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ABSTRACT. Bona [6] studied the distribution of ascents, plateaux and descents in the class of
Stirling permutations, introduced by Gessel and Stanley [14]. Recently, Janson [18] showed
the connection between Stirling permutations and plane recursive trees and proved a joint nor-
mal law for the parameters considered by Bona. Here we will consider generalized Stirling
permutations extending the earlier results of [6], [18], and relate them with certain families
of generalized plane recursive trees, and also (k + 1)-ary increasing trees. We also give two
different bijections between certain families of increasing trees, which both give as a special
case a bijection between ternary increasing trees and plane recursive trees. In order to de-
scribe the (asymptotic) behaviour of the parameters of interests, we study three (generalized)
Pólya urn models using various methods.

1. INTRODUCTION

Stirling permutations were defined by Gessel and Stanley [14]. A Stirling permutation is a
permutation of the multiset {1, 1, 2, 2, . . . , n, n} such that for each i, 1 ≤ i ≤ n, the elements
occuring between the two occurences of i are larger than i. The name of these combinatorial
objects is due to relations with the Stirling numbers, see [14] for details.

Let σ = a1a2 · · · a2n be a Stirling permutation. Let the index i (or the gap (i, i + 1))
be called an ascent of σ if i = 0 or ai < ai+1, let i be called a descent of σ if i = 2n
or ai > ai+1, and let i be called a plateau of σ if ai = ai+1. (It is convenient to define
a0 = a2n+1 = 0; this takes care of the special cases i = 0 and i = 2n.) Note that i runs from
0 to 2n, so the total number of ascents, descents and plateaux is 2n + 1. Let Qn denote the
set of Stirling permutation of {1, 1, 2, 2, . . . , n, n}; we say that these have order n. Bona [6]
showed that the parameters numbers of ascents, descents and plateaux are equidistributed on
Qn. Moreover, he showed a central limit theorem for the three parameters.

A rooted tree of order n with the vertices labelled 1, 2, . . . , n, is an increasing tree if the
node labelled 1 is distinguished as the root, and for each 2 ≤ k ≤ n, the labels of the nodes
in the unique path from the root to the node labelled k form an increasing sequence. We
will consider several families of increasing trees. The first one is the family of increasing
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plane trees, usually called plane recursive trees, where the children of a node are ordered
(from left to right, say). Note that plane recursive trees also appear in literature under the
names plane-oriented recursive trees, heap-ordered trees, and sometimes also as scale-free
trees. Further families will be defined later.

Let Tn denote the set of plane recursive trees with n vertices. It was shown by Janson
[18] that plane recursive trees on n+1 vertices are in bijection with Stirling permutations on
{1, 1, 2, 2, . . . , n, n}, Tn+1

∼= Qn. Moreover, using this bijective correspondence, he showed
that the number of descents in the Stirling permutation corresponds to the number of leaves
in the associated plane recursive tree. Furthermore, using an urn model and general theo-
rems, see [15] and also [16], Janson showed the joint normality of the parameters ascent,
descent and plateau. The purpose of this work is to extend this connection between Stirling
permutations and plane recursive trees in Janson [18], to generalized Stirling permutations.
In particular, we give a bijection between Stirling permutations on {1k, 2k, . . . , nk}, where
here and throughout this work 1l := 1, . . . , 1︸ ︷︷ ︸

l

, with l ≥ 1, which we call k-Stirling permuta-

tions, and (k + 1)-ary increasing trees; moreover we can also relate k-Stirling permutations
with a certain family of plane recursive trees, namely k-plane recursive trees. Concerning
Stirling permutations of the multiset {1k, 2k+2, . . . , nk+2}, which we call k-bundled Stirling
permutations, we obtain a bijection with certain generalized plane recursive trees, namely
k-bundled increasing trees. We also give two different bijections between certain families
of increasing trees, which both give as a special case a bijection between ternary increasing
trees and plane oriented increasing trees. Moreover, we will use several different methods,
combinatorial and probabilistic, to derive several results in this direction. More precisely, in
order to describe the (asymptotic) behaviour of the parameters of interests, we study three
(generalized) Pólya urn models.

The parameter k is fixed throughout the paper, and often omitted from the notation. All
unspecified limits are as n →∞. In the results with a.s. convergence, we assume that the
random k-Stirling permutation grows in the natural way by random addition of new labels;
in the other results, this does not matter.

2. PRELIMINARIES

2.1. Generalized Stirling permutations. A straightforward generalization of Stirling per-
mutations on the multiset {1, 1, 2, 2, . . . , n, n} is to consider permutations of a more general
multiset {1k1 , 2k2 , . . . , nkn}, with ki ∈ N for 1 ≤ i ≤ n. We call a permutation of the
multiset {1k1 , 2k2 , . . . , nkn} a generalized Stirling permutation, if for each i, 1 ≤ i ≤ n, the
elements occurring between two occurrences of i are at least i. (In other words, the elements
occurring between two consecutive occurrences of i are larger than i.) Such permutations
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have already previously been considered by Brenti [7], [8]. The number of generalized Stir-
ling permutations of {1k1 , 2k2 , . . . , nkn} is

n−1∏
i=1

(`i + 1) with `i =
i∑

j=1

kj; (1)

this is easy to see by induction, since the kn copies of n have to form a substring, and this
substring can be inserted in `n−1 + 1 positions (viz., anywhere, including first or last) in any
generalized Stirling permutation of {1k1 , 2k2 , . . . , (n− 1)kn−1}.

We will consider two cases and give them special names: a k-Stirling permutation of order
n is a generalized Stirling permutation of the multiset {1k, 2k, . . . , nk}, and a k-bundled Stir-
ling permutation is a generalized Stirling permutation of the multiset {1k, 2k+2, . . . , nk+2}.
Here k ≥ 1, but note that 1-Stirling permutations are just ordinary permutations so we will
usually consider k-Stirling permutations for k ≥ 2 only; the case k = 2 yields the ordinary
Stirling permutations defined by Gessel and Stanley [14].

What we call k-Stirling permutations was suggested by Gessel and Stanley [14] and has
been studied by Park [22, 23, 24] under the name k-multipermutations.

In the following, let Qn = Qn(k) denote the set of k-Stirling permutations of order n and
let Qn = Qn(k) denote the number |Qn(k)| of them. By (1),

Qn(k) = |Qn(k)| =
n−1∏
i=1

(ki + 1) = kn Γ(n + 1/k)

Γ(1/k)
. (2)

For k = 2 this number is just Qn(2) = (2n − 1)!!. In the case k = 3, we have for example
one permutation of order 1: 111; four permutations of order 2: 111222, 112221, 122211,
222111; etc.

Similarly, let Qn = Qn(k) denote the set of k-bundled Stirling permutations of order n
and let Qn = Qn(k) denote the number of them. We have, by (1),

Qn = |Qn(k)| =
n−1∏
i=1

(i(k + 2)− 1) = (k + 2)n−1 Γ(n− 1/(k + 2))

Γ(1− 1/(k + 2))
. (3)

We define ascents, descents and plateaux of a generalized Stirling permutation σ =
a1a2 · · · a` of {1k1 , 2k2 , . . . , nkn} (where the length ` =

∑n
1 ki) as before: we let a0 =

a`+1 = 0 and say that an index i, with 0 ≤ i ≤ `, is an ascent, descent or plateau if
ai < ai+1, ai > ai+1 or ai = ai+1, respectively. Note that the total number of them is ` + 1.

