THE INTEGRAL OF THE SUPREMUM PROCESS OF BROWNIAN MOTION

SVANTE JANSON AND NICLAS PETERSSON

Abstract

In this paper we study the integral of the supremum process of standard Brownian motion. We present an explicit formula for the moments of the integral (or area) $\mathcal{A}(T)$, covered by the process in the time interval $[0, T]$. The Laplace transform of $\mathcal{A}(T)$ follows as a consequence. The main proof involves a double Laplace transform of $\mathcal{A}(T)$ and is based on excursion theory and local time for Brownian motion.

1. Introduction

Let $B(t), t \geq 0$, be a standard Brownian motion. Consider the following associated processes: the supremum process $S(t):=\max _{0 \leq s \leq t} B(t)$, and the local time $L(t)$, which can be regarded as a measure of the time $B(t)$ spends at 0 in the interval $[0, t]$, see Revuz and Yor [10, Chapter VI] for details. It is well-known that these two processes, although pathwise quite different, have the same distribution [10, Chapter VI.2],

$$
\{S(t)\}_{t \geq 0} \stackrel{\mathrm{~d}}{=}\{L(t)\}_{t \geq 0} .
$$

The purpose of this paper is to study the distribution of the area under $S(t)$ or, equivalently, $L(t)$ over a given time interval $[0, T]$. That is, the integral

$$
\begin{equation*}
\mathcal{A}(T):=\int_{0}^{T} S(t) \mathrm{d} t \stackrel{\mathrm{~d}}{=} \int_{0}^{T} L(t) \mathrm{d} t . \tag{1.1}
\end{equation*}
$$

For ease of notation, let $\mathcal{A}:=\mathcal{A}(1)$.
The area (1.1) appeared as a random parameter when analysing displacements for linear probing hashing. The Laplace transform of \mathcal{A}, which is presented in Corollary 2.4, provided the means to prove one of the main theorems in Petersson [9].

Note that the usual Brownian scaling

$$
\{B(T t)\}_{t \geq 0} \stackrel{\mathrm{~d}}{=}\left\{T^{1 / 2} B(t)\right\}_{t \geq 0},
$$

[^0]for any $T>0$, implies the corresponding scaling for the supremum process,
$$
\{S(T t)\}_{t \geq 0} \stackrel{\mathrm{~d}}{=}\left\{T^{1 / 2} S(t)\right\}_{t \geq 0} .
$$

Thus, for $T>0$,

$$
\begin{equation*}
\mathcal{A}(T)=T \int_{0}^{1} S(T t) \mathrm{d} t \stackrel{\mathrm{~d}}{=} T^{3 / 2} \mathcal{A} \tag{1.2}
\end{equation*}
$$

and it is enough to study \mathcal{A}.

2. Results

Let $\psi(s):=\mathbb{E} e^{-s \mathcal{A}}$ denote the Laplace transform of \mathcal{A}. An essential part of this paper is devoted to proving the following formula for the Laplace transform of a variation of ψ, or in other words, a double Laplace transform of \mathcal{A}. Such formulas have already been derived for the integral of $|B(t)|$ and other similar integrals of processes related to Brownian motion, see Perman and Wellner [8] and the survey by Janson [3].

Theorem 2.1. Let ψ be the Laplace transform of \mathcal{A}. For all $\alpha, \lambda>0$,

$$
\int_{0}^{\infty} \psi\left(\alpha s^{3 / 2}\right) e^{-\lambda s} \mathrm{~d} s=\int_{0}^{\infty}\left(1+\frac{3 \alpha s}{2 \sqrt{2 \lambda}}\right)^{-2 / 3} e^{-\lambda s} \mathrm{~d} s
$$

Remark 2.2. One of the parameters α and λ in Theorem 2.1 can be eliminated (by setting it equal to 1 , for instance) without loss of generality. In fact, for any $\beta>0$, the formula is preserved by the substitutions $\lambda \mapsto \beta \lambda$, $\alpha \mapsto \beta^{3 / 2} \alpha$ and $s \mapsto \beta^{-1} s$.

