)s and,
for any complex s,

(1.6) EW s = 2−s/2s(s− 1)Γ(s/2)ζ(s) = 2(π/2)s/2ξ(s),

where ζ is the Riemann zeta function, and ξ is the related Riemann xi func-
tion.

The joint distribution of H and W has been studied by Donati-Martin
[10]. She used the agreement formula by Pitman and Yor [20, 24] and de-
rived various formulas, including the formula (2.1) below for mixed moments
E(W sHt) of H and W when Re(s + t) > 1 and Re(t) < 0. Note that, as
remarked above, W has �nite moments of all orders, both positive and neg-
ative, and the same holds for H too by (1.5); hence, the Cauchy�Schwarz
inequality implies that the mixed momentE(W sHt) exists for every complex
s and t, and that it is an entire function of (s, t) ∈ C2.

The purpose of this paper is to use Donati-Martin's results and analytic
continuation to obtain formulas for a wider range ofs and t, in particular for
positive integers. For example, we calculate the covariance ofH and W ; as
might be expected, this is negative. Another simple consequence is following
result:

Theorem 1.1. The distribution of (H, 2W ) has two identical marginals,

but is not symmetric: (H, 2W )
d
6= (2W,H).
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Remark 1.2. Recall that the Brownian excursion equals a Bessel bridge
of index 1/2 (dimension 3). Donati-Martin [10, (5.1)] actually treats the
case of a pair of variables de�ned as in (1.3) from a Bessel bridge of arbi-
trary index ν > −1. Presumably, the results below extend to this case in a
straightforward way, but we have not pursued this.

Acknowledgement. I thank Philippe Chassaing for interesting discussions.

2. Results

Let Φ(α, γ; z) denote the con�uent hypergeometric function (sometimes
denoted 1F1(α; γ; z)), de�ned for γ 6= 0,−1,−2, . . . and z ∈ C by

Φ(α, γ; z) :=
∞∑

n=0

αn zn

γn n!

where λn = λ(λ + 1) . . . (λ + n− 1) is the rising factorial power. Further, let
Aν(λ, α) = exp(λ)/Φ(α2

2λ + ν + 1/2, 1 + 2ν; 2λ). Then Donati-Martin's for-
mula [10, Corollary 5.1] is, for Re(t) < 0 and Re(s + t) > 1 (which implies
Re(s) > 1):

E(W sHt) =
√

π

2
2(5+t−s)/2

Γ(−t)Γ( s+t−1
2 )

∞∫

0

∞∫

0

λs+t−2α−(1+2t)A2
1/2(λ, α) dα dλ(2.1)

=
22+t/2−s/2 π1/2

Γ(−t)Γ( s+t−1
2 )

∞∫

0

∞∫

0

λs+t−2α−1−2te2λ dα dλ

Φ2
(
1 + α2/(2λ), 2, 2λ

) .

We de�ne

(2.2) F (x, y) :=
∞∑

n=0

(x + y)(2x + y) · · · (nx + y)
n! (n + 1)!

,

Then F is an entire function in C2, and for x 6= 0,

(2.3) F (x, y) =
∞∑

n=0

(1 + y/x)n xn

2n n!
= Φ(1 + y/x, 2;x).

We can extend Donati-Martin's formula (2.1) as follows, whereDy denotes
the partial derivative ∂/∂y.
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Theorem 2.1. For any complex numbers s and t with Re(s+ t) > 1, and
any integer m = 0 with m > Re(t),

E(W sHt)(2.4)

= (−1)m 22−t/2−3s/2 π1/2

Γ(m− t)Γ( s+t−1
2 )

∞∫

0

∞∫

0

xs+t−2ym−1−tex Dm
y

(
F (x, y)−2) dx dy.

For integers t = 0 we also obtain a simpler formula.
Theorem 2.2. For any integer k = 0 and any complex s with Re(s) +

k > 1,

(2.5) E(W sHk) = (−1)k 22−k/2−3s/2 π1/2

Γ( s+k−1
2 )

∞∫

0

xs+k−2exψk(x) dx,

where ψk(x) := Dk
y

(
F (x, y)−2)|

y=0
.