We introduce a natural refinement of ascents, descents and plateaux, namely j-ascents,
j-descents, and j-plateaux. An index i, with 1 ≤ i ≤ ` is called a j-ascent, if i is an ascent
and there are exactly j − 1 indices i′ < i such that ai′ = ai; ı.e., ai is the jth occurrence of
the symbol ai, and similarly for plateaux. For a descent i, ai is always the last occurence of
that symbol (just as for an ascent, ai+1 is the first of its kind), and we define a j-descent as a
descent i < ` such that ai+1 is the the jth occurrence of that symbol. (Note that we choose
not to allow i = 0 or i = ` in these definitions.)
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Thus, for a generalized Stirling permutation of {1k1 , 2k2 , . . . , nkn}, the possible values of
j ranges from 1 to maxi ki for j-ascents and j-descents, and from 1 to maxi ki − 1 for j-
plateaux. In particular, for k-Stirling permutations, 1 ≤ j ≤ k for j-ascents and j-descents,
and 1 ≤ j ≤ k−1 for j-plateaux. Note also that if we reflect a k-Stirling permutation, we get
a new k-Stirling permutation, and j-ascents in one of them correspond to (k+1−j)-descents
in the other.

Example 1. Consider the 3-Stirling permutation σ = 112233321: Index 1 is a 1-plateau,
index 2 is a 2-ascent, index 3 is a 1-plateau, index 4 is a 2-ascent, index 5 is a 1-plateau,
index 6 is a 2-plateau, index 7 is a 3-descent, and index 8 is a 3-descent. (Indices 0 and 9 are
not classified in this way.)

We are interested in the (joint) distributions of the random variables Xn,j , Yn,j and Zn,j ,
defined as the numbers of j-ascents, j-descents and j-plateaux, respectively, in a random
k-Stirling permutation (chosen uniformly in Qn(k)). Note that these trivially are 0 unless
1 ≤ j ≤ k for Xn,j and Yn,j , and 1 ≤ j ≤ k − 1 for Zn,j , and that

k∑
j=1

(Xn,j + Yn,j) +
k−1∑
j=1

Zn,j = kn− 1

We further let Xn, Yn and Zn denote the total numbers of ascents, descents and plateaux,
respectively. Note that, recalling the special definitions at the endpoints,

Xn =
k∑

j=1

Xn,j + 1, (4)

Yn =
k∑

j=1

Yn,j + 1, (5)

Zn =
k∑

j=1

Zn,j. (6)

It is easy to see that a j-ascent with j < k corresponds to a later (j + 1)-descent, and
conversely, so

Xn,j = Yn,j+1, 1 ≤ j ≤ k − 1, (7)

see also Theorem 2. However, there is no corresponding relation for k-ascents, of for 1-
descents, and the total numbers of ascents and descents are typically different, even in the
case k = 2. Further, since only the last copy of a label can be a descent,

Xn,j + Zn,j = n, 1 ≤ j ≤ k − 1, (8)

and, similarly or by (8),

Yn,j + Zn,j−1 = n, 2 ≤ j ≤ k. (9)
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Moreover, we are also interested in the distribution of the number of blocks in a random k-
Stirling permutation of order n. A block in a generalized Stirling permutation σ = a1 · · · a`

is a substring ap · · · aq with ap = aq that is maximal, i.e. not contained in any larger such
substring. There is obviously at most one block for every j = 1, . . . , n, extending from the
first occurrence of j to the last; we say that j forms a block when this substring really is
a block, i.e. when it is not contained in a string i · · · i for some i < j. In particular, in a
k-Stirling permutation, j forms a block if for any i with 1 ≤ i ≤ j − 1, there do not exist
indices m0, . . . mk+1 , with 1 ≤ m0 < · · · < mk+1 ≤ kn, such that σm0 = σmk+1

= i
and σm1 = · · · = σmk

= j. It is easily seen by induction that any generalized Stirling
permutation has a unique decomposition as a sequence of its blocks. Note that if we add a
string (n + 1)kn+1 to a generalized Stirling permutation, this string will either be swallowed
by one of the existing blocks, or form a block on its own; the latter happens when it is added
first, last, or in a gap between two blocks.

Example 2. The 3-Stirling permutation σ = 112233321445554666, has block decomposi-
tion [112233321][445554][666].

One may also consider the similar problems for k-bundled Stirling permutations; simi-
larly defining random variables Xn,j , Y n,j and Zn,j . However, for most results we restrict
ourselves to k-Stirling permutations.

2.2. Generalized plane recursive trees and d-ary increasing trees. In order to relate the
k-Stirling permutations to families of increasing trees we use a general setting based on
earlier considerations of Bergeron et al. [3] and Panholzer and Prodinger [21].

For a given degree-weight sequence (ϕk)k≥0, the corresponding degree-weight generating
function ϕ(t) is defined by ϕ(t) :=

∑
k≥0 ϕkt

k. The simple family of increasing trees T
associated with a degree-weight generating function ϕ(t), can be described by the formal
recursive equation

T = ©1 ×
(
ϕ0 · {ε} ∪̇ ϕ1 · T ∪̇ ϕ2 · T ∗ T ∪̇ ϕ3 · T ∗ T ∗ T ∪̇ · · ·

)
= ©1 × ϕ(T ), (10)

where ©1 denotes the node labelled by 1, × the cartesian product, ∪̇ the disjoint union, ∗
the partition product for labelled objects, and ϕ(T ) the substituted structure (see e. g., the
books [30], [13]). This means that the elements of T are increasing plane trees, and that a
tree with (out-)degrees d1, . . . , dn is given weight

∏n
1 ϕdi

. By a random tree of order n from
the family T , we mean a tree of order n chosen randomly with probabilities proportional to
the weights.

Let Tn be the total weight of all such trees of order n. It follows from (10) that the expo-
nential generating function T (z) :=

∑
n≥1 Tn

zn

n!
of the total weights satisfies the autonomous

first order differential equation

T ′(z) = ϕ
(
T (z)

)
, T (0) = 0. (11)
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The families that we will consider have degree-weights of one of the two following forms,
studied by Panholzer and Prodinger [21]:

ϕ(t) =


ϕ0

(1+
c2t
ϕ0

)
− c1

c2
−1

, for ϕ0 > 0, 0 < −c2 < c1, generalized plane recursive trees,

ϕ0

(
1 + c2t

ϕ0

)d

, for ϕ0, c2 > 0, d := c1
c2

+ 1 ∈ N \ {1}, d-ary increasing trees.
(12)

Consequently, by solving (11), we obtain exponential generating function T (z)

T (z) =


ϕ0

c2

(
1

(1−c1z)
c2
c1

− 1
)
, generalized plane recursive trees,

ϕ0

c2

(
1

(1−(d−1)c2z)
1

d−1
− 1

)
, d-ary increasing trees,

(13)

and the total weights Tn,

Tn = ϕ0c
n−1
1 (n− 1)!

(
n− 1 + c2

c1

n− 1

)
. (14)

Note that changing ϕk to abkϕk for some positive constants a and b will affect the weights of
all trees of a given order n by the same factor anbn−1, which does not affect the distribution
of a random tree from the family. Hence, when considering random trees from these two
classes, ϕ0 is irrelevant and c1 and c2 are relevant only through the ratio c1/c2. (We may
thus, if we like, normalize ϕ0 = 1 and either c1 or |c2|, but not both.)

As shown by Panholzer and Prodinger [21], random trees in the two classes of families
given in (12) can be grown as an evolution process in the following way. The process,
evolving in discrete time, starts with the root labelled by 1. At step i + 1 the node with label
i + 1 is attached to any previous node v (with out-degree d(v)) of the already grown tree of
order i with probabilities p(v) given by

p(v) =

{
d(v)+α

(α+1)i−1
with α := −1− c1

c2
> 0, generalized plane recursive trees,

d−d(v)
(d−1)i+1

, d-ary increasing trees.

