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ASYMPTOTIC NORMALITY OF THE k-CORE IN
RANDOM GRAPHS

BY SVANTE JANSON AND MALWINA J. LUCZAK1

Uppsala University and London School of Economics

We study the k-core of a random (multi)graph on n vertices with a given
degree sequence. In our previous paper [Random Structures Algorithms 30
(2007) 50–62] we used properties of empirical distributions of independent
random variables to give a simple proof of the fact that the size of the giant
k-core obeys a law of large numbers as n → ∞. Here we develop the method
further and show that the fluctuations around the deterministic limit converge
to a Gaussian law above and near the threshold, and to a non-normal law
at the threshold. Further, we determine precisely the location of the phase
transition window for the emergence of a giant k-core. Hence, we deduce
corresponding results for the k-core in G(n,p) and G(n,m).

1. Introduction. Let k ≥ 2 be an integer, fixed throughout the paper. The
k-core of a graph G is the largest induced subgraph of G with minimum vertex
degree at least k. (It is easy to see that this is well defined, but note that the k-core
may be empty. It is customary to say that a k-core exists if it is nonempty.)

The question whether or not a nonempty k-core exists in a random graph, to-
gether with questions concerning the size and structure of the k-core when it does
exist, have attracted a great deal of attention over the recent years. Starting with
the pioneering papers by Bollobás [3] and Łuczak [21], many authors have studied
various types of random graphs and also hypergraphs. A milestone was the paper
of Pittel, Spencer and Wormald [27], who found the threshold for the appearance
of a nonempty k-core in the random graphs G(n,p) and G(n,m), as well as the
size of the nonempty k-core. Several different proofs of this result have been given
since—see our own proof in [17] and the references therein. There have also been a
number of papers studying the k-core of a random graph with a specified degree se-
quence, for example, Fernholz and Ramachandran [8, 9], Cooper [6], Molloy [23]
(the last two references also consider hypergraphs) and Janson and Luczak [17].
Further, related models of random graphs have been studied by Kim [20], Darling
and Norris [7] and Cain and Wormald [5]. [Many of the papers listed above deduce
results for G(n,p) or G(n,m) from their main result.]

In our previous paper [17] we showed that a version of the standard core-finding
algorithm leads to simple proofs of the results on the existence and size of the
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k-core in random graphs with a prescribed degree sequence (under certain condi-
tions), and hence, also in the random graphs G(n,p) and G(n,m). Our main prob-
abilistic tools are standard results on the convergence of empirical distributions of
independent random variables, applied to balls-and-bins processes associated with
the algorithm. In the present paper we show that a more refined study of these
processes leads to Gaussian limit laws for the processes, and that these in turn im-
ply a Gaussian limit law for the size of the k-core away from the threshold, as well
as a precise description of the threshold and the size of the threshold k-core. In
particular, we show that, for G(n,m), the width of the threshold is of the order

√
n

edges.
Given a graph G, let v(G) and e(G) denote the sizes of its vertex and edge sets

respectively. We assume that v(G) = n and consider asymptotics as n → ∞. We
say that an event holds whp (with high probability), if it holds with probability
tending to 1 as n → ∞. All unspecified limits in this paper are as n → ∞. We
use Op and op in the standard way (see, e.g., Janson, Łuczak and Ruciński [18]);
for example, if (Xn) is a sequence of random variables, then Xn = Op(1) means

“Xn is bounded in probability” and Xn = op(1) means that Xn
p−→ 0.

Let us first introduce some notation and recall the main result of Pittel, Spencer
and Wormald [27].

For μ ≥ 0, let Po(μ) denote a Poisson random variable with mean μ. We denote
the Poisson probabilities by

πj (μ) := P
(
Po(μ) = j

) = μje−μ/j !,(1.1)

for integer j ≥ 0, and let

ψj(μ) := P
(
Po(μ) ≥ j

) =
∞∑
i=j

πi(μ).(1.2)

Note that, for j ≥ 1, π ′
j (μ) = πj−1(μ) − πj (μ) and ψ ′

j (μ) = πj−1(μ). Also, let

ck := inf
μ>0

μ/ψk−1(μ).

For λ > ck , or λ = ck and k ≥ 3, we use μk(λ) > 0 to denote the largest solution
to μ/ψk−1(μ) = λ.

Pittel, Spencer and Wormald [27] discovered that p = ck/n is the threshold
for the appearance of a nonempty k-core in the graph G(n,p); equivalently, m =
ckn/2 is the threshold in the graph G(n,m). More precisely, their main result is the
following. [We write G(n,λn/n) for the random graph G(n,p) with p = λn/n;
we continue to write G(n,m), but we will only consider the corresponding case
m = m(n) = λnn/2, and we will assume λn → λ < ∞.]

THEOREM 1.1 (Pittel, Spencer and Wormald [27]). Consider the random
graph G(n,λn/n), where λn → λ ≥ 0. Let k ≥ 2 be fixed and let Corek =
Corek(n,λn) be the k-core of G(n,λn/n):
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(i) If λ < ck and k ≥ 3, then Corek is empty whp.

(ii) If λ > ck , then Corek is nonempty whp, and v(Corek)/n
p−→ ψk(μk(λ)),

e(Corek)/n
p−→ μk(λ)ψk−1(μk(λ))/2 = μk(λ)2/(2λ).

The same results hold for the random graph G(n,m), for any sequence m =
m(n) with λn := 2m/n → λ.

Note that part (i) does not hold for k = 2. In fact, c2 = 1, but for any λ > 0 there
is a positive limiting probability that there are cycles and thus a nonempty 2-core.
Nevertheless, if λ < c2, the core is small, v(Corek) ≤ e(Corek) = Op(1) and, in

particular, v(Corek)/n
p−→ 0.

Pittel, Spencer and Wormald [27] further obtained some refinements of this re-
sult. In particular, they found that in the case λ = ck , for any δ < 1/2, (i) applies
when λn < ck − n−δ and (ii) applies when λn > ck + n−δ .

We now state our main theorems. The first shows that above the threshold the
numbers of vertices and edges in the k-core have asymptotic normal distributions.

THEOREM 1.2. Consider either G(n,λn/n) or G(n,m), where m = λnn/2,
and let Corek be the k-core of this random graph. Assume that k ≥ 2 and that
λn → λ > ck . Then, with μ̂n := μk(λn),

n−1/2(
v(Corek) − ψk(μ̂n)n, e(Corek) − 1

2 μ̂nψk−1(μ̂n)n
) d−→ (Zv,Ze),

where Zv and Ze are jointly Gaussian random variables with mean 0 and a nonsin-
gular covariance matrix. More precisely, let μ̂ := μk(λ) [so that μ̂ = λψk−1(μ̂)],
and define

av := πk−1(μ̂)/
(
ψk−1(μ̂) − μ̂πk−2(μ̂)

)
,(1.3)

ae := (
ψk−1(μ̂) + μ̂πk−2(μ̂)

)
/
(
ψk−1(μ̂) − μ̂πk−2(μ̂)

)
,(1.4)

σ̂νκ := σνκ(μ̂/λ) + σ ∗
νκ

(μ̂/λ), ν,κ ∈ {B,H,L},(1.5)

where σνκ(p) = σνκ(p;Po(λ)) are as in Theorem 3.1 given by (5.37)–(5.47) and
σ ∗

νκ
(p) = σ ∗

νκ
(p;λ) are as in Theorem 8.5 [different for G(n,p) and G(n,m)],

then

Var(Zv) = σ̂BB − 2avσ̂BL + a2
v σ̂LL,(1.6)

Var(Ze) = 1
4(σ̂HH − 2aeσ̂HL + a2

e σ̂LL),(1.7)

Cov(Zv,Ze) = 1
2(σ̂BH − aeσ̂BL − avσ̂HL + avaeσ̂LL).(1.8)

At the threshold, we have the following companion result.



1088 S. JANSON AND M. J. LUCZAK

THEOREM 1.3. Consider either G(n,λn/n) or G(n,m), where m = λnn/2,
and let Corek be the k-core of this random graph. Assume that k ≥ 3 and that
λn → ck . Let μ̂ := μk(ck), p̂ := μ̂/ck = ψk−1(μ̂), and

β̂ := (μ̂ − k + 2)πk−2(μ̂) > 0.(1.9)

Let further σ 2 := σLL(p̂)+σ ∗
LL(p̂) > 0, where σLL(p̂) = σLL(p̂;Po(ck)) is given

by (5.47) and σ ∗
LL(p) = σ ∗

LL(p; ck) is as in Theorem 8.5. Then:

(i) If n1/2(λn − ck) → −∞, then whp Corek is empty.
(ii) If n1/2(λn − ck) → γ ∈ (−∞,∞), then

P(Corek 
= ∅) → 
(p̂2γ /σ),

where 
 is the standard normal distribution function, and, with Z ∼ N(0,1),(
n−3/4(

v(Corek) − ψk(μ̂)n, e(Corek) − 1
2 μ̂ψk−1(μ̂)n

) ∣∣ Corek 
= ∅
)

→ (
(2/β̂)1/2

√
σZ + p̂2γ (πk−1(μ̂), p̂) | Z > −p̂2γ /σ

)
.

(iii) If n1/2(λn − ck) → +∞, then whp Corek is nonempty. Moreover, with
μ̂n := μk(λn),

(λn − ck)
1/2n−1/2(

v(Corek) − ψk(μ̂n)n, e(Corek) − 1
2 μ̂nψk−1(μ̂n)n

)
d−→ (πk−1(μ̂)Z′, p̂Z′),

where Z′ ∼ N(0, σ 2/(2β̂p̂2)).

In particular, Theorem 1.3 shows that the the width of the threshold for existence
of a nonempty k-core is of the order

√
n edges for G(n,m) [and thus of the order

n−1/2 for G(n,p), as a function of p], which improves the result O(n1/2+ε) for
every ε > 0 given by Pittel, Spencer and Wormald [27]. More precisely, we have
the following simple corollary.

THEOREM 1.4. Let k ≥ 3. Start with the empty graph with n isolated vertices
and add edges at random, one by one, uniformly over all possible positions. Let M

be the number of edges when the graph first has a nonempty k-core. Then,

n−1/2
(
M − ck

2
n

)
d−→ N(0, σ 2

k ),

where σ 2
k := σ 2/(4p̂4) with σ 2 and p̂ as in Theorem 1.3 for G(n,m).

Our formula for σ 2
k is rather complicated. Numerical evaluations yield σ 2

3 ≈
0.763 and σ 2

4 ≈ 0.885. (We have c3 ≈ 3.35 and c4 ≈ 5.15 as found by Pittel,
Spencer and Wormald [27].)
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REMARK 1.5. It follows from the above that the order of the typical random
fluctuations of the number of vertices or edges in the k-core is n1/2 above the
threshold (Theorem 1.2), decreases like n1/2|λn − ck|−1/2 as λn approaches the
threshold ck [Theorem 1.3(iii)], and becomes n3/4 right at the threshold [Theorem
1.3(ii)]. Asymptotic normality holds above and near the threshold, but not at the
threshold itself. The numbers of vertices and edges in the k-core (when nonempty)
are asymptotically linearly dependent close to the threshold (Theorem 3.5), but not
away from the threshold (Theorem 3.4).

The main idea in the proofs is to use the version of the core-finding process em-
ployed in [17] together with a martingale limit theorem by Jacod and Shiryaev [11];
we are then able to show that certain stochastic processes describing the progress
of the core-finding algorithm are asymptotically Gaussian. Once this is done, we
read off size of the k-core from these processes; this is rather straightforward al-
though the details are time-consuming.

REMARK 1.6. Our method works for a fixed random graph, and is not directly
applicable to studying the evolution of the k-core in the random graph process
obtained by adding edges one by one at random. We can, however, say a little
more. Consider G(n,m) for two values of m, of the type ckn/2 + γ ′

nn
1/2/2 and

ckn/2 + γ ′′
n n1/2/2 for two convergent sequences γ ′

n and γ ′′
n with γ ′

n < γ ′′
n . We

suppose that the random graphs are coupled so that the second random graph is
obtained by adding edges at random to the first. Then Theorem 1.3(ii) holds for
each of the two random graphs separately, but it follows from the proof below, by
coupling the processes of balls and bins used there in a straightforward way, that
indeed Theorem 1.3(ii) holds jointly for both random graphs with the same Z.

The same applies to any finite number of stages in the evolution. In partic-
ular, we may consider mj(n) = (ckn + γjn

1/2)/2� with γj = j/N for j =
−N2, . . . ,N2, for a fixed N at first (and letting n → ∞). With probability
1 − ε(N) + o(1), where ε(N) = P(|Z| > Np̂2/σ), the k-core will first appear
somewhere inside this grid, say when mj0−1 < m ≤ mj0 . More precisely, we may
as in the proof below assume that the limit in Theorem 1.3(ii) holds a.s., and then
this holds a.s. if j0 is the smallest integer such that σZ + p̂2γj0 > 0. In this case,
σZ + p̂2γj0 ≤ p̂2/N , and it follows that the number of vertices in the k-core of
G(n,mj0) is ψk(μ̂)n + O(n3/4N−1/2). Hence, with probability 1 − ε(N) + o(1),
the number of vertices in the first nonempty k-core is ψk(μ̂)n + O(n3/4N−1/2).

Letting N → ∞, we find that ε(N) → 0 (so that the probability that the k-core
first appears within the grid approaches 1), and that the number of vertices in
the first nonempty k-core is ψk(μ̂)n + op(n

3/4). Hence, the random fluctuation
is smaller than what we see in Theorem 1.3(ii) for a fixed m. (We cannot say how
much smaller.) In other words, the order n3/4 fluctuations must come from the fluc-
tuations in the time the k-core appears. We also see that the k-core grows rapidly
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in the beginning due to the term
√

σZ + p̂2γ = p̂
√

γ − γ0, where γ0 := −σZ/p̂2

shows the random time the k-core first appears.
It is possible that our methods can be developed further to give more precise

results for the random graph process. In particular, it would be interesting to find
the magnitude of the variations in the size of the first nonempty k-core. Are they
of the order n1/2?

It would also be interesting to understand the rapid growth of the k-core in the
beginning. Presumably, this happens because there are many rather big subgraphs
that have very few vertices with degree less than k, and these are quickly joined to
and absorbed by the k-core. It would be interesting to understand the structure of
these subgraphs.

REMARK 1.7. It is well known that c2 = 1 and that when λ > c2 = 1, there
exists whp a unique giant component in the random graph. The 2-core contains
some cycles outside the giant component, but these are too few to influence the
asymptotics of its size; thus, from the point of view of this paper, it does not
matter whether we study the 2-core of the graph or just the 2-core of the gi-
ant component. It was shown by Pittel [26] that, for both G(n,p) and G(n,m),

v(Core2)/n
p−→ (1 − T )(1 − T/λ), where T < 1 satisfies T e−T = λe−λ. He also

conjectured asymptotic normality of v(Core2), with an asymptotic variance of the
order n, which we prove in the present paper.

REMARK 1.8. We can also obtain similar results on the number of vertices
of given degree in the core, as has been done by a different method by Cain and
Wormald [5]. Indeed, already the simple version of our argument in [17] shows
easily that in the case treated in Theorem 1.2 here, if j ≥ k and nkj is the num-

ber of vertices of degree j in Corek , then nkj/n
p−→ πj (μ̂), as found by Cain

and Wormald [5]. Moreover, it follows from the arguments in this paper that
n−1/2(nkj − πj (μ̂n)n) has a normal limit, jointly for all j ≥ k. There is also a
similar result in the situation of Theorem 1.3. We omit the details.

REMARK 1.9. In this paper we treat G(n,p) and G(n,m) together, since all
arguments work for both random graphs with no or very minor changes. It is also
possible to do the proofs for one version only and then derive the results for the
other. To go from results for G(n,m) to G(n,p), we simply condition on the num-
ber of edges as in [26]; note that the asymptotic variance will be larger for G(n,p)

than for G(n,m) since the mean will shift with the number of edges. It is also
possible to go in the opposite direction since the k-core grows monotonously with
the number of edges; see [15].
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2. Preliminaries. It will be convenient to work with multigraphs, that is, to
allow multiple edges and loops. In particular, we shall use the following type of
random multigraph.

Let n ∈ N and let (di)
n
1 be a sequence of nonnegative integers such that

∑n
i=1 di

is even. We define a random multigraph with given degree sequence (di)
n
1, denoted

by G∗(n, (di)
n
1), by the configuration model (see, e.g., [4]): take a set of di half-

edges for each vertex i (with these sets disjoint), and join the half-edges into edges
by a partition of the set of all half-edges into pairs; such a partition of the half-edges
is known as a configuration, and we choose the configuration at random, uniformly
over all possible configurations. Note that conditioned on the multigraph being
a simple graph, we obtain a uniformly distributed random graph with the given
degree sequence, which we denote by G(n, (di)

n
1).

Let ur denote the number of vertices of degree r . We further write 2m :=∑n
i=1 di = ∑

r rur , so that m is the number of edges in the multigraph G∗(n, (di)
n
1).

We will let n → ∞, and assume that we for each n are given (di)
n
1 = (d

(n)
i )n1

satisfying the following regularity conditions; cf. Molloy and Reed [24]. [Our con-
dition (ii) can probably be relaxed, but it will be convenient to work with. Note that
it implies maxi di = o(logn).]

