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LOCAL LIMIT THEOREMS FOR FINITE AND INFINITE
URN MODELS

BY HSIEN-KUEI HWANG AND SVANTE JANSON

Academia Sinica and Uppsala University

Local limit theorems are derived for the number of occupied urns in gen-
eral finite and infinite urn models under the minimum condition that the vari-
ance tends to infinity. Our results represent an optimal improvement over
previous ones for normal approximation.

1. Introduction. A classical theorem of Rényi [29] for the number of empty
boxes, denoted by μ0(n,M), in a sequence of n random allocations of indistin-
guishable balls into M boxes with equal probability 1/M , can be stated as follows:
If the variance of μ0(n,M) tends to infinity with n, then μ0(n,M) is asymptoti-
cally normally distributed. This result, seldom stated in this form in the literature,
was proved by Rényi [29] by dissecting the range of n and M into three different
ranges, in each of which a different method of proof was employed. Local limit
theorems were later studied by Sevast’yanov and Chistyakov [30] in a rather lim-
ited range when both ratios of n/M and M/n remain bounded. Kolchin [22] gave
a very detailed study on different approximation theorems. For a fairly complete
account of this theory, see Kolchin, Sevast’yanov and Chistyakov [23]. Englund
[9] later derived an explicit Berry–Esseen bound.

Multinomial extension of the problem was studied by many authors. In this
scheme, balls are successively thrown into M boxes, the probability of each ball
falling into the j th box being pj = pj (M),

∑
0≤j<M pj = 1. Quine and Robin-

son [27] showed that if pjM is bounded for j = 0,1, . . . ,M − 1 and if the vari-
ance of μ0(n,M) tends to infinity with n (n is the number of allocations), then
the distribution of μ0(n,M) is asymptotically normal. They indeed derived a
Berry–Esseen bound for the normal approximation of the distribution. Their re-
sult remains the strongest of its kind in the literature. Note that the condition
pjM = O(1) for all j is one of the essential conditions needed for proving the as-
ymptotic normality of μ0(n,M) in many previous papers on multinomial schemes
(see Holst [15], Kolchin, Sevast’yanov and Chistyakov [23]); it implies that the
general multinomial scheme studied in the literature is indeed not very far from
the equiprobable one. Our major contribution of this paper is to show that this con-
dition can be completely removed. Moreover, under the minimum condition that
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Var(μ0(n,M)) → ∞, μ0(n,M) satisfies a local limit theorem of the form

sup
x

∣∣∣∣P(
μ0(n,M) = μ(n) + xσ(n)

) − e−x2/2
√

2πσ(n)

∣∣∣∣ = O(σ(n)−2),(1.1)

for some normalizing constants μ(n) and σ(n), with σ(n) ∼ √
Var(μ0(n,M)).

Our result is thus, up to the implied constant in the error term, optimum. Moderate
and large deviations can also be treated by extending our method of proof, but
technicalities will be more involved and the result will be of a less explicit nature;
thus we content ourselves with result of the type (1.1).

While the above finite urn schemes have received extensive attention in the lit-
erature due to their wide applicability in diverse fields (see Johnson and Kotz [19]
and Kotz and Balakrishnan [24]), the model in which M = ∞ with pj fixed was
rarely discussed. Bahadur [2], and independently Darling [7], seemed the first to
investigate such an urn model. Karlin [20] gave the first systematic study of some
basic statistics on this model. His results were then extended by Dutko [8] using
the same approach. Dutko showed that in a sequence of n throws, the distribution
of the number of occupied boxes, Zn,M , is asymptotically normally distributed
provided only that its variance tends to infinity with n. (His result was stated in
a slightly weaker form.) Note that this result was already stated in the review by
Kesten [21] for Darling’s [7] paper in AMS Math Reviews. For other interesting
aspects of Zn,M , see the two recent papers [5, 11].

We will derive a local limit theorem for Zn,M of the form (1.1) [with μ0(n,M)

replaced by Zn,M ] under the minimum condition that Var(Zn,M) → ∞, where M

is either finite or infinite, and pj either may depend on n and M or not.
Note that the number of occupied boxes is equivalent to the number of distinct

values assumed in a sequence of n i.i.d. (independent and identically distributed)
integer-valued random variables. This quantity is an important measure in sev-
eral problems such as the coupon collector’s problem, species-trapping models,
birthday paradox, polynomial factorization, statistical linguistics, memory alloca-
tion, statistical physics, hashing schemes, and so on. For example, the number of
occupied urns under the geometric distribution occurred naturally in at least two
different problems in the literature: the depth (the distance of a randomly chosen
node to the root) in a class of data structures called Patricia tries (see Rais, Jacquet
and Szpankowski [28]) and the number of distinct summands in random integer
compositions (see Hitczenko and Louchard [13], Hwang and Yeh [16], Gnedin,
Pitman and Yor [12]); see also Prodinger [26] and Janson [18].

Almost all previous approaches rely, explicitly or implicitly, on the widely used
Poissonization technique, which is roughly stated as follows. Let {aj }j be a given
sequence such that the Poisson generating function f (λ) := e−λ ∑

j ajλ
j/j ! is an

entire function. Then the Poisson heuristic on which the Poissonization procedure
relies reads:

if f (λ) is smooth enough for large λ, then an ≈ f (n) (n → ∞).(1.2)
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Such a heuristic, guided by the underlying normal approximation to the Poisson
distribution, can usually be justified by suitable real or complex analysis. As is
often the case, it is the verification of the smoothness (or regularity) property of
f (λ) that is the hard part of the heuristic and for which technical conditions are
usually introduced. The heuristic appeared in different guises in diverse contexts
such as Borel summability and Tauberian theorems; it can at least be traced back
to Ramanujan’s Notebooks; see the book by Berndt [4], pages 57–66, for more
details, Aldous [1] and the survey paper by Jacquet and Szpankowski [17] for
thorough discussions.

To obtain our local limit theorems, we apply instead the two-dimensional
saddle-point method, which is in essence the most straightforward one and may
be regarded as an extension of the Poisson heuristic; see also Remark 3.2. The
approach we use can be extended in a few lines: moderate and large deviations of
Zn,M , consideration of other statistics such as urns with a given number of balls,
weighted coverage, goodness-of-fit tests, etc.

This paper is organized as follows. We first state our main results on local limit
theorems in the next section. In Section 3 the case of a Poisson number of balls is
considered, and we introduce the Poisson generating function that is central to our
proofs. Asymptotics of mean and variance are derived in Section 4. Sections 5–7
give the proofs of the main results. Discrete limit laws are derived in Section 8. We
conclude this paper with some properties of infinite urn models.

Notation. The generic symbols C,C1,C2, . . . and c1, c2, . . . will always de-
note some positive absolute constants; they can be replaced by explicit numerical
values if desired, but we avoid this for simplicity of presentation. Similarly, the im-
plicit constants in the O- and �-symbols are absolute constants, where the symbol
A � B means that c ≤ A/B ≤ C for some constants c and C.

2. Results. Let X1,X2, . . . ,Xn be a sequence of i.i.d. random variables with
a discrete distribution F . Let Z = Zn,F denote the number of distinct values as-
sumed by X1, . . . ,Xn.

Let J be the set (finite or infinite) of possible values of Xi , and let the distribu-
tion F be given by

P(Xi = j) = pj (j ∈ J),

where
∑

j pj = 1. Here and throughout this paper, sums of the form
∑

j are taken
to be

∑
j∈J unless otherwise specified; similarly

∏
j = ∏

j∈J .
Alternatively, Z counts the number of occupied urns in an urn scheme where n

balls are thrown independently and each ball has the same probability pj of falling
into urn j , j ∈ J. Note that we allow pj = 0 for some j , although such elements
may be freely added to or deleted from J without changing Z.

We now state our results. Proofs are given in Sections 4–7.
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THEOREM 2.1. If Var(Zn,F ) 
= 0, then the local limit theorem

sup
−∞<x<∞

∣∣∣∣P(Zn,F = m) − e−x2/2√
2π Var(Zn,F )

∣∣∣∣ ≤ C

Var(Zn,F )
(2.1)

holds uniformly for all n ∈ N and F , where m = �E(Zn,F ) + x
√

Var(Zn,F )�.

The trivial case Var(Zn,F ) = 0 occurs if and only if n = 0, n = 1, or F is a
one-point distribution; in these cases Z = 0, 1 and 1, respectively.

REMARK 2.1 (Discrete distributions vs. continuous distributions). The as-
sumption that the distribution F is discrete is not necessary. If F is continuous,
then Z = n a.s., another trivial case with Var(Z) = 0. If F has both a discrete and
a continuous part, then Theorem 2.1 still holds. To see this, assume that F has a
continuous part with total mass ρ, and let FM be a discrete distribution that has
the same atoms as F together with M new atoms j , each with pj = ρ/M . We can
now apply Theorem 2.1 to FM , and it is easily seen that if we let M → ∞ (with n

fixed), then all quantities in (2.1) for FM converge to the corresponding quantities
for F ; thus (2.1) holds for F also.