Moreover, Panholzer and Prodinger [21] showed that there are only three classes of simple
families that can be grown in this way (for suitable p(v)): the two classes given in (12) and
the recursive trees given by ϕ(t) = ϕ0e

c1t/ϕ0 with ϕ0, c1 > 0 (which can be regarded as a
limiting case of any of the two classes above, letting c2 → 0.)

Example 3. Plane recursive trees are plane increasing trees such that all node degrees are
allowed, with all trees having weight 1. Thus ϕk = 1 and the degree-weight generating
function is ϕ(t) = 1

1−t
, which is of the form in (12) with ϕ0 = 1, c1 = 2 and c2 = −1. We

have

T (z) = 1−
√

1− 2z, and Tn = 1 · 3 · 5 · · · (2n− 3) = (2n− 3)!!, for n ≥ 1.

Furthermore, α = −1− c1
c2

= 1, and consequently, the probability attaching to node v at step
i + 1 is given by p(v) = d(v)+1

2i−1
.
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Example 4. For an integer d ≥ 2, d-ary increasing trees are increasing trees where each node
has d (labelled) positions for children. Thus, only outdegrees 0, . . . , d are allowed; moreover,
for a node with k children in given order, there is thus

(
d
k

)
ways to attach them. Hence, this

family is given by vertex weights ϕk =
(

d
k

)
and thus the degree-weight generating function

ϕ(t) = 1 + td, which is of the form in (12) with ϕ0 = 1, c1 = d− 1 and c2 = 1. By (13),

T (z) =
(
1− (d− 1)z

)−1/(d−1) − 1.

3. INCREASING TREES ASSOCIATED TO GENERALIZED STIRLING PERMUTATIONS

3.1. (k + 1)-ary increasing trees, k-plane recursive trees and k-Stirling permutations.
Recall from Example 4 that, for k ≥ 1, the degree-weight generating function of (k + 1)-ary
increasing trees is given by ϕ(t) = (1+ t)k+1, i.e. ϕ0 = 1, c1 = k and c2 = 1. Consequently,
the generating function T (z) and the numbers Tn of (k +1)-ary trees of order n are given by

T (z) =
1

(1− kz)
1
k

− 1, Tn =
n∏

l=1

(k(l − 1) + 1), n ≥ 1,

and the the probability of attaching to node v at step i + 1 is given by p(v) = k+1−d(v)
ki+1

.
Note that Tn = Qn, the number of k-Stirling permutation, which makes the following

theorem reasonable.

Theorem 1 (Gessel). Let k ≥ 1. The familyAn = An(k +1) of (k +1)-ary increasing trees
of order n is in a natural bijection with k-Stirling permutations, An(k + 1) ∼= Qn(k).

Remark 1. The authors independently derived the result above, and later discovered the
work of Park [22], in which Gessel’s result was mentioned but the proof only sketched. The
result of Gessel never appeared in print except this mentioning in Park [22], to the best of the
authors’ knowledge. We will give a detailed proof of the result above, which has interesting
consequences regarding the (refined) parameters ascents, descents and plataeux, and also
number of blocks, which we will state in Theorem 2.

Remark 2. For k = 1 we obtain a bijection between 1-Stirling permutations (ordinary per-
mutations) and binary increasing trees, which is very well known.

Proof. We use a slightly modified bijection to the one given by Janson in [18] for Stirling
permutation and plane recursive tree, and use a depth-first walk. The depth-first walk of a
rooted (plane) tree starts at the root, goes first to the leftmost child of the root, explores that
branch (recursively, using the same rules), returns to the root, and continues with the next
child of the root, until there are no more children left. We think of (k + 1)-ary increasing
trees, where the empty places are represented by “exterior nodes”. Hence, at any time, any
(interior) node has k + 1 children, some of which may be exterior nodes. Between these
k edges going out from a node labelled v, we place k integers v. (Exterior nodes have no
children and no labels.) Now we perform the depth-first walk and code the (k + 1)-ary
increasing tree by the sequence of the labels visited as we go around the tree (one may think
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of actually going around the tree like drawing the contour). In other words, we add label v
to the code the k first times we return to node v, but not the first time we arrive there or the
last time we return. A (k + 1)-ary increasing tree of order 1 is encoded by 1k. A (k + 1)-ary
increasing tree of order n is encoded by a string of k · n integers, where each of the labels
1, . . . , n appears exactly k times. In other words, the code is a permutation of the multiset
{1k, 2k, . . . , nk}. Note that for each i, 1 ≤ i ≤ n, the elements occurring between the two
occurrences of i are larger than i, since we can only visit nodes with higher labels. Hence the
code is a k-Stirling permutation. Moreover, adding a new node n+1 at one of the kn+1 free
positions (i.e., the positions occupied by exterior nodes) corresponds to inserting the k-tuple
(n + 1)k in the code at one of kn + 1 gaps; note (e.g., by induction) that there is a bijection
between exterior nodes in the tree and gaps in the code. This shows that the code determines
the (k + 1)-ary increasing tree uniquely and that the coding is a bijection. See Figure 1 for
an illustration.

The inverse, starting with a k-Stirling permutation σ of order n and constructing the cor-
responding (k + 1)-ary increasing tree can be described as follows. We proceed recursively
starting at step one by decomposing the permutation as σ = σ11σ21 . . . σk1σk+1, where (af-
ter a proper relabelling) the σi’s are again k-Stirling permutations. Now the smallest label in
each σi is attached to the root node labelled 1. We recursively apply this procedure to each
σi to obtain the tree representation. �

1

2

1 1

2 2

1

2

3

1 1

2 2

3 3

1

2

1 1

2 2

1

2

1 1

2 2
,

FIGURE 1. The three ternary trees of order 2 encoded by 2211, 1221 and
1122; an order 3 ternary increasing tree encoded by the sequence 233211.

Now we relate the distribution of j-ascents, j-descents and j-plateaux in k-Stirling permu-
tations with certain parameters in (k+1)-ary increasing trees. In order to do so we introduce
two kinds of parameters. The parameter Dn,j , standing for “jth children” , counts the num-
ber of nodes in a random (k + 1)-ary increasing tree of order n that are the jth children of
their respective parents, going from left to right, with 1 ≤ j ≤ k + 1. Similarly, the param-
eter Ln,j , standing for “leaves” of type j, counts the number of exterior nodes that are jth
children of their parents, 1 ≤ j ≤ k + 1. We thus have

Ln,j = n−Dn,j, 1 ≤ j ≤ k + 1, (15)
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and, counting the total numbers of interior and exterior children,

k+1∑
j=1

Dn,j = n− 1,
k+1∑
j=1

Ln,j = kn + 1. (16)

Concerning the number of blocks in k-Stirling permutation, we introduce one more pa-
rameter in (k + 1)-ary increasing trees. Let LRn denote the number of (interior) nodes that
have the property that the path to the root consists exclusively of the leftmost or rightmost
possible edge at each node, i.e., the edge in position 1 or k + 1, and no other “inner” edges.
Subsequently, we will call such nodes left-right nodes. The root is trivially a left-right node.

Theorem 2. Let k ≥ 1. Under the bijection in Theorem 1, the numbers of j-ascents Xn,j ,
j-descents Yn,j and j-plateaux Zn,j in a k-Stirling permutation of order n coincide with the
(shifted) numbers of j-children Dn,j , and j-leaves Ln,j in a (k + 1)-ary increasing tree of
order n by the formulas

Xn,j = Dn,j+1, 1 ≤ j ≤ k,

Yn,j = Dn,j, 1 ≤ j ≤ k,

Zn,j = Ln,j+1 = n−Dn,j+1, 1 ≤ j ≤ k − 1.

As a consequence, for the numbers of ascents, descents and plateaux,

Xn = n−Dn,1 = Ln,1,

Yn = n−Dn,k+1 = Ln,k+1,

Zn =
k∑

j=2

Ln,j.