CONDITION 2.1. For each n, (di)
n
1 = (d

(n)
i )n1 is a sequence of nonnegative

integers such that
∑n

i=1 di is even and, for some probability distribution (pr)
∞
r=0

independent of n, with ur = ur(n) as defined above:

(i) ur/n := #{i : di = r}/n → pr for every r ≥ 0 as n → ∞;
(ii) for every A > 1, we have

∑
r urA

r = ∑n
i=1 Adi = O(n).

We further assume p0 < 1.

Let Dn be a random variable with the distribution P(Dn = r) = ur/n =
ur(n)/n; this is the distribution of the vertex degree of a random vertex in
G∗(n, (di)

n
1). Further, let D be a random variable with the distribution P(D =

r) = pr , and let λ := ED = ∑
r rpr . Then Condition 2.1 can be rewritten as

Dn
d−→ D as n → ∞,(2.1)

EADn = O(1) for each A > 1,(2.2)

and λ > 0. Note that (2.2) implies uniform integrability of Dn, so

2m

n
=

∑n
i=1 di

n
= EDn → ED = λ = ∑

r

rpr;(2.3)

in particular, λ < ∞. Similarly, all higher moments converge. (It follows that our
assumption Condition 2.1 is stronger than the corresponding assumptions in Mol-
loy and Reed [24, 25] and Janson and Luczak [17].)
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REMARK 2.2. The excluded case p0 = 1 (where thus λ = 0) is rather degen-
erate; some of the results below hold trivially, but others may fail. In this case, most
vertices are isolated. By removing all such vertices, we obtain a smaller random
graph of the same type, and our results can be applied under suitable conditions.

We use the notation 1[E ] for the indicator of an event E ; this is thus 1 if E holds
and 0 otherwise. We also write E(X;E) for E(X · 1[E ]). We use (X | E) to denote
a random variable X conditioned on an event E ; thus, E(X | E) = E(X;E)/P(E).

We shall consider random thinnings of the vertex degrees. In general, if X is
a nonnegative integer valued random variable and 0 ≤ p ≤ 1, we let Xp be the
thinning of X obtained by taking X points and then randomly and independently
keeping each of them with probability p. For integers l ≥ 0 and 0 ≤ r ≤ l, let βlr

denote the binomial probabilities

βlr(p) := P
(
Bi(l,p) = r

) =
(

l

r

)
pr(1 − p)l−r .

Then we have

P(Xp = r) =
∞∑
l=r

P(X = l)βlr (p).

We further define the functions, for 0 ≤ p ≤ 1, j = 0,1, . . . , and a given k ≥ 2,

qjX(p) := P(Xp ≥ j) =
∞∑

r=j

∞∑
l=r

P(X = l)βlr (p),(2.4)

bX(p) := qkX(p) =
∞∑

r=k

∞∑
l=r

P(X = l)βlr (p),(2.5)

hX(p) := E(Xp;Xp ≥ k) =
∞∑

r=k

∞∑
l=r

r P(X = l)βlr (p),(2.6)

and, provided EX < ∞,

lX(p) := (EX)p2 − hX(p).(2.7)

These functions for X = Dn and X = D will play an important role in the
sequel, and we use the abbreviated notation qjn = qjDn , qj = qjD , bn = bDn ,
b = bjD , etc. They are thus given by (2.4)–(2.7) with P(X = l) replaced by ul/n

and pl , and EX replaced by 2m/n and λ, respectively.

LEMMA 2.3. As n → ∞, bn(p) → b(p), hn(p) → h(p) and ln(p) → l(p),
together with all derivatives, uniformly on [0,1].



ASYMPTOTIC NORMALITY OF THE k-CORE IN RANDOM GRAPHS 1093

PROOF. Consider, for example,

hn(p) =
∞∑
l=k

l∑
r=k

rβlr (p)
ul

n
= Ef (Dn;p),

where f (l;p) := ∑l
r=k rβlr (p). Then f (Dn;p)

d−→ f (D;p) by (2.1). Moreover,
0 ≤ f (l;p) ≤ l, so f (Dn;p) ≤ Dn is uniformly integrable by (2.2). Hence,

hn(p) = Ef (Dn;p) → Ef (D;p) = h(p)

for each p.
Next, an elementary calculation yields

d

dp
βlr(p) = lβl−1,r−1(p) − lβl−1,r (p).(2.8)

Thus, for every j ≥ 0, using a simple induction and the fact that 0 ≤ βlr(p) ≤ 1, we
obtain | dj

dpj βlr (p)| ≤ (2l)j . It follows that | dj

dpj f (l,p)| ≤ (2l)j
∑l

r=k r ≤ (2l)j+2.
Hence, ∣∣∣∣ dj

dpj
f (Dn,p)

∣∣∣∣ ≤ (2Dn)
j+2,

which by (2.2) is uniformly integrable, and thus,

dj

dpj
hn(p) = E

dj

dpj
f (Dn,p) → E

dj

dpj
f (D,p) = dj

dpj
h(p).

Moreover, these derivatives are all uniformly bounded, and uniform convergence
for p ∈ [0,1] follows easily (e.g., using the Arzela–Ascoli theorem). This proves
the result for h. The result for l follows, and the result for b is proved the same
way. �

We note also that by (2.8) (or a combinatorial argument),

q ′
j (p) =

∞∑
l=j

pllβl−1,j−1(p).(2.9)

It follows that q ′
j (p) > 0 for all p ∈ (0,1) unless qj vanishes identically; hence,

b′(p) > 0 and h′(p) > 0 for 0 < p < 1 unless h(p) = 0 for all p.
Finally, let us consider the Poisson case, which is central for us, and establish

connections with the functions defined in (1.2).

LEMMA 2.4. If X ∼ Po(λ), then

qjX(p) = P(Xp ≥ j) = ψj(λp),(2.10)

bX(p) = qkX(p) = ψk(λp),(2.11)

hX(p) =
∞∑

j=k

j P(Xp = j) =
∞∑

j=k

(λp)j

(j − 1)!e
−λp = λpψk−1(λp)(2.12)
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and

lX(p) = λp2 − hX(p) = λp
(
p − ψk−1(λp)

)
.(2.13)

PROOF. The thinning Xp ∼ Po(λp); thus, (2.4)–(2.7) yield the result. �

3. Finding the core. The k-core of an arbitrary finite graph or multigraph
can be found by removing edges where one endpoint has degree < k, until no such
edges remain, and finally removing all isolated vertices. The order of removal does
not matter, and we choose the edges to be deleted at random as follows.

Regard each edge as consisting of two half-edges, each half-edge having one
endpoint. Say that a vertex is light if its degree is < k, and heavy if its degree is
≥ k. Similarly, say that a half-edge is light or heavy when its endpoint is. As long
as there are some light half-edges, choose one such half-edge uniformly at random
and remove the edge it belongs to. (Note that this may change the other endpoint
from heavy to light, and thus create new light half-edges.) When there are no light
half-edges left, we stop. Then all light vertices are isolated; the heavy vertices and
the remaining edges form the k-core of the original graph.

We apply this algorithm to a random multigraph G∗(n, (di)
n
1) with given degree

sequence (di)
n
1. We use the configuration model as described in Section 2, and

combine the core-finding algorithm with the generation of the random configura-
tion by revealing the pairs in the configuration, and thus the edges in G∗(n, (di)

n
1),

only when the edges are removed by the algorithm. (The remaining pairs are re-
vealed when the algorithm stops.) It is easily seen (see [17] for details) that if we
observe only the vertex degrees in the resulting multigraph process, they can be
described by the following process of colored (white or red) balls (representing
half-edges) in n bins (representing vertices), if we consider the white balls only.
(The careful reader will notice that the version here differs slightly from [17], but
it is obviously equivalent.)

Begin with di balls in bin i, i = 1, . . . , n; there are thus 2m balls in total. Ini-
tially, all balls are white. Say that a bin is light (at a given time) if it contains < k

white balls, and heavy if it contains ≥ k. Similarly, say that a ball is light or heavy
when the bin it belongs to is.

We start by coloring a random light ball red. The process then runs in continuous
time such that each ball has an exponentially distributed random lifetime with
mean 1, independent of the other balls. This means that balls die and are removed
at rate 1, independently of one another. Further, when a white ball dies, a randomly
chosen light white ball is colored red, provided that there is some such ball; we stop
when a white ball dies and there is no light white ball left. (The interpretation in
terms of the graph is that a white ball that is colored red and the next white ball
that dies represent two half-edges that are joined to form an edge, and this edge is
deleted by the core-finding process.)

We let L(t), H(t) and B(t) denote the numbers of light white balls, heavy balls
(which always are white) and heavy bins at time t , respectively, and let τ be the



ASYMPTOTIC NORMALITY OF THE k-CORE IN RANDOM GRAPHS 1095

time the process stops. (B is denoted H1 in [17].) There are no white light balls
left at τ , which would give L(τ) = 0, but the last deletion and recoloring step
is incomplete, so we rather define L(τ) := −1, pretending that we did recolor a
(nonexisting) ball at τ too. Moreover, the heavy balls left at τ are exactly the half-
edges in the k-core. Hence, the number of edges in the k-core is 1

2H(τ), while the
number of vertices is B(τ).

We now consider a sequence G∗(n, (di)
n
1), n ≥ 1, with (di)

n
1 = (d

(n)
i )n1 satisfy-

ing Condition 2.1; we use the notation Ln(t), Hn(t), Bn(t) and τn. We will change
variables and define, for t ≥ 0,

b̌n(t) := bn(e
−t ),(3.1)

ȟn(t) := hn(e
−t ),(3.2)

ľn(t) := ln(e
−t ) = 2m

n
e−2t − ȟn(t)(3.3)

and similarly for b̌(t), ȟ(t), ľ(t); note that b̌n → b̌, ȟn → ȟ, and ľn → ľ on [0,∞),
again uniformly and with all derivatives.

We will show that the processes Bn(t), Hn(t) and Ln(t), suitably normalized,
converge jointly to certain Gaussian processes. We have defined the processes on
[0, τn] only. It is possible, and sometimes useful, to extend the processes to all
t ≥ 0 by changing the rules after τn, but we find it simpler to state the result for
the stopped processes, even though this makes the next theorem a bit technical.
(See also Remark 5.1.) Recall that, if τ is a stopping time and X(t) is a stochastic
process, then the process stopped at τ is the process

Xτ(t) := X(t ∧ τ), 0 ≤ t < ∞.(3.4)

[We use the notation x ∧ y := min(x, y).] Note that X only has to be defined on
[0, τ ].

For reasons that will become clear in Section 7, we consider also a modifica-
tion of our processes where we condition the configuration on containing a given
(small) set of pairs of half-edges, which means that the multigraph G∗(n, (di)

n
1)

contains a given set of edges; we say that these half-edges and edges are golden.
We run the core-finding process as above, with the modification that we never re-
move a golden edge. (The final result thus contains all golden edges, so it may be
larger than the k-core.) Translated into our balls-and-bins process, this means that
we now also have some golden balls from the beginning; golden balls are always
heavy, do not die and are never recolored. A white ball in the same bin as a golden
one is, as before, light if the total number of balls in the urn is < k, and heavy
otherwise, but we say that any bin containing a golden ball is heavy.

We let D[0,∞) be the standard space of right-continuous functions with left
limits on [0,∞) equipped with the Skorohod topology; see, for example, [11]
or [19], Appendix A.2. In particular, if f is continuous, then fn → f in D[0,∞)

if and only if fn → f uniformly on every compact subinterval.
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THEOREM 3.1. Assume Condition 2.1 and use the notation above. Let τ ′
n ≤ τn

be a stopping time such that τ ′
n

p−→ t0 for some t0 ≥ 0. Then, jointly in D[0,∞),

n−1/2(
Bn(t ∧ τ ′

n) − nb̌n(t ∧ τ ′
n)

) d−→ ZB(t ∧ t0),(3.5)

n−1/2(
Hn(t ∧ τ ′

n) − nȟn(t ∧ τ ′
n)

) d−→ ZH(t ∧ t0),(3.6)

n−1/2(
Ln(t ∧ τ ′

n) − nľn(t ∧ τ ′
n)

) d−→ ZL(t ∧ t0),(3.7)

where ZB , ZH and ZL are continuous Gaussian processes on [0, t0] with mean 0
and covariances that satisfy, for 0 ≤ t ≤ t0 and ν,κ ∈ {B,H,L},

Cov(Zν(t),Zκ(t)) = σνκ(e−t ),(3.8)

where σνκ(x) = σνκ(x; (pr)
∞
0 ) are given by (5.37)–(5.47).

If further t0 > 0 and P(D > k) > 0, then the covariance matrix of (ZB(t),

ZH (t),ZL(t)) is nonsingular for any fixed t with 0 < t ≤ t0.
The same results hold if, for each n, we select a set of O(1) pairs of golden

half-edges.

The proof of Theorem 3.1 is given in Section 5.
In order to specify the distribution of the Gaussian processes ZB , ZH and ZL

completely, we also need their covariances for a pair of distinct times. These too
can be determined from the proof but, for simplicity (and since we do not need
them for our further results), we give explicit formulas only in the single time
case.

REMARK 3.2. In many cases, for example, Theorem 3.4 below, τn
p−→ t0 for

some t0, and we may, and should, take τ ′
n := τn. The reason for introducing τ ′

n is
that there are some interesting cases, in particular, in Theorem 3.5 below, where
τn does not converge in probability to a constant; we then stop at a possibly earlier
time τ ′

n in order to obtain simple results (and proofs). Note that it was shown in [17]
(without golden balls) that we have

sup
t≤τn

|Ln(t)/n − ľ(t)| p−→ 0;(3.9)

this is less precise but valid up to τn. It is easily seen that (3.9) holds also if we
allow O(1) golden balls. [This is true since, for instance, (3.9) follows easily from
(5.4), (5.12) and (5.15) in the proof below.]

REMARK 3.3. The extra condition P(D > k) > 0 is equivalent to pj > 0 for
some j ≥ k + 1. If this fails, then we have the following three exceptional cases,
which also follow from the proof in Section 5 (we omit the details):
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(i) If P(D > k) = 0 but P(D = k) > 0 (pj = 0 for j ≥ k + 1 but pk > 0),
then ZH = kZB and (ZB(t),ZL(t)) has a nonsingular Gaussian distribution for
0 < t ≤ t0, except when k = 2 and also p1 = 0 (D ∈ {0,2} a.s.).

(ii) If k = 2 and D ∈ {0,2} a.s. (pj = 0 for j 
= 0,2), then ZH = 2ZB and
ZL = 0; further, ZB(t) has a nonsingular Gaussian distribution for 0 < t ≤ t0.

(iii) If P(D ≥ k) = 0 (pj = 0 for j ≥ k), then ZB = ZH = 0, while ZL(t) has
a nonsingular Gaussian distribution for 0 < t ≤ t0.

From Theorem 3.1 we deduce the following two results for G(n, (di)
n
1), which

are analogues of Theorems 1.2 and 1.3 for G(n,p) and G(n,m). Again, these two
results show the joint asymptotic normality of the number of vertices and edges
in the k-core above the threshold, as well as a more complicated limit law at the
threshold. The proofs are given in Sections 6 and 7.

THEOREM 3.4. Let k ≥ 2. Assume Condition 2.1 and use the notation above.
Let Corek be the k-core of G∗(n, (di)

n
1). Let p̂ be the largest p ≤ 1 such that l(p) =

0, and suppose that 0 < p̂ < 1. Suppose further that l′(p̂) > 0. Let α := l′(p̂) =
2λp̂ − h′(p̂) > 0, let t̂ = − ln p̂ and let ZL, ZH and ZB be as in Theorem 3.1.
Then

n−1/2(
v(Corek) − bn(p̂n)n, e(Corek) − 1

2hn(p̂n)n
)

(3.10)
d−→ (

ZB(t̂) − α−1b′(p̂)ZL(t̂), 1
2ZH(t̂) − 1

2α−1h′(p̂)ZL(t̂)
)
,

where p̂n is the largest p ≤ 1 such that ln(p) = 0; further, p̂n → p̂. The limit
distribution is a Gaussian random vector with a nonsingular covariance matrix.

The same result holds for G(n, (di)
n
1).

The covariance matrix is easily calculated explicitly, but the formulas are com-
plicated and we refer the reader to (3.8) and (5.37)–(5.47).

THEOREM 3.5. Let k ≥ 3. Assume Condition 2.1 and use the notation above.
Let Corek be the k-core of G∗(n, (di)

n
1). Suppose that min0≤p≤1 l(p) = 0. Suppose

further that there exists a unique p̂ ∈ (0,1] with l(p̂) = 0, that p̂ < 1, and that
β := l′′(p̂) > 0. Then, for every δ0 > 0 with δ0 < p̂, at least for n sufficiently large,
ln has a unique minimum point p̄n in [δ0,1], and p̄n → p̂ and ln(p̄n) → 0 as
n → ∞. Let further σ := σLL(p̂)1/2 > 0, given by (5.47):

(i) If n1/2ln(p̄n) → +∞, then whp Corek is empty.
(ii) If n1/2ln(p̄n) → ζ ∈ (−∞,∞), then

P(Corek 
= ∅) → 
(−ζ/σ ),(3.11)

where 
 is the standard normal distribution function, and, with Z ∼ N(0,1),(
n−3/4(

v(Corek) − bn(p̄n)n, e(Corek) − 1
2hn(p̄n)n

)∣∣Corek 
= ∅
)

→ (
(2/β)1/2

√
σZ − ζ

(
b′(p̂), 1

2h′(p̂)
) ∣∣ Z > ζ/σ

)
.
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(iii) If n1/2ln(p̄n) → −∞, then whp Corek is nonempty. Moreover, there is, at
least for large n, a unique p̂n with ln(p̂n) = 0 and p̄n < p̂n < 1, and

|ln(p̄n)|1/2n−1/2(
v(Corek) − bn(p̂n)n, e(Corek) − 1

2hn(p̂n)n
)

(3.12)
d−→ (

b′(p̂)Z′, 1
2h′(p̂)Z′),

where Z′ ∼ N(0, σ 2/(2β)).