The proof is given in Section 5. It is based on excursion theory for Brownian motion and is inspired by similar arguments for other Brownian areas, see Perman and Wellner [8].

Theorem 2.3. The n :th moment of \mathcal{A} is

$$
\mathbb{E} \mathcal{A}^{n}=\frac{n!\Gamma(n+2 / 3)}{\Gamma(2 / 3) \Gamma(3 n / 2+1)}\left(\frac{3 \sqrt{2}}{4}\right)^{n}, \quad n \in \mathbb{N} .
$$

Proof. Set $\lambda=1$ in Theorem 2.1 and denote the left and right hand side by

$$
I(\alpha):=\int_{0}^{\infty} \psi\left(\alpha s^{3 / 2}\right) e^{-s} \mathrm{~d} s
$$

and

$$
J(\alpha):=\int_{0}^{\infty}\left(1+\frac{3 \alpha s}{2 \sqrt{2}}\right)^{-2 / 3} e^{-s} \mathrm{~d} s
$$

The integrand of $I(\alpha)$ and all its derivatives with respect to α are dominated by functions of the form $s^{K} e^{-s}$, uniformly in $\alpha>0$. Differentiation of $I(\alpha)$ is therefore allowed indefinitely due to dominated convergence. The same argument applies to $J(\alpha)$.

Also, the dominated convergence theorem shows that integration (with respect to s) can be interchanged with taking the limit $\alpha \rightarrow 0+$. Thus

$$
\begin{aligned}
\lim _{\alpha \rightarrow 0+} \frac{\mathrm{d}^{n} I(\alpha)}{\mathrm{d} \alpha^{n}} & =\lim _{\alpha \rightarrow 0+} \int_{0}^{\infty} \frac{\mathrm{d}^{n}}{\mathrm{~d} \alpha^{n}} \psi\left(\alpha s^{3 / 2}\right) e^{-s} \mathrm{~d} s \\
& =\int_{0}^{\infty} \lim _{\alpha \rightarrow 0+}\left(-s^{3 / 2}\right)^{n} \mathbb{E}\left(\mathcal{A}^{n} \exp \left\{-\alpha s^{3 / 2} \mathcal{A}\right\}\right) e^{-s} \mathrm{~d} s \\
& =(-1)^{n} \mathbb{E}\left(\mathcal{A}^{n}\right) \int_{0}^{\infty} s^{3 n / 2} e^{-s} \mathrm{~d} s \\
& =(-1)^{n} \Gamma(3 n / 2+1) \mathbb{E} \mathcal{A}^{n}
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{\alpha \rightarrow 0+} \frac{\mathrm{d}^{n} J(\alpha)}{\mathrm{d} \alpha^{n}} & =\lim _{\alpha \rightarrow 0+} \int_{0}^{\infty} \frac{\mathrm{d}^{n}}{\mathrm{~d} \alpha^{n}}\left(1+\frac{3 \alpha s}{2 \sqrt{2}}\right)^{-2 / 3} e^{-s} \mathrm{~d} s \\
& =\int_{0}^{\infty} \lim _{\alpha \rightarrow 0+} \frac{\Gamma(n+2 / 3)}{\Gamma(2 / 3)}\left(\frac{-3 s}{2 \sqrt{2}}\right)^{n}\left(1+\frac{3 \alpha s}{2 \sqrt{2}}\right)^{-n-2 / 3} e^{-s} \mathrm{~d} s \\
& =\frac{\Gamma(n+2 / 3)}{\Gamma(2 / 3)}\left(\frac{-3}{2 \sqrt{2}}\right)^{n} \int_{0}^{\infty} s^{n} e^{-s} \mathrm{~d} s \\
& =\frac{\Gamma(n+2 / 3)}{\Gamma(2 / 3)}\left(\frac{-3 \sqrt{2}}{4}\right)^{n} n!.
\end{aligned}
$$