Similarly, the result below holds for general distributions with minor modifica-
tions in the formulas (2.2)–(2.5) for mean and variance. We omit the details.

REMARK 2.2 (Finite urns vs. infinite urns). By a suitable truncation, it suffices
to prove the results for a finite set J. This has the technical advantage that we do
not need to address the convergence of the sums and products involved, which
is, however, relatively easily checked. Indeed, without loss of generality, we may
assume that J is the set of nonnegative integers; then we replace Xi by Xi ∧ M ,
and let FM be the corresponding distribution (i.e., F truncated at M). It follows
that if the result holds for each FM , it also holds for F , by letting M → ∞.

Exact formulas for E(Zn,F ) and Var(Zn,F ) are given in (4.1) and (4.2) below.
However, these formulas are rather complicated; thus we first derive simpler ap-
proximations to these quantities.

We define, for x ≥ 0 (and, more generally, for any complex x with �x ≥ 0),

μF (x) := ∑
j

(1 − e−pj x),(2.2)

vF (x) := ∑
j

e−pj x(1 − e−pj x),(2.3)

uF (x) := ∑
j

pjxe−pj x,(2.4)

σ 2
F (x) := vF (x) − uF (x)2

x
(2.5)



996 H.-K. HWANG AND S. JANSON

(with σ 2
F (0) := 0) and, for later use,

ṽF (x) := x + vF (x) − 2uF (x).(2.6)

We will see in Section 3 that μF (x) and vF (x) are the mean and variance of Z if
the fixed number n of variables (balls) is replaced by a Poisson number with mean
x ≥ 0, and that uF (x), σ 2

F (x) and ṽF (x) also have simple interpretations in terms
of this Poissonized version. Noting that

1
2

∑
i,j∈J

pipj (e
−pix − e−pj x)2 = ∑

i

pie
−2pix −

(∑
i

pie
−pix

)2

,

we obtain the following alternative formula.

PROPOSITION 2.2.

σ 2
F (x) = ∑

j

e−pj x(
1 − (1 + pjx)e−pj x) + x

2

∑
i,j

pipj (e
−pix − e−pj x)2.(2.7)

All terms in the sums in (2.7) are nonnegative for x > 0. Hence, σ 2
F (x) > 0 for

any F and all x > 0.

THEOREM 2.3. The mean and the variance of Zn,F satisfy

E(Zn,F ) = μF (n) + O(1),(2.8)

Var(Zn,F ) = σ 2
F (n) + O(1).(2.9)

The O(1)-terms in (2.8) and (2.9) are in some cases o(1), as we will see later.
We can thus replace the exact mean and the exact variance in Theorem 2.1 by

their asymptotic approximations.

THEOREM 2.4. If σF (n) 
= 0, then uniformly for all n ≥ 1 and F

sup
−∞<x<∞

∣∣∣∣P(
Zn,F = �μF (n) + xσF (n)�) − e−x2/2

√
2πσF (n)

∣∣∣∣ ≤ C1

σ 2
F (n)

.

These results are stated as approximation results. If we consider a sequence
of such variables Zn,F , by letting n → ∞ and varying F , assuming only that
Var(Zn,F ) → ∞, Theorems 2.1 and 2.4 can be interpreted as local central limit
theorems. The corresponding central limit theorem, with (the generally weaker)
convergence in distribution, can be stated as follows.

COROLLARY 2.5. Consider a sequence (nν,Fν)ν of integers nν and distri-
butions Fν . Then the following statements are equivalent, with Zν := Znν,Fν and
σ 2

ν := Var(Zν):
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(i) σ 2
ν → ∞;

(ii) σ 2
Fν

(nν) → ∞;

(iii) (Zν − E(Zν))/σν
d−→ N(0,1);

(iv) (Zν − μFν (nν))/σFν (nν)
d−→ N(0,1);

(v) (Zν − αν)/βν
d−→ N(0,1) for some sequences αν and βν with βν > 0.

These theorems cover many results in the literature as special cases.
From now on, the distribution F will be fixed, and we will generally drop the

subscript F from the notation.
For our method of proof, we consider two (technical) cases:

(i)
∑

pjn≤1 pj ≥ 1/2, meaning roughly that asymptotics of Zn is dominated
by small pj .

(ii)
∑

pjn>1 pj ≥ 1/2, meaning roughly that asymptotics of Zn is dominated
by large pj .

Obviously, at least one of these cases will hold. Here, the value 1/2 is not essential
and can be changed to any small positive constant (with consequent changes in
the values of some of the unspecified constants below); similarly, the cut-off at
pjn = 1 is chosen for technical convenience. We will work with Zn in case (ii)
and with Z̃n := n − Zn in case (i); it will turn out that Poissonization then works
well in both cases.

REMARK 2.3 (Exact distribution). It is easy to find the exact distribution
of Zn,F . Indeed, assuming as we may that the set J is ordered,

P(Zn,F = m) = ∑
h1+···+hm=n

hj≥1

∑
j1<···<jm

(
n

h1, . . . , hm

)
p

h1
j1

· · ·phm

jm
.(2.10)

This expression explains why such urn schemes are called multinomial allocations.
However, it will not be used in this paper.

3. Poissonization. We consider first the mean and the variance of the number
of occupied urns or the number of distinct values when the number of balls or
variables have a Poisson distribution.

Recall that Zn is the number of occupied urns when we throw n balls. Then
Z̃n := n − Zn represents the number of balls that land in a nonempty urn.

Consider now instead the case when the number N of balls is Poisson distrib-
uted. Let Z(λ) denote the number of occupied balls with N = N(λ) ∼ Po(λ) balls;
let Z̃(λ) := N(λ) − Z(λ) be the number of balls that land in an occupied urn.

REMARK 3.1 (A coupling). We may define Zn and Z(λ) for all n ≥ 0 and
λ ≥ 0 simultaneously (for a given F ) by throwing balls at times given by a Pois-
son process with intensity 1. We let Z(λ) be the number of occupied urns at time
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λ ≥ 0, when Po(λ) balls have been thrown, and let Zn be the number of occu-
pied urns when the nth ball has been thrown. This defines the various variables
simultaneously, with both Zn and Z̃n := n−Zn increasing in n and both Z(λ) and
Z̃(λ) := N(λ) − Z(λ) increasing in λ, where N(λ) ∼ Po(λ) is the number of balls
thrown at time λ.

Let Uj be the number of balls in urn j . Then N = ∑
j Uj ,

Z = ∑
j

1{Uj≥1},(3.1)

where 1A denotes the indicator function of the event A, and

Z̃ = ∑
j

Uj − Z = ∑
j

(
Uj − 1{Uj≥1}

) = ∑
j

Ũj ,

where Ũj := Uj − 1{Uj≥1}.
In the Poisson case, the random variables Uj are independent and Poisson dis-

tributed, with Uj ∼ Po(pjλ). By (3.1), Z(λ) = ∑
j Ij , where Ij := 1{Uj≥1} ∼

Be(1 − e−pjλ) are independent Bernoulli random variables. It follows that

E(Z(λ)) = ∑
j

E(Ij ) = ∑
j

(1 − e−pjλ) = μ(λ),

Var(Z(λ)) = ∑
j

Var(Ij ) = ∑
j

e−pjλ(1 − e−pjλ) = v(λ).

Similarly, Z̃(λ) = ∑
j Ũj , where Ũj = (Uj + 1{Uj=0} − 1) are independent. We

have

E(Ũj ) = pjλ + e−pjλ − 1,

Var(Ũj ) = Var(Uj ) + Var
(
1{Uj=0}

) + 2 Cov
(
Uj ,1{Uj=0}

)
= pjλ + e−pjλ(1 − e−pjλ) − 2pjλe−pjλ.

Accordingly [see (2.2)–(2.6)],

E(Z̃(λ)) = ∑
j

(
pjλ − (1 − e−pjλ)

) = λ − μ(λ),

Var(Z̃(λ)) = ∑
j

(
pjλ + e−pjλ(1 − e−pjλ) − 2pjλe−pjλ)

(3.2)
= λ + v(λ) − 2u(λ) = ṽ(λ).

REMARK 3.2 (A connection between the two cases
∑

pjn≤1 pj ≥ 1
2 and∑

pjn>1 pj ≥ 1
2 ). We have seen that μ(λ) and v(λ) are the mean and variance
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of Z in the Poisson case. Similarly, it is easy to see that Cov(Z,N) = u(λ), and
thus

σ 2(λ) = Var(Z) − Cov(Z,N)2

VarN
,(3.3)

which can be interpreted to be the smallest variance of a linear combination Z −
αN with α ∈ R, that is, σ 2(λ) = Var(Z − α0N), where Z − α0N is optimal in
this sense, which, on the other hand, is also determined by Cov(Z − α0N,N) =
0. (These are standard equations in linear regression, where (3.3) is the residual
variance, and α0 = Cov(Z,N)/Var(N) ∈ [0,1] because Cov(Z,N) = u(λ) ≤ λ =
Var(N).)