The same results hold for G(n, (di)
n
1).

If further l′n(p̂)2 = o(ln(p̂)), then in the above results ln(p̄n) may be replaced
by ln(p̂). Moreover, if l′n(p̂) = o(n−1/4), then bn(p̄n) and hn(p̄n) may be replaced
by bn(p̂) and hn(p̂) in (ii).

4. Some martingale theory. Our proof is based on martingale theory, in par-
ticular, a martingale limit theorem by Jacod and Shiryaev [11]. We will use the
quadratic variation [X,X]t of a martingale X defined on [0,∞), and its bilinear
extension [X,Y ]t to two martingales X and Y . For a general definition see, for
example, [11]; for us it will suffice to know that, if X and Y are martingales of
pathwise finite variation, then

[X,Y ]t = ∑
0<s≤t

�X(s)�Y(s),(4.1)

where �X(s) := X(s) − X(s−) is the jump of X at s and, similarly, �Y(s) :=
Y(s) − Y(s−). The sum in (4.1) is formally uncountable, but in reality countable
since there is only a countable number of jumps; in the applications below, the sum
will be finite. Note that [X−X0, Y −Y0] = [X,Y ]. (There is some disagreement in
the literature concerning the definition of [X,Y ] in the case where X(0)Y (0) 
= 0;
we have chosen the version in [11], with [X,Y ]0 = 0.)

For vector-valued martingales X = (Xi)
m
i=1 and Y = (Yj )

n
j=1, we define the

square bracket [X,Y ] to be the m × n matrix ([Xi,Yj ])i,j .
A real-valued martingale X(s) on [0, t] is an L2-martingale if and only if

E[X,X]t < ∞ and E |X(0)|2 < ∞, and then

E |X(t)|2 = E[X,X]t + E |X(0)|2.(4.2)

We will use the following general result based on [11]; see [14], Proposition 9.1,
for a detailed proof. (See also [12] and [13] for similar versions.)

PROPOSITION 4.1. Assume that for each n, Mn(t) = (Mni(t))
q
i=1 is a q-

dimensional martingale on [0,∞) with Mn(0) = 0, and that �(t), t ≥ 0, is a
(nonrandom) continuous matrix-valued function such that, for every fixed t ≥ 0,

[Mn,Mn]t p−→ �(t) as n → ∞,(4.3)

sup
n

E[Mni,Mni]t < ∞, i = 1, . . . , q.(4.4)
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Then Mn
d−→ M as n → ∞, in D[0,∞), where M is a continuous q-dimensional

Gaussian martingale with EM(t) = 0 and covariances

EM(t)M ′(u) = �(t), 0 ≤ t ≤ u < ∞.

REMARK 4.2. By (4.2), (4.4) is equivalent to supn E |Mn(t)|2 < ∞, the form
used in, for example, [14].

The proposition thus yields joint convergence of the processes Mni , 1 ≤ i ≤ q .
This extends immediately to infinitely many processes (formally the case q = ∞)
by considering finite subsets, since, by definition, an infinite family of random
variables (or processes) converge jointly if every finite subfamily does.

We will apply Proposition 4.1 to stopped processes. We say that a stochastic
process X is a martingale on [0, τ ], where τ is a stopping time, if the stopped
process Xτ defined in (3.4) is a martingale on [0,∞).

Throughout our proofs we shall use M or M′ to denote an unspecified martin-
gale.

5. Proof of Theorem 3.1. We assume for simplicity that there are no golden
balls, and leave to the reader the very minor modifications in the case with O(1)

golden balls. (When defining Urn and Vrn below, we count only those bins that do
not contain any golden balls.)

Consider first Wn(t) := Ln(t) + Hn(t), the number of white balls. By construc-
tion, Wn(0) = 2m − 1. Moreover, Wn(t) decreases by 2 each time a white ball
dies. Since each ball dies with rate 1, it follows that on [0, τn], writing in differen-
tial form,

dWn(t) = −2Wn(t) dt + dM(t).(5.1)

In other words, Wn(t) + ∫ t
0 2Wn(s) ds is a martingale on [0, τn]. In this section

we will for simplicity usually omit the qualification “on [0, τn],” but it is tacitly
assumed that we consider t ≤ τn only, unless stated otherwise.

REMARK 5.1. It is possible to continue the process Wn after τn, so that (5.1)
still holds, by merging all the bins into one and using the straightforward rule that
balls die with rate 1 and that, whenever a ball dies, a second ball is removed. This
works until there is only one ball left; we may also change Wn by ±1 as in [17]
and have Wn(t) defined for all t ≥ 0, still with (5.1). Similarly, we may extend
the Urn and all the other processes derived from it below to all t ≥ 0; the extended
processes are defined by ignoring the colors of remaining balls, so that we simply
have bins with balls that die independently of one another at rate 1. However, we
have been unable to find a good way to extend both Wn and the other processes
together. We therefore usually consider the processes up to τn only.
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By (5.1) and Itô’s lemma,

d(e2tWn(t)) = e2t dWn(t) + 2e2tWn(t) dt = e2t dM(t),

another martingale differential, that is, Ŵn(t) := e2tWn(t) is a martingale. (Note
that, for each n, Wn(t) is bounded by 2m(n). Thus, Ŵn(t) is bounded on every
finite interval. Hence, Ŵn(t ∧τn) is a square integrable martingale on every interval
[0, T ], and not just a local martingale. The same applies to the other martingales
in this section.)

Since distinct balls a.s. die at distinct times, all jumps in Wn(t) equal −2, and the
quadratic variation of Ŵn is given by, and, using integration by parts, the quadratic
variation

[Ŵn, Ŵn]t = ∑
0<s≤t

|�Ŵn(s)|2 = ∑
0<s≤t

|e2s�Wn(s)|2 =
∫ t

0
2e4s d(−Wn(s))

(5.2)

= −2e4tWn(t) + 2Wn(0) +
∫ t

0
8e4sWn(s) ds.

In particular,

[Ŵn, Ŵn]t ≤ 2e4t
∫ t

0
d(−Wn(s)) ≤ 2e4tWn(0) ≤ 4me4t .(5.3)

Let W ∗
n (t) := n−1Ŵn(t ∧ τn). Then W ∗

n is a martingale on [0,∞) and, for every
T < ∞,

[W ∗
n ,W ∗

n ]T = n−2[Ŵn, Ŵn]T ∧τn ≤ 4e4T m/n2 → 0

as n → ∞, by (2.3). Moreover, 0 ≤ W ∗
n (t) ≤ 2m/n = O(1). We can thus apply

Proposition 4.1 to W ∗
n (t) − W ∗

n (0), with q = 1 and �(t) = 0. In this case, the
limit M satisfies Var(M(t)) = �(t) = 0, and thus, M(t) = 0 a.s., for every t .

Consequently, we have shown W ∗
n (t) − W ∗

n (0)
p−→ 0 in D[0,∞), and thus,

W ∗
n (t) − W ∗

n (0)
p−→ 0 uniformly on [0, T ] for every T < ∞. Equivalently,

n−1 sup
t≤T

|Wn(t) − Wn(0)e−2t | p−→ 0.(5.4)

(This was shown in [17], (5.1) by other methods. Actually, [17], (5.1) is equivalent
to (5.4) above with T = ∞, which is an easy consequence of (5.4) for finite T

because Wn(t) is decreasing and e−2t → 0 as t → ∞.)
Returning to (5.2), we obtain by (5.4), for every t ∈ [0, T ∧ τn] with T fixed,

[Ŵn, Ŵn]t = −2e4tWn(0)e−2t + 2Wn(0) +
∫ t

0
8e4sWn(0)e−2s ds + op(n)

= Wn(0)(−2e2t + 2 + 4e2t − 4) + op(n)

= 2Wn(0)(e2t − 1) + op(n) = 2(2m − 1)(e2t − 1) + op(n)

= 2λn(e2t − 1) + op(n).
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Defining ˜̂Wn(t) := n−1/2(
Ŵn(t) − Ŵn(0)

) = n−1/2(
e2tWn(t) − Wn(0)

)
,

we have

[˜̂Wn,
˜̂Wn]t = n−1[Ŵn, Ŵn]t = 2λ(e2t − 1) + op(1), t ≤ τn.(5.5)

Let us now stop the processes at τ ′
n ≤ τn. By (5.5) and the assumption τ ′

n

p−→
t0, the quadratic variation of the stopped process converges in probability to
2λ(e2(t∧t0) − 1), for any fixed t ∈ [0,∞). Moreover, by (5.3),

[˜̂Wn,
˜̂Wn]t∧τ ′

n
= n−1[Ŵn, Ŵn]t∧τ ′

n
≤ 4me4t /n,

which is bounded for every fixed t . Consequently, Proposition 4.1 applies to the
stopped process and shows that

˜̂Wn(t ∧ τ ′
n)

d−→ Ẑ(t ∧ t0) in D[0,∞),(5.6)

where Ẑ is a continuous Gaussian martingale with E Ẑ(t) = 0 and covariances

E(Ẑ(t)Ẑ(u)) = 2λ(e2t − 1), 0 ≤ t ≤ u < ∞.(5.7)

[We can, if we want to, assume that Ẑ is defined, with this covariance function,
for all t ≥ 0; Ẑ is just a time-change of a standard Brownian motion B: Ẑ(t) =
B(2λ(e2t − 1)).] We define further

W̃n(t) := n−1/2(
Wn(t) − Wn(0)e−2t ) = e−2t˜̂Wn(t),(5.8)

ZW(t) := e−2t Ẑ(t),(5.9)

and note that ZW is a continuous Gaussian process with ZW(t) ∼ N(0,2λ(e−2t −
e−4t )). Then (5.6) implies

W̃n(t ∧ τ ′
n)

d−→ ZW(t ∧ t0) in D[0,∞).(5.10)

Next let us ignore the colors. For r = 0,1, . . . , let Urn(t) be the number of bins
with exactly r balls at time t , and let Vrn(t) := ∑

s≥r Usn(t) be the number of bins
with at least r balls. Thus, V0n(t) = ∑

r Urn(t) = n and Urn(0) = ur(n). Note that

Bn(t) = Vkn(t),(5.11)

Hn(t) =
∞∑

r=k

rUrn(t) = kVkn(t) +
∞∑

k+1

Vrn(t).(5.12)

Since Vrn changes (by −1) precisely when a ball dies in a bin with r balls, and
there are rUrn such balls,

dVrn(t) = −rUrn(t) dt + dM′.
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Define further V̂rn(t) := ertVrn(t). Then

dV̂rn(t) = rertVrn(t) dt + ert dVrn(t)

= rertVrn(t) dt − rertUrn(t) dt + ert dM′

= rertVr+1,n(t) dt + dM = re−t V̂r+1,n(t) dt + dM,

where dM = ert dM′ is another martingale differential. It follows that

Mrn(t) := V̂rn(t) − r

∫ t

0
e−s V̂r+1,n(s) ds(5.13)

is a martingale for every r ≥ 0. The quadratic variation is

[Mrn,Mrn]t = ∑
0<s≤t

|�Mrn(s)|2 = ∑
0<s≤t

|�V̂rn(s)|2

(5.14)

= ∑
0<s≤t

e2rs |�Vrn(s)|2 =
∫ t

0
e2rs d(−Vrn(s)).

Define

M̃rn(t) := n−1/2(
Mrn(t) − Mrn(0)

);
this is a martingale with M̃rn(0) = 0. Note that

Mrn(0) = V̂rn(0) = Vrn(0) = ∑
l≥r

ul(n).

It follows from [17], Lemma 4.4, that, for every r ≥ 0, as n → ∞,

sup
t≥0

|Vrn(t)/n − qr(e
−t )| p−→ 0,(5.15)

where qr(p) := P(Dp ≥ r); see Section 2. [This could also be proved similarly
to (5.4) above, using (5.23) below.] Using integration by parts twice, we obtain
from (5.14) that, if 0 < T < ∞ is fixed, then, for t ≤ T ∧ τn,

[M̃rn, M̃rn]t = n−1[Mrn,Mrn]t
= n−1

(
Vrn(0) − e2rtVrn(t) +

∫ t

0
Vrn(s)2re2rs ds

)
(5.16)

= qr(1) − e2rt qr (e
−t ) +

∫ t

0
qr(e

−s)2re2rs ds + op(1)

=
∫ t

0
e2rs d(−qr(e

−s)) + op(1) =
∫ 1

e−t
p−2r dqr(p) + op(1).

Moreover, (5.14) further implies

[M̃rn, M̃rn]t = n−1[Mrn,Mrn]t ≤ n−1e2rtVrn(0) ≤ e2rt .(5.17)
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Consequently, again by Proposition 4.1 applied to the processes stopped at τ ′
n,

M̃rn(t ∧ τ ′
n)

d−→ Yr(t ∧ t0) in D[0,∞),(5.18)

where Yr is a continuous Gaussian martingale with EYr(t) = 0 and covariances

E(Yr(t)Yr(u)) :=
∫ 1

e−t
p−2r dqr(p), 0 ≤ t ≤ u.(5.19)

Furthermore, since Vrn and Vsn, with s 
= r , a.s. never change simultaneously,
[M̃rn, M̃sn] = 0. Hence, by Proposition 4.1 applied to the vector-valued martingale
(M̃rn)

R
r=0, for fixed but arbitrary R ≥ 1, (5.18) holds jointly for all r ≥ 0, with a

diagonal covariance matrix for (Yr)
∞
1 , which implies that the processes Yr (r =

0,1, . . .) are all independent.
To deduce results for Vrn, we have to invert (5.13). We have, using (5.13) re-

peatedly,

V̂rn(t) = Mrn(t) + r

∫ t

0
e−s V̂r+1,n(s) ds

= Mrn(t) +
∫
s<t

re−sMr+1,n(s) ds

+
∫
s2<s1<t

re−s1(r + 1)e−s2 V̂r+2,n(s2) ds2 ds1,

and so on, and it is easily verified by backward induction that

V̂rn(t) = Mrn(t)
(5.20)

+
∞∑

j=r+1

r

(
j − 1

r

)∫ t

0
(e−s − e−t )j−r−1e−sMj,n(s) ds.

Note that the sum actually is finite for every n, since Vrn(t) = 0 and Mrn(t) = 0
when r > n.

Define, for t ≥ 0,

v̂rn(t) := Mrn(0)
(5.21)

+
∞∑

j=r+1

r

(
j − 1

r

)∫ t

0
(e−s − e−t )j−r−1e−sMj,n(0) ds.

We claim that v̂rn(t) = nertqrn(e
−t ). To see this, it is convenient to temporar-

ily assume that V̂rn(t) and Mrn(t) are defined for all t ≥ 0; see Remark 5.1.
Since then Mrn is a martingale on [0,∞), we have EMrn(t) = Mrn(0), and thus,
E V̂rn(t) = v̂rn(t). On the other hand, E V̂rn(t) = ert

EVrn(t), and Vrn(t) is the
number of bins with at least r balls at time t in the process where balls die in-
dependently with rate 1 (without stopping). At time 0, the number of balls in a
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random bin has the distribution of Dn, and at time t it thus has the same distribu-
tion as the thinned variable Dn,e−t . Consequently,

v̂rn(t) = E V̂rn(t) = ertnP(Dn,e−t ≥ r) = nertqrn(e
−t ),(5.22)

verifying our claim.
Accordingly, for t ≤ τn, let˜̂V rn(t) := n−1/2(

V̂rn(t) − nertqrn(e
−t )

);
we find from (5.20)–(5.22) that˜̂V rn(t) = M̃rn(t)
(5.23)

+
∞∑

j=r+1

r

(
j − 1

r

)∫ t

0
(e−s − e−t )j−r−1e−sM̃j,n(s) ds.

We can now apply (5.18) (with joint convergence) to any partial sum. Further,
from (5.17) we have [M̃rn, M̃rn]t ≤ e2rtVrn(0)/n. By Condition 2.1(ii), for any
A > 1, there exists CA such that Vrn(0) ≤ A−r ∑∞

j=0 ujA
j ≤ CAA−rn. Thus, for

any T > 0, choosing A = e2T +2,

[M̃rn, M̃rn]T ≤ e2rT Vrn(0)/n ≤ CAe−2r .

Hence, using (4.2) and Doob’s L2-inequality, we obtain

E sup
t≤T

M̃2
rn(t) ≤ 4 E[M̃rn, M̃rn]T ≤ C′

T e−2r .