The fact that $I(\alpha)=J(\alpha)$ completes the proof.
The first four moments of \mathcal{A} are listed in Table 1. Further, Stirling's formula provides the asymptotic relation

$$
\begin{equation*}
\mathbb{E} \mathcal{A}^{n} \sim \frac{2 \sqrt{3 \pi}}{3 \Gamma(2 / 3)} n^{1 / 6}\left(\frac{n}{3 e}\right)^{n / 2}, \quad n \rightarrow \infty . \tag{2.1}
\end{equation*}
$$

Corollary 2.4. The Laplace transform of \mathcal{A} is

$$
\begin{equation*}
\psi(s)=\frac{1}{\Gamma(2 / 3)} \sum_{n=0}^{\infty} \frac{\Gamma(n+2 / 3)}{\Gamma(3 n / 2+1)}\left(\frac{-3 \sqrt{2} s}{4}\right)^{n} . \tag{2.2}
\end{equation*}
$$

Proof. The corollary follows from the identity

$$
\psi(s)=\sum_{n=0}^{\infty} \frac{(-s)^{n}}{n!} \mathbb{E} \mathcal{A}^{n} .
$$

Note that the sum converges absolutely for every complex s.
The graph of $\psi(s)$ is shown in Figure 1.
Remark 2.5. The Laplace transform of \mathcal{A} can also be expressed in terms of generalized hypergeometric functions,

$$
\psi(s)={ }_{1} F_{1}\left(\frac{5}{6} ; \frac{4}{6} ; \frac{s^{2}}{6}\right)-\frac{4 s}{3 \sqrt{2 \pi}} 2 F_{2}\left(\frac{6}{6}, \frac{8}{6} ; \frac{7}{6}, \frac{9}{6} ; \frac{s^{2}}{6}\right) .
$$

$$
\mathbb{E} \mathcal{A}=\frac{4}{3 \sqrt{2 \pi}} \quad \mathbb{E} \mathcal{A}^{2}=\frac{5}{12} \quad \mathbb{E} \mathcal{A}^{3}=\frac{64}{63 \sqrt{2 \pi}} \quad \mathbb{E} \mathcal{A}^{4}=\frac{11}{24}
$$

TABLE 1. The first four moments of \mathcal{A}.

Figure 1. The Laplace transform of \mathcal{A}.

3. TAIL ASYMPTOTICS

Tauberian theorems by Davies [1] and Kasahara [7] (see Janson [4, Theorem 4.5] for a convenient version) show that the moment asymptotics (2.1) implies the estimate $\ln \mathbb{P}(\mathcal{A}>x) \sim-3 x^{2} / 2$ for the tail of the distribution function. Thus, the following corollary is obtained.

Corollary 3.1. \mathcal{A} has the tail estimate

$$
\mathbb{P}(\mathcal{A}>x)=\exp \left\{-3 x^{2} / 2+o\left(x^{2}\right)\right\}, \quad x \rightarrow \infty .
$$

(This result can also be proved by large deviation theory; cf. similar results in Fill and Janson [2].)

It seems difficult to obtain more precise tail asymptotics from the moment asymptotics, but it is natural to make a conjecture.

Conjecture 3.2. \mathcal{A} has a density function $f_{\mathcal{A}}(x)$ satisfying

$$
f_{\mathcal{A}}(x) \sim \frac{2 \cdot 3^{1 / 6}}{\Gamma(2 / 3)} x^{1 / 3} e^{-3 x^{2} / 2}, \quad x \rightarrow \infty
$$

In fact, if \mathcal{A} has a density with $f_{\mathcal{A}}(x) \sim a x^{b} e^{-c x^{d}}$ for some constants a, b, c, d, then it is the only possible choice that yields the moment asymptotics (2.1), cf. Janson and Louchard [5].

