Graphs where every k-subset of vertices is an identifying set

Sylvain Gravier* ${ }^{*}$ Svante Janson ${ }^{\dagger}$ Tero Laihonen ${ }^{\ddagger}$
Sanna Ranto ${ }^{\text {§ }}$

8 January 2008

Abstract

Let $G=(V, E)$ be an undirected graph without loops and multiple edges. A subset $C \subseteq V$ is called identifying if for every vertex $x \in V$ the intersection of C and the closed neighbourhood of x is nonempty, and these intersections are different for different vertices x.

Let k be a positive integer. We will consider graphs where every k subset is identifying. We prove that for every $k>1$ the maximal order of such a graph is at most $2 k-2$. Constructions attaining the maximal order are given for infinitely many values of k.

The corresponding problem of k-subsets identifying any at most ℓ vertices is considered as well.

1 Introduction

Karpovsky et al. introduced identifying sets in [9] for locating faulty procesors in multiprocessor systems. Since then identifying sets have been considered in many different graphs (see numerous references in [14]) and they find their motivations, for example, in sensor networks and enviromental monitoring [10]. For recent developments see for instance [1, 2].

Let $G=(V, E)$ be a simple undirected graph where V is the set of vertices and E is the set of edges. The adjacency between vertices x and y is denoted by $x \sim y$, and an edge between x and y is denoted by $\{x, y\}$ or $x y$. Suppose $x, y \in V$. The (graphical) distance between x and y is the shortest path between

[^0]these vertices and it is denoted by $d(x, y)$. If there is no such path, then $d(x, y)=$ ∞. We denote by $N(x)$ the set of vertices adjacent to x (neighbourhood) and the closed neighbourhood of a vertex x is $N[x]=\{x\} \cup N(x)$. The closed neighbourhood within radius r centered at x is denoted by $N_{r}[x]=\{y \in V \mid$ $d(x, y) \leq r\}$. We denote further $S_{r}(x)=\{y \in V \mid d(x, y)=r\}$. Moreover, for $X \subseteq V, N_{r}[X]=\cup_{x \in X} N_{r}[x]$. For $C \subseteq V, X \subseteq V$, and $x \in V$ we denote
\[

$$
\begin{gathered}
I_{r}(C ; x)=I_{r}(x)=N_{r}[x] \cap C, \\
I_{r}(C ; X)=I_{r}(X)=N_{r}[X] \cap C=\bigcup_{x \in X} I_{r}(C ; x) .
\end{gathered}
$$
\]

If $r=1$, we drop it from the notations. When necessary, we add a subscript G. We also write, for example, $N[x, y]$ and $I(C ; x, y)$ for $N[\{x, y\}]$ and $I(C ;\{x, y\})$. The symmetric difference of two sets is

$$
A \triangle B=(A \backslash B) \cup(B \backslash A)
$$

The cardinality of a set X is denoted by $|X|$; we will also write $|G|$ for the order $|V|$ of a graph $G=(V, E)$. The degree of a vertex x is $\operatorname{deg}(x)=|N(x)|$. Moreover, $\delta_{G}=\delta=\min _{x \in V} \operatorname{deg}(x)$ and $\Delta_{G}=\Delta=\max _{x \in V} \operatorname{deg}(x)$. The diameter of a graph $G=(V, E)$ is $\operatorname{diam}(G)=\max \{d(x, y) \mid x, y \in V\}$.

We say that a vertex $x \in V$ dominates a vertex $y \in V$ if and only if $y \in N[x]$. As well we can say that a vertex y is dominated by x (or vice versa). A subset C of vertices V is called a dominating set (or dominating) if $\cup_{c \in C} N[c]=V$.

Definition 1. A subset C of vertices of a graph $G=(V, E)$ is called $(r, \leq \ell)$ identifying (or an ($r, \leq \ell$)-identifying set) if for all $X, Y \subseteq V$ with $|X| \leq \ell$, $|Y| \leq \ell, X \neq Y$ we have

$$
I_{r}(C ; X) \neq I_{r}(C ; Y)
$$

If $r=1$ and $\ell=1$, then we speak about an identifying set.
The idea behind identification is that we can uniquely determine the subset X of vertices of a graph $G=(V, E)$ by knowing only $I_{r}(C ; X)$ - provided that $|X| \leq \ell$ and $C \subseteq V$ is an ($r, \leq \ell$)-identifying set.