Then by the Cauchy–Schwarz inequality,

E sup
t≤T

|M̃rn(t)| ≤ C′′
T e−r .(5.24)

Hence, by (5.18) and Fatou’s lemma,

E sup
t≤t0

|Yr(t)| ≤ Ce−r .(5.25)

Let RNn(t) be the tail of the sum in (5.23), summing over j > N only. Us-
ing (5.24), it is easily seen that, for any fixed r and T , E supt≤T |RNn(t)| → 0 as
N → ∞, uniformly in n. Then using the convergence of the partial sums, we may
by [2], Theorem 4.2, take the limit (5.18) (in distribution) under the summation
sign in (5.23). It follows that

˜̂V rn(t ∧ τ ′
n)

d−→ X̂r(t ∧ t0),(5.26)

in D[0,∞) for each r , where

X̂r (t) := Yr(t) +
∞∑

j=r+1

r

(
j − 1

r

)∫ t

0
(e−s − e−t )j−r−1e−sYj (s) ds.(5.27)
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It is an easy consequence of (5.25) that the sum in (5.27) a.s. converges uniformly
in t ≤ t0, which implies that each X̂r is continuous.

Next, define for each r

Ṽrn(t) := n−1/2(
Vrn(t) − nqrn(e

−t )
) = e−rt ˜̂V rn(t),(5.28)

Xr(t) := e−rt X̂r (t).(5.29)

Then, by (5.26),

Ṽrn(t ∧ τ ′
n)

d−→ Xr(t ∧ t0).(5.30)

Furthermore, our proof shows also that there is joint convergence for different r

in (5.30). Moreover, the same argument as above (with truncation to finite sums,
using (5.24) and [2], Theorem 4.2) shows that we can sum over r ≥ k to yield,
jointly with (5.30) and with a continuous limit on the right-hand side,

∞∑
r=k

Ṽrn(t ∧ τ ′
n)

d−→
∞∑

r=k

Xr(t ∧ t0).(5.31)

It now follows from (5.11) and (5.12) that (3.5) and (3.6) hold with ZB = Xk and
ZH = kXk + ∑∞

r=k+1 Xr ; see (3.1), (3.2), (2.5) and (2.6).

Finally, let us apply Proposition 4.1 to M̃rn, for all r ≥ k, and ˜̂Wn together. Each
time Vrn jumps (necessarily by −1) for some r ≥ k, a white ball dies and thus Wn

jumps too (by −2). (We restrict ourselves to r ≥ k here, and recall that every heavy
ball is white.) Thus, the quadratic covariation is

[M̃rn,
˜̂Wn]t = n−1

∑
0<s≤t

�Mrn(s)�Ŵn(s) = n−1
∑

0<s≤t

�V̂rn(s)�Ŵn(s)

= n−1
∑

0<s≤t

e(r+2)s�Vrn(s)�Wn(s) = n−1
∫ t

0
2e(r+2)s d(−Vrn(s)),

and [using integration by parts as in (5.16)] we obtain from (5.15) that

[M̃rn,
˜̂Wn]t = 2

∫ t

0
e(r+2)s d(−qr(e

−s)) + op(1)

(5.32)

= 2
∫ 1

e−t
p−r−2 dqr(p) + op(1).

Hence, Proposition 4.1 implies joint convergence for M̃rn (r ≥ k) and ˜̂Wn

stopped at τ ′
n, and, by (5.23), this also holds for ˜̂V rn. Hence, we can regard the

Gaussian processes ZW , Yr and Xr , r ≥ k, as jointly defined, and jointly Gaussian,
and the limits above holding jointly (at least for r ≥ k). But Ln(t) = Wn(t)−Hn(t)
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so, combining together (5.11), (5.12), (5.10), (5.30), (5.31), (3.3) and (5.8) yields
(3.5)–(3.7), with

ZB := Xk,(5.33)

ZH := kXk +
∞∑

r=k+1

Xr,(5.34)

ZL := ZW − ZH = ZW − kXk −
∞∑

r=k+1

Xr.(5.35)

Next we compute the covariances of the processes ZL, ZH , ZB . As stated
above, for simplicity, we shall only consider the case of a single time t ; we leave
the general case of two different times to the reader. For convenience we make the
change of variable t = − lnx; thus, x = e−t decreases from 1 to 0. In what fol-
lows, we assume that 0 ≤ t ≤ t0 (so that e−t0 ≤ x ≤ 1), and that r, s ≥ k. Also, for
convenience, in (5.42)–(5.47) our results are stated in terms of quantities σWW(x),
σrW (x) and σrs(x) defined below.

First, by (5.7),

Var(Ẑ(− lnx)) = E(Ẑ(− lnx)2) = 2λ(x−2 − 1)(5.36)

and, thus,

σWW(x) := Var(ZW(− lnx)) = Var(x2Ẑ(− lnx)) = 2λ(x2 − x4).(5.37)

Similarly, by (5.19) and the ensuing comments,

Cov((Yr(− lnx),Ys(− lnx)) = δrs

∫ 1

x
p−2r dqr(p).

Moreover, (5.32) implies, by Proposition 4.1,

Cov(Yr(− lnx), Ẑ(− lnx)) = 2
∫ 1

x
p−r−2 dqr(p).(5.38)

Let s = − lny. Recall that Ẑ is a martingale, and so Cov(Ẑ(t), Yj (s)) =
Cov(Ẑ(s), Yj (s)). Then from (5.27), for s ≤ t ,

Cov(X̂r (− lnx), Ẑ(− lnx)) = 2
∫ 1

x
p−r−2 dqr(p) +

∞∑
j=r+1

r

(
j − 1

r

)
arj (x),

where we define, with the change of variable y = e−s ,

arj (x) :=
∫ 1

y=x
(y − x)j−r−12

∫ 1

p=y
p−j−2 dqj (p)dy

= 2
∫ 1

p=x

∫ p

y=x
(y − x)j−r−1p−j−2 dy dqj (p)

= 2

j − r

∫ 1

x
(p − x)j−rp−j−2 dqj (p).
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Hence,

Cov(X̂r (− lnx), Ẑ(− lnx))
(5.39)

= 2
∞∑

j=r

(
j − 1
r − 1

)∫ 1

x
(p − x)j−rp−j−2 dqj (p)

and, recalling (5.9) and (5.29),

σrW (x) := Cov(Xr(− lnx),ZW(− lnx))
(5.40)

= 2xr+2
∞∑

j=r

(
j − 1
r − 1

)∫ 1

x
(p − x)j−rp−j−2 dqj (p).

Similarly, by (5.27) and (5.19),

Var(X̂r (− lnx))

=
∫ 1

x
p−2r dqr(p) +

∞∑
j=r+1

r2
(

j − 1
r

)2

× 2
∫ ∫

x<y<z<1
(y − x)j−r−1(z − x)j−r−1

×
∫ 1

p=z
p−2j dqj (p)dy dz

=
∞∑

j=r

(
j − 1
r − 1

)2 ∫ 1

x
(p − x)2j−2rp−2j dqj (p)

and, omitting the details, for i ≥ 1,

Cov(X̂r(− lnx), X̂r+i(− lnx))

=
∞∑

j=r+i

(
j − 1
r − 1

)(
j − 1

r + i − 1

)∫ 1

x
(p − x)2j−2r−ip−2j dqj (p).

Hence, by (5.29) again, for i ≥ 0,

σr,r+i(x) := Cov(Xr(− lnx),Xr+i(− lnx))

= x2r+i
∞∑

j=r+i

(
j − 1
r − 1

)(
j − 1

r + i − 1

)
(5.41)

×
∫ 1

x
(p − x)2j−2r−ip−2j dqj (p).



1108 S. JANSON AND M. J. LUCZAK

The covariances of the processes ZL, ZH , ZB now follow from (5.33)–(5.35),
(5.37), (5.40) and (5.41); (3.8) now follows, with

σBB(x) = σkk(x),(5.42)

σBH (x) = kσkk(x) +
∞∑

r=k+1

σkr(x),(5.43)

σHH (x) = k2σkk(x) + 2k

∞∑
r=k+1

σkr(x) +
∞∑

r,s=k+1

σrs(x),(5.44)

σBL(x) = σkW (x) − σBH (x),(5.45)

σHL(x) = kσkW (x) +
∞∑

r=k+1

σrW (x) − σHH (x),(5.46)

σLL(x) = σWW(x) − 2kσkW (x) − 2
∞∑

r=k+1

σrW (x) + σHH (x).(5.47)

Finally, to see that this gives a nonsingular covariance matrix when P(D >

k) > 0 and t = − lnx ∈ (0, t0], we argue as follows (without using the ex-
plicit formulas above). Assume that the matrix is singular for t = t1 > 0. Then
aBZB(t1) + aHZH(t1) + aLZL(t1) = 0 a.s. for some constants aB, aH , aL, not all
zero.

If aL = 0, then (5.33) and (5.34) show that either Xk = a
∑

j≥k+1 Xj for some
a or Xk+1 = −∑

j≥k+2 Xj a.s. By (5.29) and (5.27), this means that for either
l = k or l = k + 1, Yl is a.s. equal to a function of {Yj }j>l that can be written as a
sum

∑∞
l+1

∫ t1
0 fj (s) dYj (s) of stochastic integrals, for some deterministic functions

fj (s) (depending on t1). However, the processes Yj are independent, so this is
impossible unless Yl(t1) = 0 a.s., but this contradicts (5.19) and (2.9) since P(D ≥
k + 1) > 0.

If aL 
= 0, we similarly see that Ẑ(t1) = e2t1ZW(t1) is a.s. equal to such a sum,
now over j ≥ k, so that for suitable deterministic functions fj ,

Ẑ(t1) =
∫ t1

0
dẐ(s) =

∞∑
j=k

∫ t1

0
fj (s) dYj (s).

(The integrals on the right-hand side are independent, and the sum converges in
L2.) In other words, when t = t1,∫ t

0

(
dẐ(s) −

∞∑
j=k

fj (s) dYj (s)

)
= 0.(5.48)

This stochastic integral is a martingale, and thus, (5.48) holds for all t ∈ [0, t1].
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Rewrite (5.36)–(5.38) as

Var(Ẑ(t)) =
∫ t

0
bZZ(s) ds,

Cov(Yj (t), Yr(t)) = δjr

∫ t

0
bjj (s) ds,

Cov(Ẑ(t), Yj (t)) =
∫ t

0
bZj (s) ds,

where

bZZ(t) = 4λe2t ,(5.49)

bjj (t) = e(2j−1)t q ′
j (e

−t ),(5.50)

bZj (t) = 2e(j+1)t q ′
j (e

−t ).(5.51)

Then, computing the variance of the stochastic integral in (5.48), we find, for 0 ≤
t ≤ t1, ∫ t

0

(
bZZ(s) − 2

∞∑
j=k

fj (s)bZj (s) +
∞∑

j=k

fj (s)
2bjj (s)

)
= 0,

and thus, for a.e. s ∈ [0, t1],

bZZ(s) = 2
∞∑

j=k

fj (s)bZj (s) −
∞∑

j=k

fj (s)
2bjj (s).(5.52)

Now, the arithmetic–geometric inequality shows that

2fj (s)bZj (s) ≤ fj (s)
2bjj (s) + bZj (s)

2/bjj (s),

so, using formulae (5.49)–(5.51), we deduce from (5.52) that

4λe2s = bZZ(s) ≤
∞∑

j=k

bZj (s)
2/bjj (s) = 4

∞∑
j=k

e3sq ′
j (e

−s).(5.53)

On the other hand, for any finite sequence gk, . . . , gN of bounded determin-
istic functions, a similar calculation of the quadratic variation of

∫ t
0 ( dẐ(s) −∑N

j=k gj (s) dYj (s)), and the fact that the quadratic variation is an increasing
process, shows that, for a.e. s ∈ [0, t1],

bZZ(s) − 2
N∑

j=k

gj (s)bZj (s) +
N∑

j=k

gj (s)
2bjj (s) ≥ 0.

Taking gj (s) = min(bZj (s)/bjj (s),M), j = 1, . . . ,N , and then letting M → ∞
and N → ∞ yields bZZ(s) ≥ ∑∞

j=k bZj (s)
2/bjj (s) for a.e. s ∈ [0, t1]. Combined
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with (5.53), this shows that, for a.e. s ∈ [0, t1],

4λe2s = bZZ(s) =
∞∑

j=k

bZj (s)
2/bjj (s) = 4e3s

∞∑
j=k

q ′
j (e

−s).(5.54)

It is easily seen from (2.9) and Condition 2.1(ii) that
∑∞

j=k q ′
j (p) can be expressed

as a convergent power series in p ∈ [0,1]; thus, (5.54) holds for all s ≥ 0 and yields

∞∑
j=k

q ′
j (p) = λp, 0 ≤ p ≤ 1.

By integration, since qj (0) = 0 for j > 0 by (2.4), this gives

∞∑
j=k

qj (p) = λ

2
p2, 0 ≤ p ≤ 1.(5.55)

As p → 0, the left-hand side is O(pk), so (5.55) requires k = 2. Moreover, by (2.4)
again,

λ

2
p2 =

∞∑
j=2

P(Dp ≥ j) = EDp − P(Dp ≥ 1) = pλ − 1 + P(Dp = 0),

and thus, for q = 1 − p ∈ [0,1],
∞∑

j=0

pjq
j = P(D1−q = 0) = λ

2
(1 − q)2 − λ(1 − q) + 1 = 1 − λ

2
+ λ

2
q2.

Consequently, pj = 0 for j 
= 0,2, which contradicts our assumption P(D > k) >

0. (Although somewhat hidden in the argument above, the conceptual reason be-
hind the proof is that Wn will jump without any change in Vrn, r ≥ k, every time a
light white ball dies, and this occurs quite often.) �

In the above covariance formulae, dqj (p) = q ′
j (p) dp, which can be expressed

in (pl)l using (2.9). In particular, (5.39) and (2.9) yield

Cov(X̂r (− lnx), Ẑ(− lnx))

= 2
∞∑

j=r

∞∑
l=j

lpl

(
l − 1
j − 1

)(
j − 1
r − 1

)

×
∫ 1

x
(p − x)j−rp−j−2pj−1(1 − p)l−j dp

= 2
∞∑
l=r

pl

l∑
j=r

l

(
l − 1
r − 1

)(
l − r

j − r

)∫ 1

x
(p − x)j−r (1 − p)l−jp−3 dp
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= 2
∞∑
l=r

plr

(
l

r

)∫ 1

x
(1 − p + p − x)l−rp−3 dp

= r

∞∑
l=r

pl

(
l

r

)
(1 − x)l−r (x−2 − 1).

Consequently, (5.40) simplifies to

σrW (x) = rxr(1 − x2)

∞∑
l=r

pl

(
l

r

)
(1 − x)l−r .(5.56)

Unfortunately, we have not found any similar simplification for, for example,
σrr(x).

EXAMPLE 5.2. In the special case where D ∼ Po(λ), we have by Lemma 2.4
and the line following (1.2)

q ′
j (p) = λψ ′

j (λp) = λπj−1(λp) = e−λp λjpj−1

(j − 1)!
and by (5.56) [or from (5.40)],

σrW (x) = rxr(1 − x2)

∞∑
l=r

e−λ λl

(l − r)!r!(1 − x)l−r

= xr(1 − x2)
e−λλr

(r − 1)!
∞∑
i=0

(λ(1 − x))i

i! = (λx)re−λx

(r − 1)! (1 − x2),

but we see no significant simplification of (5.41).

6. Proof of Theorems 3.4 and 3.5 for G∗(n, (di)
n
1). We will now use The-

orem 3.1 to prove Theorems 3.4 and 3.5 for the random multigraph G∗(n, (di)
n
1).

The simple random graph G(n, (di)
n
1) will be treated in the next section. As a

preparation, the reader might (on second reading) observe that the proofs below
hold also if we allow O(1) golden edges, as in Theorem 3.1, now interpreting
Corek as the remainder (excluding isolated vertices) when we stop, provided that
in Theorem 3.5 we replace “Corek = ∅” by “Hn(τn) < δ̄n” for some fixed, suffi-
ciently small, δ̄ > 0.

PROOF OF THEOREM 3.4. Note that l(0) = ln(0) = 0, so p̂ and p̂n are well-
defined numbers in [0,1]. Moreover, if δ > 0 is small enough, then l(p̂ − δ) < 0
and l(p̂ + δ) > 0. Since ln → l by Lemma 2.3, this implies ln(p̂ − δ) < 0 and
ln(p̂ + δ) > 0 for large enough n, and thus, ln then has a zero p̂n in (p̂ − δ, p̂ + δ).
Furthermore, the uniform convergence of ln to l given by Lemma 2.3, and the fact
that l > 0 on the compact interval [p̂ + δ,1], imply that if n is large enough, then
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ln > 0 on [p̂ + δ,1]. It follows that, for large enough n, p̂n ∈ (p̂ − δ, p̂ + δ). Since
δ can be chosen arbitrarily small, this shows p̂n → p̂. We change variables and
define t̂ := − ln p̂ and tn := − ln p̂n; thus, tn → t̂ .

It was shown in [17], proof of Theorem 2.3, that τn
p−→ t̂ . [This was proved

using methods similar to those used here, as a simple consequence of (3.9), and
extends to the case with golden balls.] Consequently, we can apply Theorem 3.1
with τ ′

n = τn and t0 = t̂ . We simplify, at least conceptually, by using the Skorokhod
coupling theorem ([19], Theorem 4.30) which shows that we can assume that all
random variables are defined on the same probability space and that both τn →
t̂ and the limits (3.5)–(3.7) hold a.s. Since the limits ZB , ZH and ZL are a.s.
continuous, this means that a.s. (3.5)–(3.7) hold uniformly on the interval [0, t̂ +1].
Taking t = τn (which a.s. is less that t̂ + 1 for large n), we see that, in particular,
a.s.