Conjecture 3.2 may be compared with similar results for several Brownian areas in Janson and Louchard [5], see also Janson [3]. Note that in these result for Brownian areas, the exponent of x is always an integer $(0,1$ or $2)$. It is therefore a small surprise that here, the exponent seems to be $1 / 3$, corresponding to the power $n^{1 / 6}$ in (2.1).

4. PRELIminaries on point processes

Let \mathfrak{S} be a measurable space. (In this paper, \mathfrak{S} is either an interval of the real line or the product of two such intervals.) Although a point process Ξ will be regarded as a random set $\left\{\xi_{i}\right\} \subset \mathfrak{S}$, it is technically convenient to formally define it as an integer-valued random measure $\sum_{i} \delta_{\xi_{i}}$. Hence, $\Xi(A)$ denotes the number of points ξ_{i} that belong to a (measurable) subset $A \subseteq \mathfrak{S}$. Also, $x \in \Xi$ is equivalent to $\Xi(\{x\})>0$. See further e.g. Kallenberg [6].

A Poisson process with intensity $\mathrm{d} \mu$, where $\mathrm{d} \mu$ is a measure on \mathfrak{S}, is a point process Ξ such that $\Xi(A)$ has a Poisson distribution with mean $\mu(A)$ for every measurable $A \subseteq \mathfrak{S}$, and $\Xi\left(A_{1}\right), \ldots, \Xi\left(A_{k}\right)$ are independent for every family A_{1}, \ldots, A_{k} of disjoint measurable sets. Lemma 4.1 is a standard formula for Laplace functionals, see for instance [6, Lemma 12.2(i)].

Lemma 4.1. If Ξ is a Poisson process with intensity $\mathrm{d} \mu$ on a set \mathfrak{S}, and $f: \mathfrak{S} \rightarrow[0, \infty)$ is a measurable function, then

$$
\mathbb{E} \exp \left\{-\sum_{\xi \in \Xi} f(\xi)\right\}=\exp \left\{-\int_{\mathfrak{S}}\left(1-e^{-f(x)}\right) \mathrm{d} \mu(x)\right\} .
$$

Lemma 4.2, on the other hand, is more of a digression. The result follows from a standard Gamma integral by integration by parts. (The result can also be written as $2 \Gamma(1 / 2) \lambda^{1 / 2}$.)

Lemma 4.2. If $\lambda>0$, then

$$
\int_{0}^{\infty}\left(1-e^{-\lambda x}\right) x^{-3 / 2} \mathrm{~d} x=2 \sqrt{\pi \lambda} .
$$

5. Proof of Theorem 2.1

The set $\{t: B(t)=0\}$ is a.s. closed and unbounded, so its complement $\{t: B(t) \neq 0\}$ is an infinite union of finite open intervals, denoted by $I_{\nu}=\left(g_{\nu}, d_{\nu}\right), \nu=1,2, \ldots$, in some order. (The intervals cannot be ordered by appearance, since there is a.s. an infinite number of them in, say, $[0,1]$. Fortunately, the order does not matter.) The restrictions of $B(t)$ to these intervals are called the excursions of $B(t)$. Let \mathbf{e}_{ν} be the excursion during I_{ν}.

The local time $L(t)$ is constant during each excursion. Let τ_{ν} be the local time during \mathbf{e}_{ν} and let $\ell_{\nu}:=d_{\nu}-g_{\nu}$ be the length of \mathbf{e}_{ν}. It is well-known, see Revuz and Yor [10, Chapter XII], that the collection of pairs $\left\{\left(\tau_{\nu}, \ell_{\nu}\right)\right\}_{\nu=1}^{\infty}$ forms a Poisson process in $[0, \infty) \times(0, \infty)$ with intensity

$$
\mathrm{d} \Lambda=\left(2 \pi \ell^{3}\right)^{-1 / 2} \mathrm{~d} \tau \mathrm{~d} \ell .
$$

