Partial Fillup and Search Time in LC Tries

September 29, 2005

Svante Janson
Department of Mathematics
Uppsala University, P.O. Box 480
SE-751 06 Uppsala
Sweden
svante.janson@math.uu.se

Wojciech Szpankowski*
Department of Computer Science
Purdue University
W. Lafayette, IN 47907
U.S.A.
spa@cs.purdue.edu

Abstract

Andersson and Nilsson introduced in 1993 a level-compressed trie (in short: LC trie) in which a full subtree of a node is compressed to a single node of degree being the size of the subtree. Recent experimental results indicated a "dramatic improvement" when full subtrees are replaced by "partially filled subtrees". In this paper, we provide a theoretical justification of these experimental results showing, among others, a rather moderate improvement of the search time over the original LC tries. For such an analysis, we assume that n strings are generated independently by a binary memoryless source (a generalization to Markov sources is possible) with p denoting the probability of emitting a " 1 " (and $q=1-p$). We first prove that the so called α-fillup level $F_{n}(\alpha)$ (i.e., the largest level in a trie with α fraction of nodes present at this level) is concentrated on two values whp (with high probability); either $F_{n}(\alpha)=k_{n}$ or $F_{n}(\alpha)=k_{n}+1$ where normal distribution function. This result directly yields the typical depth (search time) $D_{n}(\alpha)$ in the α-LC tries with $p \neq 1 / 2$, namely we show that whp $D_{n}(\alpha) \sim C_{1} \log \log n$ where $C_{1}=1 /|\log (1-h / \log (1 / \sqrt{p q}))|$ and $h=-p \log p-q \log q$ is the Shannon entropy rate. This should be compared with recently found typical depth in the original LC tries which is $C_{2} \log \log n$ where $C_{2}=1 /|\log (1-h / \log (1 / \min \{p, 1-p\}))|$. In conclusion, we observe that α affects only the lower term of the α-fillup level $F_{n}(\alpha)$, and the search time in α-LC tries is of the same order as in the original LC tries.

Key Words: Digital trees, level-compressed tries, partial fillup, probabilistic analysis, poissonization.

[^0]
1 Introduction

Tries and suffix trees are the most popular data structures on words [7]. A trie is a digital tree built over, say n, strings (the reader is referred to [12, 14, 25] for an in depth discussion of digital trees.) A string is stored in an external node of a trie and the path length to such a node is the shortest prefix of the string that is not a prefix of any other strings (cf. Figure 1). Throughout, we assume a binary alphabet. Then each branching node in a trie is a binary node. A special case of a trie structure is a suffix trie (tree) which is a trie built over suffixes of a single string.

Since 1960 tries were used in many computer science applications such as searching and sorting, dynamic hashing, conflict resolution algorithms, leader election algorithms, IP addresses lookup, coding, polynomial factorization, Lempel-Ziv compression schemes, and molecular biology. For example, in the internet IP addresses lookup problem [15, 23] one needs a fast algorithm that directs an incoming packet with a given IP address to its destination. As a matter of fact, this is the longest matching prefix problem, and standard tries are well suited for it. However, the search time is too large. If there are n IP addresses in the database, the search time is $O(\log n)$, and this is not acceptable. In order to improve the search time, Andersson and Nilsson [1, 15] introduced a novel data structure called the level compressed trie or in short LC trie (cf. Figure 1). In the LC trie we replace the root with a node of degree equal to the size of the largest full subtree emanating from the root (the depth of such a subtree is called the fillup level). This is further carried on recursively throughout the whole trie (cf. Figure 1).

Some recent experimental results reported in $[8,18,17]$ indicated a "dramatic improvement" in the search time when full subtrees are replaced by "partially fillup subtrees". In this paper, we provide a theoretical justification of these experimental results by considering α-LC tries in which one replaces a subtree with the last level only α-filled by a node of degree equal to the size of such a subtree (and we continue recursively). In order to understand theoretically the α-LC trie behavior, we study here the so called α-fillup level $F_{n}(\alpha)$ and the typical depth or the search time $D_{n}(\alpha)$. The α-fillup level is the last level in a trie that is α-filled, i.e. filled up to a fraction at least α (e.g., in a binary trie level k is α-filled if it contains $\alpha 2^{k}$ nodes). The typical depth is the length of a path from the root to a randomly selected external node; thus it represents the typical search time. In this paper we analyze the α-fillup level and the typical depth in an α-LC trie in a probabilistic framework when all strings are generated by a memoryless source with $\mathbb{P}(1)=p$ and $\mathbb{P}(0)=q:=1-p$. Among other results, we prove that the α-LC trie shows a rather moderate improvement over the original LC tries. We shall quantify this statement below.

Tries were analyzed over the last thirty years for memoryless and Markov sources (cf. $[2,9,11,12,14,19,20,24,25])$. Pittel [19, 20] found the typical value of the fillup level F_{n} (i.e., $\alpha=1$) in a trie built over n strings generated by mixing sources; for memoryless sources with high probability (whp)

$$
F_{n} \stackrel{\mathrm{p}}{\sim} \frac{\log n}{\log \left(1 / p_{\min }\right)}=\frac{\log n}{h_{-\infty}}
$$

where $p_{\min }=\min \{p, 1-p\}$ is the smallest probability of generating a symbol and $h_{-\infty}=$ $\log \left(1 / p_{\min }\right)$ is the Rényi entropy of infinite order (cf. [25]). We let $\log :=\log _{2}$. In the above, we write $F_{n} \stackrel{\mathrm{p}}{\sim} a_{n}$ to denote $F_{n} / a_{n} \rightarrow 1$ in probability, that is, for any $\varepsilon>0$ we have $\mathbb{P}\left((1-\varepsilon) a_{n} \leq F_{n} \leq(1+\varepsilon) a_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$.