Ln(τn) = nľn(τn) + n1/2ZL(τn ∧ t̂ ) + o(n1/2)
(6.1)

= nľn(τn) + n1/2ZL(t̂) + o(n1/2),

by the continuity of ZL. Thus, since Ln(τn) = −1,

ľn(τn) = −n−1/2ZL(t̂) + o(n−1/2).(6.2)

Moreover, by the mean-value theorem, for some ξn in the interval [tn, τn] or
[τn, tn],

ľn(τn) = ľn(τn) − ľn(tn) = ľ′n(ξn)(τn − tn).(6.3)

As n → ∞, we have τn → t̂ and tn → t̂ , and thus, ξn → t̂ . Hence, the uniform
convergence of ľ′n (see Lemma 2.3) implies ľ′n(ξn) → ľ′(t̂) = −e−t̂ l′(p̂) = −p̂α. It
follows by (6.3) and (6.2) that a.s.

τn − tn =
(
− 1

p̂α
+ o(1)

)
ľn(τn) = n−1/2 1

αp̂

(
ZL(t̂) + o(1)

)
.

Consequently, using the mean-value theorem again and the analogue of (6.1)
for Hn, a.s., for some ξ ′

n → t̂ ,

n−1/2Hn(τn) = n1/2ȟn(τn) + ZH(t̂) + o(1)

= n1/2ȟn(tn) + n1/2ȟ′
n(ξ

′
n)(τn − tn) + ZH(t̂) + o(1)

(6.4)

= n1/2hn(p̂n) + ȟ′(t̂) 1

αp̂
ZL(t̂) + ZH(t̂) + o(1)

= n1/2hn(p̂n) − h′(p̂)

α
ZL(t̂) + ZH(t̂) + o(1),

and similarly for Bn. The result (3.10) follows since e(Corek) = 1
2Hn(τn) and

v(Corek) = Bn(τn).
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Finally, it is easily seen that if P(D > k) = 0, then h(p) = kpkp
k and either

l(1) = 0 and p̂ = 1, or l(p) > 0 for 0 < p ≤ 1 and p̂ = 0. But we have assumed
that 0 < p̂ < 1, so P(D > k) > 0 and the nonsingularity of the covariance matrix
follows from the nonsingularity in Theorem 3.1. �

PROOF OF THEOREM 3.5. Let 0 < δ0 < p̂, and let ε > 0 be so small that
δ0 < p̂ − ε < p̂ < p̂ + ε < 1 and l′′ > β/2 on Iε := [p̂ − ε, p̂ + ε]. Since l′′n → l′′
uniformly, it follows that l′′n > β/4 > 0 on Iε , provided n is large. Hence, for such
n, ln has a unique minimum point p̄n in Iε . Moreover, since ln → l uniformly,
ln(p̄n) = minIε ln → minIε l = 0. On the other hand, η := min[δ0,1]\Iε l > 0, so if n

is large enough, then min[δ0,1]\Iε ln > η/2 > minIε ln = ln(p̄n). Consequently, for
large n, p̄n is the unique minimum point of ln in [δ0,1]. In the sequel we consider
only n such that such a unique minimum point exists, and we redefine p̄n to be this
minimum point. We have shown that the two definitions give the same result for
large n. In particular, p̄n ∈ Iε for large n. Since ε can be chosen arbitrarily small,
this shows that p̄n → p̂.

We change variables and define t̂ := − ln p̂ and tn := − ln p̄n → t̂ . Thus, ľ(t̂ ) =
0, but ľ(t) > 0 for t ≥ 0 with t 
= t̂ . Suppose that T1 and T2 are any fixed numbers
with t̂ < T1 < T2. Then η1 := min{ľ(t) : t ∈ [T1, T2]} > 0. By the uniform conver-
gence of ľn → ľ, min[T1,T2] ľn > η1/2 for large n. Hence, if T1 ≤ τn ≤ T2, and n is
large enough, then ľn(τn) − Ln(τn)/n = ľn(τn) + 1/n > η1/2, because Ln(τn) =
−1. On the other hand, it follows from (3.9) that P(ľn(τn) − Ln(τn)/n > η1/2) →
0. Consequently,

P(T1 ≤ τn ≤ T2) → 0.(6.5)

Similarly, if T < t̂ , then

P(0 ≤ τn ≤ T ) → 0.(6.6)

By [17], Lemma 5.1 (a version of a classical result by Łuczak [21]), there ex-
ists δ > 0 such that whp G∗(n, (di)

n
1) has no nonempty k-core with fewer that δn

vertices. Choose T2 such that λe−2T2 < δ, and let δ1 := δ − λe−2T2 > 0.
Since Wn(0)/n = (2m − 1)/n → λ, it follows by (5.4) that | 1

n
Wn(T2 ∧ τn) −

λe−2(T2∧τn)| p−→ 0, and thus, whp, if τn ≥ T2, then | 1
n
Wn(T2) − λe−2T2 | < δ1, and

thus, 1
n
Wn(T2) < λe−2T2 + δ1 = δ. Hence, if τn ≥ T2, then whp there are less than

δn white balls remaining at T2, and thus even fewer at τn, so the k-core has fewer
that δn vertices. By the result just quoted, this shows that if τn ≥ T2, then whp the
k-core is empty. In conjunction with (6.5), this implies that, for every fixed T1 > t̂ ,

P(Corek 
= ∅ and τn ≥ T1) → 0.(6.7)

We next replace the fixed T1 by a sequence t ′n → t̂ . We claim we can define t ′n ≥
max{t̂ , tn} in such a way that t ′n → t̂ and

P(Corek 
= ∅ and τn ≥ t ′n) → 0.(6.8)
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Let us do so explicitly. For every i ∈ N, we may define ni = max{ni−1 + 1, n′
i},

where n′
i is the minimum natural number such that, for all n ≥ n′

i ,

P(Corek 
= ∅ and τn ≥ t̂ + 1/i) ≤ 1/i.

[It is clear by (6.7) that ni exists.] The numbers ni form an increasing sequence.
Now define t ′′n = t̂ + 1/i for each ni ≤ n < ni+1. Then for n ≥ ni ,

P(Corek 
= ∅ and τn ≥ t ′′n ) ≤ 1

i
.

Further, t ′′n → t̂ . Finally, we can let t ′n = max{t ′′n , tn}, and this is a sequence with
required properties.

We now define τ ′
n := τn ∧ t ′n. If τ ′

n = t ′n, then τn ≥ t ′n and thus, by (6.8), whp the
k-core is empty. Conversely, if τ ′

n < t ′n, then τn = τ ′
n < t ′n < t̂ + 1 for large n. Let

η2 := λe−2(t̂+2). By (5.4) again, if τn < t̂ + 1, then whp n−1Wn(τn) > λe−2τn −
η2 > 0, and thus, there are some white balls left at τn, which shows that there is a
nonempty k-core. Consequently, whp the k-core is empty if and only if τ ′

n = t ′n.
Note further that τ ′

n ≤ t ′n by definition, and t ′n → t̂ . Moreover, by (6.6), for every

T < t̂ , whp τn ≥ T and, thus, τ ′
n ≥ T . Consequently, τ ′

n

p−→ t̂ .
We can thus apply Theorem 3.1, with t0 = t̂ . Since 0 < p̂ < 1, the non-

singularity statement in Theorem 3.1 applies as in the proof of Theorem 3.4; in
particular, σ 2 = σ 2

LL > 0.
As in the proof of Theorem 3.4, we use the Skorohod coupling theorem [19],

Theorem 4.30 and assume that the limits (3.5)–(3.7) and τ ′
n → t̂ hold a.s. In par-

ticular, (3.7) then yields a.s., using τ ′
n → t̂ and the continuity of ZL,

n−1/2Ln(τ
′
n) = n1/2 ľn(τ

′
n) + ZL(t̂) + o(1).(6.9)

If τ ′
n < t ′n, and thus τn = τ ′

n and Ln(τ
′
n) = Ln(τn) = −1, then (6.9) yields

n1/2 ľn(τ
′
n) = −ZL(t̂) + o(1),(6.10)

and, since p̄n is the minimum point on an interval including τn,

n1/2ln(p̄n) = n1/2 ľn(tn) ≤ n1/2 ľn(τ
′
n) = −ZL(t̂) + o(1).(6.11)

In particular, for any ε > 0, if Corek 
= ∅, then whp τ ′
n < t ′n and, by (6.11), whp

n1/2ln(p̄n) ≤ −ZL(t̂) + ε.(6.12)

Conversely, if τ ′
n = t ′n, then a.s. τn > t ′n ≥ tn (since τn has a continuous distrib-

ution) so Ln(tn) ≥ 0. Moreover, (3.7) yields

0 ≤ n−1/2Ln(tn) = n1/2 ľn(tn) + ZL(t̂) + o(1).(6.13)

Consequently,

n1/2ln(p̄n) = n1/2 ľn(tn) ≥ −ZL(t̂) + o(1).(6.14)
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In particular, for any ε > 0, if Corek = ∅, then whp τ ′
n = t ′n and, by (6.14), whp

n1/2ln(p̄n) ≥ −ZL(t̂) − ε.(6.15)

In the case (i) of the theorem, (6.12) fails for large n (and any ε > 0), and thus,
whp Corek = ∅. Similarly, in case (iii), (6.15) fails for large n (and any ε > 0),
and thus, whp Corek 
= ∅.

In case (ii), it follows similarly that if ZL(t̂) > −ζ + ε, then (6.12) fails for
large n, and thus, whp Corek = ∅, while if ZL(t̂) < −ζ − ε, then (6.15) fails for
large n and thus whp Corek 
= ∅. Since ε > 0 is arbitrary, this means that whp
Corek 
= ∅ ⇐⇒ ZL(t̂) < −ζ , and thus, since ZL(t̂) ∼ N(0, σ 2) by (3.8),

P(Corek 
= ∅) → P
(
ZL(t̂) < −ζ

) = 
(−ζ/σ ),

as asserted.
Assume now that τn = τ ′

n < t ′n so that the k-core is nonempty, and let us localize
τn more precisely. Note first that, since l′(p̂) = 0 and l′′(p̂) = β > 0, it follows that
ľ′(t̂) = 0 and ľ′′(t̂) = β̌ := βp̂2 > 0.

Using Taylor’s formula and the fact that ľ′n(tn) = 0, for some ξn between τ ′
n

and tn,

ľn(τ
′
n) = ľn(tn) + 1

2 ľ′′n(ξn) · (τ ′
n − tn)

2,

and thus by (6.10), recalling ľn(tn) = ln(p̄n),

1
2 ľ′′n(ξn) · (τ ′

n − tn)
2 = n−1/2(−ZL(t̂) − n1/2ln(p̄n) + o(1)

)
.(6.16)

Since τ ′
n → t̂ and tn → t̂ , we have ξn → t̂ a.s., and thus, ľ′′n(ξn) → ľ′′(t̂) = β̌ > 0

a.s.
In case (ii) we thus have, when ZL(t̂) < −ζ ,

(τ ′
n − tn)

2 = 2β̌−1n−1/2(−ZL(t̂) − ζ + o(1)
)
.(6.17)

If τ ′
n > tn, then Ln(tn) ≥ 0 and (6.13) holds, which by (6.16) implies

1
2 ľ′′n(ξn) · (τ ′

n − tn)
2 ≤ o(n−1/2),(6.18)

which contradicts (6.17) for large n. Consequently, when ZL(t̂) < −ζ , (6.17)
yields

τn = τ ′
n = tn − n−1/4(

(2/β̌)1/2(−ZL(t̂) − ζ
)1/2 + o(1)

)
.(6.19)

We now obtain from (3.6) [cf. (6.4)], recalling ȟ′
n(tn) → ȟ′(t̂) = −p̂h′(p̂),

Hn(τn) = nȟn(τn) + n1/2(
ZH(t̂) + o(1)

)
= nȟn(tn) + n

(
ȟ′

n(tn) + o(1)
)
(τn − tn) + O(n1/2)(6.20)

= nhn(p̄n) + n3/4(
h′(p̂)(2/β)1/2(−ZL(t̂) − ζ

)1/2 + o(1)
)
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and similarly for Bn. The result follows, with Z := −ZL(t̂)/σ ∼ N(0,1), since
e(Corek) = 1

2Hn(τn) and v(Corek) = Bn(τn). (Note that ZH and ZB give insignif-
icant contributions in this case.)

In case (iii), we similarly obtain from (6.16)

(τ ′
n − tn)

2 = 2β̌−1|ln(p̄n)|(1 + o(1)
)

and, since by (6.18) we can again exclude τ ′
n > tn for large n,

τn − tn = τ ′
n − tn = − (2/β̌)1/2|ln(p̄n)|1/2(

1 + o(1)
)
.(6.21)

The random fluctuations here turn out to be of a smaller order. To capture them,
we note that, for large n, using the argument at the start of the proof [since now
ln(p̄n) < 0], that ln(p) = 0 for exactly two values of p in Iε , say, p̂n and p̂′

n,
with p̂ − ε < p̂′

n < p̄n < p̂n < p̂ + ε, and not for any other p ∈ [δ0,1]. Let t̂n :=
− ln p̂n < tn, so ľn(t̂n) = 0. By Taylor’s formula as for (6.16), also

t̂n − tn = − (2/β̌)1/2|ln(p̄n)|1/2(
1 + o(1)

)
.(6.22)

Finally, by Taylor’s formula again, for some ξn between τn and t̂n,

ľn(τn) = ľn(τn) − ľn(t̂n) = ľ′n(ξn)(τn − t̂n).(6.23)

Since ľ′n(tn) = 0, we similarly have for some ξ ′
n between ξn and tn,

ľ′n(ξn) = ľ′n(ξn) − ľ′n(tn) = (ξn − tn)ľ
′′
n(ξ ′

n).(6.24)

From (6.21) and (6.22), τn − tn ∼ t̂n − tn, and so also ξn − tn ∼ t̂n − tn. Combining
this with (6.24), (6.22), as well as the fact that ľ′′n(ξ ′

n) → ľ′′(t̂) = β̌ , we obtain

ľ′n(ξn) = β̌(t̂n − tn)
(
1 + o(1)

) = −(2β̌)1/2|ln(p̄n)|1/2(
1 + o(1)

)
.

Hence, (6.23) and (6.10) yield

τn − t̂n = |ln(p̄n)|−1/2n−1/2(2β̌)−1/2(
ZL(t̂) + o(1)

)
.

The result now follows by (3.5) and (3.6), analogously to (6.20), with Z′ :=
−(2β)−1/2ZL(t̂).

For the final statements, from Taylor’s formula and l′n(p̄n) = 0,

l′n(p̂) = (
β + o(1)

)
(p̂ − p̄n),(6.25)

and hence

ln(p̂) − ln(p̄n) = 1
2

(
β + o(1)

)
(p̂ − p̄n)

2 = (
(2β)−1 + o(1)

)
l′n(p̂)2,

so, if l′n(p̂)2 = o(ln(p̂)), then ln(p̄n)/ ln(p̂) → 1, which yields the first claim. The
second follows from (6.25) and bn(p̄n) − bn(p̂) = O(|p̂ − p̄n|), and similarly
for hn. �
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7. The simple graph G(n, (di)
n
1). We have proved Theorems 3.4 and 3.5 for

the random multigraph G∗(n, (di)
n
1), and the next step is to show that they hold for

the random simple graph G(n, (di)
n
1) too, that is, that they hold for G∗(n, (di)

n
1)

conditioned on this random multigraph being simple. For results that can be stated
as convergence in probability, or stating that some event holds whp, this transfer is
immediate: it suffices to have that

lim inf P
(
G∗(n, (di)

n
1) is simple

)
> 0.(7.1)

(As is well known (see, e.g., [22]), (7.1) holds under Condition 2.1(ii); see [16] for
a general necessary and sufficient condition.) For example, this holds in our pre-
vious paper [17]. However, with distributional results, such as those in the present
paper, the transfer to G(n, (di)

n
1) is much more delicate, and amounts to show-

ing that the variables we study are asymptotically independent of the event that
G∗(n, (di)

n
1) is simple.

Our basic tool will be the following general probabilistic result. Recall from
Section 2 that an indicator (of some event) is a random variable taking values in
the set {0,1}.

PROPOSITION 7.1. Assume that Xn, n ≥ 1, and X are random variables with
values in some metric space S and that, for each n ≥ 1, (Inα)α∈An , is a (finite)
family of indicator random variables defined on the same probability space as Xn.
Let Wn := ∑

α∈An
Inα and let En be the event

En := {Inα = 0 for every α ∈ An} = {Wn = 0}.
Assume further the following, as n → ∞:

(i) Xn
d−→ X.

(ii) For any fixed � ≥ 1, if we for each n select � indices αn
1 , . . . , αn

� ∈ An such
that P(Inαn

1
= · · · = Inαn

�
= 1) > 0, then

(Xn | Inαn
1
= · · · = Inαn

�
= 1)

d−→ X.(7.2)

(iii) Wn
d−→ W , where W is a random variable such that P(W = 0) > 0 and

the distribution of W is determined by its moments.
(iv) lim supn→∞ E(W

j
n ) < ∞ for every j ≥ 1.

Then (Xn | En)
d−→ X.

REMARK 7.2. The careful reader may observe that in (ii) it is conceivable
that, for some n, it is impossible to select αn

1 , . . . , αn
� ∈ An satisfying the condition.