Note also that, a.s., if the excursion $\mathbf{e}_{\nu_{1}}$ comes before $\mathbf{e}_{\nu_{2}}$, then $\tau_{\nu_{1}}<\tau_{\nu_{2}}$.
Next, consider a Poisson process $\left\{T_{i}\right\}_{i=1}^{\infty}$ on $[0, \infty)$ with intensity $\lambda \mathrm{d} t$, independent of $\{B(t)\}$. Assume that the points are ordered with $0<T_{1}<$ $T_{2}<\cdots$. Then $T_{1}, T_{2}-T_{1}, \ldots$ are i.i.d. $\operatorname{Exp}(\lambda)$ random variables with
density function $\lambda e^{-\lambda t}$. Furthermore, T_{1} is independent of $\{B(t)\}$ and thus of $\{\mathcal{A}(T)\}$. It follows from (1.2) that $\mathcal{A}\left(T_{1}\right) \stackrel{\mathrm{d}}{=} T_{1}^{3 / 2} \mathcal{A}$ and consequently

$$
\begin{equation*}
\mathbb{E} e^{-\alpha \mathcal{A}\left(T_{1}\right)}=\mathbb{E} e^{-\alpha T_{1}^{3 / 2} \mathcal{A}}=\mathbb{E} \psi\left(\alpha T_{1}^{3 / 2}\right)=\lambda \int_{0}^{\infty} e^{-\lambda s} \psi\left(\alpha s^{3 / 2}\right) \mathrm{d} s \tag{5.1}
\end{equation*}
$$

The times T_{i} are called marks, and an excursion is called marked if it contains at least one of the marks T_{i}. The marks $\left\{T_{i}\right\}$ are placed by first constructing $\{B(t)\}$ and then adding marks according to independent Poisson processes with intensities $\lambda \mathrm{d} t$ in each excursion. Thus, given the excursions $\left\{\mathbf{e}_{\nu}\right\}$, each excursion \mathbf{e}_{ν} is marked with probability $1-e^{-\lambda \ell_{\nu}}$, independently of the other excursions. The Poisson process $\Xi:=\left\{\left(\tau_{\nu}, \ell_{\nu}\right)\right\}$ defined by the excursions can be written as the union $\Xi^{\prime} \cup \Xi^{\prime \prime}$, where

$$
\begin{aligned}
\Xi^{\prime} & :=\left\{\left(\tau_{\nu}, \ell_{\nu}\right): \mathbf{e}_{\nu} \text { is unmarked }\right\}, \\
\Xi^{\prime \prime} & :=\left\{\left(\tau_{\nu}, \ell_{\nu}\right): \mathbf{e}_{\nu} \text { is marked }\right\} .
\end{aligned}
$$

By the general independence properties of Poisson processes, Ξ^{\prime} and $\Xi^{\prime \prime}$ are independent Poisson processes with intensities

$$
\begin{equation*}
\mathrm{d} \Lambda^{\prime}:=e^{-\lambda \ell} \mathrm{d} \Lambda=(2 \pi)^{-1 / 2} \ell^{-3 / 2} e^{-\lambda \ell} \mathrm{d} \tau \mathrm{~d} \ell \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{d} \Lambda^{\prime \prime}:=\left(1-e^{-\lambda \ell}\right) \mathrm{d} \Lambda=(2 \pi)^{-1 / 2} \ell^{-3 / 2}\left(1-e^{-\lambda \ell}\right) \mathrm{d} \tau \mathrm{~d} \ell, \tag{5.3}
\end{equation*}
$$

respectively. In particular, if the lengths are ignored, the local times of the marked excursions form a Poisson process $\widetilde{\Xi}$ on $(0, \infty)$ with intensity

$$
\int_{\ell=0}^{\infty}\left(1-e^{-\lambda \ell}\right) \mathrm{d} \Lambda=\tilde{\lambda} \mathrm{d} \tau
$$

where, using Lemma 4.2,

$$
\begin{equation*}
\tilde{\lambda}=\int_{0}^{\infty}(2 \pi)^{-1 / 2} \ell^{-3 / 2}\left(1-e^{-\lambda \ell}\right) \mathrm{d} \ell=\sqrt{2 \lambda} . \tag{5.4}
\end{equation*}
$$