Definition 2. Let, for $n \geq k \geq 1$ and $\ell \geq 1, \mathfrak{G r}(n, k, \ell)$ be the set of graphs on n vertices such that every k-element set of vertices is ($1, \leq \ell$)-identifying. Moreover, we denote $\mathfrak{G r}(n, k, 1)=\mathfrak{G r}(n, k)$ and $\mathfrak{G r}(k)=\bigcup_{n \geq k} \mathfrak{G r}(n, k)$.
Example 3. (i) For every $\ell \geq 1$, an empty graph $E_{n}=(\{1, \ldots, n\}, \emptyset)$ belongs to $\mathfrak{G r}(n, k, \ell)$ if and only if $k=n$.
(ii) A cycle $C_{n}(n \geq 4)$ belongs to $\mathfrak{G r}(n, k)$ if and only if $n-1 \leq k \leq n$. A cycle C_{n} with $n \geq 7$ is in $\mathfrak{G r}(n, n, 2)$.
(iii) A path P_{n} of n vertices $(n \geq 3)$ belongs to $\mathfrak{G r}(n, k)$ if and only if $k=n$.
(iv) A complete bipartite graph $K_{n, m}(n+m \geq 4)$ is in $\mathfrak{G r}(n+m, k)$ if and only $n+m-1 \leq k \leq n+m$.
(v) In particular, a star $S_{n}=K_{1, n-1}(n \geq 4)$ is in $\mathfrak{G r}(n, k)$ if and only if $n-1 \leq k \leq n$.
(vi) The complete graph $K_{n}(n \geq 2)$ is not in $\mathfrak{G r}(n, k)$ for any k.

We are interested in the maximum number n of vertices which can be reached by a given k. We study mainly the case $\ell=1$ and define

$$
\begin{equation*}
\Xi(k)=\max \{n: \mathfrak{G r}(n, k) \neq \emptyset\} \tag{1}
\end{equation*}
$$

Conversely, the question is for a given graph on n vertices what is the smallest number k such that every k-subset of vertices is an identifying set (or a ($1, \leq \ell$)identifying set). (Note that even if we take $k=n$, there are graphs on n vertices that do not belong to $\mathfrak{G r}(n, n)$, for example the complete graph $K_{n}, n \geq 2$.) The relation n / k is called the rate.

In particular, we are interested in the asymptotics as $k \rightarrow \infty$. Combining Theorem 19 and Corollary 28, we obtain the following, which in particular shows that the rate is always less than 2 .

Theorem 4. $\Xi(k) \leq 2 k-2$ for all $k \geq 2$, and $\lim _{k \rightarrow \infty} \frac{\Xi(k)}{k}=2$.
We will see in Section 5 that $\Xi(k)=2 k-2$ for infinitely many k.
Remark. We consider in this paper the set $\mathfrak{G r}(n, k, \ell)$ only for $(1, \leq \ell)$-identifying sets, i.e. with radius $r=1$, because increasing the radius does not increase the maximum number of vertices for given k and ℓ. Namely, if G is a graph such that every k-subset of vertices is $(r, \leq \ell)$-identifying for a fixed $r \geq 2$, then the power graph of G, where every pair of vertices with distance at most r in G are joined by an edge, belongs to $\mathfrak{G r}(n, k, \ell)$. (However, the existence of a graph G in $\mathfrak{G r}(n, k, \ell)$ does not imply that every k-subset of vertices in G is $(r, \leq \ell)$-identifying for $r \geq 2$.)

Remark. The similar question about graphs where every k-subset of vertices would be a dominating set is easy. Namely, every vertex of a complete graph with n vertices forms alone a dominating set for all n, so for this problem, n can be arbitrary, even for $k=1$.

We give some basic results in Section 2, including our first upper bound on $\Xi(k)$. A better bound, based on a relation with error-correcting codes, is given in Section 4, but we first study small k in Section 3, where we give a complete description of the sets $\mathfrak{G r}(k)$ for $k \leq 4$ and find $\Xi(k)$ for $k \leq 6$. We consider strongly regular graphs and some modifications of them in Section 5; this provides us with examples (e.g., Paley graphs) that attain or almost attain the upper bound in Theorem 4. In Section 6 we consider the probability that a random subset of s vertices in a graph $G \in \mathfrak{G r}(n, k)$ is identifying (for $s<k$); in particular, this yields results on the size of the smallest identifying set. In Section 7 we give some results for the case $\ell \geq 2$.