Our method of proof is based on analyzing the Poisson generating function P

defined below. This can be regarded as an analytical Poissonization, and it is, at
least heuristically, strongly related to replacing Zn by the Poissonized Z(λ) and
then compensating for the randomness in N , the number of balls, in order to de-
rive results for Zn. It is then natural to consider the projection Z − α0N , which
eliminates the first-order (linear) fluctuations in Z due to the randomness in N .
Theorem 2.3 says that, with λ = n, this projection has almost the same variance
as Zn, which indicates that this projection (plus the constant α0n) is a good ap-
proximation to Zn. Moreover, as we will see in Proposition 4.3 below, the smallest
variance σ 2(λ) of a linear combination Z − αN is attained within a constant fac-
tor by one of the choices α = 0 and α = 1, which gives Z and Z − N = −Z̃,
respectively. Indeed, the arguments below can be interpreted as considering these
two choices only. (It is likely that one could use similar arguments corresponding
to the optimal projection Z − α0N , without splitting our analysis below into two
cases.)

We define, for complex z and y, P(z, y) to be the exponential generating func-
tion of E(yZn) given by

P(z, y) := ∑
n≥0

zn

n!E(yZn) = ∑
n,m≥0

znym

n! P(Zn = m);(3.4)

we further define the Poisson generating function Q(z, y) := e−zP (z, y). Note
that for λ ≥ 0, Q(λ,y) = E(yZ(λ)) is the probability generating function of Z(λ).
It follows immediately from (3.1) for z ≥ 0, and for general complex z by analytic
continuation, that

Q(z, y) = ∏
j

(
1 + (y − 1)(1 − e−pj z)

)
,

and thus, using
∑

j pj = 1,

P(z, y) = ezQ(z, y) = ∏
j

(
1 + y(epj z − 1)

)
.(3.5)
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This also follows easily from (2.10); see also Karlin [20], Johnson and Kotz [19],
Kolchin, Sevast’yanov and Chistyakov [23], Flajolet, Gardy and Thimonier [10]
for different derivations.

Note also that the probability generating function of Z̃(λ) = N − Z(λ) is given
by

E
(
yZ̃(λ)) = ∑

n≥0

λn

n! e
−λ

E(yn−Zn) = e−λP (yλ, y−1).(3.6)

According to the Poisson heuristic (1.2), if Q were smooth enough, then we
would have

E(yZn) ≈ Q(n,y) (n → ∞),

and the asymptotic normality of Zn would then follow from Taylor expansion of
the cumulant generating function

log E(eZns) ≈ s
∑
j

(1 − e−pjn) + s2

2

∑
j

e−pjn(1 − e−pjn) + · · · ,

provided that the second sum tends to infinity and the error term becomes small
after normalization. However, the general situation here turns out to be more com-
plicated. First, the variance of Zn is not necessarily of the same order as the second
sum. Second, the growth order of Q(z, y) is not necessarily polynomial in |z|; for
example, Q(z,0) = e−z. Thus more refined arguments are required to properly
justify the (implicit) underlying Poisson heuristic (1.2).

4. Mean and variance of Z. We prove in this section the estimates (2.8)
and (2.9) for the mean and variance of Zn, and some related estimates.

PROOF OF THEOREM 2.3. By straightforward calculations, (3.1) leads to

E(Zn) = ∑
j

(
1 − (1 − pj )

n)
,(4.1)

Var(Zn) = ∑
j

(1 − pj )
n(

1 − (1 − pj )
n)

(4.2)
+ ∑

i 
=j

(
(1 − pi − pj )

n − (1 − pi)
n(1 − pj )

n)
.

Now for p ∈ [0,1], we have

0 ≤ e−pn − (1 − p)n ≤ ne−p(n−1)(e−p − 1 + p)
(4.3)

= O(p2ne−pn) = O(p),

and thus (2.8) follows from (4.1).
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Similarly, by (1 − x)n = 1 − nx + O(n2x2) for 0 ≤ x ≤ 1, we have, for n ≥ 2,

(1 − pi)
n(1 − pj )

n − (1 − pi − pj )
n

= (1 − pi)
n(1 − pj )

n

(
1 −

(
1 − pipj

(1 − pi)(1 − pj )

)n)

= (1 − pi)
n(1 − pj )

n

(
pipjn

(1 − pi)(1 − pj )
+ O

( p2
i p

2
jn

2

(1 − pi)2(1 − pj )2

))

= pipjn(1 − pi)
n−1(1 − pj )

n−1 + O
(
(pipjn)2(1 − pi)

n−2(1 − pj )
n−2)

= pipjne−pin−pjn + O(pipj ),

since, by (4.3),

e−pn − (1 − p)n−1 = e−pn − (1 − p)n + p(1 − p)n−1

= O(p2ne−pn + pe−pn) = O(1/n),

and

(pipjn)2(1 − pi)
n−2(1 − pj )

n−2 = O(pipj · pine−pin · pjne−pjn) = O(pipj ).

Hence (4.2) yields

Var(Zn) = ∑
j

(
e−pjn + O(pj ) − e−2pjn + O(pj )

)

− ∑
i 
=j

(
pipjne−pin−pjn + O(pipj )

)

= ∑
j

(e−pjn − e−2pjn) − ∑
i,j

pipjne−pin−pjn + ∑
i

p2
i ne−2pin + O(1)

= ∑
j

(e−pjn − e−2pjn) − n

(∑
i

pie
−pin

)2

+ O(1),

which proves (2.9). �

We proceed to some estimates of v(x), ṽ(x) and σ 2(x), which roughly indicate
why we need to separate into the cases pjn > 1 and pjn ≤ 1 in our manipulations
of sums.

LEMMA 4.1. For x ≥ 0, we have

v(x) = Var(Z(x)) � ∑
pj x≤1

pjx + ∑
pj x>1

e−pj x,(4.4)

ṽ(x) = Var(Z̃(x)) � ∑
pj x≤1

(pjx)2 + ∑
pj x>1

pjx.(4.5)
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PROOF. This follows from the definitions (2.3) and (2.6) [see also (3.2)] and
the asymptotics

e−x(1 − e−x) ∼
{

x, if x → 0,
e−x, if x → ∞,

and

x + e−x(1 − e−x − 2x) ∼
{

x2/2, if x → 0,
x, if x → ∞. �

LEMMA 4.2. For all x ≥ 0

σ 2(x) ≤ ∑
pj x≤1

(pjx)2 + ∑
pj x>1

pjx(4.6)

and

σ 2(x) ≥ c1

( ∑
pj x≤1

(pjx)2 + ∑
pj x>1

e−pj x

)
.(4.7)

PROOF. Since v(x) ≤ u(x) ≤ x, we have

σ 2(x) = v(x) − u2(x)

x
≤ u(x)

x

(
x − u(x)

) ≤ x − u(x) = ∑
j

pjx(1 − e−pj x),

from which the upper bound in (4.6) follows.
On the other hand, by Proposition 2.2, σ 2(x) ≥ ∑

j e−pj x(1− (1+pjx)e−pj x),
which yields (4.7) by the elementary inequality 1 − (1 + x)e−x ≥ c2 min{1, x2}.

�

Note that by the inequality 1 − (1 + x)e−x ≥ x2e−x/2, we also have σ 2(x) ≥
1
2

∑
j (pjx)2e−2pj x .

The following result, based on the estimates we just derived, is crucial for the
development of our arguments.

PROPOSITION 4.3. σ 2(x) � min(v(x), ṽ(x)). More precisely:

(i) if
∑

pj x≤1 pj ≥ 1/2, then

σ 2(x) � ṽ(x);
(ii) if

∑
pj x>1 pj ≥ 1/2, then

σ 2(x) � v(x).
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PROOF. The upper bounds are immediate: σ 2(x) ≤ v(x) by definition, while
σ 2(x) = O(ṽ(x)) by (4.5) and (4.6). Alternatively, as pointed out by one of the
referees, the upper bounds also follow from Remark 3.2 and Var(Z) = v(λ),
Var(Z̃) = Var(Z − N) = ṽ(λ).

For the lower bounds, we treat the two cases separately.
Case (i):

∑
pj x≤1 pj ≥ 1/2. We have

x
∑
i,j

pipj (e
−pix − e−pj x)2 ≥ x

∑
pix≤1

∑
pj x≥2

pipj (e
−1 − e−2)2

≥ (e−1 − e−2)2

2

∑
pj x≥2

pjx.

Thus, using Proposition 2.2, ∑
pj x≥2

pjx = O(σ 2(x)).

Moreover, by (4.7), ∑
pj x≤1

(pjx)2 + ∑
1<pjx≤2

pjx = O(σ 2(x)).

Hence, by (4.5), ṽ(x) = O(σ 2(x)).
Case (ii):

∑
pj x>1 pj ≥ 1/2. First, we have by Proposition 2.2

∑
pix≤1/2

pix ≤ 2x
∑

pix≤1/2

∑
pj x>1

pipj

= O

(
x

∑
i,j

pipj (e
−pix − e−pj x)2

)

= O(σ 2(x)).