Figure 1: A trie and its associated full LC trie.
This was further extended by Devroye [2], and Knessl and Szpankowski [11] who, among other results, proved that the fillup level F_{n} is concentrated on two points k_{n} and $k_{n}+1$, where k_{n} is an integer

$$
\begin{equation*}
\frac{1}{\log p_{\min }^{-1}}(\log n-\log \log \log n)+O(1) \tag{1}
\end{equation*}
$$

for $p \neq 1 / 2$. The depth in regular tries was analyzed by many authors who proved that whp the depth is about $(1 / h) \log n$ (where $h=-p \log p-(1-p) \log (1-p)$ is the Shannon entropy rate of the source) and that it is normally distributed when $p \neq 1 / 2[20,25]$.

The original LC tries were analyzed by Andersson and Nilsson [1] for unbiased memoryless source and by Devroye [3] for memoryless sources (cf. also [21, 22]). The typical depth (search time) for regular LC tries was only studied recently by Devroye and Szpankowski [4] who proved that for memoryless sources with $p \neq 1 / 2$

$$
\begin{equation*}
D_{n} \stackrel{\mathrm{p}}{\sim} \frac{\log \log n}{-\log \left(1-h / h_{-\infty}\right)} . \tag{2}
\end{equation*}
$$

In this paper we shall prove some rather surprising results. First of all, for $0<\alpha<1$ we show that the α-fillup level $F_{n}(\alpha)$ is whp equal either to k_{n} or $k_{n}+1$ where

$$
\begin{equation*}
k_{n}=\log _{\frac{1}{\sqrt{p q}}} n-\frac{|\ln (p / q)|}{2 \ln ^{3 / 2}(1 / \sqrt{p q})} \Phi^{-1}(\alpha) \sqrt{\ln n}+O(1) . \tag{3}
\end{equation*}
$$

As a consequence, we find that if $p \neq 1 / 2$, the depth $D_{n}(\alpha)$ of the α-LC is for large n typically about

$$
\frac{\log \log n}{-\log (1-h / \log (1 / \sqrt{p q}))} .
$$

The (full) 1-fillup level F_{n} shown in (1) should be compared to the α-fillup level $F_{n}(\alpha)$ presented in (3). Observe that the leading term of $F_{n}(\alpha)$ is not the same as the leading term of F_{n} when $p \neq 1 / 2$. Furthermore, α contributes only to the second term asymptotics. When comparing the typical depths D_{n} and $D_{n}(\alpha)$ we conclude that both grow like $\log \log n$ with two constants that do not differ by much. This comparison led us to a statement in the abstract that the improvement of α-LC tries over the regular LC tries is rather moderate. We may add that for relatively slowly growing functions such as $\log \log n$ the constants in front of them do matter (even for large values of n) and perhaps this led the authors of $[8,17,18]$ to their statements.

The paper is organized as follows. In the next section we present our main results which are proved in the next two sections. We first consider a poissonized version of the problem for which we establish our findings. Then we show how to depoissonize our results completing our proof.

2 Main Results

Consider tries created by inserting n random strings of 0 and 1 . We will always assume that the strings are (potentially) infinite and that the bits in the strings are independent random bits, with $\mathbb{P}(1)=p$ and thus $\mathbb{P}(0)=q:=1-p$; moreover we assume that different strings are independent.

We let $X_{k}:=\#\{$ internal nodes filled at level $k\}$ and $\bar{X}_{k}:=X_{k} / 2^{k}$, i.e. the proportion of nodes filled at level k. Note that X_{k} may both increase and decrease as k grows, while

$$
1 \geq \bar{X}_{k} \geq \bar{X}_{k+1} \geq 0
$$

Recall that the fillup level of the trie is defined as the last full level, i.e. $\max \left\{k: \bar{X}_{k}=1\right\}$, while the height is the last level with any nodes at all, i.e. $\max \left\{k: \bar{X}_{k}>0\right\}$. Similarly, if $0<\alpha \leq 1$, the α-fillup level $F_{n}(\alpha)$ is the last level where at least a proportion α of the nodes are filled, i.e.

$$
F_{n}(\alpha)=\max \left\{k: \bar{X}_{k} \geq \alpha\right\} .
$$

We will in this paper study the α-fillup level for a given α with $0<\alpha<1$ and a given p with $0<p<1$.

We have the following result, where whp means with probability tending to 1 as $n \rightarrow \infty$, and Φ denotes the normal distribution function. Theorem 1 is proved in Section 4, after first considering a Poissonized version in Section 3.

Theorem 1. Let α and p be fixed with $0<\alpha<1$ and $0<p<1$, and let $F_{n}(\alpha)$ be the α-fillup level for the trie formed by n random strings as above. Then, for each n there is an integer

$$
k_{n}=\log _{\frac{1}{\sqrt{p q}}} n-\frac{|\ln (p / q)|}{2 \ln ^{3 / 2}(1 / \sqrt{p q})} \Phi^{-1}(\alpha) \sqrt{\ln n}+O(1)
$$

such that whp $F_{n}(\alpha)=k_{n}$ or $k_{n}+1$. Moreover, $\mathbf{E} \bar{X}_{k_{n}}=\alpha+O(1 / \sqrt{\log n})$ for $p \neq 1 / 2$.
Thus the α-fillup level $F_{n}(\alpha)$ is concentrated on at most two values; as in many similar situations (cf. $[2,11,19,25]$), it is easily seen from the proof that in fact for most n it is concentrated on a single value k_{n}, but there are transitional regimes, close to the values of n where k_{n} changes, where $F_{n}(\alpha)$ takes two values with comparable probabilities.