Due to the fact that $B\left(T_{1}\right) \neq 0$ a.s., there exists a unique excursion $\mathbf{e}_{\nu^{*}}$ that contains the first mark T_{1}, i.e., $T_{1} \in I_{\nu^{*}}$. Let $\zeta:=L\left(T_{1}\right)=\tau_{\nu^{*}}$ be the local time at T_{1} (and thus during $\mathbf{e}_{\nu^{*}}$). Since $\mathbf{e}_{\nu^{*}}$ is the first marked excursion, its local time ζ is the first of the points in the Poisson process $\widetilde{\Xi}$ and hence

$$
\begin{equation*}
\zeta \sim \operatorname{Exp}(\sqrt{2 \lambda}) . \tag{5.5}
\end{equation*}
$$

The restriction of $B(t)$ to the interval $\left[0, T_{1}\right]$ consists of all excursions \mathbf{e}_{ν} with local time $\tau_{\nu}<\tau_{\nu^{*}}=\zeta$ and the part of $\mathbf{e}_{\nu^{*}}$ on $\left(g_{\nu^{*}}, T_{1}\right)$, plus the set

$$
\left[0, T_{1}\right] \backslash \bigcup_{\nu} I_{\nu}=\left\{t \leq T_{1}: B(t)=0\right\}
$$

which a.s. has measure 0 and thus may be ignored. Consequently, since $L(t)=\tau_{\nu}$ on I_{ν},

$$
\begin{aligned}
\mathcal{A}\left(T_{1}\right): & : \int_{0}^{T_{1}} L(t) \mathrm{d} t=\sum_{\nu: \tau_{\nu}<\tau_{\nu^{*}}} \int_{I_{\nu}} L(t) \mathrm{d} t+\int_{g_{\nu^{*}}}^{T_{1}} L(t) \mathrm{d} t \\
& =\sum_{\nu: \tau_{\nu}<\zeta} \tau_{\nu} \ell_{\nu}+\zeta\left(T_{1}-g_{\nu^{*}}\right):=\mathcal{A}^{\prime}+\mathcal{A}^{\prime \prime} .
\end{aligned}
$$

The sum defined as $\mathcal{A}^{\prime}=\sum_{\nu: \tau_{\nu}<\zeta} \tau_{\nu} \ell_{\nu}$ only contains terms for unmarked excursions \mathbf{e}_{ν}. Thus

$$
\mathcal{A}^{\prime}=\sum_{\left(\tau_{\nu}, \ell_{\nu}\right) \in \Xi^{\prime}: \tau_{\nu}<\zeta} \tau_{\nu} \ell_{\nu} .
$$

Recall that ζ is determined by $\Xi^{\prime \prime}$ (as the smallest τ with $(\tau, \ell) \in \Xi^{\prime \prime}$ for some $\ell)$ and that Ξ^{\prime} and $\Xi^{\prime \prime}$ are independent. Hence, Ξ^{\prime} and ζ are independent. It follows from Lemma 4.1, with $\mathfrak{S}=(0, \zeta) \times(0, \infty)$ and $f((\tau, \ell))=\alpha \tau \ell$, that

$$
\mathbb{E}\left(e^{-\alpha \mathcal{A}^{\prime}} \mid \zeta\right)=\exp \left\{-\int_{\tau=0}^{\zeta} \int_{\ell=0}^{\infty}\left(1-e^{-\alpha \tau \ell}\right) \mathrm{d} \Lambda^{\prime}(\tau, \ell)\right\} .
$$