Furthermore, by (4.7), ∑
1/2<pjx≤1

pjx + ∑
pj x>1

e−pj x = O(σ 2(x)).(4.8)

Thus, by (4.4), v(x) = O(σ 2(x)). �

REMARK 4.1 (An interesting estimate). It follows from Lemma 4.1 that in
case (i), v(x) � x, and in case (ii), ṽ(x) � x. Hence, max(v(x), ṽ(x)) � x.
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5. Local limit theorem when
∑

pjn>1 pj ≥ 1/2. We prove Theorem 2.4 in
this section when

∑
pjn>1 pj ≥ 1/2. Our starting point is the integral representa-

tion

P(Zn = m) = n!n−n

(2π)2

∫ π

−π

∫ π

−π
e−imϕ−inθP (neiθ , eiϕ) dθ dϕ,(5.1)

which follows from (3.4) by standard coefficient extraction.
Our strategy is to apply the two-dimensional saddle-point method. More pre-

cisely, we split the integration ranges of the double integral into three parts:∫ ∫
|θ | ≤ θ0|ϕ| ≤ ϕ0

+
∫ ∫

|θ | ≤ θ0
ϕ0 < |ϕ| ≤ π

+
∫ ∫

θ0 < |θ | ≤ π
|ϕ| ≤ π

,(5.2)

where θ0 and ϕ0 are usually so chosen that they satisfy the conditions for the
saddle-point method:

nθ2
0 → ∞, nθ3

0 → 0 and σ(n)2ϕ2
0 → ∞, σ (n)2ϕ3

0 → 0.

For technical convenience, we will instead choose θ0 := n−1/2σ(n)1/3 ≤ n−1/3

and ϕ0 := σ(n)−2/3, and the usual saddle-point method will require only minor
modifications.

We show that the main contribution to P(Zn = m) comes from the first double
integral in (5.2), the other two being asymptotically negligible. As is often the case,
the hard part of the proof is to prove the smallness of e−n|P(neiθ , eiϕ)| when at
least one of {θ,ϕ} is away from zero. Note that P(n,1) = en.

5.1. Estimates for |P(z, eiϕ)|. We derive in this subsection two major esti-
mates for |P(neiθ , eiϕ)| under the assumption

∑
pjn>1 pj ≥ 1/2. The correspond-

ing estimates for the case
∑

pjn≤1 pj ≥ 1/2 will be given in the next section.

LEMMA 5.1. Let z = reiθ , r ≥ 0 and θ ∈ R. Then:

|ez − 1| ≤ (er − 1)e−r(1−cos θ)/2.

PROOF. We have

|ez − 1| = 2|ez/2|| sinh(z/2)| ≤ 2e(r/2) cos θ sinh(r/2) = e(r/2) cos θ (er/2 − e−r/2),

from which the result follows. �

LEMMA 5.2. If r ≥ 1 and |θ | ≤ π , then

1 + |ereiθ − 1| ≤ er−c3rθ
2
.(5.3)
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PROOF. By Lemma 5.1

1 + |ereiθ − 1| ≤ 1 + (er − 1)e−r(1−cos θ)/2 ≤ 1 + (er − 1)e−c4rθ
2
,(5.4)

for |θ | ≤ π , where we can take c4 = 1/π2 by the inequality 1 − cos θ ≥ 2θ2/π2

for |θ | ≤ π . Define c3 := c4/2. By the inequalities

ec3rθ
2 + 1 ≤ er/2 + 1 ≤ er ,

we have

1 − e−2c3rθ
2 = (ec3rθ

2 + 1)e−c3rθ
2
(1 − e−c3rθ

2
) ≤ er(e−c3rθ

2 − e−2c3rθ
2
).

The result (5.3) follows from this and (5.4). �

PROPOSITION 5.3. Assume that
∑

pjn>1 pj ≥ 1/2. Then the inequality

|P(neiθ , eiϕ)| ≤ en−c5nθ2

holds uniformly for |θ | ≤ π and −∞ < ϕ < ∞, where c5 = c3/2.

PROOF. By (3.5), Lemma 5.2 and the simple estimate 1+|ereiθ −1| ≤ er (e.g.,
by Lemma 5.1),

|P(neiθ , eiϕ)| ≤ ∏
j

(1 + |epjneiθ − 1|)

≤
( ∏

pjn≤1

epjn

)( ∏
pjn>1

epjn−c3pjnθ2

)

= exp

(
n − c3θ

2
∑

pjn>1

pjn

)
.

�

Since a more detailed estimate for |P(neiθ , eiϕ)| and a local expansion of
P(neiθ , eiϕ) (for small θ and ϕ) involve several sums related to u(x), v(x), ṽ(x)

and σ 2(x), we now derive a few simple estimates for and relationships between
them.

LEMMA 5.4. For x ≥ 0,

u(x) = O
(
x ∧ (

v(x) + 1
)
(1 + log+ x)

)
.

PROOF. The upper bound x follows easily by the inequality e−x ≤ 1. For the
other upper bound, we may assume x ≥ 2. Then, by (4.4),∑

pj x≤logx

pjxe−pj x ≤ ∑
pj x≤1

pjx + logx
∑

pj x>1

e−pj x = O(v(x) logx),(5.5)

while trivially
∑

pj x>logx pjxe−pj x ≤ ∑
j pj = 1. �
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LEMMA 5.5. Let x ≥ 1 and 0 ≤ δ ≤ 1/2. Then:

(i) v(x) = O(v((1 − δ)x)) and v((1 − δ)x) = O(x2δv(x) + 1);
(ii) ṽ(x) � ṽ((1 − δ)x);

(iii) σ 2(x) = O(σ 2((1 − δ)x));
(iv) if, furthermore, δ ≤ x−1/3, then v((1 − δ)x) = O(v(x) + 1) and σ 2((1 −

δ)x) = O(σ 2(x) + 1).

PROOF. (i). We use (4.4) for both x and (1 − δ)x; note that we can split the
sum according to pjx ≤ 1 and pjx > 1 for (1 − δ)x, too. The first estimate then is
obvious. For the second we find, assuming as we may x ≥ 2,∑

pj x≤1

pj (1 − δ)x ≤ ∑
pj x≤1

pjx = O(v(x)),

∑
1<pjx≤2 logx

e−pj (1−δ)x ≤ e2δ logx
∑

1<pjx≤2 logx

e−pj x ≤ C2x
2δv(x),

∑
pj x>2 logx

e−pj (1−δ)x ≤ ∑
pj x>2 logx

e− logx ≤ 1,

since there are at most x/ logx terms in the last sum.
(ii). Immediate from (4.5).
(iii) and (iv). Follow from (i) and (ii) together with Proposition 4.3. �

We now refine Proposition 5.3 and obtain a decrease of |P(neiθ , eiϕ)| in both θ

and ϕ. (We are grateful to one of the referees for improving our previous version.)

PROPOSITION 5.6. Assume that
∑

pjn>1 pj ≥ 1/2. Then uniformly for |θ | ≤
π and |ϕ| ≤ π , provided v(n) ≥ 1,

|P(neiθ , eiϕ)| ≤ exp
(
n − c6nθ2 − c7σ

2(n)ϕ2)
.(5.6)

PROOF. Let z := neiθ = ξ + iη, where ξ := n cos θ and η := n sin θ . As-
sume first that |θ | ≤ π/4; then |η| ≤ ξ and ξ ≥ n/2. Thus n = O(ξ) and, by
Lemma 5.5(i), 1 ≤ v(n) = O(v(ξ)). By explicit calculation

|1 + eiϕ(eξ+iη − 1)|2
= e2ξ − 2eξ (

cosη − cos(ϕ + η)
) + 2(1 − cosϕ)

= e2ξ (
1 − 2(1 − cosϕ)e−ξ (cosη − e−ξ ) − 2e−ξ sinϕ sinη

)
≤ exp

(
2ξ − 2e−ξ (1 − cosϕ)(cosη − e−ξ ) + 2e−ξ | sinϕ|| sinη|),

which implies that

|1 + eiϕ(ez − 1)| ≤ exp
(
ξ − (1 − cosϕ)e−ξ (cosη − e−ξ ) + e−ξ | sinϕ||η|).
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This inequality (applied to piz) gives, by (3.5),

|P(neiθ , eiϕ)| ≤ exp
(
ξ − (1 − cosϕ)S1 + | sinϕ|S2

)
,(5.7)

where

S1 := ∑
j

e−pj ξ (
cos(pjη) − e−pj ξ )

,

S2 := ∑
j

e−pj ξpj |η| = | tan θ |u(ξ).

By (2.5), u(ξ)2 ≤ ξv(ξ), and thus

| sinϕ|S2 = O(|θϕ|u(ξ)) = O
(√

nθ2v(ξ)ϕ2
)
.(5.8)

For S1, let c8 > 0 be chosen such that cos(x) − e−x > 0 on (0,2c8] (e.g., c8 =
1/2), and decompose the sum into three parts:

S1 =
( ∑

pj ξ≤c8

+ ∑
c8<pj ξ≤c8/|θ |

+ ∑
pj ξ |θ |>c8

)
e−pj ξ (

cos(pjη) − e−pj ξ )

=: T1 + T2 + T3.