Furthermore, the number of blocks Sn in a k-Stirling permutations of order n coincides with
the number of left-right nodes in the corresponding (k + 1)-ary increasing trees of order n,

Sn = LRn. (17)

Proof. Using the stated bijection we observe that a (j + 1)-child, 1 ≤ j ≤ k, corresponds to
a j-ascent, since the step from the parent node v to the (j + 1)-child u corresponds to having
recorded j times the label of the parent v and then another label w, with w ≥ u. Similar
considerations prove the results for j-descents and j-plateaux. The results for Xn, Yn, Zn

then follow from (4)–(6) and (16).
Concerning the connection between blocks and left-right nodes we make the following

observation. Starting with a (k+1)-ary increasing tree, and inserting nodes one after another,
we note that only a leftmost or rightmost child leads to a new block in the corresponding k-
Stirling permutation. Hence, the number of left-right nodes is equal to the number of blocks,
since we start with a single block 1k and a single left-right node (the root). �
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Remark 3. Note that the number of leaves in (k + 1)-ary increasing trees of order n ≥ 2
corresponds to the number of locally maximal substrings lk = l · · · l, i.e. substrings ilkj,
with 0 ≤ i, j < l, for 2 ≤ l ≤ n, in k-Stirling permutations of order n, which can also be
seen from the bijection.

Remark 4. In the case k = 2 we thus have the symmetric situation that Xn = Ln,1, Yn =
Ln,3 and Zn = Ln,2, which by Theorem 8 below gives a new proof that Xn, Yn and Zn have
the same distribution, and further are exchangeable, as shown by [6] and [18]. We see also
that this will not hold for larger k, see for example Theorem 9.

For k = 2, Theorem 1 gives a bijection between Stirling permutation and ternary increas-
ing trees, while Janson [18] gives a bijection with plane recursive trees of order n+1. (These
are related by a bijection given in Section 4.) Next we will show that also for k > 2, there
is a suitable family of generalized plane recursive trees that is closely related to k-Stirling
permutations.

Definition 1. For k ≥ 2, the family of k-plane recursive trees is specified by the degree-
weight generating function ϕ(t) = (1− (k − 1)t)−

1
k−1 , i.e. it is the family of generalized

plane recursive trees with ϕ0 = 1, c1 = k and c2 = −(k− 1). Explicitly, ϕd = 1
d!

∏d
l=1

(
(k−

1)(l − 1) + 1
)
. Consequently, by (13) and (14), the generating function T (z) and the total

weight Tn are given by

T (z) =
1

k − 1

(
1− (1− kz)

k−1
k

)
, Tn+1 =

n∏
l=1

(k(l − 1) + 1), with T1 = T2 = 1,

α = 1
k−1

, and the probability of attaching to node v at step i+1 is given by p(v) =
d(v)+ 1

k−1
ki

k−1
−1

.

For k = 2, these are the plane recursive trees in Example 3.

Remark 5. We did not succeed in finding a bijective correspondence between k-Stirling
permutations and k-plane recursive trees, in the case of k > 2, generalizing the bijection in
[18] for k = 2, since for k > 2 it seems difficult to obtain a combinatorial interpretation of
the weights of the trees. We leave this as an open problem. However, the distribution of the
leaves still coincides with the distribution of the number of ascents or descents.

Theorem 3. The number (total weight) of k-plane recursive trees of order n + 1 equals
the number of k-Stirling permutations of order n, Tn+1 = Qn. Moreover, the distribution
of the number L̃n+1 of leaves of k-plane recursive trees of order n + 1 coincides with the
distribution of the number Xn of ascents (descents) of k-Stirling permutations of order n.

Proof. The first part is already shown.
The second part is trivial for n = 1, with one leaf and one ascent. We proceed by induction,

and suppose that the relation is true for n: L̃n+1
d
= Xn. We observe that adding the new node

labelled n + 2 to a leaf does not change the number of leaves, whereas adding the new
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node at any other place gives rise to a new leaf. Further, by the formula for p(v) above
with d(v)=0, the probability of adding node n + 2 to a given leaf in a tree of order n + 1 is

p(v) =
1

k−1
k(n+1)

k−1
−1

= 1
kn+1

. Hence, conditioned on the number of leaves L̃n+1 being m, we

have L̃n+2 = m or m + 1 with

P(L̃n+2 = m | L̃n+1 = m) =
m

kn + 1
. (18)

Similarly, when adding a string (n + 1)k to a k-Stirling permutation of order n, we will
always create a new ascent, and we will destroy one if and only if we add the string at an
ascent. Since there are kn + 1 gaps where the new string can be added, conditioned on the
number Xn of ascents being m, we have Xn+1 = m or m + 1 with P(Xn+2 = m | Xn+1 =

m) = m
kn+1

. This is the same relation as (18), and thus L̃n+2
d
= Xn+1, which verifies the

induction step. �

Remark 6. The distribution of the number of leaves is fairly well studied. Let T (z, v) =∑
n≥1 Tn,m

zn

n!
vm denote the bivariate generating function of the number of k-plane recursive

trees having exactly m leaves, also encoding the number k-Stirling permutations of order
n− 1 having m descents. Bergeron et al. [3] determined the generating function T (z, v) by
the implicit equation ∫ T

0

dt

(v − 1)ϕ0 + ϕ(t)
= z,

Note that the implicit equation is true for a much larger class of increasing trees; moreover
one may derive the normal limit of the number of leaves from the implicit equation above,
see [3].

3.2. k-bundled increasing trees and k-bundled Stirling permutations.

Definition 2. For k ≥ 0, the family of (k + 1)-bundled increasing trees is specified by the
degree-weight generating function ϕ(t) = 1

(1−t)k+1 , i.e. it is the family of generalized plane
recursive trees with ϕ0 = 1, c1 = k + 2 and c2 = −1. Explicitly, ϕj =

(
k+j

j

)
. Consequently,

by (13) and (14), the generating function T (z) and the total weight Tn are given by

T (z) = 1− (1− (k + 2)z)
1

k+2 , Tn =
n−1∏
l=1

(l(k + 2)− 1),

α = k+1, and the the probability attaching to node v at step i+1 is given by p(v) = d(v)+k+1
(k+2)i−1

.

Remark 7. One may think of (k + 1)-bundled increasing trees of order n as consisting
of a root node labelled 1 which has k + 1 positions, with a (possibly empty) sequence of
labelled (k + 1)-bundled increasing trees attached to each position (with disjoint sets of
labels, forming a partition of {2, . . . , n}). Equivalently, one may think of each node as
having k separation walls, which can be regarded as a special type of edges.
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Note that the 1-bundled increasing trees are just ordinary plane recursive trees, cf. Exam-
ple 3, and that the bijection stated below also holds for this case, which corresponds to the
result of [18] that Bn(1) = Tn

∼= Qn−1(2), since obviouslyQn(0) ∼= Qn−1(2) by relabelling.

Theorem 4. The family Bn = Bn(k + 1) of (k + 1)-bundled increasing trees of order n is in
a natural bijection with k-bundled Stirling permutations, Bn(k + 1) ∼= Qn(k).