By (5.2) and Lemma 4.2,

$$
\begin{aligned}
\int_{\tau=0}^{\zeta} \int_{\ell=0}^{\infty}(1 & \left.-e^{-\alpha \tau \ell}\right) \mathrm{d} \Lambda^{\prime}(\tau, \ell) \\
& =\int_{\tau=0}^{\zeta} \int_{\ell=0}^{\infty}\left(1-e^{-\alpha \tau \ell}\right)(2 \pi)^{-1 / 2} \ell^{-3 / 2} e^{-\lambda \ell} \mathrm{d} \ell \mathrm{~d} \tau \\
& =(2 \pi)^{-1 / 2} \int_{\tau=0}^{\zeta} \int_{\ell=0}^{\infty}\left(e^{-\lambda \ell}-e^{-(\lambda+\alpha \tau) \ell}\right) \ell^{-3 / 2} \mathrm{~d} \ell \mathrm{~d} \tau \\
& =\int_{\tau=0}^{\zeta} \sqrt{2}(\sqrt{\lambda+\alpha \tau}-\sqrt{\lambda}) \mathrm{d} \tau \\
& =\frac{2 \sqrt{2}}{3 \alpha}\left((\lambda+\alpha \zeta)^{3 / 2}-\lambda^{3 / 2}\right)-\sqrt{2 \lambda} \zeta
\end{aligned}
$$

and it follows that

$$
\begin{equation*}
\mathbb{E}\left(e^{-\alpha \mathcal{A}^{\prime}} \mid \zeta\right)=\exp \left\{\sqrt{2 \lambda} \zeta-\frac{2 \sqrt{2}}{3 \alpha}\left((\lambda+\alpha \zeta)^{3 / 2}-\lambda^{3 / 2}\right)\right\} \tag{5.6}
\end{equation*}
$$

Now consider $\mathcal{A}^{\prime \prime}=\zeta\left(T_{1}-g_{\nu^{*}}\right)$. Note that $T_{1}-g_{\nu^{*}}$ is the location (relative to the left endpoint of the excursion) of the first mark in the first marked excursion. Since Ξ is a Poisson process with intensity independent of τ, the location $T_{1}-g_{\nu^{*}}$ is independent of the local time ζ of the first marked excursion. Further, the joint distribution of ($\ell_{\nu^{*}}, T_{1}-g_{\nu^{*}}$) has density

$$
(\widetilde{\lambda})^{-1} \lambda e^{-\lambda y}(2 \pi)^{-1 / 2} \ell^{-3 / 2} \mathrm{~d} \ell \mathrm{~d} y, \quad 0<y<\ell<\infty,
$$

where the normalization constant $\widetilde{\lambda}$ is given by (5.4). Consequently,

$$
\begin{align*}
\mathbb{E}\left(e^{-\alpha \mathcal{A}^{\prime \prime}} \mid \zeta\right) & =\mathbb{E}\left(e^{-\alpha \zeta\left(T_{1}-g_{\nu^{*}}\right)} \mid \zeta\right) \\
& =\int_{y=0}^{\infty} \int_{\ell=y}^{\infty} e^{-\alpha \zeta y}(\widetilde{\lambda})^{-1} \lambda e^{-\lambda y}(2 \pi)^{-1 / 2} \ell^{-3 / 2} \mathrm{~d} \ell \mathrm{~d} y \\
& =\pi^{-1 / 2} \lambda^{1 / 2} \int_{y=0}^{\infty} e^{-(\lambda+\alpha \zeta) y} y^{-1 / 2} \mathrm{~d} y \\
& =\lambda^{1 / 2}(\lambda+\alpha \zeta)^{-1 / 2} . \tag{5.7}
\end{align*}
$$