2 Some basic results

We begin with some simple consequences of the definition.
Lemma 5. (i) If $G \in \mathfrak{G r}(n, k, \ell)$, then $G \in \mathfrak{G r}\left(n, k^{\prime}, \ell^{\prime}\right)$ whenever $k \leq k^{\prime} \leq n$ and $1 \leq \ell^{\prime} \leq \ell$.
(ii) If $G=(V, E) \in \mathfrak{G r}(n, k, \ell)$, then every induced subgraph $G[A]$, where $A \subseteq V$, of order $|A|=m \geq k$ belongs to $\mathfrak{G r}(m, k, \ell)$.
(iii) If $\mathfrak{G r}(n, k)=\emptyset$, then $\mathfrak{G r}\left(n^{\prime}, k\right)=\emptyset$ for all $n^{\prime} \geq n$.

Proof. Parts (i) and (ii) are straightforward to verify. For (iii), note that any subset of n vertices of a graph in $\mathfrak{G r}\left(n^{\prime}, k\right)$ would induce a graph in $\mathfrak{G r}(n, k)$ by (ii).

Lemma 6. If G has connected components $G_{i}, i=1, \ldots, m$, with $|G|=n$ and $\left|G_{i}\right|=n_{i}$, then $G \in \mathfrak{G r}(n, k, \ell)$ if and only if $G_{i} \in \mathfrak{G r}\left(n_{i}, k+n_{i}-n, \ell\right)$ for every i. In other words, $G_{i} \in \mathfrak{G r}\left(n_{i}, k_{i}, \ell\right)$ with $n_{i}-k_{i}=n-k$.

Proof. Every k-set of vertices contains at least $k_{i}=k-\left(n-n_{i}\right)$ vertices from G_{i}. Conversely, every k_{i}-set of vertices of G_{i} can be extended to a k-set of vertices of G by adding all vertices in the other components. The result follows easily.

A graph G belongs to $\mathfrak{G r}(n, k, \ell)$ if and only if every k-subset intersects every symmetric difference of the neighbourhoods of two sets that are of size at most ℓ. Equivalently, $G \in \mathfrak{G r}(n, k, \ell)$ if and only if the complement of every such symmetric difference of two neighbourhoods contains less than k vertices. We state this as a theorem.

Theorem 7. Let $G=(V, E)$ and $|V|=n$. Gelongs to $\mathfrak{G r}(n, k, \ell)$ if and only if

$$
\begin{equation*}
n-\min _{\substack{X, Y \subseteq V \\ X \neq Y \\|X|,|Y| \leq \ell}}\{|N[X] \triangle N[Y]|\} \leq k-1 . \tag{2}
\end{equation*}
$$

Now take $\ell=1$, and consider $\mathfrak{G r}(n, k)$. The characterization in Theorem 7 can be written as follows, since X and Y either are empty or singletons.

Corollary 8. Let $G=(V, E)$ and $|V|=n$. Gelongs to $\mathfrak{G r}(n, k)$ if and only if
(i) $\delta_{G} \geq n-k$, and
(ii) $\max _{x, y \in V, x \neq y}\{|N[x] \cap N[y]|+|V \backslash(N[x] \cup N[y])|\} \leq k-1$.

In particular, if $G \in \mathfrak{G r}(n, k)$ then every vertex is dominated by every choice of a k-subset, and for all distinct $x, y \in V$ we have $|N[x] \cap N[y]| \leq k-1$.

Example 9. Let G be the 3-dimensional cube, with 8 vertices. Then $|N[x]|=4$ for every vertex x, and $|N[x] \triangle N[y]|$ is 4 when $d(x, y)=1,4$ when $d(x, y)=2$, and 8 when $d(x, y)=3$. Hence, Theorem 7 shows that $G \in \mathfrak{G r}(8,5)$.