Proof. We proceed as before using a depth-first walk. We label each auxilliary separation
wall of a node labelled v by the label of the node v. Moreover, we label any (proper) edge by
the label of the child. Hence, at any time, any node has at least k outgoing edges, thinking
of the walls as a special type of edges. Now we perform the depth-first walk and code
the k-bundled increasing tree by the sequence of the labels visited on the edges, under the
additional rule that a label on a separation wall only contributes once. Since every proper
edge is traversed twice, and every label except 1 occurs on exactly one proper edge, a (k+1)-
bundled increasing tree of order n is encoded by a string of (k+2)(n−1)+k integers, where
each of the labels 2, . . . , n appears exactly k + 2 times and label 1 appears k times. In other
words, the code is a permutation of the multiset {1k, 2k+2, . . . , nk+2}. Note that for each
i, 1 ≤ i ≤ n, the elements occurring between the two occurrences of i are larger than i,
since we can only visit nodes with higher labels. Hence the code is a k-bundled Stirling
permutation. Moreover, adding a new node n + 1 at one of the (k + 2)(n − 1) + k + 1
possible places corresponds to inserting the (k + 2)-tuple (n + 1)k+2 in the code, at one of
(k + 2)(n − 1) + k + 1 possible places. This shows that the code determines the (k + 1)-
bundled increasing tree uniquely and that the coding is a bijection. See Figure 2 for an
illustration. �
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FIGURE 2. The two 2-bundled increasing trees of order 2 encoded by 2221,
1222; Three 2-bundled increasing trees of order 3 encoded by the sequences
2333221, 3331222 and 3332221.

Next we relate the distribution of ascents, descents and plateaux in k-bundled Stirling
permutations with certain parameters in (k + 1)-bundled increasing trees. In order to do so
we introduce three parameters for a (k + 1)-bundled increasing tree τ . The parameter BA

counts the number of ascents in the bundles of τ , plus the number of non-empty bundles,
plus 1 if the first bundle of the root is empty, where an ascent in a bundle occurs if the root of
a subtree is smaller then the root of the next subtree, going from left to right. The parameter
BD counts the number descents in the bundles of τ , plus the number of non-empty bundles,
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plus 1 if the last bundle of the root is empty, where a descent in a bundle occurs if the root
of subtree is larger then its neighbour. The number BE counts the number of empty bundles
of the nodes with labels larger than one plus the number of empty inner bundles of the root.
With these definitions, the following correspondences are straightforward.

Theorem 5. Under the bijection in Theorem 4, the numbers of ascents, descents and plateaux
in a k-bundled Stirling permutation of order n coincide with the parameters BA, BD and BE

in a (k + 1)-bundled increasing tree of order n.

Remark 8. Note that the number of leaves in (k + 1)-bundled increasing trees of order n
corresponds to the number of sequences of the form lk+2 = l · · · l, with 2 ≤ l ≤ n, in
k-bundled Stirling permutations of order n, as for k-ary increasing trees. Moreover, the
parameter “number of descendants of node j” in a (k + 1)-bundled increasing tree of order
n, with 2 ≤ j ≤ n, counts the number of different entries l with j < l ≤ n between the first
and the last occurrence of j in the corresponding k-bundled Stirling permutation of order n.

4. FURTHER BIJECTIONS

The bijections of Theorem 1 (with k = 2) and [18] (or Theorem 4 with k = 0) imply a
bijection between ordinary plane recursive trees of order n + 1 and ternary increasing trees
of order n, using the connections to 2-Stirling permutations. In the following we will give
two direct bijections, which both encompass this bijection between plane recursive trees and
ternary increasing trees.

First we give a bijection between sequences of k-bundled increasing trees and (k + 2)-ary
increasing trees, which for k = 1 just gives the desired bijection.

Let SEQ(B)n = SEQ(B)n(k) denote the family of sequences of k-bundled increasing
trees with total order n, labelled with disjoint sets of labels forming a partition of {1, . . . , n}.
(Note that our notation slightly abuses the common sequence notation SEQ of combinatorial
objects, since we also assume properly distributed labels.)

Remark 9. By introducing a new root labelled 0, connecting all roots of the sequence with
the new root, and performing a proper relabelling, SEQ(B)n is in bijection with the family
of increasing plane trees of order n + 1 where each node except the root is k-bundled as in
Definition 2. (Equivalently, SEQ(B)n is in bijection with the family of k-bundled increasing
trees of order n + 1 where the root has only the first bundle non-empty.)

Theorem 6. The family SEQ(B)n = SEQ(B)n(k) of sequences of k-bundled increasing
trees of total order n is in bijection withAn(k+2), the family of (k+2)-ary increasing trees
of order n: SEQ(B)n(k) ∼= An(k + 2).

Remark 10. Recall that 1-bundled increasing trees are exactly plane recursive trees. More-
over, in the case of k = 1, the bijection in Remark 9 is the standard bijection between
sequences of plane recursive trees of total order n and plane recursive trees of order n + 1;
hence SEQ(B)n(1) ∼= Tn+1. See Figure 3 for an illustration. It is easily seen that, for k = 1,
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the bijection Tn+1
∼= SEQ(B)n(1) ∼= An(3) constructed in the proof below yields the corre-

spondence between the two bijections An(3) ∼= Qn(2) in Theorem 1 and Tn+1
∼= Qn(2) in

[18] or Bn+1(1) ∼= Qn+1(0) ∼= Qn(2) in Theorem 4.

Proof. We use a recursive construction, see Figure 3. For a given sequence of k-bundled
increasing trees, we choose in the first step the tree of the sequence with node labelled 1: this
node is going be the root of the (k + 2)-ary increasing tree. Since a (k + 2)-ary increasing
trees has k+2 (possibly empty) subtrees S1, . . . , Sk+2, going from left to right, we proceed as
follows. The sequence of k-bundled increasing trees to the left of the tree with root 1 forms
(recursively) the subtree S1, conversely the sequence of k-bundled increasing trees to the
right of the tree with root 1 forms the subtree Sk+2. The k bundles, possibly empty, attached
to the tree with root labelled 1, form the subtrees S2, . . . , Sk+1 of the (k + 2)-ary increasing
tree. Now we can proceed recursively, since the bundles are themselves just sequences of
k-bundled increasing trees.

Conversely, starting with a (k + 2)-ary increasing tree of order n, we recursively build
a sequence of k-bundled increasing trees as follows. In the first step we build a tree with
root node labelled 1. The sequence to the left of the tree with root labelled 1 is built from
the subtree S1 of the (k + 2)-ary increasing tree of order n, the sequence on the right from
the subtree Sk+2, and the k bundles are built from the subtrees S2, . . . , Sk+1. We proceed
recursively until the sequence is constructed. Note that during this process, we connect any
leftmost or rightmost child of a node v to the same parent as v. �

12
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1
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9

0

FIGURE 3. A sequence of 1-bundled increasing trees of order 10, or equiv-
alently a plane recursive tree of order 11, and the corresponding ternary in-
creasing tree of order 10.

Next we consider a bijection between k-bundled increasing trees and so-called Fk,k+2-
increasing trees. The family of Fk,k+2-increasing trees consists of modified (k + 2)-ary
increasing trees: any node except the root of a Fk,k+2-increasing tree has k + 2 labelled
positions where children may be attached, whereas the root has only k positions (and thus
outdegree bounded by k). Note that for k = 1, the root has a single child and that chopping
off the root yields a simple bijection between F1,3-increasing trees of order n+1 and ternary
increasing trees of order n. Thus the statement below implies for k = 1 a bijection between
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ternary increasing trees and plane recursive trees, An(3) ∼= Bn+1(1) = Tn+1, which is just
the bijection discussed in Remark 10.

Theorem 7. The family Fn = Fn(k) of Fk,k+2-increasing trees of order n, is in bijection
with the family of k-bundled increasing trees of order n, Fn(k) ∼= Bn(k), k ≥ 1.

Proof. For a given k-bundled increasing tree of order n, we simply apply k times the bi-
jection between sequences of k-bundled increasing trees and (k + 2)-ary increasing trees to
the k bundles attached to the root and the k positions of the root of the Fk,k+2-increasing
tree. �

Remark 11. To give an overview, we have provided the following bijections in Theo-
rems 1, 4, 6 and 7.