Note that when $p=1 / 2$, the second term on the right hand side disappears, and thus simply $k_{n}=\log n+O(1)$; in particular, two different values of $\alpha \in(0,1)$ have their corresponding k_{n} differing by $O(1)$ only. When $p \neq 1 / 2$, changing α means shifting k_{n} by $\Theta\left(\log ^{1 / 2} n\right)$. By Theorem 1 , whp $F_{n}(\alpha)$ is shifted by the same amounts.

To the first order, we thus have the following simple result.
Corollary 2. For any fixed α and p with $0<\alpha<1$ and $0<p<1$,

$$
F_{n}(\alpha)=\log _{\frac{1}{\sqrt{p q}}} n+O_{p}(\sqrt{\ln n}) ;
$$

in particular, $F_{n}(\alpha) / \log _{1 / \sqrt{p q}} n \xrightarrow{\mathrm{p}} 1$ as $n \rightarrow \infty$.
Surprisingly enough, the leading terms of the fillup level for $\alpha=1$ and $\alpha<1$ are quantitatively different for $p \neq 1 / 2$. It is well known, as explained in the introduction, that the regular fillup level F_{n} is concentrated on two points around $\log n / \log \left(1 / p_{\min }\right)$, while the partial fillup level $F_{n}(\alpha)$ concentrates around $k_{n} \sim \log n / \log (1 / \sqrt{p q})$. Secondly, the leading term of $F_{n}(\alpha)$ does not depend on α and the second term is proportional to $\sqrt{\log n}$, while for the regular fillup level F_{n} the second term is of order $\log \log \log n$.

Theorem 1 yields several consequences for the behavior of α-LC tries. In particular, it implies the typical behavior of the depth, that is, the search time. Below we formulate our main second result concerning the depth for α-LC tries delaying the proof to Section 5; cf. (2) and $[4,22]$ for LC tries.

Theorem 3. For any fixed $0<\alpha<1$ and $p \neq 1 / 2$ we have

$$
\begin{equation*}
D_{n}(\alpha) \stackrel{\mathrm{p}}{\sim} \frac{\log \log n}{-\log \left(1-\frac{h}{\log (1 / \sqrt{p q})}\right)} \tag{4}
\end{equation*}
$$

as $n \rightarrow \infty$ where $h=-p \log p-(1-p) \log (1-p)$ is the entropy rate of the source.
As a direct consequence of Theorem 3 we can numerically quantify experimental results recently reported in [17] where a "dramatic improvement" in the search time of α-LC tries over the regular LC tries was observed. In a regular LC trie the search time is $O(\log \log n)$ with the constant in front of $\log \log n$ being $1 / \log \left(1-h / \log \left(1 / p_{\text {min }}\right)\right)^{-1}[4]$. For α-LC tries this constant decreases to $1 / \log (1-h / \log (1 / \sqrt{p q}))^{-1}$. While it is hardly a "dramatic improvement", the fact that we deal with a slowly growing leading term $\log \log n$, may indeed lead to experimentally observed significant changes in the search time.

3 Poissonization

In this section we consider a Poissonized version of the problem, where there are $\operatorname{Po}(\lambda)$ strings inserted in the trie. We let $\tilde{F}_{\lambda}(\alpha)$ denote the α-fillup level of this trie.

Theorem 4. Let α and p be fixed with $0<\alpha<1$ and $0<p<1$, and let $\tilde{F}_{\lambda}(\alpha)$ be the α-fillup level for the trie formed by $\operatorname{Po}(\lambda)$ random strings as above. Then, for each $\lambda>0$ there is an integer

$$
\begin{equation*}
k_{\lambda}=\log _{\frac{1}{\sqrt{p q}}} \lambda-\frac{|\ln (p / q)|}{2 \ln ^{3 / 2}(1 / \sqrt{p q})} \Phi^{-1}(\alpha) \sqrt{\ln \lambda}+O(1) \tag{5}
\end{equation*}
$$

such that whp (as $\lambda \rightarrow \infty) \tilde{F}_{\lambda}(\alpha)=k_{\lambda}$ or $k_{\lambda}+1$.

We shall prove Theorem 4 through a series of lemmas. Observe first that a node at level k can be labeled by a binary string of length k, and that the node is filled if and only if at least two of the inserted strings begin with this label. For $r \in\{0,1\}^{k}$, let $N_{1}(r)$ be the number of ones in r, and let $P(r)=p^{N_{1}(r)} q^{k-N_{1}(r)}$ be the probability that a random string begins with r. Then, in the Poissonized version, the number of inserted strings beginning with $r \in\{0,1\}^{k}$ has a Poisson distribution $\operatorname{Po}(\lambda P(r))$, and these numbers are independent for different strings r of the same length. Consequently,

$$
\begin{equation*}
X_{k}=\sum_{r \in\{0,1\}^{k}} I_{r} \tag{6}
\end{equation*}
$$

where I_{r} are independent indicators with

$$
\begin{equation*}
\mathbb{P}\left(I_{r}=1\right)=\mathbb{P}(\operatorname{Po}(\lambda P(r)) \geq 2)=1-(1+\lambda P(r)) e^{-\lambda P(r)} \tag{7}
\end{equation*}
$$

Hence,

$$
\operatorname{Var}\left(X_{k}\right)=\sum_{r \in\{0,1\}^{k}} P\left(I_{r}=1\right)\left(1-P\left(I_{r}=1\right)\right)<2^{k}
$$

so $\operatorname{Var}\left(\bar{X}_{k}\right)<2^{-k}$ and, by Chebyshev's inequality,

$$
\begin{equation*}
\mathbb{P}\left(\left|\bar{X}_{k}-\mathbf{E} \bar{X}_{k}\right|>2^{-k / 3}\right) \rightarrow 0 \tag{8}
\end{equation*}
$$

Consequently, \bar{X}_{k} is sharply concentrated, and it is enough to study its expectation. (It is straightforward to calculate $\operatorname{Var}\left(X_{k}\right)$ more precisely, and to obtain a normal limit theorem for X_{k}, but we do not need that.)