De�ne

(2.6) fk(x) := Dk
y F (x, y)

∣∣
y=0

, k = 0, 1, 2, . . . .

The functions ψk can be expressed in f0, f1, . . . , fk by successive di�er-
entiations. In the special cases k = 1 and k = 2 we obtain the following.
(Similar but more complicated formulas may be given for higherk, too.)

Corollary 2.3. For any s with Re(s) > 0,

(2.7) E(W sH) =
25/2−3s/2 π1/2

Γ(s/2)

∞∫

0

xs+2 ex

(ex − 1)3
f1(x) dx.

Corollary 2.4. For any s with Re(s) > −1,

E(W sH2) =
22−3s/2 π1/2

Γ
(
(s + 1)/2

)
(

3

∞∫

0

xs+4 ex

(ex − 1)4
f1(x)2 dx

−
∞∫

0

xs+3 ex

(ex − 1)3
f2(x) dx

)
.
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We can evaluate the integrals in Corollaries 2.3 and 2.4 as in�nite sums,
leading to the following, where we use the notation Hn :=

∑n
1 k−1 and

H
(2)
n :=

∑n
1 k−2 for the harmonic and second order harmonic numbers [14];

we also write z! := Γ(z + 1) for any complex z. The sums converge geomet-
rically and can be used for numerical evaluation, see the examples below.

Theorem 2.5. For any s 6= 0,−1,−2, . . . ,

E(W sH) =
23/2−3s/2 π1/2

Γ(s/2)

∞∑

n=1

Hn
(n + s + 1)!

(n + 1)!
(
ζ(n + s)− ζ(n + s + 1)

)
.

Theorem 2.6. For any s 6= −1,−2, . . . ,

E(W sH2)

=
21−3s/2 π1/2

Γ
(
(s + 1)/2

)
( ∞∑

m=0

∞∑

n=0

Hm+1Hn+1
(m + n + s + 4)!
(m + 2)! (n + 2)!

× (
ζ(m + n + s + 2)− 3ζ(m + n + s + 3) + 2ζ(m + n + s + 4)

)

−
∞∑

n=0

(H2
n+2 −H

(2)
n+2)

(n + s + 3)!
(n + 3)!

(
ζ(n + s + 2)− ζ(n + s + 3)

))
.

When s is a negative integer, the value can be obtained from these for-
mulas as a limit. In particular, we have the following �nite sum.

Theorem 2.7. For any integer m = 0,

E(W−2mH) = (−1)m23m+1/2 π1/2m!

×
( 2m−2∑

n=1

(−1)nHn

(2m− 2− n)! (n + 1)!
(
ζ(n− 2m)− ζ(n + 1− 2m)

)

+ 2
H2m+1

(2m + 2)!
− H2m

(2m + 1)!

)
.

More generally, but less explicitly, we have the following. Note that this
too yields a closed form (a rational number times

√
2π) for every k and m.

Theorem 2.8. For any integers k, m = 0,

E
(
W 1−k−2mHk

)

= (−1)k+m2k+3m−1/2 π1/2 m!
(2m)!

D2m
x Dk

y

(
ex

F (x, y)2

) ∣∣∣∣
x=y=0
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= (−1)k+m2k+3m−1/2 π1/2 m!
(2m)!

D2m
x

(
exψk(x)

)|
x=0

= (−1)k+m2k+3m−1/2 π1/2 m!
(2m)!

2m∑

j=0

(
2m

j

)
Dj ψk(0).

Next, write

g(y) := F (0, y) =
∞∑

n=0

yn

n! (n + 1)!
.

This is the hypergeometric function 0F1(; 2; y) and can be expressed in the
modi�ed Bessel function I1 by g(y) = y−1/2I1(2

√
y) [14, (5.78)]. The special

case m = 0 of Theorem 2.8 gives the following formula.
Corollary 2.9. For any integer k = 0,

E
(
W 1−kHk

)
= (−1)k2k−1/2 π1/2ψk(0) = (−1)k2k−1/2 π1/2 Dk

y

(
g(y)−2)|

y=0
.