An(k + 1) ∼=

{
Qn(k),

SEQ(B)n(k − 1),
Bn(k + 1) ∼=

{
Qn(k),

Fn(k + 1).

It is also possibly to give bijections Qn(k) ∼= SEQ(B)n(k − 1) and Qn(k) ∼= Fn(k + 1), by
simple modifications of the stated bijections.

Remark 12. The families SEQ(B)(k) of sequences k-bundled increasing trees and F(k) of
Fk,k+2-increasing trees are non-standard in the sense that they are not part of the character-
ization given by Panholzer and Prodinger [21]. However, the counting problem concerning
such tree families can be treated in a general manner, which will be discussed elsewhere.

5. THE DISTRIBUTION OF j-ASCENTS, j-DESCENTS AND j-PLATEAUX

We are interested in the joint asymptotic distribution of j-ascents Xn,j , j-descents Yn,j

and j-plateaux Zn,j in a k-Stirling permutations of order n, or equivalently in the joint dis-
tribution of j-children Dn,j and j-leaves Ln,j+1 in (k + 1)-ary increasing trees of order n.
Following Janson [18] we use a (generalized) Pólya urn model, see [15].

5.1. An urn model for the exterior leaves. Since we already know from (15) that n −
Dn,j = Ln,j , we can restrict ourselves to the study of the exterior nodes. We will use the
following urn model.

Urn I. Consider an urn with balls of k + 1 colours, and let (Ln,1, . . . , Ln,k+1) be the number
of balls of each colour at time n. At each time step, draw one ball at random from the urn,
discard it, and add one new ball of each colour. Start with (L1,1, . . . , L1,k+1) = (1, 1, . . . , 1).
Note that the vector (Ln,1, . . . , Ln,k+1) exactly coincides (in distribution) with the numbers
of the exterior nodes of types 1, . . . , k + 1 in a random (k + 1)-ary increasing tree, see
Section 3.1.

Urn I is completely symmetric in the k + 1 colours, and we thus immediately see the
following.
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Theorem 8. For each n ≥ 1, the distribution of (Ln,1, . . . , Ln,k+1) is exchangeable, i.e.,
invariant under any permutation of the k + 1 variables.

It is customary and convenient to formulate generalized Pólya urns using drawings with
replacement. In the case of Urn I, we thus restate the description above and say instead that
we draw a ball and replace it together with one ball each of the k other colours. In other
words, Urn I is described by the (k + 1)× (k + 1) replacement matrix

A = (1− δi,j)1≤i,j≤k+1 =



0 1 1 · · · 1 1 1
1 0 1

. . . . . . . . . 1
1 1 0

. . . . . . . . . 1... . . . . . . . . . . . . . . . ...
1

. . . . . . . . . 0 1 1
1

. . . . . . . . . 1 0 1
1 1 1 · · · 1 1 0


,

where δi,j denotes the Kronecker delta.

5.2. Means. By Theorem 8, the variables Ln,j , j = 1, . . . , k + 1, have the same mean,
and since their sum is kn + 1 by (16), we see that they each have mean kn+1

k+1
. By (15) and

Theorem 2, we obtain the following exact formulas for the means.

Theorem 9. The following hold, for n ≥ 1 and k ≥ 1:

ELn,j =
kn + 1

k + 1
, 1 ≤ j ≤ k + 1,

EDn,j =
n− 1

k + 1
, 1 ≤ j ≤ k + 1,

EXn,j = EYn,j =
n− 1

k + 1
, 1 ≤ j ≤ k,

EZn,j =
kn + 1

k + 1
, 1 ≤ j ≤ k − 1,

EXn = EYn =
kn + 1

k + 1
,

EZn = (k − 1)
kn + 1

k + 1
.

5.3. Asymptotic distribution of j-ascents, j-descents and j-plateaux. We use the urn
model Urn I to obtain asymptotic normality. We begin with a general result.

Theorem 10. Consider an urn with balls of q ≥ 2 colours, where at each step one ball is
drawn at random and discarded, and one ball of each colour is added. If Nn,j is the number
of balls of colour j after n steps, then, for any initial values N0,1, . . . , N0,q,

Nn,j − q−1
q

n
√

n

(d)−→ ζj,
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jointly for j = 1, . . . , q, where ζj are jointly normal random variables with means 0 and
(co)variances

Cov(ζi, ζj) =
q − 1

q2(q + 1)
(qδi,j − 1), 1 ≤ i, j ≤ q.

Note that
∑q

1 ζj = 0, for example because
∑

j Nn,j is deterministic.

Proof. This urn has replacement matrix A = (1 − δi,j)
q
i,j=1 = (1)q

i,j=1 − I . Since the rank
1 matrix (1)q

i,j=1 has one eigenvalue q and q − 1 eigenvalues 0, A has largest eigenvalue
λ1 = q − 1 and q − 1 eigenvalues −1. Theorem 3.22 in [15] applies, with v1 = (1

q
, . . . , 1

q
),

and shows joint convergence (in distribution) to normal variables ζj with mean 0 and a certain
covariance matrix Σ. The formula for Σ in [15, Theorem 3.22] is complicated, so we use
[15, Lemma 5.4], with a = (ai)

q
1 = (1)q

1 and m = λ1 = q − 1, which yields Σ = mΣI , with
ΣI defined in [15, (2.15)]. Here ξi = (ξi,j)

q
j=1 = (1− δi,j)

q
j=1, Bi = (ξi,jξi,l)

q
j,l=1, v1i = 1/q

and, using the symmetry, B = (bij)
q
i,j=1 with bi,i = q−1

q
and bi,j = q−2

q
, i 6= j; hence

B = q−2
q

A + q−1
q

I . Further, PI is the projection onto the eigenspace of A for the eigenvalue

−1, and thus PI = (q−1)I−A
q

. Further, on this eigenspace A = −I and thus B = 1
q
I , and [15,

(2.15)] yields, noting that all involved matrices are symmetric and commute,

ΣI =

∫ ∞

0

PIe
sABesA′

P ′
Ie
−λ1s ds =

1

q
PI

∫ ∞

0

e−s−s−(q−1)s ds =
1

q(q + 1)
PI

=
(q − 1)I − A

q2(q + 1)
=

(
qδi,j − 1

q2(q + 1)

)q

i,j=1

.

Recalling that Σ = mΣI = (q − 1)ΣI , we obtain the result. �

Remark 13. Similar calculations show, more generally, that if we at each step add a fixed
number si balls of colour i, i = 1, . . . , q, independently of the colour of the drawn and

discarded ball, then n−1/2
(
Nn,i −

P
l sl−1P

l sl
sin

) (d)−→ ζi, jointly, where ζi are jointly normal
variables with means 0 and

Cov(ζi, ζj) =

∑
l sl − 1∑
l sl + 1

(
si∑
l sl

δi,j −
sisj

(
∑

l sl)2

)
.

As an example, the numbers Xn, Yn and Zn of ascents, descents and plateaux in a random k-
Stirling permutation can be seen as such an urn with replacement vector (1, 1, k − 1), which
yields an alternative proof of the limit distribution found above for them.

We apply Theorem 10, with q = k + 1, to Urn I and obtain using (15) and Theorem 2 the
following.