Assume first $p>1 / 2$.
Lemma 1. If $p>1 / 2$ and

$$
\begin{equation*}
k=\log _{\frac{1}{\sqrt{p q}}} \lambda-\frac{\ln (p / q)}{2 \ln ^{3 / 2}(1 / \sqrt{p q})} \Phi^{-1}(\alpha) \sqrt{\ln \lambda}+O(1) \tag{9}
\end{equation*}
$$

then $\mathbf{E} \bar{X}_{k}=\alpha+O\left(k^{-1 / 2}\right)$.
Proof. Let $\rho=p / q>1$ and define γ by $\lambda p^{\gamma} q^{k-\gamma}=1$, i.e.,

$$
\rho^{\gamma}=\left(\frac{p}{q}\right)^{\gamma}=\lambda^{-1} q^{-k}
$$

which leads to

$$
\begin{equation*}
\gamma=\frac{k \ln (1 / q)-\ln \lambda}{\ln (p / q)} \tag{10}
\end{equation*}
$$

Let $\mu_{j}=\lambda p^{j} q^{k-j}=\rho^{j-\gamma}$. By (6) and (7),

$$
\begin{equation*}
\mathbf{E} \bar{X}_{k}=2^{-k} \sum_{j=0}^{k}\binom{k}{j} \mathbb{P}\left(\operatorname{Po}\left(\mu_{j}\right) \geq 2\right) . \tag{11}
\end{equation*}
$$

If $j<\gamma$, then $\mu_{j}<1$ and

$$
\mathbb{P}\left(\operatorname{Po}\left(\mu_{j}\right) \geq 2\right)<\mu_{j}^{2}<\mu_{j}
$$

If $j \geq \gamma$, then $\mu_{j} \geq 1$ and

$$
1-\mathbb{P}\left(\operatorname{Po}\left(\mu_{j}\right) \geq 2\right)=\left(1+\mu_{j}\right) e^{-\mu_{j}} \leq 2 \mu_{j} e^{-\mu_{j}}<4 \mu_{j}^{-1}
$$

Hence (11) yields, using $\binom{k}{j} \leq\binom{ k}{\lfloor k / 2\rfloor}=O\left(2^{k} k^{-1 / 2}\right)$,

$$
\begin{align*}
\mathbf{E} \bar{X}_{k} & =2^{-k} \sum_{j<\gamma}\binom{k}{j} O\left(\mu_{j}\right)+2^{-k} \sum_{j \geq \gamma}\binom{k}{j}\left(1-O\left(\mu_{j}^{-1}\right)\right) \\
& =2^{-k} \sum_{j \geq \gamma}\binom{k}{j}+2^{-k} \sum_{j=0}^{k}\binom{k}{j} O\left(\rho^{-|j-\gamma|}\right) \tag{12}\\
& =\mathbb{P}(\operatorname{Bi}(k, 1 / 2) \geq \gamma)+O\left(k^{-1 / 2}\right) .
\end{align*}
$$

By the Berry-Esseen theorem [6, Theorem XVI.5.1],

$$
\begin{equation*}
\mathbb{P}(\operatorname{Bi}(k, 1 / 2) \geq \gamma)=1-\Phi\left(\frac{\gamma-k / 2}{\sqrt{k / 4}}\right)+O\left(k^{-1 / 2}\right) . \tag{13}
\end{equation*}
$$

By (10) and the assumption (9),

$$
\begin{align*}
\gamma-\frac{k}{2} & =\frac{1}{\ln (p / q)}\left(k \ln \frac{1}{q}-\ln \lambda-\frac{k}{2} \ln \frac{p}{q}\right) \\
& =\frac{1}{\ln (p / q)}\left(k \ln \frac{1}{\sqrt{p q}}-\ln \lambda\right) \\
& =\frac{\ln (1 / \sqrt{p q})}{\ln (p / q)}\left(k-\log _{1 / \sqrt{p q}} \lambda\right) \tag{14}\\
& =-\frac{1}{2}(\ln (1 / \sqrt{p q}))^{-1 / 2} \Phi^{-1}(\alpha) \sqrt{\ln \lambda}+O(1) \\
& =-\frac{1}{2} \Phi^{-1}(\alpha) k^{1 / 2}+O(1) .
\end{align*}
$$

This finally implies

$$
1-\Phi\left(\frac{\gamma-k / 2}{\sqrt{k / 4}}\right)=1-\Phi\left(-\Phi^{-1}(\alpha)\right)+O\left(k^{-1 / 2}\right)=\alpha+O\left(k^{-1 / 2}\right)
$$

and the lemma follows by (12) and (13).
Lemma 2. Fix $p>1 / 2$. For every $A>0$, there exists $c>0$ such that if $\left|k-\log _{1 / \sqrt{p q}} \lambda\right| \leq$ $A k^{1 / 2}$, then $\mathbf{E} \bar{X}_{k}-\mathbf{E} \bar{X}_{k+1}>c k^{-1 / 2}$.
Proof. A string $r \in\{0,1\}^{k}$ has two extensions $r 0$ and $r 1$ in $\{0,1\}^{k+1}$. Clearly, $I_{r 0}, I_{r 1} \leq I_{r}$, and if there are exactly 2 (or 3) of the inserted strings beginning with r, then $I_{r 0}+I_{r 1} \leq$ $1<2 I_{r}$. Hence

$$
\begin{equation*}
\mathbf{E}\left(2 X_{k}-X_{k+1}\right)=\sum_{r \in\{0,1\}^{k}} \mathbf{E}\left(2 I_{r}-I_{r 0}-I_{r 1}\right) \geq \sum_{r \in\{0,1\}^{k}} \mathbb{P}(\operatorname{Po}(\lambda P(r))=2) . \tag{15}
\end{equation*}
$$