Consider first T1. For each term in T1 we have pj |η| ≤ pjξ ≤ c8, and since the
function x �→ (cosx − e−x)/x extends to a continuous strictly positive function on
[0, c8],

cos(pjη) − e−pj ξ ≥ cos(pj ξ) − e−pj ξ ≥ c9pjξ.

Furthermore, e−pj ξ ≥ e−c8 , and consequently

T1 ≥ c10
∑

pj ξ≤c8

pjξ.

For a term in T2 we have either pj |η| ≤ c8 and then

cos(pjη) − e−pj ξ ≥ cos(c8) − e−c8 > 0,

or c8 < pj |η| = pjξ | tan θ | ≤ 2pjξ |θ | ≤ 2c8 and then

cos(pjη) − e−pj ξ ≥ cos(pjη) − e−pj |η| ≥ c11.

Consequently,

T2 ≥ c12
∑

c8<pj ξ≤c8/|θ |
e−pj ξ .

For T3, which has at most ξ |θ |/c8 terms, we subtract e−pj ξ from each term and
use the trivial estimate | cos(pjη) − e−pj ξ − 1| ≤ 3, finding

T3 − ∑
pj ξ |θ |>c8

e−pj ξ = O
(
ξ |θ |e−c8/|θ |) = O(nθ4).
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Combining these estimates, we obtain, using Lemma 4.1,

S1 ≥ c13

( ∑
pj ξ≤c8

pjξ + ∑
pj ξ>c8

e−pj ξ

)
+ O(nθ4) ≥ c14v(ξ) + O(nθ4).(5.9)

The estimates (5.7), (5.8), (5.9), the Taylor expansion ξ = n cos θ = n−nθ2/2+
O(nθ4), and the inequality 1 − cosx ≥ 2x2/π2 for x ∈ [−π,π ] yield

|P(neiθ , eiϕ)| ≤ exp
(
n − nθ2/2 − c15ϕ

2v(ξ) + O(nθ4) + O
(√

nθ2v(ξ)ϕ2
))

.

The required result (5.6) now follows, using σ 2(n) ≤ v(n) = O(ξ), provided |θ | ≤
c16 and nθ2 ≤ c17v(ξ)ϕ2. In both the remaining cases, the result follows from
Proposition 5.3 if c6 and c7 are small enough. �

5.2. Local expansion for P(neiθ , eiϕ). We first rewrite (3.5) as

P(z, eiϕ) = ez
∏
j

G(pjz, iϕ),(5.10)

where

G(z, ζ ) := 1 + (1 − e−z)(eζ − 1) = eζ − eζ−z + e−z,(5.11)

with z, ζ ∈ C. We begin with an expansion of G.

LEMMA 5.7. If | arg z| ≤ π/3 and |ζ | ≤ c18, then

G(z, ζ ) = exp
(
(1 − e−z)ζ + 1

2(e−z − e−2z)ζ 2 + O
(|ζ |3e−�z(1 − e−�z)

))
.

PROOF. Choose c18 such that |eζ − 1| ≤ 1/4 when |ζ | ≤ c18. Let

D := {(z, ζ ) : | arg z| ≤ π/3, |ζ | ≤ c18}.
Then, for (z, ζ ) ∈ D,

|G(z, ζ ) − 1| = |1 − e−z||eζ − 1| ≤ 2 · 1
4 = 1

2 .

Hence, g(z, ζ ) := logG(z, ζ ) is well defined on D; moreover, |G(z, ζ )| ≥ 1/2
on D. Straightforward calculus yields, on D,

∂

∂ζ
g(z, ζ ) = (1 − e−z)eζ

G(z, ζ )
= 1 − e−z

G(z, ζ )
,(5.12)

∂2

∂ζ 2 g(z, ζ ) = e−z ∂
∂ζ

G(z, ζ )

G(z, ζ )2 = e−z(1 − e−z)eζ

G(z, ζ )2 ,(5.13)

∂3

∂ζ 3 g(z, ζ ) = O
(|e−z(1 − e−z)|).(5.14)
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Since | arg z| ≤ π/3, we see that if |z| ≤ 1, then |1 − e−z| = O(|z|) = O(�z) =
O(1 − e−�z), and if |z| ≥ 1, then |1 − e−z| ≤ 2 = O(1 − e−�z). Hence, in either
case, 1 − e−z = O(1 − e−�z), and by (5.14), we get ∂3

∂ζ 3 g(z, ζ ) = O(e−�z(1 −
e−�z)) on D. Moreover, G(z,0) = 1 so g(z,0) = 0, and, by (5.12) and (5.13),
∂
∂ζ

g(z,0) = 1 − e−z and ∂2

∂ζ 2 g(z,0) = e−z(1 − e−z). This proves the lemma. �

PROPOSITION 5.8. If |θ | ≤ π/3 and |ϕ| ≤ c18, then

P(neiθ , eiϕ) = exp
(
neiθ + μ(n)iϕ − u(n)ϕθ − 1

2v(n)ϕ2

+ O
(
v(n cos θ)|ϕ|3 + nθ2|ϕ|)).

PROOF. Let z := neiθ and ξ := �z = n cos θ . By (5.10) and Lemma 5.7,

P(z, eiϕ) = exp
(
z + μ(z)iϕ − 1

2v(z)ϕ2 + O(v(ξ)|ϕ|3)).
Observe that μ′(z) = ∑

j pj e
−pj z = u(z)/z and μ′′(z) = −∑

j p2
j e

−pj z. Thus, by
a Taylor expansion and Lemmas 5.4 and 5.5,

μ(z) = μ(n) + u(n)iθ + O(nθ2).(5.15)

Similarly, using the inequality u2(x)/x ≤ v(x),

|v′(z)| =
∣∣∣∣∣
∑
j

(2pje
−2pj z − pje

−pj z)

∣∣∣∣∣ ≤ 3u(ξ)/ξ ≤ 3(v(ξ)/ξ)1/2,

and thus

v(z) = v(n) + O(|θ |(nv(ξ))1/2).

The desired result follows from these estimates and the inequality (nv(ξ))1/2 ×
|θ |ϕ2 ≤ v(ξ)|ϕ|3 + nθ2|ϕ|. �

5.3. Proof of Theorem 2.4 when
∑

pjn>1 pj ≥ 1/2. The remaining analysis

is straightforward. We assume that σ 2(n) ≥ 1, since otherwise the result is triv-
ial. Recall that θ0 := n−1/2σ(n)1/3 ≤ n−1/3 and ϕ0 := σ(n)−2/3. We assume that∑

pjn>1 pj ≥ 1/2, and thus σ 2(n) � v(n) by Proposition 4.3.
We start from (5.1) and split the integral into the three parts in (5.2):

P(Zn = m)

= n!n−n

(2π)2

(∫ ∫
|θ | ≤ θ0|ϕ| ≤ ϕ0

+
∫ ∫

|θ | ≤ θ0
ϕ0 < |ϕ| ≤ π

+
∫ ∫

θ0 < |θ | ≤ π
|ϕ| ≤ π

)
e−imϕ−inθ

× P(neiθ , eiϕ) dθ dϕ

=: J1 + J2 + J3.
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Observe first that, by Stirling’s formula,

n!n−n

(2π)2 = (2π)−3/2√ne−n(
1 + O(1/n)

)
(5.16)

and thus

n!n−n

(2π)2 = O
(√

ne−n)
.(5.17)

Obviously, by Proposition 5.3 and (5.17),

J3 = O

(√
n

∫ ∞
θ0

e−c5nθ2
dθ

)
= O(n−1/2θ−1

0 e−c5nθ2
0 )

(5.18)
= O

(
e−c5σ(n)2/3) = O(σ−2(n)).

On the other hand, Proposition 5.6 gives, for n ≥ C3 and |θ | ≤ θ0,

J2 = O

(√
n

∫ ∞
0

e−c6nθ2
dθ

∫ ∞
ϕ0

e−c7σ
2(n)ϕ2

dϕ

)
(5.19)

= O
(
e−c7σ

2(n)ϕ2
0
) = O

(
e−c7σ(n)2/3) = O(σ−2(n)).

We turn to J1, the main term. If n ≥ C4 and σ 2(n) ≥ C5, then Proposition 5.8
applies when |θ | ≤ θ0 and |ϕ| ≤ ϕ0, and shows, together with Proposition 4.3 and
Lemma 5.5(iv), that

P(neiθ , eiϕ) = exp
(
n + inθ − 1

2nθ2 + μ(n)iϕ − u(n)ϕθ − 1
2v(n)ϕ2 + R(θ,ϕ)

)
,

where

R(θ,ϕ) = O
(
σ 2(n)|ϕ|3 + nθ2|ϕ| + n|θ |3) = O(1).

Let

K(θ,ϕ) := exp
(
i
(
μ(n) − m

)
ϕ − 1

2nθ2 − u(n)θϕ − 1
2v(n)ϕ2)

.(5.20)

Then, by the inequality |ez − 1| ≤ |z|e|z|,

J1 = n!n−nen

(2π)2

∫ ϕ0

−ϕ0

∫ θ0

−θ0

K(θ,ϕ)eR(θ,ϕ) dθ dϕ

= n!n−nen

(2π)2

∫ ϕ0

−ϕ0

∫ θ0

−θ0

K(θ,ϕ)
(
1 + O(|R(θ,ϕ)|)dθ dϕ.