Theorem 11. Let k ≥ 1 and let ζj , j = 1, . . . , k + 1, be jointly normal random variables
with means 0 and (co)variances

Cov(ζi, ζj) =
k

(k + 1)2(k + 2)
((k + 1)δi,j − 1), 1 ≤ i, j ≤ k + 1,
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in particular Var(ζj) = k2

(k+1)2(k+2)
. Note that this implies

∑k+1
j=1 ζj = 0. Then, the following

holds, jointly for all variables,

Ln,j − k
k+1

n
√

n

(d)−→ ζj, 1 ≤ j ≤ k + 1,

Dn,j − 1
k+1

n
√

n

(d)−→ −ζj, 1 ≤ j ≤ k + 1,

Xn,j − 1
k+1

n
√

n

(d)−→ ξj := −ζj+1, 1 ≤ j ≤ k,

Yn,j − 1
k+1

n
√

n

(d)−→ ηj := −ζj, 1 ≤ j ≤ k,

Zn,j − k
k+1

n
√

n

(d)−→ ζj+1, 1 ≤ j ≤ k − 1,

Xn − k
k+1

n
√

n

(d)−→ ξ := ζ1,

Yn − k
k+1

n
√

n

(d)−→ η := ζk+1,

Zn − k(k−1)
k+1

n
√

n

(d)−→ ζ :=
k∑

j=2

ζj = −ξ − η.

A simple calculation shows that the covariance matrix of (ξ, η, ζ) is (cf. Remark 13)
k2

(k+1)2(k+2)
− k

(k+1)2(k+2)
− k(k−1)

(k+1)2(k+2)

− k
(k+1)2(k+2)

k2

(k+1)2(k+2)
− k(k−1)

(k+1)2(k+2)

− k(k−1)
(k+1)2(k+2)

− k(k−1)
(k+1)2(k+2)

2k(k−1)
(k+1)2(k+2)

 .

For k = 2, this yields the univariate limit theorems by Bona [6] and the multivariate limit
theorem by Janson [18] for Xn, Yn, Zn.

For k = 1, the result for Xn or Yn reduces to the classical result on the asymptotics of the
number of ascents or descents in a random permutation. (In this case Zn = 0.)

6. THE DISTRIBUTION OF THE NUMBER OF BLOCKS

The number Sn of blocks in a random k-Stirling permutation is described by another urn
model.

Urn II. This urn has balls of two colours, black and white. At each time step, draw a ball at
random from the urn, replace it and add k further balls: if the drawn ball was black, add k
black balls; if the drawn ball was white, add 1 white ball and k− 1 black. Let Bn and Wn be
the numbers of black and white balls in the urn at time n, and start with Wn = 2, Bn = k−1.
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We thus have Bn + Wn = kn + 1 balls in the urn at time n, and it is easily seen that the
number of white balls can be interpreted as the number of gaps between the blocks, or first or
last, in a random k-Stirling permutation of order n, i.e. as the number of gaps where addition
of a string (n+1)k create a new block. This is one more than the number of blocks, and thus
we have the equality in distribution

Sn
d
= Wn − 1. (19)

Urn II is thus a 2 × 2 generalized Pólya urn with ball replacement matrix M =
(

k 0
k−1 1

)
.

This urn model is a special case of the triangular 2× 2 urn models analysed in detail by Jan-
son [17], where the asymptotic distribution is given. The special case of balanced triangular
2 × 2 urn models was also studied by Flajolet et al. [12]. (An urn is called balanced if the
total number of added balls is constant, independently of the observed color.) For the special
case treated here we can add the exact distribution using the tree representation, the moments
of Sn, and almost sure convergence.

Theorem 12. The probability mass function of the random variable Sn counting the number
of blocks in a random k-Stirling permutation of order n is given by

P{Sn = m} =
m∑

`=0

(
m

l

)
(−1)`

(
n− `

k
−1

n

)(
n+ 1

k
−1

n

) , 1 ≤ m ≤ n.

The binomial moments E
(

Sn+r
r

)
are given by the explicit formula

E
(

Sn + r

r

)
=

(
n−1+ r+1

k
n

)(
n−1+ 1

k
n

) = (r + 1)

(
n−1+ r+1

k
n−1

)(
n−1+ 1

k
n−1

) , r = 1, 2, . . .

The random variable Sn :=
(n−1+ 1

k
n−1 )

(n−1+ 2
k

n−1 )
(Sn + 1) is a positive martingale and converges almost

surely to a limit ζ̃ , i.e. Sn
(a.s.)−−−→ ζ̃ , further

n−1/kSn
(a.s.)−−−→ ζ =

Γ(1 + 1
k
)

Γ(1 + 2
k
)
ζ̃ .

The limits ζ̃ and ζ can be specified by the moments

E(ζr) = (r + 1)!
Γ(1 + 1

k
)

Γ(1 + r+1
k

)
, r ≥ 0.

Further, ζ has a density function f(x) that can be written as f(x) = Γ( 1
k
)x−kg(x−k), x > 0,

where g is the density function of a positive 1
k
-stable distribution with Laplace transform

e−λ1/k
; it is thus given by the series expansion

f(x) =
Γ( 1

k
)

π

∞∑
j=1

(−1)j−1 Γ( j
k

+ 1) sin jπ
k

j!
xj, x > 0.
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Remark 14. The simple structure of the binomial moments and the almost sure convergence
is actually true for all balanced triangular urns of the form M =

(
α 0

β−α β

)
, 0 < α < β, which

is easily seen to be true by extending the martingale arguments to thie general case.

Proof. We use three different approaches to study the block structure Sn in k-Stirling permu-
tations or equivalently the number of left-right edges LRn in (k+1)-ary increasing trees, see
(17). In order to obtain the explicit results for the probability distribution of Sn, we analyze
LRn. We can use the tree decomposition (10) in order to obtain the differential equation

∂

∂z
T (z, v) = v(1 + T (z, v))2(1 + T (z))k−1, T (0, v) = 0,

where T (z, v) =
∑

n≥1

∑
m≥1 P{Sn = m}Tn

zn

n!
vm denotes the bivariate generating function

of the numbers P{Sn = m}Tn, and T (z) = T (z, 1) is the generating function of total
weights of (k + 1)-ary increasing trees. By Example 4, 1 + T (z) = (1 − kz)−1/k. Solving
the differential equation and adapting to the initial condition gives the solution

T (z, v) =
1

1− v
(
1− (1− kz)1/k

) − 1.

Extraction of coefficients gives then the stated result for the probability mass function. More-
over, the stated binomial moments may be obtained from the generating function by extract-
ing coefficients,

E
(

Sn + r

r

)
=

n!

Tn

[znwr]
1

1− w
T

(
z,

1

1− w

)
.

For the almost sure convergence we proceed as follows. Let Wn = Sn + 1 be the number
of gaps between blocks, or, equivalently, the number of white balls in Urn II, see (19). LetFn

denote the σ-field generated by the first n steps. Moreover denote by ∆n = Wn −Wn−1 =
Sn − Sn−1 ∈ {0, 1} the increment at step n. We have

E(Wn | Fn−1) = E(Wn−1 + ∆n | Fn−1) = Wn−1 + E(∆n | Fn−1).

Since the probability that a new white ball is generated at step n is proportional to the number
of existing white balls (at step n− 1), we obtain further

E(Wn | Fn−1) = Wn−1 +
Wn−1

k(n− 1) + 1
=

k(n− 1) + 2

k(n− 1) + 1
Wn−1, n ≥ 2.

Hence,

E(Sn | Fn−1) =

(
n−1+ 1

k
n−1

)(
n−1+ 2

k
n−1

) k(n− 1) + 2

k(n− 1) + 1
Wn−1 = Sn−1, n ≥ 2.

Hence, Sn is a martingale. Since it is a positive martingale, it converges almost surely to
a limit ζ̃ . By the well-known asymptotic formula

(
n+a

n

)
∼ na/Γ(a + 1), for any fixed real

a, Sn ∼ Γ(1+ 2
k
)

Γ(1+ 1
k
)
n−1/kSn (provided Sn → ∞), and thus Sn

(a.s.)−−−→ ζ̃ can also be written

n−1/kSn
(a.s.)−−−→ ζ .
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More generally, we similarly have for any positive integer r

E
((

Sn + r

r

) ∣∣∣∣ Fn−1

)
=

(
Sn−1 + r

r

)
+

(
Sn−1 + r

r − 1

)
Sn−1 + 1

k(n− 1) + 1

=

(
Sn−1 + r

r

)
n− 1 + r+1

k

n− 1 + 1
k

.