Let ρ and γ be as in the proof of Lemma 1, and let $j=\lceil\gamma\rceil$. Then $\mu_{j}=\rho^{j-\gamma} \in[1, \rho]$ and thus $\mathbb{P}\left(\operatorname{Po}\left(\mu_{j}\right)=2\right) \geq \frac{1}{2} e^{-\rho}$. Moreover, by (14) and the assumption,

$$
|j-k / 2| \leq \frac{\ln (1 / \sqrt{p q})}{\ln (p / q)} A k^{1 / 2}+1=O\left(k^{1 / 2}\right)
$$

Thus, if k is large enough, we have by the standard normal approximation of the binomial probabilities (which follows easily from Stirling's formula, as found already by de Moivre [5])

$$
2^{-k}\binom{k}{j}=\frac{1+o(1)}{\sqrt{2 \pi k / 4}} e^{-2(j-k / 2)^{2} / k} \geq c_{1} k^{-1 / 2}
$$

for some $c_{1}>0$. Hence, by (15),

$$
\mathbf{E} \bar{X}_{k}-\mathbf{E} \bar{X}_{k+1}=2^{-k-1} \mathbf{E}\left(2 X_{k}-X_{k+1}\right) \geq 2^{-k-1}\binom{k}{j} \mathbb{P}\left(\operatorname{Po}\left(\mu_{j}\right)=2\right) \geq \frac{c_{1} e^{-\rho}}{4} k^{-1 / 2}
$$

as needed.
Now assume $p>1 / 2$. Starting with any k as in (9), we can by Lemmas 1 and 2 shift k up or down $O(1)$ steps and find k_{λ} as in (5) such that, for a suitable $c>0$, $\mathbf{E} \bar{X}_{k_{\lambda}} \geq \alpha+\frac{1}{2} c k_{\lambda}^{-1 / 2}>\mathbf{E} \bar{X}_{k_{\lambda}+1}$ and $\mathbf{E} \bar{X}_{k_{\lambda}+2} \leq \mathbf{E} \bar{X}_{k_{\lambda}+1}-c k_{\lambda}^{-1 / 2}<\alpha-\frac{1}{2} c k_{\lambda}^{-1 / 2}$. It follows by (8) that whp $\bar{X}_{k_{\lambda}} \geq \alpha$ and $\bar{X}_{k_{\lambda}+2}<\alpha$, and hence $\tilde{F}_{\lambda}(\alpha)=k_{\lambda}$ or $k_{\lambda}+1$.

This proves Theorem 4 in the case $p>1 / 2$. The case $p<1 / 2$ follows by symmetry, interchanging p and q.

In the remaining case $p=1 / 2$, all $P(r)=2^{-k}$ are equal. Thus, by (6) and (7),

$$
\begin{equation*}
\mathbf{E} \bar{X}_{k}=\mathbb{P}\left(\operatorname{Po}\left(\lambda 2^{-k}\right) \geq 2\right) . \tag{16}
\end{equation*}
$$

Given $\alpha \in(0,1)$, there is a $\mu>0$ such that $\mathbb{P}(\operatorname{Po}(\mu) \geq 2)=\alpha$. We take $k_{\lambda}=\lfloor\log (\lambda / \mu)-$ $1 / 2\rfloor$. Then, $\lambda 2^{-k_{\lambda}} \geq 2^{1 / 2} \mu$ and thus $\mathbf{E} \bar{X}_{k_{\lambda}} \geq \alpha_{+}$for some $\alpha_{+}>\alpha$. Similarly, $\mathbf{E} \bar{X}_{k_{\lambda}+2} \leq$ α_{-}for some $\alpha_{-}<\alpha$, and the result follows in this case too.

4 Depoissonization

To complete the proof of Theorem 1 we must depoissonize the results obtained in Theorem 4, which we do in this section.

Proof of Theorem 1. Given an integer n, let k_{n} be as in the proof of Theorem 4 with $\lambda=n$, and let $\lambda_{ \pm}=n \pm n^{2 / 3}$. Then $\left.\mathbb{P}\left(\operatorname{Po}\left(\lambda_{-}\right) \leq n\right)\right) \rightarrow 1$ and $\left.\mathbb{P}\left(\operatorname{Po}\left(\lambda_{+}\right) \geq n\right)\right) \rightarrow 1$ as $n \rightarrow \infty$. By monotonicity, we thus have whp $\tilde{F}_{\lambda_{-}}(\alpha) \leq F_{n}(\alpha) \leq \tilde{F}_{\lambda_{+}}(\alpha)$, and by Theorem 4 it remains only to show that we can take $k_{\lambda_{-}}=k_{\lambda_{+}}=k_{n}$.

Let us now write $X_{k}(\lambda)$ and $\bar{X}_{k}(\lambda)$, since we are working with several λ.
Lemma 3. Assume $p \neq 1 / 2$. Then, for every k,

$$
\frac{d}{d \lambda} \mathbf{E} \bar{X}_{k}(\lambda)=O\left(\lambda^{-1} k^{-1 / 2}\right) .
$$