We can also obtain results when s + t = 1,−1,−3, . . . as in Theorem 2.8
but s and t not necessarily are integers. For simplicity we treat only the case
s + t = 1, as in Corollary 2.9; this is a limiting case of Theorem 2.1.

Theorem 2.10. For any t and any integer m = 0 with m > Re(t),

E
(
W 1−tHt

)
= (−1)m 2t−1/2 π1/2

Γ(m− t)

∞∫

0

ym−1−t Dm
y

(
g(y)−2) dy.

3. Examples

Example 3.1. By Theorem 2.5 and straightforward manipulations,

EWH =
∞∑

n=0

Hn(n + 2)
(
ζ(n + 1)− ζ(n + 2)

)

=
∞∑

m=2

(
Hm−1 +

m

m− 1

) (
ζ(m)− 1

)

=
∞∑

n=1

∞∑

k=2

(
Hn + 1 +

1
n

)
k−n−1
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=
∞∑

k=2

( ∞∑

j=1

1
j

∞∑

n=j

k−n−1 +
1

k(k − 1)
− 1

k
ln(1− 1/k)

)

= 1 +
∞∑

k=2

2k − 1
k(k − 1)

ln
k

k − 1
.

We do not know any closed form of this, but a numerical summation (by
Maple) of one of these formulas yields

E(WH) .= 3.0462774529.

Since, by (1.6) and (1.5), EW =
√

π/2 and EH =
√

2π,

Cov(W,H) = EWH − π
.= −0.0953152007.

Thus the covariance is, as expected, negative. We have, also by (1.6),
Var(W ) = π(π − 3)/6, which leads to the correlation coe�cient

Corr(W,H) .= −0.6428251027.

Example 3.2. Similarly, Theorem 2.5 and Maple yield

E(W 2H) .= 3.8791921108.

Example 3.3. Theorem 2.6 and Maple yield (now with a little more
e�ort to control rounding errors)

E(WH2) .= 7.7549475561,

E(W 2H2) .= 9.5811170671.

Example 3.4. Theorem 2.8 yields, for example,

E(W−2H) = 7
9

√
2π, E(W−4H) = 488

675

√
2π,

E(W−1H2) = 7
3

√
2π, E(W−3H2) = 19

9

√
2π.

Example 3.5. Theorem 2.10 with t = −1, m = 0, the change of variable
y = (z/2)2 and a numerical integration by Maple yield

E(W 2H−1) =
√

2π

4

∞∫

0

g(y)−2 dy =
√

2π

32

∞∫

0

z3I1(z)−2 dz
.= 0.7301458555.
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4. Proofs

By (2.1) and (2.3) we obtain, forRe(t) < 0 and Re(s + t) > 1, using the
substitutions x = 2λ and y = α2,

E(W sHt) =
π1/2 22+t/2−s/2

Γ(−t)Γ( s+t−1
2 )

∞∫

0

∞∫

0

λs+t−2α−1−2te2λ dα dλ

F 2(2λ, α2)
(4.1)

=
π1/2 22−t/2−3s/2

Γ(−t)Γ( s+t−1
2 )

∞∫

0

∞∫

0

xs+t−2y−1−tex dx dy

F 2(x, y)
.

This is the case m = 0 of Theorem 2.1.
Before proceeding, we give some simple (and rather crude) estimates that,

among other things, show that the integrals above converge.
Lemma 4.1. For some c > 0 and all x, y = 0,

(i) F (x, y) = F (x, 0) = f0(x) =
∞∑

n=0

xn

(n + 1)!
=

ex − 1
x

= c
ex

1 + x
;

(ii) F (x, y) = F (0, y) = g(y) =
∞∑

n=0

yn

n! (n + 1)!
= c

e2
√

y

1 + y
;

(iii) for every m = 0, Dm
y F (x, y) 5 F (x, y).

Proof. (i): immediate.
(ii): It remains only to check the �nal inequality. This is clear for0 5

y 5 1, provided c is su�ciently small. For y > 1, take n := b√yc and obtain
(using Stirling's formula),

F (0, y) = yn

n! (n + 1)!
= n2n

(n!)2(n + 1)
= c1

e2n

n(n + 1)
= c2

e2(n+1)

n2
= c2

e2
√

y

y
.