Lemma 10. Let $G_{0}=\left(V_{0}, E_{0}\right) \in \mathfrak{G r}\left(n_{0}, k_{0}\right)$ and let $G=\left(V_{0} \cup\{a\}, E_{0} \cup\{\{a, x\} \mid\right.$ $\left.\left.x \in V_{0}\right\}\right)$ for a new vertex $a \notin V_{0}$. In words, we add a vertex and connect it to all other vertices. Then $G \in \mathfrak{G r}\left(n_{0}+1, k_{0}+1\right)$ if (and only if) $\left|N_{G_{0}}[x]\right| \leq k_{0}-1$ for every $x \in V_{0}$, or, equivalently, $\Delta_{G_{0}} \leq k_{0}-2$.

Proof. An immediate consequence of Theorem 7 (or Corollary 8).
Example 11. If G_{0} is the 3-dimensional cube in Example 9, which belongs to $\mathfrak{G r}(8,5)$ and is regular with degree $3=5-2$, then Lemma 10 yields a graph $G \in \mathfrak{G r}(9,6) . G$ can be regarded as a cube with centre.

Suppose $G=(V, E)$ belongs to $\mathfrak{G r}(n, k)$. Corollary 8(i) implies that for all $x \in V, n-|N[x]| \leq k-1$. On the other hand, Lemma 10 shows that there is not a positive lower bound for $n-|N[x]|$, since the graph $G=(V, E)$ constructed there has a vertex a such that $N[a]=V$. Arbitrarily large graphs G_{0} satisfying the conditions in Lemma 10 are, for example, given by the Paley graphs $P(q)$, see Section 5.

We now easily obtain our first upper bound (which will be improved later) on the order of a graph such that every k-vertex set is identifying.

Theorem 12. If $k \geq 2$ and $n>3 k-3$, then there is no graph in $\mathfrak{G r}(n, k)$. In other words, $\Xi(k) \leq 3 k-3$ when $k \geq 2$.

Proof. Suppose $G \in \mathfrak{G r}(n, k)$ with $n \geq 2$. Pick two distinct vertices x and y. By Corollary 8(i), $|N[x]|,|N[y]| \geq n-k+1$ and thus

$$
|N[x] \triangle N[y]| \leq|V \backslash N[x]|+|V \backslash N[y]| \leq k-1+k-1=2 k-2
$$

Consequently, Theorem 7 yields $n \leq 2 k-2+k-1=3 k-3$.
As a corollary, $\mathfrak{G r}(k)$ is a finite set of graphs for every k.

3 Small k

Example 13. For $k=1$, it is easily seen that $\mathfrak{G r}(n, 1)=\emptyset$ for $n \geq 2$, and thus $\mathfrak{G r}(1)=\left\{K_{1}\right\}$ and $\Xi(1)=1$.

Example 14. Let $k=2$. If $G \in \mathfrak{G r}(2)$, then G cannot contain any edge $x y$, since then $N[x] \cap\{x, y\}=\{x, y\}=N[y] \cap\{x, y\}$, so $\{x, y\}$ does not separate $\{x\}$ and $\{y\}$. Consequently, G has to be an empty graph E_{n}, and then $\delta_{G}=0$ and Corollary 8(i) (or Example 3(i)) shows that $n=k=2$. Thus $\mathfrak{G r}(2)=\left\{E_{2}\right\}$ and $\Xi(2)=2$.

Example 15. Let $k=3$. First, assume $n=|G|=3$. There are only four graphs G with $|G|=3$, and it is easily checked that $E_{3}, P_{3} \in \mathfrak{G r}(3,3)$ (Example $3(\mathrm{i})(\mathrm{iii})$), while $C_{3}=K_{3} \notin \mathfrak{G r}(3,3)$ (Example 3(vi)) and a disjoint union $K_{1} \cup K_{2} \notin \mathfrak{G r}(3,3)$, for example by Lemma 6 since $K_{2} \notin \mathfrak{G r}(2,2)$. Hence $\mathfrak{G r}(3,3)=\left\{E_{3}, P_{3}\right\}$.

Next, assume $n \geq 4$. Since there are no graphs in $\mathfrak{G r}\left(n_{1}, k_{1}\right)$ if $n_{1}>k_{1}$ and $k_{1} \leq 2$, it follows from Lemma 6 that there are no disconnected graphs in $\mathfrak{G r}(n, 3)$ for $n \geq 4$. Furthermore, if $G \in \mathfrak{G r}(n, 3)$, then every induced subgraph with 3 vertices is in $\mathfrak{G r}(3,3)$ and is thus E_{3} or P_{3}; in particular, G contains no triangle.