Proof. We have

$$
\frac{d}{d \mu} \mathbb{P}(\operatorname{Po}(\mu) \geq 2)=\frac{d}{d \mu}\left(\left(1-(1+\mu) e^{-\mu}\right)=\mu e^{-\mu}\right.
$$

and thus, by (11) and the argument in (12),

$$
\begin{aligned}
\frac{d}{d \lambda} \mathbf{E} \bar{X}_{k}(\lambda) & =2^{-k} \sum_{j=0}^{k}\binom{k}{j} \mu_{j} e^{-\mu_{j}} \frac{d \mu_{j}}{d \lambda} \\
& =\lambda^{-1} 2^{-k} \sum_{j=0}^{k}\binom{k}{j} \mu_{j}^{2} e^{-\mu_{j}}=O\left(\lambda^{-1} \sum_{j=0}^{k} 2^{-k}\binom{k}{j} \min \left(\mu_{j}, \mu_{j}^{-1}\right)\right) \\
& =O\left(\lambda^{-1} k^{-1 / 2}\right)
\end{aligned}
$$

which completes the proof.
By Lemma 3, $\left|\mathbf{E} \bar{X}_{k}\left(\lambda_{ \pm}\right)-\mathbf{E} \bar{X}_{k}(n)\right|=O\left(n^{-1 / 3} k^{-1 / 2}\right)=o\left(k^{-1 / 2}\right)$. Hence, by the proof of Theorem 4, for large $n, \mathbf{E} \bar{X}_{k_{n}}\left(\lambda_{ \pm}\right) \geq \alpha+\frac{1}{3} c k_{n}^{-1 / 2}$ and $\mathbf{E} \bar{X}_{k_{n}+2}\left(\lambda_{ \pm}\right)<\alpha-\frac{1}{3} c k_{n}^{-1 / 2}$, and thus whp $\tilde{F}_{\lambda_{ \pm}}(\alpha)=k_{n}$ or $k_{n}+1$. Moreover, the estimate $\mathbf{E} \bar{X}_{k_{n}}=\alpha+O(1 / \sqrt{\log n})$ follows easily from the similar estimate for the Poisson version in Lemma 1; we omit the details. This completes the proof of Theorem 1 for $p>1 / 2$. The case $p<1 / 2$ is again the same by symmetry. The proof when $p=1 / 2$ is similar, now using (16).

5 Proof of Theorem 3

First, let us explain heuristically our estimate for $D_{n}(\alpha)$. By the Asymptotic Equipartition Property (cf. [25]) at level k_{n} there are about $n 2^{-h k_{n}}$ strings with the same prefix of length k_{n} as a randomly chosen one, where h is the entropy. That is, in the corresponding branch of the α-LC trie, we have about $n 2^{-h k_{n}} \approx n^{1-h / b}$ strings (or external nodes), where for simplicity $b=\log (1 / \sqrt{p q})$. In the next level, we shall have about $n^{(1-h / b)^{2}}$ external nodes, and so on. In particular, at level $D_{n}(\alpha)$ we have approximately

$$
n^{(1-h / b)^{D_{n}(\alpha)}}
$$

external nodes. Setting this $=\Theta(1)$ leads to our estimate (4) of Theorem 3.
We now make this argument rigorous. We construct an α-LC trie from n random strings ξ_{1}, \ldots, ξ_{n} and look at the depth $D_{n}(\alpha)$ of a designated one of them. In principle, the designated string should be chosen at random, but by symmetry, we can assume that it is the first string ξ_{1}.

To construct the α-LC trie, we scan the strings ξ_{1}, \ldots, ξ_{n} in parallel one bit at a time, and build a trie level by level. As soon as the last level is filled less than α, we stop; we are now at level $F_{n}(\alpha)+1$, just past the α-fillup level. The trie above this level, i.e. up to level $F_{n}(\alpha)$, is compressed into one node, and we continue recursively with the strings attached to each node at level $F_{n}(\alpha)+1$ in the uncompressed trie, i.e. the sets of strings that begin with the same prefixes of length $F_{n}(\alpha)+1$.

To find the depth $D_{n}(\alpha)$ of the designated string ξ_{1} in the compressed trie, we may ignore all branches not containing ξ_{1}; thus we let Y_{n} be the number of the n strings that agree with ξ_{1} for the first $F_{n}(\alpha)+1$ bits. Note that we have not yet inspected any later bits. Hence, conditioned on $F_{n}(\alpha)$ and Y_{n}, the remaining parts of these Y_{n} strings are again i.i.d. random strings from the same memoryless source, so we may argue by recursion. The depth $D_{n}(\alpha)$ equals the number of recursions needed to reduce the number of strings to 1 .

We begin by analysing a single step in the recursion. Let, for notational convenience, $\kappa:=h / \log (1 / \sqrt{p q})$. Note that $0<\kappa<1$.

Lemma 4. Let $\varepsilon>0$. Then, with probability $1-O\left(n^{-\Theta(1)}\right)$,

$$
\begin{equation*}
1-\kappa-\varepsilon<\frac{\ln Y_{n}}{\ln n}<1-\kappa+\varepsilon . \tag{17}
\end{equation*}
$$

We postpone the proof of Lemma 4, and first use it to complete the proof of Theorem 3. We assume below that n is large enough when needed, and that $0<\varepsilon<\min (\kappa, 1-\kappa) / 2$.

We iterate, and let Z_{j} be the number of strings remaining after j iterations; this is the number of strings that share the first j levels with ξ_{1} in the compressed trie. We have $Z_{0}=n$ and $Z_{1}=Y_{n}$. We stop the iteration when there are less than $\ln n$ strings remaining; we thus let τ be the smallest integer such that $Z_{\tau}<\ln n$. In each iteration before τ, (17) holds with error probability $O\left((\ln n)^{-\Theta(1)}\right)=O\left((\ln \ln n)^{-2}\right)$. Hence, for any constant B, we have whp for every $j \leq \min (\tau, B \ln \ln n)$, with $\kappa_{ \pm}=\kappa \pm \varepsilon \in(0,1)$,

$$
1-\kappa_{+}<\frac{\ln Z_{j}}{\ln Z_{j-1}}<1-\kappa_{-},
$$

or equivalently

$$
\ln \left(1-\kappa_{+}\right)<\ln \ln Z_{j}-\ln \ln Z_{j-1}<\ln \left(1-\kappa_{-}\right) .
$$