We first estimate the error term. Observe that

|K(θ,ϕ)| = exp
(−1

2nθ2 − u(n)θϕ − 1
2v(n)ϕ2) = exp

(−1
2A

(√
nθ,

√
v(n)ϕ

))
,

where A is the quadratic form

A(x, y) := x2 + y2 + 2
u(n)√
nv(n)

xy.
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Since (
u(n)√
nv(n)

)2

= u(n)2/n

v(n)
= v(n) − σ 2(n)

v(n)
≤ 1 − c19

by Proposition 4.3(ii), we see that A(x, y) ≥ c20(x
2 + y2), implying that

|K(θ,ϕ)| ≤ e−c21nθ2−c21σ
2(n)ϕ2

.(5.21)

It follows that

n!n−nen

(2π)2

∫ ϕ0

−ϕ0

∫ θ0

−θ0

K(θ,ϕ)|R(θ,ϕ)|dθ dϕ

≤ C6
√

n

∫ ∞
−∞

∫ ∞
−∞

(
σ 2(n)|ϕ|3 + nθ2|ϕ| + n|θ |3)

e−c21nθ2−c21σ
2(n)ϕ2

dθ dϕ

= O
(
σ(n)−2 + n−1/2σ(n)−1)

= O(σ(n)−2).

It remains only to evaluate the integral of K over the remaining region. The
estimate (5.21) implies, arguing as for J3 and J2 in (5.18) and (5.19), that

n!n−nen

(2π)2

(∫ ∫
|ϕ| > ϕ0|θ | ≤ θ0

+
∫ ∫

−∞ < ϕ < ∞
|θ | > θ0

)
|K(θ,ϕ)|dθ dϕ = O(σ(n)−2).

Collecting the estimates above, we get

P(Zn = m) = n!n−nen

(2π)2

∫ ∞
−∞

∫ ∞
−∞

K(θ,ϕ) dθ dϕ + O(σ(n)−2).(5.22)

Since (5.20) can be rewritten as

K(θ,ϕ) = exp
(−i

(
m − μ(n)

)
ϕ − 1

2n
(
θ + (u(n)/n)ϕ

)2 − 1
2σ 2(n)ϕ2)

,

it then follows that

1

2π

∫ ∞
−∞

∫ ∞
−∞

K(θ,ϕ) dθ dϕ = n−1/2σ(n)−1 exp
(
−(m − μ(n))2

2σ 2(n)

)
,

which, together with (5.22) and (5.16), completes the proof; note that if m =
�μ(n) + xσ(n)�, then (m − μ(n))/σ (n) = x + O(1/σ(n)), and that x �→ e−x2

/2
has bounded derivatives. The assumptions above that n and σ 2(n) be large are
harmless since n ≥ σ 2(n) and the result is trivial for σ 2(n) ≤ C7, for any fixed C7.

REMARK 5.1 (Central limit theorem). If one is interested in proving only the
central limit theorem, then Propositions 5.3 and 5.8 suffice. If, moreover, a Berry–
Esseen bound is desired, then Proposition 5.6 is needed for |ϕ| ≤ ε for some ε > 0.
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6. Proof of Theorem 2.4 when
∑

pjn≤1 pj ≥ 1/2. We consider in this sec-
tion the case when

∑
pjn≤1 pj ≥ 1/2. Our underlying idea is then to study n − Zn

instead of Zn, and the corresponding Poissonization Z̃(n); see Remark 3.2 and re-
call that Var(Z̃(n)) = ṽ(n) � σ 2(n). We find P(Zn = m) = P(n−Zn = n−m) by
extracting coefficients in P(eiϕλ, e−iϕ); see (3.6). This yields the integral formula

P(n − Zn = n − m)

= n!n−n

(2π)2

∫ π

−π

∫ π

−π
e−(n−m)iϕ−niθP (neiθ+iϕ, e−iϕ) dθ dϕ.

(6.1)

Note that this formula also follows directly from (5.1) by a simple change of vari-
ables; there is thus no formal need of Z̃ and the motivation above.

The analysis of this double integral is very similar to the one in Section 5; the
main difference is that the occurrences of v(n) in our estimates have to be replaced
by ṽ(n).

6.1. Estimates for |P(neiθ+iϕ, e−iϕ)|. We begin with a companion to
Lemma 5.2.

LEMMA 6.1. If 0 ≤ r ≤ 1 and |θ | ≤ π , then

1 + |ereiθ − 1| ≤ er−c22r
2θ2

.

PROOF. By Lemma 5.1, we have (5.4) and thus

e−r (1 + |ereiθ − 1|) ≤ e−r + (1 − e−r )e−c4rθ
2

= 1 − (1 − e−r )(1 − e−c4rθ
2
)

≤ exp
(−(1 − e−r )(1 − e−c4rθ

2
)
)
,

and the result follows. �

LEMMA 6.2. Uniformly for |θ | ≤ π and −∞ < ϕ < ∞,

|P(neiθ , eiϕ)| ≤ en−c23ṽ(n)θ2
.

PROOF. A simple consequence of (3.5), Lemmas 5.2 and 6.1 and (4.5). �

LEMMA 6.3. (i) If r ≥ 0, |θ | ≤ π and |ζ | = 1, then

|ζ + eζreiθ − 1| ≤ er .

(ii) If, furthermore, 0 ≤ r ≤ 1, then

|ζ + eζreiθ − 1| ≤ er−c24rθ
2
.
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PROOF. Expanding the function ζ + eζreiθ − 1 at r = 0 gives

|ζ + eζreiθ − 1| ≤ |ζ + ζ reiθ | + ∑
k≥2

|ζ reiθ |k
k!

= |1 + reiθ | + ∑
k≥2

rk

k!(6.2)

= |1 + reiθ | + er − r − 1.

Part (i) follows immediately. On the other hand, since

|1 + reiθ |2 = (1 + r)2 − 2r(1 − cos θ)

≤ (1 + r)2 − 4c4rθ
2,

we have the inequality

|1 + reiθ | ≤ 1 + r − c25rθ
2 (r ∈ [0,1]).

This together with (6.2) yields

|ζ + eζreiθ − 1| ≤ er − c25rθ
2 ≤ er(1 − c24rθ

2) ≤ er−c24rθ
2
,

uniformly for r ∈ [0,1]. �

The next proposition is the analogue of Proposition 5.3 when
∑

pjn≤1 pj ≥ 1/2.

PROPOSITION 6.4. Assume that
∑

pjn≤1 pj ≥ 1/2. Then uniformly for |θ | ≤
π and −∞ < ϕ < ∞,

∣∣P (
nei(θ+ϕ), e−iϕ)∣∣ ≤ en−c26nθ2

.

PROOF. By (3.5) and Lemma 6.3 with ζ = eiϕ ,
∣∣P (

nei(θ+ϕ), e−iϕ)∣∣ = ∏
j

∣∣eiϕ + epjnei(θ+ϕ) − 1
∣∣

≤
( ∏

pjn≤1

epjn−c24pjnθ2

)( ∏
pjn>1

epjn

)

= exp

(
n − c24θ

2
∑

pjn≤1

pjn

)
.

�

The corresponding analogue of Proposition 5.6 is the following.
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PROPOSITION 6.5. Assume that
∑

pjn≤1 pj ≥ 1/2. Then uniformly for |θ | ≤
π and |ϕ| ≤ π ,∣∣P (

nei(θ+ϕ), e−iϕ)∣∣ ≤ exp
(
n − c27

(
nθ2 + σ 2(n)ϕ2))

.

PROOF. If |ϕ| ≤ 2|θ |, then nθ2 + σ 2(n)ϕ2 = O(nθ2), and the result follows
by Proposition 6.4.