Hence,
(

Sn+r
r

) (n−1+ 1
k

n−1 )

(n−1+ r+1
k

n−1 )
is a martingale, which also leads to the stated result for the moments

in an alternative way, using the recurrence relation for the unconditional expectation.
Letting n →∞ in the moment formula yields

E
(

Sn + r

r

)
= (r + 1)

(
n−1+ r+1

k
n−1

)(
n−1+ 1

k
n−1

) ∼ (r + 1)
Γ(1 + 1

k
)

Γ(1 + r+1
k

)
nr/k

which leads to ESr
n ∼ (r+1)!

Γ(1+ 1
k
)

Γ(1+ r+1
k

)
nr/k. Hence all moments of n−1/kSn converge, and the

limits must be the moments of ζ . Letting r →∞, we see that the moments do not grow too
fast so that the moment generating function Eetζ is finite for all t, and thus the distribution is
determined by the moments.

Finally, we use the general results for urn models in Janson [17]. First, [17, Theorem

1.3(v)] yields the convergence Wn
(d)−→ ζ in distribution, and [17, Theorem 1.7] yields the

moments of ζ that we just derived in a different way; note however that [17, Theorem 1.7]
yields the formula above also for non-integer r ≥ 0, with the standard interpretation (r +
1)! = Γ(r + 2). Furthermore, [17, Theorem 1.8] shows that ζ has a density and gives the
explicit formulas stated above. �

7. THE SIZES OF THE BLOCKS

Recall that every block in a k-Stirling permutation begins and ends with the same label,
which we can regard as a label of the block. We order the blocks in the block decomposition
as K̃1, . . . , K̃s according to this label (where s is the number of blocks); thus K̃1 is the block
extending from the first 1 to the last, K̃2 is the block formed by the smallest label not in K̃1,
and so on. We also let K̃i := |K̃i| denote the size of the ith block in this order, and put
K̃i = ∅, K̃i = 0 for i > s.

Alternatively, we may order the blocks according to decreasing size. We let K1 ≥ K2 ≥
. . . be the sizes of the blocks in this order, again with Ki = 0 for i > s. Thus, (Ki)

∞
1 is the

decreasing rearrangement of (K̃i)
∞
1 .

For a random k-Stirling permutation of order n, we use the notations K̃n,i, K̃n,i and Kn,i.
Note that

∑
i K̃n,i =

∑
i Kn,i = kn.

To study these sizes we introduce another urn model. Consider first an urn with balls of
two colours, K̃n,1−1 white balls representing the gaps inside the block K̃n,1 and nk+2−K̃n,1
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black balls representing the gaps outside. Adding the string (n+1)k at one of the gaps inside
K̃n,1 means increasing K̃n,1 by k, and adding it outside means keeping K̃n,1 unchanged;
hence this is a Pólya urn of the original type considered by Eggenberger and Pólya [11],
[28], where we draw a ball at random and replace it together with k balls of the same colour.
We start with K̃1,1 = k, and thus k − 1 white and 2 black balls.

Next, let us study the second block, K̃n,2. At the first n where this is non-empty, we have
k + 2 gaps outside the first block K̃n,1, k − 1 of them in K̃n,2 and 3 outside both blocks. Let
us now ignore the first block and consider an urn with K̃n,2 − 1 white balls representing the
gaps in K̃n,2 and black balls representing the gaps outside both K̃n,1 and K̃n,2. The balls in
this urn are drawn at random times (when we do not add to a gap in K̃n,1), but when they are
drawn, the urn behaves exactly as for K̃n,1: we replace the drawn ball together with k of the
same colour.

The same argument applies to K̃n,m for any m ≥ 2; if we ignore the preceding blocks and
additions to them, we have the same Pólya urn again, but now started with m+1 black balls,
representing the gaps outside the first m blocks. We hence make the following definition.

Urn III. This is the standard Pólya urn with balls of two colours and where each drawn ball
is replaced together with k balls of the same colour. Let Urn IIIm be the version where we
start with k − 1 white and m + 1 black balls, and let WN,m and BN,m denote the numbers of
white and black balls after N − 1 draws, when the urn contains WN,m + BN,m = kN + m
balls.

We can thus identify (with the urns Urn III1, Urn III2, . . . independent), recalling that the
balls in urn Urn IIIm+1 correspond to the black balls in urn Urn IIIm,

K̃n,1 = Wn,1 + 1,

K̃n,2 = WN2,2 + 1, with kN2 + 2 = Bn,1,

K̃n,3 = WN3,3 + 1, with kN3 + 3 = BN2,1,

and so on.

Theorem 13. There exists a sequence of independent beta distributed random variables
βm ∼ Beta(k−1

k
, m+1

k
) such that

1

kn
(K̃n,1, K̃n,2, . . . )

(a.s.)−−−→ (β1, (1− β1)β2, (1− β1)(1− β2)β3, . . . ). (20)

Proof. The basic limit theorem for Pólya urns says that, as N →∞,

WN,m

kN

(a.s.)−−−→ βm ∼ Beta
(k − 1

k
,
m + 1

k

)
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and thus BN,m

kN

(a.s.)−−−→ 1 − βm. (This is already in Pólya [28] for convergence in distribution.
See, for example, [19] or [17, Section 11].) Consequently,

K̃n,1

kn
=

Wn,1 + 1

kn

(a.s.)−−−→ β1,

K̃n,2

kn
=

Bn,1

kn
· WN2,2 + 1

kN2 + 2

(a.s.)−−−→ (1− β1)β2,

and so on. �

Note that both sides of (20) are elements of P , the space of non-negative sequences (pi)
∞
1

with
∑

i pi = 1; P can be seen as the space of probability distributions on N. The conver-
gence in the proof above was componentwise, i.e. in the product topology, but it is well-
known (and easy to verify) that on P , this topology is equivalent to the `1-topology with
the metric d((pi), (p

′
i)) =

∑
i |pi − p′i|, and also to the usual weak topology of probability

distributions; hence the theorem holds for any of these topologies.

Let Ṽi = βi

∏i−1
j=1(1 − βj) be the elements of the limit sequence in (20), and let (Vi)

∞
1

denote the decreasing rearrangements of them. The distribution of this random element of P
is denoted PD( 1

k
, 1

k
), see Pitman and Yor [27] or Bertoin [4].

Taking the decreasing rearrangement is a continuous operation on P , and thus we imme-
diately obtain from Theorem 13 the following.

Theorem 14.
1

kn
(Kn,1, Kn,2, . . . )

(a.s.)−−−→ (V1, V2, . . . ) ∼ PD
(1

k
,
1

k

)
. (21)

Corollary 1. The largest block size has the limit

Kn,1

kn

(a.s.)−−−→ V1 = max
i≥1

Ṽi.

Remark 15. These results can be compared with the classical result that the lengths of the
cycles in a random permutation, arranged in decreasing order and divided by the size of the
permutation, converge (in distribution) to PD(1) = PD(0, 1), see e.g. [2, Sections 5.5 and
5.7].

Remark 16. For k = 2 we obtain in Theorem 14 the limit distribution PD(1
2
, 1

2
) which

arises in other contexts too: it is the distribution of the sequence of excursion lengths in a
Brownian bridge [26], [25], [1], [27] (for a related characterization for k > 2 see [27]) and it
is the asymptotic distribution of the sizes of the tree components in a random mapping, see
[29] and [1]. It is an interesting problem to see whether there are more direct relations with
these objects.
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