If $\tau>\tau_{+}:=\left\lceil\ln \ln n / \ln \left(1-\kappa_{-}\right)^{-1}\right\rceil$, we find whp from (18)

$$
\ln \ln Z_{\tau_{+}} \leq \ln \ln Z_{0}+\tau_{+} \ln \left(1-\kappa_{-}\right) \leq 0,
$$

so $Z_{\tau_{+}} \leq e<\ln n$, which violates $\tau>\tau_{+}$. Hence, $\tau \leq \tau_{+}$whp.
On the other hand, if $\tau<\tau_{-}:=\left\lfloor(1-\varepsilon) \ln \ln n / \ln \left(1-\kappa_{+}\right)^{-1}\right\rfloor$, then whp by (18)

$$
\ln \ln Z_{\tau} \geq \ln \ln Z_{0}+\tau_{-} \ln \left(1-\kappa_{+}\right) \geq \varepsilon \ln \ln n,
$$

which contradicts $\ln \ln Z_{\tau}<\ln \ln \ln n$.
Consequently, whp $\tau_{-} \leq \tau \leq \tau_{+}$; in other words, we need $\frac{\ln \ln n}{-\ln (1-\kappa)}(1+O(\varepsilon))$ iterations to reduce the number of strings to less than $\ln n$.

Iterating this result once, we see that whp at most $O(\ln \ln \ln n)$ further iterations are needed to reduce the number to less than $\ln \ln n$. Finally, the remaining depth then whp is $O(\ln \ln \ln n)$ even without compression. Hence we see that whp

$$
D_{n}(\alpha)=\frac{\ln \ln n}{-\ln (1-\kappa)}(1+O(\varepsilon))+O(\ln \ln \ln n)
$$

Since ε is arbitrary, Theorem 3 follows.
It remains to prove Lemma 4. Let W_{k} be the number of the strings ξ_{1}, \ldots, ξ_{n} that are equal to ξ_{1} for at least their first k bits. The $Y_{n}=W_{F_{n}(\alpha)+1}$, and thus, for any $A>0$,

$$
\mathbb{P}\left(\left|\log Y_{n}-(1-\kappa) \log n\right| \geq 2 \varepsilon \log n\right) \leq \mathbb{P}\left(\left|F_{n}(\alpha)-\log _{1 / \sqrt{p q}} n\right| \geq A \sqrt{\ln n}\right) .
$$

Lemma 4 thus follows from the following two lemmas, using the observation that $0<$ $1 / \log (1 / \sqrt{p q})<1 / h$.

The first lemma is a large deviation estimate corresponding to Corollary 2.

Lemma 5. For each $\alpha \in(0,1)$, there exists a constant A such that

$$
\mathbb{P}\left(\left|F_{n}(\alpha)-\log _{1 / \sqrt{p q}} n\right| \geq A \sqrt{\ln n}\right)=O(1 / n) .
$$

Proof. We begin with the poissonized version, with $\operatorname{Po}(\lambda)$ strings as in Section 3. Let $k_{ \pm}=k_{ \pm}(\lambda):=\left\lfloor\log _{1 / \sqrt{p q}} \lambda \pm A \sqrt{\ln \lambda}\right\rfloor$, and let δ be fixed with $0<\delta<\min (\alpha, 1-\alpha)$. Then, by Lemma 1, if A is large enough, $\mathbf{E} \bar{X}_{k_{-}}>\alpha+\delta$ and $\mathbf{E} \bar{X}_{k_{+}}<\alpha-\delta$ for all large λ. By a Chernoff bound, (8) can be sharpened to

$$
\mathbb{P}\left(\left|\bar{X}_{k}-\mathbf{E} \bar{X}_{k}\right|>\delta\right)=O\left(e^{-\Theta\left(2^{k}\right)}\right)
$$

and thus

$$
\begin{aligned}
\mathbb{P}\left(\tilde{F}_{\lambda}(\alpha)<k_{-}\right) & \leq \mathbb{P}\left(\bar{X}_{k_{-}}<\alpha\right) \leq \mathbb{P}\left(\bar{X}_{k_{-}}-\mathbf{E} \bar{X}_{k_{-}}<-\delta\right) \\
& =O\left(e^{-\Theta\left(2^{k-}\right)}\right)=O\left(e^{-\Theta\left(\lambda^{O(1)}\right)}\right)=O\left(\lambda^{-1}\right) .
\end{aligned}
$$

Similarly, $\mathbb{P}\left(\tilde{F}_{\lambda}(\alpha)>k_{+}\right)=O\left(\lambda^{-1}\right)$.
To depoissonize, let $\lambda_{ \pm}=n \pm n^{2 / 3}$ as in Section 4 and note that, again by a Chernoff estimate, $\mathbb{P}\left(\operatorname{Po}\left(\lambda_{-}\right) \leq n\right)=O\left(n^{-1}\right)$ and $\mathbb{P}\left(\operatorname{Po}\left(\lambda_{+}\right) \geq n\right)=O\left(n^{-1}\right)$. Thus, with probability $1-O(1 / n)$,

$$
k_{-}\left(\lambda_{-}\right) \leq \tilde{F}_{\lambda_{-}}(\alpha) \leq F_{n}(\alpha) \leq \tilde{F}_{\lambda_{+}}(\alpha) \leq k_{+}\left(\lambda_{+}\right),
$$

and the result follows (if we increase A).
Lemma 6. Lat $0<a<b<1 / h$ and $\varepsilon>0$. Then, uniformly for all k with $a \log n \leq k \leq$ $b \log n$,

$$
\begin{equation*}
\mathbb{P}\left(\left|\log W_{k}-\log n+k h\right|>\varepsilon \log n\right)=O\left(n^{-\Theta(1)}\right) . \tag{19}
\end{equation*}
$$

Proof. Let N_{1} be the number of 1's in the first k bits of ξ_{1}. Given N_{1}, the distribution of $W_{k}-1$ is $\operatorname{Bi}\left(n-1, p^{N_{1}} q^{k-N_{1}}\right)$.