Again, since Ξ^{\prime} and $\Xi^{\prime \prime}$ are independent, \mathcal{A}^{\prime} and $\mathcal{A}^{\prime \prime}$ are conditionally independent given ζ. Thus, equation (5.6) and (5.7) yield

$$
\begin{aligned}
\mathbb{E}\left(e^{-\alpha \mathcal{A}\left(T_{1}\right)} \mid \zeta\right) & =\mathbb{E}\left(e^{-\alpha \mathcal{A}^{\prime}} \mid \zeta\right) \mathbb{E}\left(e^{-\alpha \mathcal{A}^{\prime \prime}} \mid \zeta\right) \\
& =\left(\frac{\lambda}{\lambda+\alpha \zeta}\right)^{1 / 2} \exp \left\{\sqrt{2 \lambda} \zeta-\frac{2 \sqrt{2}}{3 \alpha}\left((\lambda+\alpha \zeta)^{3 / 2}-\lambda^{3 / 2}\right)\right\} .
\end{aligned}
$$

By (5.5), ζ has the density $\sqrt{2 \lambda} e^{-\sqrt{2 \lambda} x}, x>0$, and it follows that

$$
\mathbb{E} e^{-\alpha \mathcal{A}\left(T_{1}\right)}=\lambda \sqrt{2} \int_{0}^{\infty}(\lambda+\alpha x)^{-1 / 2} \exp \left\{-\frac{2 \sqrt{2}}{3 \alpha}\left((\lambda+\alpha x)^{3 / 2}-\lambda^{3 / 2}\right)\right\} \mathrm{d} x .
$$

Finally, the substitution

$$
\frac{2 \sqrt{2}}{3 \alpha \lambda}\left((\lambda+\alpha x)^{3 / 2}-\lambda^{3 / 2}\right) \mapsto s
$$

provides the slightly simpler formula

$$
\mathbb{E} e^{-\alpha \mathcal{A}\left(T_{1}\right)}=\lambda \int_{0}^{\infty}\left(1+\frac{3 \alpha s}{2 \sqrt{2 \lambda}}\right)^{-2 / 3} e^{-\lambda s} \mathrm{~d} s
$$

The result now follows by a comparison with (5.1).

References

[1] Davies, L. (1976) Tail probabilities for positive random variables with entire characteristic functions of very regular growth. Z. Angew. Math. Mech. 56, no. 3, 334-336.
[2] Fill, J. A. and Janson, S. (2007) Precise logarithmic asymptotics for the right tails of some limit random variables for random trees. Preprint, 2007. arXiv:math/0701259v1.
[3] Janson, S. (2007) Brownian excursion area, Wright's constants in graph enumeration, and other Brownian areas. Probability Surveys 4, 80-145.
[4] Janson, S. and Chassaing, P. (2004) The center of mass of the ISE and the Wiener index of trees. Electronic Comm. Probab. 9, 178-187.
[5] Janson, S. and Louchard, G. (2007) Tail estimates for the Brownian excursion area and other Brownian areas. In preparation.
[6] Kallenberg, O. (2002) Foundations of Modern Probability, 2nd edn. SpringerVerlag, New York.
[7] Kasahara, Y. (1978) Tauberian theorems of exponential type. J. Math. Kyoto Univ. 18, no. 2, 209-219.
[8] Perman, M. and Wellner, J. A. (1996) On the distribution of Brownian areas. Ann. Appl. Probab. 6, no. 4, 1091-1111.
[9] Petersson, N. (2007) Maximum displacements for linear probing hashing. In preparation.
[10] Revuz, D. and Yor, M. (1999) Continuous Martingales and Brownian Motion, 3rd edn. Springer-Verlag, Berlin.

Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala, Sweden

E-mail address: svante.janson@math.uu.se
URL: http://www.math.uu.se/~svante/
Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala, Sweden

E-mail address: niclas.petersson@math.uu.se
URL: http://www.math.uu.se/~niclasp/

[^0]: Date: June 28, 2007.
 2000 Mathematics Subject Classification. 60J65; 60J55.
 Key words and phrases. Brownian motion, supremum process, local time, Brownian areas.