(iii): It follows from (2.2) that

Dm
y F (x, y) 5

∞∑
n=m

n!
(n−m)!

· ((m + 1)x + y) · · · (nx + y)
n! (n + 1)!

=
∞∑

j=0

((m + 1)x + y) · · · ((m + j)x + y)
j! (j + m + 1)!

5 F (x, y),
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because (m+i)x+y
m+i 5 ix+y

i . ¤

Lemma 4.2. For every m = 0 there are constants Cm and C ′
m such that,

for all x, y = 0,

|Dm
y

(
F (x, y)−2)| 5 CmF (x, y)−2 5 C ′

m(1 + x)2(1 + y)e−3x/2−√y.

Proof. Dm
y

(
F (x, y)−2) is, by induction, a linear combination of terms

of the type Dk1
y F · · ·Dkl

y F/F l+2, with l = 0 and k1, . . . , kl = 1. By Lemma
4.1(iii), each such term is bounded byF−2, and the �rst inequality follows.

For the second inequality we use Lemma 4.1(i)(ii), which yield

F (x, y)2 = F (x, y)3/2F (x, y)1/2 = c2(1 + x)−3/2(1 + y)−1/2e3x/2e
√

y. ¤

Proof of Theorem 2.1. It follows from Lemma 4.2 that the double
integral in (2.4) converges absolutely in the regionRe(s + t) > 1, Re(t) < m,
uniformly on compact sets; the integral thus de�nes an analytic function in
this region.

Next, assume Re(s + t) > 1 and Re(t) < 0. When m = 0, the formula
(2.4) is (4.1) which, as shown above, follows directly from Donati-Martin [10].
Now assume that (2.4) holds for somem. For each x > 0, by integration by
parts,

1
Γ(m− t)

∞∫

0

ym−1−t Dm
y

(
F (x, y)−2) dy

=
[

ym−t

Γ(m + 1− t)
Dm

y

(
F (x, y)−2)

]∞

y=0

− 1
Γ(m + 1− t)

∞∫

0

ym−t Dm+1
y

(
F (x, y)−2) dy,

where the integrated term vanishes by Lemma 4.2. Multiplying byxs+t−2ex

and integrating, we see that (2.4) holds form + 1 too.
By induction, we have thus shown that (2.4) holds for anym = 0 when

Re(s + t) > 1 and Re(t) < 0. Since both sides of (2.4) are analytic in the
domain Re(s + t) > 1 and Re(t) < m, (2.4) holds in this domain by analytic
continuation. ¤
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Proof of Theorem 2.2.We apply Theorem 2.1 with t = k and m =
k + 1 and obtain

E(W sHk)

= (−1)k+1 22−k/2−3s/2 π1/2

Γ( s+k−1
2 )

∞∫

0

xs+k−2ex

∞∫

0

Dk+1
y

(
F (x, y)−2) dy dx.

The inner integral equals, using Lemma 4.2 again,−Dk
y

(
F (x, y)−2)|

y=0
. ¤

As remarked above, the functions ψk := Dk
y

(
F (x, y)−2)|

y=0
can be ex-

pressed in f0, f1, . . . , fk de�ned in (2.6) by successive di�erentiations, for
example, with f = f0,

ψ1(x) = Dy

(
F (x, y)−2)|

y=0
= − 2

f1(x)
f(x)3

,(4.2)

ψ2(x) = − 2
f2(x)
f(x)3

+ 6
f1(x)2

f(x)4
.(4.3)

Corollaries 2.3 and 2.4 follow from Theorem 2.2 and (4.2), (4.3), recalling
that f(x) = f0(x) = F (x, 0) = (ex − 1)/x.

From the de�nitions (2.2) and (2.6) follow

f1(x) =
∞∑

n=0

1
n! (n + 1)!

( n∑

j=1

1
jx

) n∏

i=1

(ix) =
∞∑

n=1

xn−1

(n + 1)!

n∑

j=1

1
j

=
∞∑

n=0

1
(n + 2)!

n+1∑

j=1

1
j
xn

and thus its Taylor coe�cients are given by

(4.4) [xn]f1(x) =
1

(n + 2)!

n+1∑

j=1

1
j

=
Hn+1

(n + 2)!
.