However, we may just ignore such n. Indeed, since we may take αn
1 = · · · = αn

� ,
this happens if and only if Wn = 0 a.s., and if this happens for more than a finite
number of values of n, then necessarily W = 0 a.s. by (iii), so P(En) → 1 and the
conclusion becomes trivial.
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PROOF OF PROPOSITION 7.1. Recall that Xn
d−→ X is equivalent to P(Xn ∈

A) → P(X ∈ A) for all measurable sets A ⊆ S such that P(X ∈ ∂A) = 0; see [2,
Theorem 2.1].

Fix such a set A; we thus want to prove that P(Xn ∈ A | En) → P(X ∈ A). By
(7.2), for each � ≥ 1,

P(Xn ∈ A | Inαn
1
= · · · = Inαn

�
= 1)

d−→ P(X ∈ A)(7.3)

for every choice of αn
1 , . . . , αn

� ∈ An such that P(Inαn
1

= · · · = Inαn
�

= 1) > 0.
Moreover, (7.3) holds uniformly in all such choices, since otherwise we could
for each n select αn

1 , . . . , αn
� such that the difference between the two sides in (7.3)

is maximal (for this n) and obtain a contradiction.
Assume first that P(X ∈ A) > 0. Then P(Xn ∈ A) > 0 for large n; we consider

such n only. Then, by (7.3) and assumption (i),

E(Inα1 · · · Inα�
| Xn ∈ A) = P(Xn ∈ A and Inα1 = · · · = Inα�

= 1)

P(Xn ∈ A)

= P(Xn ∈ A | Inα1 = · · · = Inα�
= 1)

P(Xn ∈ A)
P(Inα1 = · · · = Inα�

= 1)

= P(X ∈ A) + o(1)

P(X ∈ A) + o(1)
P(Inα1 = · · · = Inα�

= 1)

= (
1 + o(1)

)
E(Inα1 · · · Inα�

),

where o(1) → 0 as n → ∞, uniformly in all choices of α1, . . . , α� ∈ An such that
E(Inα1 · · · Inα�

) > 0. Furthermore, this holds also, trivially, if E(Inα1 · · · Inα�
) = 0.

Consequently, we can sum over all α1, . . . , α� ∈ An and obtain

E(W�
n | Xn ∈ A) = (

1 + o(1)
)
E(W�

n).(7.4)

Now, assumptions (iii) and (iv) imply that E(W�
n) → E(W�) for every �, and

thus, (7.4) yields E(W�
n | Xn ∈ A) → E(W�). By the method of moments, and (iii),

this implies that (Wn | Xn ∈ A)
d−→ W , and thus,

P(Wn = 0 | Xn ∈ A) → P(W = 0).

As a consequence, using (i) and (iii) again,

P(Xn ∈ A | En) = P(Xn ∈ A and Wn = 0)

P(Wn = 0)

= P(Wn = 0 | Xn ∈ A)P(Xn ∈ A)

P(Wn = 0)

→ P(W = 0)P(X ∈ A)

P(W = 0)
= P(X ∈ A).

This is precisely the result sought in the case P(X ∈ A) > 0.
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When P(X ∈ A) = 0, then, trivially, by (i) and (iii),

P(Xn ∈ A | En) ≤ P(Xn ∈ A)

P(En)
→ P(X ∈ A)

P(W = 0)
= 0 = P(X ∈ A).

Consequently, P(Xn ∈ A | En) → P(X ∈ A) for every measurable A with P(X ∈
∂A) = 0, and thus, (Xn | E)

d−→ X. �

REMARK 7.3. The conditions in Proposition 7.1 may be weakened in several
different ways. First, we may allow some exceptional �-tuples of indices in (ii).
More precisely, it suffices that there exists, for every � and n, a set Bn� ⊂ A�

n

such that (7.2) holds when (αn
1 , . . . , αn

� ) /∈ Bn�, and further, for every fixed �,∑
(αn

1 ,...,αn
� )∈Bn�

E(Inαn
1
· · · Inαn

�
) → 0 as n → ∞. Second, we may replace (iii) and

(iv) by the assumptions that lim infn→∞ P(En) > 0 and that there exists B < ∞
such that Mj := lim supn→∞ E(W

j
n ) ≤ Bjj ! for all j ≥ 1. (The latter could be

weakened to the Carleman condition
∑

j M
−1/2j
j = ∞, see [10, Section 4.10].)

Indeed, M1 < ∞ implies that the sequence (Wn)n is tight, so every subsequence
has a subsubsequence converging in distribution to some W (that may depend on
the subsubsequence), and these assumptions imply that this W has to satisfy the

conditions in (iii). Hence, (Xn | En)
d−→ X holds along all such subsubsequences,

which implies that it holds for the full sequence.

PROOF OF THEOREMS 3.4 AND 3.5 FOR G(n, (di)
n
1). To prove Theorems 3.4

and 3.5 for G(n, (di)
n
1), with the help of Proposition 7.1, we first check that the

conclusions can be put in the form Xn
d−→ X, where Xn and X take values in

some metric space S.
For Theorem 3.4 and Theorem 3.5(iii), this is immediate, with S = R

2.
For Theorem 3.5(ii), we first observe that (3.11) is equivalent to 1[Corek 
=

∅] d−→ Be(
(−ζ/σ )), where Be(q) denotes a Bernoulli distribution with pa-
rameter q; here we can take, for example, S = R. If this holds, we then take
S = [−∞,∞)2 and note that the second assertion in Theorem 3.5(ii) can be writ-
ten as

n−3/4(
v(Corek) − bn(p̄n)n, e(Corek) − 1

2hn(p̄n)n
) d−→ X,

as random variables in [−∞,∞)2, for a certain random variable X with a point
mass 
(ζ/σ) at (−∞,−∞).

Finally, Theorem 3.5(i) can also be written as a convergence in distribution of
indicator variables (this time with a degenerate limit), but in this case, the transfer
to G(n, (di)

n
1) is actually immediate by the comments at the beginning of this

section.
We make one more modification for Theorem 3.5: we choose a sufficiently

small δ > 0 and replace the condition Corek 
= ∅ by e(Corek) > δn; by [17],
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Lemma 5.1, and (7.1), these conditions are whp equivalent for both G∗(n, (di)
n
1)

and G(n, (di)
n
1), so the modified theorem is equivalent to the original one.

In all cases we are thus in the setting of Proposition 7.1, with Xn some func-
tional of G∗(n, (di)

n
1), and condition (i) satisfied, since it is just the statement that

the statement in question holds for G∗(n, (di)
n
1).

We let An := An1 ∪An2, where An1 is the family of all (unordered) pairs of two
half-edges at the same vertex, and An2 is the family of all pairs {{x1, y1}, {x2, y2}}
of two disjoint pairs of half-edges with x1 and x2 belonging to one vertex and y1
and y2 belonging to another. For α ∈ An, we let Inα be the indicator of the event
that the pair(s) in α occur in the random configuration. Then Wn is the number of
loops and pairs of parallel edges (other than loops) in G∗(n, (di)

n
1), and En is the

event that G∗(n, (di)
n
1) is simple.

As is well known, Condition 2.1 implies that Wn
d−→ Po(�̂), with convergence

of all moments, for some �̂ < ∞; see, for example, [16], Theorem 7.1. [More pre-
cisely, �̂ = � + �2, where � = E

(D
2

)
/λ.] Consequently, conditions (iii) and (iv)

in Proposition 7.1 are satisfied.
It remains to verify (ii). In our case, (ii) means that the results in Theorems 3.4

and 3.5 (modified as above) hold also if, for any fixed �, for every n, we select
a set of at most 2� disjoint pairs of half-edges and condition the configuration on
containing these pairs of half-edges. (Actually, we need this only for certain sets of
pairs, but it is just as easy to prove it for arbitrary sets. Note that the modification
in Theorem 3.5 is essential here, since, e.g., a set of k parallel loops always yields
a nonempty k-core.)

To see this, regard the half-edges in the selected pairs, as well as the edges in
G∗(n, (di)

n
1) corresponding to these pairs, as special. We consider two approxi-

mations of the k-core Corek of G∗(n, (di)
n
1). First, let G∗(n, (di)

n
1)

− be the multi-
graph G∗(n, (di)

n
1) with all special edges deleted, and let Core−

k be the k-core
of G∗(n, (di)

n
1)

−. Since G∗(n, (di)
n
1)

− is a subgraph of G∗(n, (di)
n
1), we have

Core−
k ⊆ Corek . Second, apply the core-finding algorithm used in Section 3, but

with all special balls colored golden and thus immune to death and recoloring, and
let Core+

k be the subgraph of G∗(n, (di)
n
1) left at the end; thus, Core+

k ⊇ Corek .
Since our variables Xn are increasing functions of the numbers of vertices and

edges in the k-core, it is sufficient to show that the results of Theorems 3.4 and 3.5
(modified) hold also for Core−

k and Core+
k . For Core+

k , this follows, as remarked
at the beginning of Section 6, by the proofs for G∗(n, (di)

n
1) above, since the pos-

sibility of golden balls was included in Theorem 3.1. The results for Core−
k follow

from Theorems 3.4 and 3.5, since the random multigraph G∗(n, (di)
n
1)

− is a ran-
dom multigraph of the same type as G∗(n, (di)

n
1), but with O(1) vertex degrees di

decreased (with a total change of at most 4k). Evidently, Condition 2.1 holds for
the modified sequence too, so Theorems 3.4 and 3.5 apply.

This shows that condition (ii) in Proposition 7.1 holds in all cases, and hence
its statement applies, showing that Theorems 3.4 and 3.5 hold for G(n, (di)

n
1) too.

�
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REMARK 7.4. Unfortunately, we have not been able to use Proposition 7.1
in a similar way to show that Theorem 3.1 holds for G(n, (di)

n
1) too. The reason

is that conditioning on the configuration containing even a single given pair of
half-edges will, as far as we can see, mess up the process of balls and bins and
introduce unwanted dependencies. And although we allow golden balls in Theo-
rem 3.1, there is no monotonicity like the one that allowed us to consider Core+

k

and Core−
k above. We discuss another attempt to extend Theorem 3.1 to G(n,p)

in Appendix; see also Remark 8.7.

8. The random graphs G(n,p) and G(n,m). We derive the results for
G(n,p) and G(n,m) from our results for G(n, (di)

n
1) by conditioning on the de-

gree sequence. To see this in detail, let us be more general and consider a random
(simple) graph Gn with n vertices labeled 1, . . . , n and some random distribution
of the edges such that any two graphs on 1, . . . , n with the same degree sequence
have the same probability of being attained by Gn. [Note that G(n,p) and G(n,m)

are of this type.] Equivalently, conditioned on the degree sequence, Gn is a random
graph with that degree sequence of the type G(n, (di)

n
1) introduced in Section 2.

We may thus construct Gn by first picking a random sequence (di)
n
1 = (d

(n)
i )n1 with

the right distribution, and then choosing a random graph G(n, (di)
n
1) for this (di)

n
1.

(We assume that this is possible, which implies, in particular, that
∑n

i=1 di is even.)
We will assume that Condition 2.1 holds in probability in the following sense.

As usual, we let ur = ur(n) be the (now random) number of vertices with degree r .

CONDITION 8.1. Let (di)
n
1 = (d

(n)
i )n1 be the random sequence of vertex de-

grees of Gn. Then, for some probability distribution (pr)
∞
r=0 independent of n,

with p0 < 1:

(i) ur/n := #{i :di = r}/n
p−→ pr for every r ≥ 0 as n → ∞;

(ii) for every A > 1, we have
∑

r urA
r = ∑n

i=1 Adi = Op(n).

We begin with a technical lemma.

LEMMA 8.2. If Condition 8.1 holds, we may, by replacing the random graphs
Gn by other random graphs G′

n with the same distribution, assume that the random
graphs are defined on a common probability space and that Condition 2.1 holds
a.s.

PROOF. From the Skorokhod coupling theorem ([19], Theorem 4.30) applied
to the random sequences (ur(n))∞r=0, we may assume that the limit ur/n → pr

in (i) holds a.s., for every r ≥ 0. To “derandomize” (ii) as well, we refine that
argument as follows. By (ii), for every j ≥ 1 and k ≥ 1, we may choose Ck,j such
that P(

∑
i k

di > Ck,jn) < 2−k/j . We may assume that, for every k, Ck,j increases
with j . Now condition on the event Ej := {∑i k

di ≤ Ck,jn for every k ≥ 1}, and
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note that P(Ej ) > 1 − 1/j . Conditioned on Ej , Condition 2.1(ii) holds uniformly.
Let E0 := ∅. We apply the Skorokhod coupling theorem to (ur)r conditioned on
Ej \ Ej−1 for every j ≥ 1 such that P(Ej \ Ej−1) > 0; this shows that we can
assume ur(n)/n → pr a.s. for every r on Ej \ Ej−1, and we only have to combine
these pieces for j ≥ 1. �

We define the functions bn, hn and ln as before, but now conditioned on the
degree sequence (di)

n
1. Thus, we use (2.5)–(2.7) with P(X = l) and EX replaced

by the random numbers ul/n and 2m/n = ∑
l lul/n, respectively. Note that these

functions are now random functions of p. [They depend on both p and (di)
n
1.]

Define further the (deterministic) functions b(p), h(p), l(p) as before, using
(2.4)–(2.7) with X = D having distribution (pr)

∞
0 .

By Lemmas 8.2 and 2.3, bn
p−→ b, hn

p−→ h and ln
p−→ l, with convergence in

probability, uniformly on [0,1] and together with all derivatives.

THEOREM 8.3. Let Gn be as above and assume Condition 8.1.
If k ≥ 2, then Theorem 3.4 holds also for the k-core of Gn; now bn, hn and

ln are random functions independent of ZB,ZH ,ZL; further, p̂n is random, and

p̂n
p−→ p̂.

Similarly, if k ≥ 3, then Theorem 3.5 holds for Gn too, with the following
modifications: (a) a unique minimum point p̄n exists whp; (b) p̄n is random, and

p̄n
p−→ p̂, ln(p̄n)

p−→ 0; (c) p̂n in (iii) exists whp (we can, if we like, use any sup-
plementary definitions to have the random variables always defined); (d) in (i), (ii)
and (iii), it suffices to have n1/2ln(p̄n) convergent in probability, and ζ in (ii) may
be random; (e) Z should be independent of ζ and (3.11) has to be rewritten as
P(Corek 
= ∅) → P(σZ > ζ).

PROOF. The first statement (for k ≥ 2) follows directly from Lemma 8.2 and
Theorem 3.4. Note that p̂, α, t̂ , and the distribution of (ZB,ZH ,ZL) do not depend
on the random (di)

n
1, but only on the limit distribution (pr)

∞
0 .

The second statement (for k ≥ 3) follows similarly from Lemma 8.2 and The-
orem 3.5, noting that if n1/2ln(p̄n) converges in probability, we may include it in
the application of the Skorohod coupling theorem in the proof of Lemma 8.2, and
thus assume that it too converges a.s. For Theorem 3.5(ii), we also write the final

conclusion as (Xn | Corek 
= ∅)
d−→ (v

√
σZ − ζ | σZ > ζ) for certain random

vectors Xn and a vector v, and note that this and (3.11) together are equivalent to

E
(
F(Xn);Corek 
= ∅

) → E
(
F

(
v
√

σZ − ζ
);σZ > ζ

)
for every bounded continuous function F on R

2. �

We now specialize to G(n,p) and G(n,m), with p ∼ λ/n and m ∼ λn/2 for
some fixed λ > 0, and observe first that Condition 8.1 holds and thus Theorem 8.3
applies.
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LEMMA 8.4. Consider either G(n,λn/n) or G(n,m), where m = λnn/2, and
assume that λn → λ > 0. Then, Condition 8.1 holds, with pr = πr(λ) and, thus,
D ∼ Po(λ).

PROOF. Condition 8.1(i) follows from (8.7) below, or by elementary estimates
of mean and variance which we omit; cf. (8.10).

For (ii), similar elementary estimates show that if M := supλn, then

n−1
Eur(n) = O(Mr/r!)

uniformly in r ≥ 0, and thus, for each A, n−1
E

∑
r ur(n)Ar = O(1). �

In the cases of G(n,p) and G(n,m), the random functions bn, hn, ln are them-
selves asymptotically Gaussian processes. We give a precise statement.

THEOREM 8.5. Let bn, hn, ln be the random functions defined above either for
the random graph G(n,λn/n) or for G(n,m) with m = λnn/2, where λn → λ > 0.
Then, jointly in D[0,1],

n1/2(
bn(p) − bPo(λn)(p)

) d−→ UB(p),(8.1)

n1/2(
hn(p) − hPo(λn)(p)

) d−→ UH(p),(8.2)

n1/2(
ln(p) − lPo(λn)(p)

) d−→ UL(p),(8.3)

where UB , UH and UL are continuous Gaussian processes on [0,1] with mean 0
and covariances that satisfy, for 0 ≤ p ≤ 1 and ν,κ ∈ {B,H,L},

Cov(Uν(p),Uκ(p)) = σ ∗
νκ

(p),(8.4)

where σ ∗
νκ

are given by (8.13)–(8.23) below and either (8.8) for G(n,λn/n) or
(8.12) for G(n,m). For G(n,m), UL(p) = −UH(p).