Since $p^{p} q^{q}=2^{-h}$, there exists $\delta>0$ such that if $\left|N_{1} / k-p\right| \leq \delta$, then $2^{-h-\varepsilon} \leq$ $p^{N_{1} / k} q^{1-N_{1} / k} \leq 2^{-h+\varepsilon}$, and thus

$$
\begin{equation*}
2^{-h k-\varepsilon k} \leq p^{N_{1}} q^{k-N_{1}} \leq 2^{-h k+\varepsilon k}, \quad \text { when }\left|N_{1} / k-p\right| \leq \delta . \tag{20}
\end{equation*}
$$

Noting that $h k \leq b h \log n$ and $b h<1$, we see that, provided ε is small enough, $n 2^{-h k-\varepsilon k} \geq$ n^{η} for some $\eta>0$, and then (20) and a Chernoff estimate yields, when $\left|N_{1} / k-p\right| \leq \delta$,

$$
\mathbb{P}\left(\left.\frac{1}{2} n 2^{-h k-\varepsilon k} \leq W_{k} \leq 2 n 2^{-h k-\varepsilon k} \right\rvert\, N_{1}\right)=1-O\left(e^{-\Theta\left(n^{\eta}\right)}\right)=1-O\left(n^{-1}\right),
$$

and thus

$$
\begin{equation*}
\mathbb{P}\left(\left|\log W_{k}-\log n+h k\right|>\varepsilon k+1 \mid N_{1}\right)=O\left(n^{-1}\right), \quad \text { when }\left|N_{1} / k-p\right| \leq \delta . \tag{21}
\end{equation*}
$$

Moreover, $N_{1} \sim \operatorname{Bi}(k, p)$, so by another Chernoff estimate,

$$
\mathbb{P}\left(\left|N_{1} / k-p\right|>\delta\right)=O\left(e^{-\Theta(k)}\right)=O\left(n^{-\Theta(1)}\right) .
$$

The result follows (possibly changing ε) from this and (21).

References

[1] A. Andersson and S. Nilsson, Improved behavior of tries by adaptive branching, Information Processing Letters, 46, 295-300, 1993.
[2] L. Devroye, A note on the probabilistic analysis of Patricia tries, Random Structures and Algorithms, 3, 203-214, 1992.
[3] L. Devroye, An analysis of random LC tries, Random Structures and Algorithms, 19, 359-375, 2001.
[4] L. Devroye and W. Szpankowski, Probabilistic behavior of asymmetric level compressed tries, Random Structures \& Algorithms, 27(2), 185-200, 2005.
[5] A. de Moivre, The Doctrine of Chances, 2nd ed., H. Woodfall, London, 1738.
[6] W. Feller, An Introduction to Probability Theory and its Applications, Vol. II. 2nd ed., Wiley, New York, 1971.
[7] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge University Press, Cambridge, 1997.
[8] P. Iivonen, S. Nilsson and M. Tikkanen, An experimental study of compression methods for functional tries, in: Workshop on Algorithmic Aspects of Advanced Programming Languages (WAAAPL'99), 1999.
[9] P. Jacquet and W. Szpankowski, Analysis of digital tries with Markovian dependency, IEEE Trans. Information Theory, 37, 1470-1475, 1991.
[10] P. Jacquet and W. Szpankowski, Analytical depoissonization and its applications, Theoretical Computer Science, 201, 1-62, 1998
[11] C. Knessl and W. Szpankowski, On the number of full levels in tries, Random Structures and Algorithms, 25, 247-276, 2004.
[12] D. E. Knuth, The Art of Computer Programming. Vol. 1: Fundamental Algorithms, 3rd ed, Addison-Wesley, Reading, Massachusetts, 1997.
[13] D. E. Knuth, Selected Papers on Analysis of Algorithms, CSLI, Stanford, 2000.
[14] H. Mahmoud, Evolution of Random Search Trees, John Wiley \& Sons, New York, 1992.
[15] S. Nilsson, Radix Sorting \& Searching, PhD Thesis, Lund University, 1996.
[16] S. Nilsson and G. Karlsson, Fast address look-up for Internet routers, Proceedings IFIP 4th International Conference on Broadband Communications, 11-22, 1998.
[17] S. Nilsson and G. Karlsson, IP-address lookup using LC-tries, IEEE Journal on Selected Areas in Communications, 17(6), 1083-1092, 1999.
[18] S. Nilsson and M. Tikkanen, An experimental study of compression methods for dynamic tries, Algorithmica, 33(1), 19-33, 2002.
[19] B. Pittel, Asymptotic growth of a class of random trees, Annals of Probability, 18, 414-427, 1985.
[20] B. Pittel, Paths in a random digital tree: limiting distributions, Adv. in Applied Probability, 18, 139-155, 1986.
[21] Y. Reznik, Some results on tries with adaptive branching, Theoretical Computer Science, 289, 1009-1026, 2002.
[22] Y. Reznik, On the average density and selectivity of nodes in multi-digit tries, Proceedings of the Seventh Workshop on Algorithm Engineering and Experiments and the Second Workshop on Analytic Algorithmics and Combinatorics (ALENEX/ANALCO; Vancouver, 2005), SIAM, 230-239, 2005.
[23] V. Srinivasan and G. Varghese, Fast address lookups using controlled prefix expansions, ACM SIGMETRICS''98, 1998.
[24] W. Szpankowski, On the height of digital trees and related problems, Algorithmica, 6, 256-277, 1991.
[25] W. Szpankowski Average Case Analysis of Algorithms on Sequences, John Wiley, New York, 2001.

[^0]: ${ }^{*}$ The work of this author was supported in part by the NSF Grants CCR-0208709, CCF-0513636, and DMS-0503742, NIH Grant R01 GM068959-01, and and AFOSR Grant FA8655-04-1-3074.