Similarly,

(4.5) [xn]f2(x) =
2

(n + 3)!

∑

15i<j5n+2

1
ij

=
1

(n + 3)!(
H2

n+2 −H
(2)
n+2),
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and, in general,

(4.6) [xn]fk(x) =
k!

(n + k + 1)!

∑

15i1<i2<···<ik5n+k

1
i1i2 . . . ik

.

Proof of Theorems 2.5 and 2.6.Since ζ(z) = 1 + 2−z + O(3−Re(z))
as Re(z) → +∞, it is easily seen that the sums converge geometrically, and
de�ne meromorphic functions of s. For Theorem 2.5, a pole must be a pole
of some (n + s + 1)!, ζ(n + s) or ζ(n + s + 1) with n = 1, thus s = 0,−1, . . . ;
similarly there are no poles except−1,−2, . . . for Theorem 2.6. By analytic
continuation, it thus su�ces to prove the theorems fors > 0, and then they
follow by straightforward calculations from Corollaries 2.3 and 2.4, (4.4),
(4.5), and the following lemma (which can be seen as a Mellin transform cal-
culation, cf. [22, Section 9.1]). ¤

Lemma 4.3. If m = 2 is an integer and Re(s) > m− 1, then

∞∫

0

xs ex

(ex − 1)m dx = s!
∞∑

j=1

(
j

m− 1

)
j−s−1.

In particular,

∞∫

0

xs ex

(ex − 1)2
dx = s! ζ(s), Re(s) > 1;

∞∫

0

xs ex

(ex − 1)3
dx = 1

2s!
(
ζ(s− 1)− ζ(s)

)
, Re(s) > 2;

∞∫

0

xs ex

(ex − 1)4
dx = 1

6s!
(
ζ(s− 2)− 3ζ(s− 1) + 2ζ(s)

)
, Re(s) > 3.

Proof.

ex

(ex − 1)m = e−(m−1)x(1− e−x)−m =
∞∑

j=m−1

(
j

m− 1

)
e−jx
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and thus
∞∫

0

xs ex

(ex − 1)m dx =
∞∑

j=1

(
j

m− 1

) ∞∫

0

xse−jx dx

=
∞∑

j=1

(
j

m− 1

)
j−s−1Γ(s + 1).

The special cases follow easily. ¤
Proof of Theorem 2.7.We use Theorem 2.5 with s = −2m + ε and

let ε ↘ 0. Then

Γ(s/2) = Γ(−m + ε/2) ∼ (−1)m

m!
Γ(ε/2) ∼ 2

ε

(−1)m

m!

and thus

(4.7) 1
Γ(s/2)

= Γ(−m + ε/2)−1 ∼ (−1)m m!
2

ε.

Hence, only the terms in the sum with a pole ats = −2m will give a contri-
bution as ε → 0.

The possible poles are:
(i) (n + s + 1)! = Γ(n + s + 2) has a simple pole at−2m if n− 2m + 2 5 0,

i.e. if n 5 2m−2. The residue of (n+s+1)! then is (−1)2m−2−n/(2m−
2− n)! .

(ii) ζ(n + s) has a simple pole at −2m if n− 2m = 1, i.e. if n = 2m + 1.
The residue is 1.

(iii) ζ(n + s + 1) has a simple pole at −2m if n = 2m. The residue is 1.
Collecting these terms yields the result. ¤

We need yet another lemma on Mellin transforms, which extends Lemma
4.5 under a stronger hypothesis.

Lemma 4.4. Suppose that φ is an in�nitely di�erentiable function on
[0,∞) such that xNφ(x) is integrable for any N > 0. Then the integral
Φ(s) =

∫∞
0 xs−1φ(x)dx converges for Re(s) > 0 and de�nes an analytic func-

tion there, and Φ can be extended to a meromorphic function in the complex
plane, with poles only at (possibly) 0,−1,−2, . . . , all poles simple, and the
residues

Ress=−n Φ =
1
n!