PROOF. Consider first G(n,λn/n). It is shown in [1] (see also [18], Example
6.35) that each ur = ur(n) is asymptotically normal. More precisely,

n−1/2(
ur(n) − Eur(n)

) d−→ Ur ∼ N(0, ϕrr),(8.5)

where, recalling the notation (1.1),

ϕrr := lim
n→∞n−1 Varur(n) = πr(λ)2

(
(r − λ)2

λ
− 1

)
+ πr(λ).

Moreover, with pn := λn/n,

Eur(n) = n

(
n − 1

r

)
pr

n(1−pn)
n−1−r = n

λr
n

r! e−λn

(
1+O

(
(r + 1)2

n

))
.(8.6)
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Hence, (8.5) is equivalent to

n−1/2(
ur(n) − πr(λn)n

) d−→ Ur ∼ N(0, ϕrr ).(8.7)

The proof extends immediately to finite linear combinations of ur(n), which
shows joint convergence in (8.5) and (8.7) for all r ≥ 0; the covariances of the
limits are given by

ϕrs := Cov(Ur,Us) = πr(λ)πs(λ)

(
(r − λ)(s − λ)

λ
− 1

)
+ πr(λ)δrs .(8.8)

Each of bn, hn and ln can be written as
∑∞

r=0 ar(p)ur(n)/n, where ar(p) are
some continuous functions on [0,1], not depending on n and such that ar(p) =
O(r). We claim that, for any such ar(p), we have in C[0,1] (with the usual uni-
form topology)

n−1/2
∞∑

r=0

ar(p)
(
ur(n) − Eur(n)

) d−→
∞∑

r=0

ar(p)Ur .(8.9)

Indeed, by the joint convergence in (8.5), this holds for the partial sums
∑R

r=0
for any finite R. Moreover, it follows easily from the exact formula for Varur(n)

(see [18], Example 6.35) that, for any given M such that supn λn ≤ M ,

n−1 Varur(n) = O(Mr/r!)(8.10)

uniformly in r ≥ 0, and it is then routine to let R → ∞ to obtain (8.9); see [2],
Theorem 4.2. Further, using (8.6) again, it follows that, in C[0,1],

n−1/2
∞∑

r=0

ar(p)
(
ur(n) − πr(λn)n

) d−→
∞∑

r=0

ar(p)Ur .(8.11)

It is shown in [15] that the above results for G(n,λn/n) combined with a simple
monotonicity argument show that (8.7) holds, jointly for all r ≥ 0, for G(n,m) too,
except that in this case Ur , r ≥ 0, have a different joint Gaussian distribution with
covariances

ϕrs := Cov(Ur,Us) = πr(λ)πs(λ)

(
−(r − λ)(s − λ)

λ
− 1

)
+ πr(λ)δrs.(8.12)

(We still have EUr = 0.) Furthermore, elementary calculations, which we omit,
show that the estimates (8.6) (ignoring the middle part) and (8.10) hold for G(n,m)

too. Hence, again by first considering finite sums
∑R

0 and letting R → ∞, (8.11)
holds in C[0,1] for G(n,m) too.

Thus, (8.11) holds for both G(n,λn/n) and G(n,m), although the two cases
have different Ur , which implies that (8.1)–(8.3) hold jointly, with UB,UH ,UL
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given as linear combinations of Ur , 1 ≤ r < ∞. More precisely, let

Tr(p) :=
∞∑
l=r

βlr (p)Ul,

Qj (p) :=
∞∑

r=j

Tr(p)

and, so as to preserve the analogy with (5.33)–(5.35), let

UW(p) := p2 ∑∞
r=1 rUr .

Then

UB(p) := Qk(p),

UH (p) := kQk(p) +
∞∑

r=k+1

Qr(p),

UL(p) := UW(p) − UH(p).

It is easy to see that UW = 0 for G(n,m), and thus, UL = −UH , since ln(p) +
hn(p) is deterministic by (2.7) when the number of edges is, or by (8.9) with
ar = r .

Define, with ϕrs given by (8.8) for G(n,λn/n), and by (8.12) for G(n,m),

ψij (p) := Cov(Ti(p), Tj (p)) =
∞∑
l=i

∞∑
r=j

βli(p)βrj (p)ϕlr ,(8.13)

ψiW(p) := Cov(Ti(p),UW(p)) = p2
∞∑
l=i

∞∑
r=1

βli(p)rϕlr(8.14)

[ψiW(p) = 0 for G(n,m) because then UW = 0], and further,

σ ∗
ij (p) := Cov(Qi(p),Qj (p)) =

∞∑
l=i

∞∑
r=j

ψlr(p),(8.15)

σ ∗
iW (p) := Cov(Qi(p),UW(p)) =

∞∑
l=i

ψlW (p),(8.16)

σ ∗
WW(p) := Var(UW(p)) =

{
2p4λ, for G(n,λn/n),
0, for G(n,m).

(8.17)

Then the expressions for σ ∗ are analogous to (5.42)–(5.47), which by (8.15)
and (8.16) and changes of summation order simplifies to

σ ∗
BB(x) =

∞∑
i=k

∞∑
j=k

ψij (p),(8.18)
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σ ∗
BH (x) =

∞∑
i=k

∞∑
j=k

iψij (p),(8.19)

σ ∗
HH(x) =

∞∑
i=k

∞∑
j=k

ijψij (p),(8.20)

σ ∗
BL(x) =

∞∑
i=k

ψiW (p) − σ ∗
BH (x),(8.21)

σ ∗
HL(x) =

∞∑
i=k

iψiW (p) − σ ∗
HH(x),(8.22)

σ ∗
LL(x) = σ ∗

WW(x) − 2
∞∑
i=k

iψiW (p) + σ ∗
HH(x).(8.23)

Note that ψiW(p), σ ∗
iW (p) and σ ∗

WW(p) vanish for G(n,m). �

We will now use Theorems 8.3 and 8.5 to prove Theorems 1.2 and 1.3.

PROOF OF THEOREM 1.2. By Lemma 8.4 and Theorem 8.3, Theorem 3.4
holds, with bn,hn, ln and p̂n random. Furthermore, Theorem 8.5 applies, and
since bn,hn, ln are independent of ZB,ZH ,ZL for every n by Theorem 8.3,
(UB,UH ,UL) and (ZB,ZH ,ZL) are independent. By Lemma 8.2, we may as-
sume that Condition 2.1 holds a.s., and by including further variables in the ap-
plication of the Skorokhod coupling theorem in the proof of Lemma 8.2, we may
further assume that (8.1), (8.2), (8.3), p̂n → p̂ and (3.10) hold a.s. (This trick is
not essential, but we find it convenient to argue pointwise in the probability space,
i.e., for each realization of the family of random processes. Note that the O and o

terms that appear in this proof and the following are not assumed to be uniform
over all points in the probability space; the implicit constants may thus be random,
but they do not depend on n.)

By (2.13), for 0 < p ≤ 1,

l(p) = 0 ⇐⇒ p = ψk−1(λp) ⇐⇒ λ = λp

ψk−1(λp)
.(8.24)

Since λ > ck := infμ>0 μ/ψk−1(μ), the equation λ = μ/ψk−1(μ) has at least
one solution μ > 0; see [17, Lemma 7.1]. We have defined μ̂ := μk(λ) to be
the largest solution, and thus, p = μ̂/λ is the largest solution of (8.24). Since
μ̂/λ = ψk−1(μ̂) < 1, we have p̂ = μ̂/λ with 0 < p̂ < 1.

Since p̂ = ψk−1(λp̂) = ψk−1(μ̂), (2.13) yields

α := l′(p̂) = λp̂
(
1 − λψ ′

k−1(λp̂)
) = λ

(
ψk−1(μ̂) − μ̂πk−2(μ̂)

)
.(8.25)
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By [17], Lemma 7.2 and its proof, for k ≥ 3, and a simple calculation for k = 2,
α := l′(p̂) > 0.

Recall that, as in Theorems 3.4 and 8.3, p̂n is the largest zero in [0,1] of ln,
which is random, and that (8.3) holds a.s. We define, for n so large that λn > ck ,
the nonrandom p̂∗

n as the largest value in [0,1] such that lPo(λn)(p̂
∗
n) = 0. Applying

the above argument to λn, p̂∗
n = μ̂n/λn. Furthermore, by (8.3), a.s.,

ln(p̂
∗
n) − ln(p̂n) = ln(p̂

∗
n) = n−1/2UL(p̂∗

n) + o(n−1/2).(8.26)

Since lPo(λn) → l = lPo(λ) uniformly together with its derivatives, by (2.13) (or
using the same proof as for Lemma 2.3), it follows easily (cf. the proof of The-
orem 3.4) that p̂∗

n → p̂; moreover, a.s., p̂n → p̂ by Theorem 3.4, and l′n → l′
uniformly by Lemma 2.3. Hence, Taylor’s formula yields a.s.

ln(p̂
∗
n) − ln(p̂n) = (p̂∗

n − p̂n)
(
l′(p̂) + o(1)

)
,

which, together with (8.26), yields

p̂n − p̂∗
n = −n−1/2α−1UL(p̂∗

n) + o(n−1/2).

A Taylor expansion of bn now yields a.s., using Lemma 2.3 and (8.1),

bn(p̂n) = bn(p̂
∗
n) + b′(p̂)(p̂n − p̂∗

n) + o(n−1/2)

= bPo(λn)(p̂
∗
n) + n−1/2UB(p̂) − n−1/2α−1b′(p̂)UL(p̂) + o(n−1/2),

and similarly for hn(p̂n). Combined with (3.10), this shows that, with Wν =
Zν(t̂) + Uν(p̂), ν ∈ {B,H,L},

n−1/2(
v(Corek) − bPo(λn)(p̂

∗
n)n, e(Corek) − 1

2hPo(λn)(p̂
∗
n)n

)
d−→ (

WB − α−1b′(p̂)WL, 1
2WH − 1

2α−1h′(p̂)WL

)
.

Since λp̂ = μ̂, Lemma 2.4 yields

b(p̂) = ψk(μ̂) and h(p̂) = μ̂ψk−1(μ̂).(8.27)

Similarly, for λn, bPo(λn)(p̂
∗
n) = ψk(λnp̂

∗
n) = ψk(μ̂n) and hPo(λn)(p̂

∗
n) = μ̂n ×

ψk−1(μ̂n). Moreover, by Lemma 2.4 again,

b′(p̂) = λψ ′
k(λp̂) = λπk−1(μ̂),(8.28)

h′(p̂) = λ
(
ψk−1(μ̂) + μ̂ψ ′

k−1(μ̂)
) = λ

(
ψk−1(μ̂) + μ̂πk−2(μ̂)

)
.(8.29)

Thus, by (8.25), α−1b′(p̂) = av and α−1h′(p̂) = ae given in (1.3) and (1.4).
Hence, the result follows with Zv := WB(t̂) − avWL(t̂) and Ze := 1

2WH(t̂) −
1
2aeWL(t̂). Since Cov(Wν,Wκ) = Cov(Zν(t̂),Zκ(t̂)) + Cov(Uν(p̂),Uκ(p̂)) =
σ̂νκ given in (1.5), it follows that (1.6)–(1.8) hold. Since the distribution of
(ZB(t̂),ZH (t̂),ZL(t̂)) is nonsingular by Theorem 3.1, so is the distribution of
(WB,WH ,WL), and hence also the distribution of (Zv,Ze). �
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PROOF OF THEOREM 1.3. This is similar to the proof of Theorem 1.2. By
Lemma 8.4 and Theorem 8.3, Theorem 3.5 holds, with the modifications given in
Theorem 8.3, and we have D ∼ Po(λ) with λ = ck .

We begin by checking the conditions on the function l = lPo(λ) in Theorem 3.5.
By the definition of λ = ck , μ/ψk−1(μ) ≥ λ for all μ > 0, and equality holds only
for μ = μ̂ := μk(ck); see [17], Lemma 7.2. It follows by (2.13) that l(p) ≥ 0 for
0 < p ≤ 1 with equality only for p = p̂ := μ̂/λ = ψk−1(μ̂). Since μ̂ > 0, we have
0 < p̂ < 1.

Note that μ̂ is the maximum point of ψk−1(μ)/μ, and thus, d
dμ

(ψk−1(μ)/μ) =
0 for μ = μ̂, which yields

ψ ′
k−1(μ̂) = ψk−1(μ̂)

μ̂
= p̂

μ̂
= 1

ck

.(8.30)

Since p̂ is a minimum point of l, l′(p̂) = 0. Further, differentiation of (2.13)
[using (8.30)] yields

β := l′′(p̂) = λp̂
(−λ2ψ ′′

k−1(λp̂)
) = −λ2μ̂ψ ′′

k−1(μ̂)

= λ2μ̂
(
πk−2(μ̂) − πk−3(μ̂)

) = λ2(μ̂ − k + 2)πk−2(μ̂) = λ2β̂,

with β̂ defined in (1.9). It is easily checked that, for μ = k − 2,

ψk−1(μ)

μψ ′
k−1(μ)

=
∑∞

i=k−1 πi(μ)

μπk−2(μ)
=

∞∑
j=0

μj

(k − 1) · · · (k − 1 + j)

<

∞∑
j=0

1

k − 1

(
k − 2

k

)j

= k

2(k − 1)
< 1,

�

and thus μ̂ 
= k − 2 by (8.30). Hence, β 
= 0, and thus β > 0.
We may thus apply Theorem 3.5. As in the proof of Theorem 1.2, we may

extend Lemma 8.2 and assume that all limits we know to hold in probability or
distribution by the results above actually hold a.s.

Fix some δ0 ∈ (0, p̂). As in Theorem 3.5, let p̄n be the (now random) minimum
point of ln in [δ0,1]; similarly, let p̄∗

n be the (deterministic) minimum point of
lPo(λn) in [δ0,1]. By Theorem 3.5 and the assumption in the previous paragraph,
p̄n → p̂ a.s. Further, an argument analogous to that used in the proof of Theorem
3.5 shows that p̄∗

n → p̂.
Using (8.3), and the fact that p̄n and p̄∗

n are minimum points,

ln(p̄n) ≤ ln(p̄
∗
n) = lPo(λn)(p̄

∗
n) + n−1/2UL(p̄∗

n) + o(n−1/2),(8.31)

lPo(λn)(p̄
∗
n) ≤ lPo(λn)(p̄n) = ln(p̄n) − n−1/2UL(p̄n) + o(n−1/2).(8.32)

Since UL is continuous, it follows that

ln(p̄n) = lPo(λn)(p̄
∗
n) + n−1/2UL(p̂) + o(n−1/2).(8.33)
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For x ≥ 0, we write l(p, x) := lPo(x)(p) [as given in (2.13), with λ replaced
by x]. Thus, l(p) = l(p,λ) and lPo(λn)(p) = l(p,λn). By (2.13), using l(p̂, λ) = 0
and (8.30),

∂

∂x
l(p̂, λ) = λp̂(−p̂ψ ′

k−1(λp̂)) = −μ̂p̂ψ ′
k−1(μ̂) = −p̂2.

Hence, using the simple Lemma 8.6 below,

lPo(λn)(p̄
∗
n) = l(p̄∗

n, λn) ∼ −p̂2(λn − ck).

Combining this with (8.33), we find that

ln(p̄n) = −p̂2(λn − ck)
(
1 + o(1)

) + n−1/2UL(p̂) + o(n−1/2).(8.34)

Thus, the asymptotic behavior of n1/2ln(p̄n) is the same as that of −n1/2(λn − ck),
within O(1). Accordingly, each of the three cases in Theorem 1.3 is matched by
the corresponding case in Theorem 3.5. In particular, this proves part (i).

In case (ii), (8.34) yields

n1/2ln(p̄n) → ζ := −p̂2γ + UL(p̂).

Taking σ = σ
1/2
LL as in Theorem 3.5, we may assume σZ = −ZL(t̂) with t̂ :=

− ln p̂ [indeed, this is how Z was defined in the proof of Theorem 3.5, see the line
following (6.20)]. Thus,

σZ − ζ = −ZL(t̂) − UL(p̂) + p̂2γ = −WL + p̂2γ,

where WL := ZL(t̂) + UL(p̂), just as in the proof of Theorem 1.2.
Furthermore, from (8.31) and (8.32),

lPo(λn)(p̄n) ≤ lPo(λn)(p̄
∗
n) + o(n−1/2).

On the other hand, a Taylor expansion around the minimum point p̄∗
n yields

lPo(λn)(p̄n) = lPo(λn)(p̄
∗
n) + 1

2

(
l′′Po(λn)(p̄

∗
n) + o(1)

)
(p̄n − p̄∗

n)
2

(8.35)
= lPo(λn)(p̄

∗
n) + (

β/2 + o(1)
)
(p̄n − p̄∗

n)
2,

and thus

p̄n − p̄∗
n = O

(
lPo(λn)(p̄n) − lPo(λn)(p̄

∗
n)

)1/2 = o(n−1/4).