On the other hand, if |ϕ| ≥ 2|θ |, then |θ +ϕ| ≤ 3
2 |ϕ| ≤ 3

2π . Note that Lemma 6.2
extends to |θ | ≤ 3

2π (with a new c23) since if π < |θ | ≤ 3
2π , we may replace θ by

θ ± 2π . Hence, by Lemma 6.2 and Proposition 6.4,

e−n
∣∣P (

nei(θ+ϕ), e−iϕ)∣∣ ≤ exp
(−1

2

(
c23ṽ(n)(θ + ϕ)2 + c26nθ2))

,

and the result follows because σ 2(n) = O(ṽ(n)), ϕ2 ≤ 2θ2 + 2(θ + ϕ)2, and thus
nθ2 + σ 2(n)ϕ2 = O(nθ2 + ṽ(n)(θ + ϕ)2). �

6.2. Local expansion for P(neiθ+iϕ, e−iϕ). We turn now to a local expansion
of P(neiθ+iϕ, e−iϕ). We will use

P(zeiϕ, e−iϕ) = ∏
j

(1 + epj zeiϕ−iϕ − e−iϕ) = ez
∏
j

H(pjz, iϕ),(6.3)

where we define

H(z, ζ ) = e−z(1 + ezeζ −ζ − e−ζ ) = ez(eζ −1)−ζ + e−z(1 − e−ζ ).(6.4)

LEMMA 6.6. If |z| ≤ 1 and |ζ | ≤ c28, then

H(z, ζ ) = exp
(
(z − 1 + e−z)ζ + 1

2(z + e−z − e−2z − 2ze−z)ζ 2 + O(|z2ζ 3|)).
PROOF. Note first that H(z,0) = 1. Hence, for |z| ≤ 1 and |ζ | ≤ c28, we have

|H(z,0) − 1| ≤ 1/2. Thus h(z, ζ ) := logH(z, ζ ) is well defined in the domain
D := {(z, ζ ) : |z| ≤ 1, |ζ | ≤ c28}, with all its derivatives bounded and h(z,0) = 0.
Moreover, h(0, ζ ) = 0 because H(0, ζ ) = 1. Also, by

∂

∂z
H(z, ζ ) = (eζ − 1)ez(eζ −1)−ζ − e−z(1 − e−ζ ),

we have ∂
∂z

h(0, ζ ) = ∂
∂z

H(0, ζ ) = 0.
Consequently,

∂3

∂ζ 3 h(0, ζ ) = 0 and
∂

∂z

∂3

∂ζ 3 h(0, ζ ) = ∂3

∂ζ 3

∂

∂z
h(0, ζ ) = 0,

and a Taylor expansion in z yields, for (z, ζ ) ∈ D,

∂3

∂ζ 3 h(z, ζ ) = O(|z|2).
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Hence, by another Taylor expansion, now in ζ , for (z, ζ ) ∈ D,

h(z, ζ ) = ∂

∂ζ
h(z,0)ζ + 1

2
∂2

∂ζ 2 h(z,0)ζ 2 + O(|z2ζ 3|),

and the result follows, with the values of ∂
∂ζ

h(z,0) and ∂2

∂ζ 2 h(z,0) obtained by
straightforward calculus. �

LEMMA 6.7. If | arg z| ≤ π/4 and |ζ | ≤ c29, then

H(z, ζ ) = exp
(
(z − 1 + e−z)ζ + 1

2(z + e−z − e−2z − 2ze−z)ζ 2 + O(|zζ 3|)).
PROOF. By the definitions (6.4) and (5.11), with w := zeζ ,

H(z, ζ ) = e−z+w(e−ζ + e−w − e−w−ζ ) = e−z+wG(w,−ζ ).

Thus, by Lemma 5.7, for | arg z| ≤ π/4 and |ζ | ≤ c29,

H(z, ζ ) = exp
(
z(eζ − 1) − (1 − e−w)ζ

(6.5)
+ 1

2(e−w − e−2w)ζ 2 + O(|ζ |3)).
Moreover, for | arg z| ≤ π/4 and |ζ | ≤ c29,

∂

∂ζ
e−zeζ = −zeζ e−zeζ

,

∂2

∂ζ 2 e−zeζ = (
(zeζ )2 − zeζ )

e−zeζ = O
(
(|z|2 + |z|)e−c30|z|) = O(1),

and thus

e−w = e−z − ze−zζ + O(|ζ |2).
The result follows by substituting this and eζ − 1 = ζ + 1

2ζ 2 + O(|ζ |3) in (6.5),
provided |z| ≥ 1. The case |z| < 1 is a consequence of Lemma 6.6. �

LEMMA 6.8. Uniformly for �z ≥ 1 in the sector | arg z| ≤ π/4,

|ṽ′(z)| = O(ṽ(|z|)/|z|).
PROOF. Let τ(z) := z + e−z(1 − e−z − 2z). Then ṽ(z) = ∑

j τ (pj z) and
ṽ′(z) = ∑

j pj τ
′(pj z). Since τ ′(0) = 0, we see that τ ′(z) = O(|z|) for |z| ≤ 1.

Furthermore, it is easily seen that τ ′(z) = O(1) when |z| ≥ 1 in the sector
| arg z| ≤ π/3. Hence, using (4.5),

|ṽ′(z)| ≤ C8
∑
j

pj (pj |z| ∧ 1)

= C8x|z|−1
∑
j

(pj |z|)2 ∧ (pj |z|) ≤ C9|z|−1ṽ(|z|).
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This completes the proof. �

The next result gives the analogue of Proposition 5.8.

PROPOSITION 6.9. If |θ | ≤ π/4 and |ϕ| ≤ c31, then

P(neiθ+iϕ, e−iϕ) = exp
(
neiθ + (

n − μ(n)
)
iϕ − (

n − u(n)
)
ϕθ − 1

2 ṽ(n)ϕ2

(6.6)
+ O

(
ṽ(n)|ϕ|3 + nθ2|ϕ|)).

PROOF. Let z := neiθ . It follows from (6.3), Lemmas 6.6 and 6.7, and (2.2)–
(2.6) together with (4.5) that, assuming |ϕ| ≤ c31,

P(zeiϕ, e−iϕ) = exp
(
z + i

(
z − μ(z)

)
ϕ − 1

2 ṽ(z)ϕ2 + O(ṽ(n)|ϕ|3)).
By (5.15),

z − μ(z) = n − μ(n) + iθ
(
n − u(n)

) + O(nθ2).

On the other hand, by Lemma 6.8, we also have

ṽ(z) = ṽ(n) + O(|θ |ṽ(n)),

and the result (6.6) follows, in view of the inequalities ṽ(n)|θ |ϕ2 ≤ ṽ(n)|ϕ|3 +
ṽ(n)θ2|ϕ| and ṽ(n) ≤ n. �

6.3. Proof of Theorem 2.4 when
∑

pjn≤1 pj ≥ 1/2. The analysis of (6.1) is
essentially the same as was done for (5.1) in Section 5.3, now using Propositions
6.5 and 6.9 and the relation

ṽ(n) = (
n − u(n)

)2
/n + σ 2(n),

which follows from (2.5) and (2.6). We omit the details.

7. Proofs of Theorem 2.1 and Corollary 2.5.

PROOF OF THEOREM 2.1. We may assume that σ 2
F (n) ≥ 1 and Var(Zn,F ) ≥

1, since otherwise Var(Zn,F ) ≤ C10 by Theorem 2.3 and the result is trivial.
Then (2.1) is a simple consequence of Theorems 2.4 and 2.3. �

PROOF OF COROLLARY 2.5. (i) ⇐⇒ (ii). An immediate consequence of The-
orem 2.3.

(i) �⇒ (iii). By Theorem 2.1.
(ii) �⇒ (iv). By Theorem 2.4.
(iii) �⇒ (v) and (iv) �⇒ (v). Trivial.
(v) �⇒ (i). (This part is standard and uses the fact that Zν assumes only integer

values.) If (v) holds, let Z′
ν be an independent copy of Zν . Then

(Zν − Z′
ν)/βν

d−→ N(0,2).(7.1)
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If (i) fails, then there is a subsequence (nν,Fν)ν∈N ′ , along which σ 2
nν,Fν

is
bounded; we consider that subsequence only, and let B := supν∈N ′ βν .

If B = ∞, there is a subsubsequence along which βν → ∞, but this implies

E((Zν − Z′
ν)/βν)

2 = 2σ 2
nν,Fν

/β2
ν → 0, and thus (Zν − Z′

ν)/βν
d−→ 0 along the

subsubsequence, which contradicts (7.1).
On the other hand, if B < ∞, then P((Zν − Z′

ν)/βν ∈ [1/4B,1/2B]) = 0 for
all ν ∈ N ′ since Zν − Z′

ν is integer-valued, which again contradicts (7.1). �

8. Limit laws when the variance is small or bounded. We briefly con-
sider the possible limit laws for a sequence of random variables Zn = Zn,Fn with
bounded variances. [Recall that Corollary 2.5 shows that Zn is asymptotically nor-
mal in the opposite case when Var(Zn) → ∞.] By Theorem 2.3, this assumption
is equivalent to σ 2(n) = O(1), and according to Proposition 4.3 and Remark 4.1,
we consider the following two cases:

(i)
∑

pjn≤1 pj ≥ 1/2, ṽ(n) = O(1), v(n) � n;
(ii)

∑
pjn>1 pj ≥ 1/2, v(n) = O(1), ṽ(n) � n.

In both cases we can use the same Poissonization procedure as above, the proofs
being indeed much simpler. However, for more methodological interests, we use
the coupling argument mentioned in Remark 3.1. We say that an event holds whp
(with high probability), if it holds with probability tending to 1 as n → ∞.

PROPOSITION 8.1. (i) If n → ∞ with ṽ(n) = O(1), then whp n − Zn =
Z̃(n).

(ii) If n → ∞ with v(n) = O(1), then whp Zn = Z(n).

PROOF. Let λ± := n ± n2/3. Then, whp, N(λ−) ≤ n ≤ N(λ+), and thus
Z(λ−) ≤ Zn ≤ Z(λ+) and Z̃(λ−) ≤ n−Zn ≤ Z̃(λ+). Moreover, Z(λ−) ≤ Z(n) ≤
Z(λ+) and Z̃(λ−) ≤ Z̃(n) ≤ Z̃(λ+). Consequently, it suffices to show that whp
Z(λ−) = Z(λ+) in case (ii) and Z̃(λ−) = Z̃(λ+) in case (i).