Dn φ(0).
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Proof. Fix a positive integer N and use the Taylor expansion

φ(x) =
N∑

n=0

1
n!

Dn φ(0)xn + RN (x),

with RN (x) = O(xN+1) for 0 5 x 5 1. Thus, for Re(s) > 0,

Φ(s) =

1∫

0

xs−1
N∑

n=0

1
n!

Dn φ(0)xn dx +

1∫

0

xs−1RN (x) dx +

∞∫

1

xs−1φ(x) dx

=
N∑

n=0

1
n!

Dn φ(0)
1

s + n
+

1∫

0

xs−1RN (x) dx +

∞∫

1

xs−1φ(x) dx.

The last two integrals de�ne analytic functions of s for Re(s) > −N − 1, so
we have found a meromorphic extension ofΦ to Re(s) > −N − 1, with only
simple poles having the prescribed residues. ¤

Proof of Theorem 2.8.We use Theorem 2.2, which we write as

E(W sHk) = (−1)k22−k/2−3s/2π1/2Γ
(

s + k − 1
2

)−1

I(s), Re(s) > 1− k.

(4.8)

By Lemma 4.4 (and Lemma 4.2), I(s) can be extended to a meromorphic
function in the complex plane, with poles only at 0,−1,−2, . . . . Since the
other factors in (4.8) are entire functions, the formula (4.8) is valid for all
s 6= 0,−1,−2, . . . . We let s = 1− k − 2m + ε, and let ε ↘ 0. Then, by
Lemma 4.4,

I(s) ∼ 1
ε

Ress=1−k−2m

(
I(s)

)
=

1
ε

Ress+k−1=−2m

(
I(s)

)

=
1
ε

1
(2m)!

D2m
x

(
exψk(x)

) |
x=0

=
1
ε

1
(2m)!

D2m
x Dk

y

(
exF (x, y)−2)|

x=y=0
.

Moreover, see (4.7),

Γ
(

s + k − 1
2

)−1

= Γ(−m + ε/2)−1 ∼ (−1)m m!
2

ε.

The result follows by multiplying the factors in (4.8). ¤
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Proof of Corollary 2.9. Immediate from Theorem 2.8. (It also fol-
lows by taking m = k + 1 in Theorem 2.10 and integrating the derivative, or
by imitating the proof of Theorem 2.10 but using Theorem 2.2.) ¤

For the non-integer case we use another simple lemma on Mellin trans-
forms.

Lemma 4.5. If φ is a continuous integrable function on [0,∞), then

ε

∞∫

0

xε−1φ(x) dx → φ(0), as ε ↘ 0.

Proof. For 0 < ε < 1, we have |ε ∫∞
1 xε−1φ(x) dx| 5 ε

∫∞
1

∣∣φ(x)
∣∣ dx.

Moreover, letting y = xε,

ε

1∫

0

xε−1φ(x) dx = ε

1∫

0

φ(y1/ε) dy → φ(0), as ε ↘ 0,

by dominated (bounded) convergence. ¤

Proof of Theorem 2.10.Apply Theorem 2.1 with s = 1− t+ ε, where
ε > 0, and let ε ↘ 0; note that

1
Γ((s + t− 1)/2)

=
1

Γ(ε/2)
∼ ε

2

and use Lemma 4.5 with

φ(x) = ex

∞∫

0

ym−1−t Dm
y

(
F (x, y)−2) dy.

(Continuity and integrability of φ follows from Lemma 4.2.) ¤

Proof of Theorem 1.1. We have to show that for at least one pair
(s, t), E

(
(2W )sHt

) 6= E (
Hs(2W )t) . We can for example take the pair(2,1).

By Examples 3.2 and 3.3,

E
(
(2W )2H

) .= 15.516768,

E
(
(2W )H2

) .= 15.509895.
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Note, however, that the relative di�erence is only about 1/2000, so rather
careful numerical estimates are required.

Another possibility is to take s = 2, t = −1. By Examples 3.4 and 3.5,

E
(
(2W )−1H2

)
=

7
6

√
2π

.= 2.92439965

E
(
(2W )2H−1

) .= 2.92058342.

The relative di�erence is about0.001, if we trust the numerical integration. ¤
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