Moreover, again by Lemma 8.6, p̄∗
n − p̂ = O(|λn −λ|) = O(n−1/2), so we see that

p̄n − p̂ = o(n−1/4). Consequently, from (8.1) [since b = bPo(λ)], we obtain

bn(p̄n) = bPo(λn)(p̄n) + O(n−1/2) = bPo(λ)(p̂) + O(|λn − λ| + |p̄n − p̂| + n−1/2)

= b(p̂) + o(n−1/4),
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and similarly for h. It follows that in the conclusion of Theorem 3.5(ii), the random
bn(p̄n) and hn(p̄n) may be replaced with b(p̂) and h(p̂). Upon combining (2.13)
with l′(p̂) = 0, (8.29) simplifies to

h′(p̂) = 2λp̂ − l′(p̂) = 2λp̂,(8.36)

and Theorem 1.3(ii) follows.
In case (iii), n−1/2 = o(λn − ck), so (8.34) yields

−ln(p̄n) = p̂2(λn − ck)
(
1 + o(1)

)
.(8.37)

As in the proof of Theorem 1.2, let p̂∗
n = μ̂n/λn be the largest zero in (0,1] of

lPo(λn). By (8.33) and (8.37),

lPo(λn)(p̂
∗
n) − lPo(λn)(p̄

∗
n) = −lPo(λn)(p̄

∗
n) = −ln(p̄n) + O(n1/2) ∼ p̂2(λn − ck),

so, using a Taylor expansion similar to (8.35),

p̂∗
n − p̄∗

n ∼ (2/β)1/2p̂(λn − ck)
1/2.

Hence, by Taylor again, since l′Po(λn)(p̄
∗
n) = 0 and l′′Po(λn)(p̄

∗
n) → l′′(p̂) = β ,

l′Po(λn)(p̂
∗
n) ∼ (2β)1/2p̂(λn − ck)

1/2.(8.38)

Let p̂n be as in Theorem 3.4 (now with ln random). By (8.3),

lPo(λn)(p̂n) − lPo(λn)(p̂
∗
n) = lPo(λn)(p̂n) = lPo(λn)(p̂n) − ln(p̂n)

= −UL(p̂)n−1/2 + o(n−1/2).

Hence, for large n, using a Taylor expansion at p̂∗
n [as l′′Po(λn) is uniformly

bounded],

lPo(λn)(p̂
∗
n − n−1/4) = lPo(λn)(p̂

∗
n) − n−1/4l′Po(λn)(p̂

∗
n) + O(n−1/2)

= lPo(λn)(p̂n) + O(n−1/2) − n−1/4l′Po(λn)(p̂
∗
n).

Then from (8.38), for large n,

lPo(λn)(p̂
∗
n − n−1/4) = lPo(λn)(p̂n) + O(n−1/2) − n−1/4(2β)1/2p̂(λn − ck)

1/2

< lPo(λn)(p̂n),

since n−1/2 = o(n−1/4(λn − ck)
1/2). Similarly, we see that lPo(λn)(p̂n) < lPo(λn) ×

(p̂∗
n + n−1/4). Thus, for large n, p̂∗

n − n−1/4 < p̂n < p̂∗
n + n−1/4 and, by the mean

value theorem,

p̂n − p̂∗
n = lPo(λn)(p̂n) − lPo(λn)(p̂

∗
n)

(2β)1/2p̂(λn − ck)1/2(1 + o(1))

= −(2β)−1/2p̂−1(λn − ck)
−1/2n−1/2(

UL(p̂) + o(1)
)
.
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Hence, by (8.1) and the mean value theorem,

bn(p̂n) = bPo(λn)(p̂n) + O(n−1/2)

= bPo(λn)(p̂
∗
n) + (

b′(p̂) + o(1)
)
(p̂n − p̂∗

n) + O(n−1/2)

= bPo(λn)(p̂
∗
n) − (2β)−1/2p̂−1(λn − ck)

−1/2n−1/2(
b′(p̂)UL(p̂) + o(1)

)
,

and similarly for h. Consequently, we can replace the random bn(p̂n) and
hn(p̂n) in (3.12) by the deterministic bPo(λn)(p̂

∗
n) and hPo(λn)(p̂

∗
n), provided we

also replace Z′ = −(2β)−1/2ZL(t̂) by Z′ − (2β)−1/2UL(p̂) = −(2β)−1/2WL.
The proof is completed by (8.27), (8.28), (8.36) and (8.37), taking Z′ :=
−(2β)−1/2p̂−1λWL = −(2β̂)−1/2p̂−1WL.

LEMMA 8.6. Let l(p, x) be a twice continuously differentiable function in a

neighborhood of a point (p̂, x̂), and assume that ∂l
∂p

(p̂, x̂) = 0 and ∂2l
∂p2 (p̂, x̂) 
= 0.

Then there exist δ, ε > 0 such that, if |x − x̂| < δ, then there is a unique p(x)

with |p(x) − p̂| < ε such that ∂l
∂p

(p(x), x) = 0. Moreover, as x → x̂, p(x) − p̂ =
O(|x − x̂|) and

l(p(x), x) = (x − x̂)

(
∂l

∂x
(p̂, x̂) + o(1)

)
.(8.39)

PROOF. The existence of p(x) follows by the implicit function theorem ap-
plied to ∂l/∂p, which also shows that p(x) is a differentiable function. Hence,
p(x) − p̂ = p(x) − p(x̂) = O(|x − x̂|). Furthermore, x �→ l(p(x), x) is differen-
tiable and

d

dx
l(p(x), x)|x=x̂ = ∂l

∂p
(p̂, x̂)p′(x) + ∂l

∂x
l(p̂, x̂) = ∂l

∂x
l(p̂, x̂),

and (8.39) follows. �

PROOF OF THEOREM 1.4. Fix x ∈ (−∞,∞) and let m = m(n) := ckn/2 +
xn1/2� and λn = 2m/n. Note that λn → ck and n1/2(λn − ck) → 2x. Then

n−1/2
(
M − ck

2
n

)
≤ x ⇐⇒ M ≤ m(n)

⇐⇒ G(n,m) has a nonempty k-core.

By Theorem 1.3(ii), the probability of this converges to 
(2xp̂2/σ). �

Just as before [see (3.1)–(3.3)], we denote b̌n(t) := bn(e
−t ), ȟn(t) := hn(e

−t ),
ľn(t) := ln(e

−t ). Note that these functions now are random functions of t . [They
depend on both t and (di)

n
1.]
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REMARK 8.7. In the proofs of Theorems 1.2 and 1.3 the randomness in the
limit comes from Uν and Zν , ν ∈ {B,H,L}, and they always end up in the com-
bination Wν = Zν(t̂) + Uν(p̂). Moreover, the proofs use arguments similar to the
proofs of Theorems 3.4 and 3.5, and there is some repetition. It would be more
satisfactory, in our opinion, if one could make a direct proof of Theorems 1.2 and
1.3 that combines Z and U to W at an early stage.

Indeed, if one could prove that Theorem 3.1 holds for G(n, (di)
n
1) too (see Re-

mark 7.4 and Appendix), then Theorem 8.3 would extend to show also that The-
orem 3.1 would hold for Gn, with b̌n, ȟn, ľn defined by (3.1)–(3.3) random. For
G(n,λn/n) and G(n,m) (assuming as always m = λnn/2 and λn → λ > 0), The-
orem 8.5 would then imply that Theorem 3.1 holds with b̌n, ȟn, ľn replaced by
the deterministic bPo(λn)(e

−t ), bPo(λn)(e
−t ), bPo(λn)(e

−t ), and Zν(t) replaced by
Zν(t) + Uν(e

−t ). Theorems 1.2 and 1.3 then would follow by the same proofs as
Theorems 3.4 and 3.5.

Even if we cannot (yet?) make the first step in this argument rigorous, it gives a
strong intuitive motivation. To strengthen this intuition further, observe that we can
construct a random multigraph G∗

n as follows: first let (di)
n
1 have the distribution

of the sequence of vertex degrees in G(n,λn/n) [or G(n,m)], and then, given
(di)

n
1, let G∗

n = G∗(n, (di)
n
1). [Note that, if we were to take G(n, (di)

n
1) instead,

we would get back G(n,λn/n) or G(n,m).] For this random multigraph, the proof
just outlined works fine, because Theorem 3.1 holds for G∗(n, (di)

n
1). On the other

hand, the proofs of Theorems 1.2 and 1.3 above go through verbatim for G∗
n too.

This shows that both proofs (when applicable) have to give the same result, and is
another intuitive motivation for Theorems 1.2 and 1.3, as well as for the appearance
of the variables Wν .

APPENDIX

We certainly conjecture that Theorem 3.1 holds for G(n, (di)
n
1) too, although

we have failed to prove it; see Remark 7.4. Since this extension would give an
alternative (and somewhat simpler) proof of Theorems 1.2 and 1.3 (see Remark
8.7), we will discuss another idea of how to prove it here. In principle, it seems
possible to use this method to give a proof of Theorem 3.1 for G(n, (di)

n
1), but

verifying the conditions has turned out to be much harder than we expected. It
seems intuitively obvious that they hold, but our attempts to check them rigorously
have ended up in very technical estimates that we so far have not had the energy
to complete. Perhaps a reader can find a simple argument.

The idea is to use the following extension of Proposition 4.1, which yields joint
convergence of the Mn together with some integer-valued processes Nn that con-
verge to a Poisson process. In our conceived application, each time Proposition
4.1 is used in Section 5, we would use Proposition A.1 with Nn(t) being the num-
ber of loops plus the number of multiple edges (excluding loops) that have been
created up to time t . We would also have to count loops and multiple edges cre-
ated after stopping (i.e., in the core), for example, by stopping the processes in Mn
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but letting Nn continue, with half-edges being paired by a suitable process until
none are left. It is well known that then Nn(∞), the number of loops and mul-
tiple edges in G∗(n, (di)

n
1), converges to a Poisson distribution (see, e.g., [16]),

which fits well with the conclusions below. [Moreover, by speeding up the process
at the end, we can assume that it is completed before some finite time T , so that
Nn(∞) = Nn(T ).]

A compensator An satisfying (ii) below is easily expressed as an integral
An(t) = ∫ t

0 an(s) ds, where an(t) is the rate which with loops or multiple edges
are created. For example, if the last white ball colored red happens to be in a bin
with j remaining white balls, loops are created with rate r ; the rate for creating
multiple edges is more complicated and depends on the numbers of edges already
created with that bin (= vertex) as an endpoint, and the remaining number of balls
at the other endpoints. The rate an(t) is thus random and fluctuates rapidly as a
function of t , but it seems almost obvious that a law of large numbers holds and
that the integral An(t) converges to a nonrandom function as in (iii) below; how-
ever, as said above, we have failed to find a completely rigorous proof.

PROPOSITION A.1. Suppose that, in addition to the assumptions in Propo-
sition 4.1, the following holds, for some right-continuous filtration of σ -fields
Fn = (Fn(t))t≥0 with respect to which Mn is a martingale:

(i) Nn(t), t ≥ 0, is an increasing adapted integer-valued stochastic process
with Nn(0) = 0 and all jumps equal to +1. [That is, �Nn(t) ∈ {0,1} for all t ≥ 0.]

(ii) An(t), t ≥ 0, is a continuous stochastic process with An(0) = 0 such that
Nn(t) − An(t) is a martingale. (Thus, An is the compensator of Nn.)

(iii) For each fixed t ≥ 0, as n → ∞, An(t)
p−→ A(t), where A(t) is a nonran-

dom continuous real-valued function.

Then (Mn,Nn)
d−→ (M,N) as n → ∞, in D([0,∞);R

q+1), where M is as in
Proposition 4.1 and:

• N is a Poisson process with intensity dA(t), that is, an increasing integer-
valued stochastic process with independent increments such that N(0) = 0 and
N(t) − N(s) ∼ Po(A(t) − A(s)) when 0 ≤ s ≤ t ;

• M and N are independent.

In particular, for any T < ∞, the conditional distribution L(Mn | Nn(T ) = 0)

converges to the distribution of M .

It is easily seen that, under additional (weak) conditions, we may take T = ∞
too in the last statement; we omit the details. Note that Mn

d−→ M by Proposition

4.1 and Nn
d−→ N by [11], Theorem VIII.3.36; hence, only the joint convergence

is new.
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PROOF OF PROPOSITION A.1. Note that (M,N) is a stochastic process with
independent increments, and that M is a martingale.

We will rely heavily on results in Jacod and Shiryaev [11], Chapter VIII. We
therefore use the notation in [11], Chapters II and VIII. (This includes writing n

as a superscript rather than subscript.) Let Xn := (Mn,Nn) and X := (M,N). We
will sometimes use subscripts M , N or X to indicate the process under considera-
tion; thus, the characteristics ([11], II.2.6) of Xn are denoted by (Bn

X,Cn
X, νn

X), and
so on.

We choose a continuous truncation function hM : Rq → R
q . [Thus, hM(x) = x

when |x| is small and hM(x) = 0 when |x| is large.] Further, let ψ : R → R be a
continuous function with ψ(x) = 1 when |x| ≤ 1 and ψ(x) = 0 when |x| ≥ 2, and
define h : Rq+1 → R

q+1 by

h(x, y) := (ψ(y)hM(x),ψ(|x|)ψ(2y)y).

Then, h is a continuous truncation function in R
q+1. Note that, since �Nn ∈ {0,1},

h(�Xn) = (hM(�Mn),0). Consequently,

Xn(h)t := Xn
t − ∑

s≤t

(
�Xn

s − h(�Xn
s )

) = (Mn(hM)t ,0).

Similarly, since M is continuous and �N ∈ {0,1}, h(�X) = 0, and

X(h)t := Xt − ∑
s≤t

(
�Xs − h(�Xs)

) = (Mt ,0).

It follows immediately from the definitions [11], II.2.6 and II.2.16 that

Bn
X = (Bn

M,0),

C̃
n,ij
X =

{
C̃

n,ij
M , 1 ≤ i, j ≤ q,

0, i = q + 1 or j = q + 1,

and similarly for BX and C̃X . Consequently, the conditions [Sup-β5] and [γ5-R+]
(see [11], VIII.2.1–2.2) for Xn and X are equivalent to the corresponding condi-
tions for Mn and M .

The conditions [Sup-β5] and [γ5-R+], together with [δ̂5-R+], hold for Mn and
M by [11], Theorem VIII.3.12 and Lemma VIII.3.15 (note that [Var-β5] implies
[Sup-β5]), since [11], VIII.3.14, follows from our (4.4) and [11], VIII.3.12(b)(ii),
is (4.3); cf. the proof of [14], Proposition 9.1. Consequently, [Sup-β5] and [γ5-R+]
hold for Xn and X.

Next, let g ∈ C2(R
q+1) [11], VII.2.7; thus, g is a bounded, continuous function

R
q+1 → R such that g(x) = 0 when |x| is small. Let g0(y) := g(0, y); then g0 ∈

C2(R).
Define, using the notation in [11], II.1.5, the process

D̂n
t := (g ∗ νn

X)t − (g0 ∗ νn
N)t .(A.1)
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Then D̂n
t is the predictable compensator of the process (with the definition [11],

II.1.16)

Dn
t := (g ∗ μXn

)t − (g0 ∗ μNn

)t := ∑
s≤t

g(�Xn(s)) − ∑
s≤t

g0(�Nn(s))

= ∑
s≤t

(
g(�Mn(s),�Nn(s)) − g(0,�Nn(s))

)
.

For every ρ > 0, there exists δ > 0 such that, if |x| ≤ δ, then g(x,0) = 0
and |g(x,1) − g(0,1)| < ρ. Let K := sup |g|, �∗Mn(t) := sups≤t |�Mn(s)| and
Jn

δ (t) := ∑
s≤t 1[|�Mn(s)| > δ]. Then,

|Dn
t | ≤ ∑

s≤t

(
2K1[|�Mn(s)| > δ] + ρ�Nn(s)

) = 2KJn
δ (t) + ρNn(t).

Thus, D̂ is L-dominated ([11], I.3.29) by 2KJn
δ (t) + ρNn(t), and thus also

by Ft := 2KJn
δ (t) + ρAn(t). Note that F is increasing and that �Ft = 2K ×

1[|�Mn(t)| > δ]. Consequently, the domination inequality ([11], Lemma I.3.30)
yields, for all ε, η > 0,

P(|D̂n
t | ≥ ε) ≤ 1

ε

(
η + E

(
sup
s≤t

�Fs

))
+ P(Ft ≥ η)

≤ 1

ε

(
η + 2K P

(
Jn

δ (t) ≥ 1
)) + P

(
Jn

δ (t) > 0
) + P

(
ρAn(t) ≥ η

)
= η

ε
+

(
2K

ε
+ 1

)
P

(
�∗Mn(t) > δ

) + P
(
ρAn(t) ≥ η

)
.

As remarked above, [δ̂5-R+] holds for Mn and M , which by [11, VIII.3.5] yields

�∗Mn(t)
p−→ 0 as n → ∞. Consequently, for any ε, η,ρ > 0, recalling (iii),

lim sup
n→∞

P(|D̂n
t | ≥ ε) ≤ η

ε
+ P

(
ρA(t) ≥ η

)
.

Letting first ρ → 0 and then η → 0, we see that P(|D̂n
t | ≥ ε) → 0, that is,

D̂n
t

p−→ 0.(A.2)

Moreover, since Nn is a point process, νn
N is the random measure dAn(t) ×

δ1, where δ1 denotes a point mass at 1. Similarly, �Xt = (0,�Nt) equals (0,0)

or (0,1), and thus, νX = dA(t) × δ(0,1). Hence (cf. the proof of [11], Theorem
VIII.3.36),

(g0 ∗ νn
N)t = g0(1)An(t)

p−→ g0(1)A(t) = g(0,1)A(t) = (g ∗ νX)t .

Combining this with (A.1) and (A.2), we see that (g ∗ νn
X)t

p−→ (g ∗ νX)t , which
verifies [δ5,2-R+] and thus [δ5,1-R+] for Xn and X.

The result Xn d−→ X now follows by [11], Theorem VIII.2.17. �
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