In case (i) we have for λ− ≤ λ ≤ λ+, using (4.5),

d

dλ
E(Z̃(λ)) = d

dλ

(
λ − μ(λ)

) = 1 − ∑
j

pj e
−pjλ = ∑

j

pj (1 − e−pjλ)

≤ ∑
j

pj (pjλ ∧ 1) = O

(∑
j

(p2
jn ∧ pj )

)
= O(ṽ(n)/n),

and thus

P
(
Z̃(λ+) 
= Z̃(λ−)

) ≤ E
(
Z̃(λ+) − Z̃(λ−)

) = O
(
(λ+ − λ−)ṽ(n)/n

)
= O(n−1/3ṽ(n)) = o(1).
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In case (ii) we have by Lemma 5.4, for λ ≥ 2,

d

dλ
E(Z(λ)) = ∑

j

pj e
−pjλ = u(λ)

λ
= O(λ−1 log(λ)v(λ)).

By Lemma 5.5 we thus have, for λ ∈ [λ−, λ+] (and n ≥ 2)

d

dλ
E(Z(λ)) = O(n−1 log(n)v(n))

and accordingly

P
(
Z(λ+) 
= Z(λ−)

) ≤ E
(
Z(λ+) − Z(λ−)

) = O(n−1/3 log(n)v(n)) = o(1). �

Limit results can now be obtained from the representations Z(n) = ∑
j 1{Uj≥1}

and Z̃(n) = ∑
j Ũj with independent summands given in Section 3.

We consider in detail two simple cases leading to Poisson limit laws. Both cases
are marked by the property that there are no pj of order 1/n; compare Chistyakov
[6] and Kolchin, Sevast’yanov and Chistyakov [23], III.3.

THEOREM 8.2. Suppose that 1
2

∑
j (pjn)2 → λ < ∞ and that maxj pjn → 0;

then n − Zn
d−→ Po(λ).

PROOF. We have, by (4.5), ṽ(n) = O(
∑

j (pjn)2) = O(1), so Proposi-
tion 8.1(i) applies. Further, we have by Section 3, with Uj ∼ Po(pjn) independent,∑

j

P(Ũj ≥ 2) = ∑
j

P(Uj ≥ 3) ≤ ∑
j

(pjn)3 ≤ max(pjn)
∑
j

(pjn)2 → 0.

Thus, whp,

n − Zn = Z̃(n) = ∑
j

Ũj = ∑
j

Ĩj ,

where Ĩj := 1{Ũj=1} = 1{Uj=2} ∼ Be(1
2(pjn)2e−pjn) are independent Bernoulli

distributed variables. We have, as n → ∞, maxj E(Ĩj ) → 0 and

∑
j

E(Ĩj ) = ∑
j

1
2(pjn)2e−pjn = ∑

j

1
2(pjn)2 + O

(∑
j

(pjn)3

)
→ λ.

Hence
∑

j Ĩj
d−→ Po(λ) by a standard result; see [14, 25] or, for example, [3],

Theorem 2.M. �

THEOREM 8.3. Suppose that:

(i)
∑

pjn≤1 pjn → λ1 ∈ [0,∞),
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(ii)
∑

pjn>1 e−pjn → λ2 ∈ [0,∞),

(iii) supj (pjn ∧ (pjn)−1) → 0,

and let m := #{j :pj > 1/n}. Then Zn −m
d−→ W1 −W2, where Wi ∼ Po(λi) are

independent.
Note that m depends on n and the pj ’s.

PROOF. We have, by (4.4), v(n) = O(1), so Proposition 8.1(ii) applies and
whp Zn = Z(n) = ∑

j Uj , where, by Section 3, Uj ∼ Be(1 − exp(−pjn)) are
independent. Hence, whp,

Zn − m = ∑
pjn≤1

Uj − ∑
pjn>1

(1 − Uj),

where the two sums of independent Bernoulli variables are independent. We have,
as n → ∞,

sup
pjn≤1

E(Uj ) ≤ sup
pjn≤1

pjn ≤ sup
j

(
pjn ∧ (pjn)−1) → 0

and

∑
pjn≤1

E(Uj ) = ∑
pjn≤1

(1 − e−pjn) = ∑
pjn≤1

pjn + O

( ∑
pjn≤1

(pjn)2

)
→ λ1,

because ∑
pjn≤1

(pjn)2 ≤ sup
j

(
pjn ∧ (pjn)−1)∑

j

pjn → 0.

Hence
∑

pjn≤1 Uj
d−→ W1 ∼ Po(λ1), again by [14, 25] or, for example, [3], The-

orem 2.M.
Similarly,

∑
pjn>1(1 − Uj)

d−→ W2 ∼ Po(λ2). �

REMARK 8.1 (Poisson approximation). We can derive more precise local
limit theorems by modifying our proof for Theorem 2.4; the proof is indeed much
simpler and omitted here.

Theorems 8.2 and 8.3 extend to the general case when some pj is of the
order 1/n, but the limit distributions become more complicated. Consider first
case (i), with ṽ(n) = O(1). We may assume that, for each n, p1 ≥ p2 ≥ · · ·;
by (4.5), p1n = O(1) and we may by taking a subsequence [of (n,F )] assume
that pjn → qj for every j and some qj ∈ [0,∞). (Thus, Theorem 8.2 is the case
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when all qj = 0.) If we further assume, without loss of generality, as in Theo-
rem 8.2, that 1

2
∑

j (pjn)2 → λ for some λ < ∞, and let λ′ := λ − 1
2

∑
j q2

j , it can
be shown by arguments similar to those above that

n − Zn
d−→ W +

∞∑
1

Ṽj ,

where W ∼ Po(λ′), Ṽj := Vj − 1{Vj≥1} with Vj ∼ Po(qj ), and all terms are in-
dependent. Note that the limit depends on the sequence {qj }; thus, in general,
different subsequences may converge to different limits, even if the limit λ exists.

Similarly, in case (ii), we may rearrange (pj ) into two (finite or infinite) se-
quences (p′

j ) and (p′′
j ) with 1/n ≥ p′

1 ≥ p′
2 ≥ · · · and 1/n < p′′

1 ≤ p′′
2 ≤ · · ·, and

by selecting a subsequence we may assume that p′
jn → q ′

j and p′′
j n → q ′′

j for
some q ′

j ∈ [0,1] and q ′′
j ∈ [1,∞]. (If the sequences are finite, extend them by 0’s

or ∞’s.) It can be shown that if λ1, λ2 and m are as in Theorem 8.3, then

Zn − m
d−→ W ′ + ∑

j

V ′
j − W ′′ − ∑

j

V ′′
j ,

where W ′ ∼ Po(λ1 −∑
j q ′

j ), W ′′ ∼ Po(λ2 −∑
j e

−q ′′
j ), V ′

j ∼ Be(1 − e
−q ′

j ), V ′′
j ∼

Be(e−q ′′
j ), and all terms are independent. We leave the details to the reader.

9. Fixed distribution. We briefly discuss a few characteristic properties for
the case when the distribution F is kept fixed while n → ∞. We may as in Re-
mark 3.1 assume that the sequence (Zn) is obtained by throwing balls one after
another; thus Z1 ≤ Z2 ≤ · · · .

Let M := #{j :pj > 0}, the number of distinct values that Xi can take with
positive probability. If M is finite, then a.s. all these values are sooner or later
assumed by some Xi , and thus Zn = M for large enough n. In other words, then

Zn = M whp, and Zn
p−→ M as n → ∞.

We will therefore in this section assume that M = ∞. It is then easily seen
that Zn → ∞ a.s. as n → ∞; similarly Z(λ) → ∞ a.s. as λ → ∞. Consequently,
E(Zn) → ∞ as n → ∞ and μ(λ) = E(Z(λ)) → ∞ as λ → ∞.

On the other hand, by (2.2) and the dominated convergence theorem

μ(x)/x = ∑
j

(1 − e−pj x)/x → 0 as x → ∞,

since 0 ≤ (1 − e−pj x)/x ≤ pj and
∑

j pj < ∞; see also Karlin [20] for an alter-
native proof. In other words, μ(x) = o(x) as x → ∞, and thus, by Theorem 2.3,
E(Zn) = o(n) as n → ∞.

Similarly, the O(1) terms in Theorem 2.3 can be improved to o(1); these re-
mainder terms are given in our proof in Section 4 as sums, where each term tends
to 0 and domination is provided by the estimates given in our proof.
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Finally,
∑

pj x>1 pj → ∑
pj>0 pj = 1 as x → ∞; thus we always have∑

pj x>1 pj ≥ 1/2 for large x. Hence σ 2(n) � v(n) and, for limit results, we only
have to consider the case in Section 5.

Acknowledgment. We thank an anonymous referee for careful reading and
useful comments, and in particular for improving our previous versions of Propo-
sition 5.6 and Lemma 4.2.
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