If $G \in \mathfrak{G r}(4,3)$, it follows easily that G must be C_{4} or S_{4}, and indeed these belong to $\mathfrak{G r}(4,3)$ by Example 3(ii)(v). Hence $\mathfrak{G r}(4,3)=\left\{C_{4}, S_{4}\right\}$.

Next, assume $G \in \mathfrak{G r}(5,3)$. Then every induced subgraph with 4 vertices is in $\mathfrak{G r}(4,3)$ and is thus C_{4} or S_{4}. Moreover, by Corollary $8, \delta_{G} \geq 5-3=2$. However, if we add a vertex to C_{4} or S_{4} such that the degree condition $\delta_{G} \geq 2$ is satisfied and we do not create a triangle we get $K_{2,3}$ - a complete bipartite graph, and we know already $K_{2,3} \notin \mathfrak{G r}(5,3)$ (Example 3(iv)). Consequently $\mathfrak{G r}(5,3)=\emptyset$, and thus $\mathfrak{G r}(n, 3)=\emptyset$ for all $n \geq 5$ by Lemma 5 (iii).

Consequently, $\mathfrak{G r}(3)=\mathfrak{G r}(3,3) \cup \mathfrak{G r}(4,3)=\left\{E_{3}, P_{3}, S_{4}, C_{4}\right\}$ and $\Xi(3)=4$.
Example 16. Let $k=4$. First, it follows easily from Lemma 6 and the descriptions of $\mathfrak{G r}(j)$ for $j \leq 3$ above that the only disconnected graphs in $\mathfrak{G r}(4)$ are E_{4} and the disjoint union $P_{3} \cup K_{1}$; in particular, every graph in $\mathfrak{G r}(n, 4)$ with $n \geq 5$ is connected.

Next, if $G \in \mathfrak{G r}(n, 4)$, there cannot be a triangle in G because otherwise if a 4 -subset includes the vertices of a triangle, one more vertex cannot separate the vertices of the triangle from each other. (Cf. Lemma 21.)

For $n=4$, the only connected graphs of order 4 that do not contain a triangle are C_{4}, P_{4} and S_{4}, and these belong to $\mathfrak{G r}(4,4)$ by Example 3(ii)(iii)(v). Hence $\mathfrak{G r}(4,4)=\left\{C_{4}, P_{4}, S_{4}, E_{4}, P_{3} \cup K_{1}\right\}$.

Now assume that $G \in \mathfrak{G r}(n, 4)$ with $n \geq 5$.
(i) Suppose first that a graph $K_{1} \cup K_{2}=(\{x, y, z\},\{\{x, y\}\})$ is an induced subgraph of G. Then all the other vertices of G are adjacent to either x or y but not both, since otherwise there would be an induced triangle or an induced $E_{2} \cup K_{2}$ or $K_{2} \cup K_{2}$, and these do not belong to $\mathfrak{G r}(4,4)$. Let $A=N(x) \backslash\{y\}$ and $B=N(y) \backslash\{x\}$, so we have a partition of the vertex set as $\{x, y, z\} \cup A \cup B$. There can be further edges between A and B, z and A, z and B but not inside A and B. Let $A=A_{0} \cup A_{1}$ and $B=B_{0} \cup B_{1}$, where $A_{1}=\{a \in A \mid a \sim z\}$, $A_{0}=A \backslash A_{1}$ and $B_{1}=\{b \in B \mid b \sim z\}, B_{0}=B \backslash B_{1}$. If $a \in A_{0}$ and $b \in B$, then the 4 -subset $\{a, b, x, z\}$ does not distinguish a and x unless $a \sim b$. Similarly, if $a \in A$ and $b \in B_{0}$, then $a \sim b$. On the other hand, if $a \in A_{1}$ and $b \in B_{1}$, then $a \nsim b$, since otherwise $a b z$ would be a triangle. Thus, we have, where one or more of the sets $A_{0}, A_{1}, B_{0}, B_{1}$ might be empty,

$$
=
$$

where an edge is a complete bipartite graph on sets incident to it, and there are no edges inside these sets.

Figure 1: All the different graphs in $\mathfrak{G r}(5,4)$.
a)
b)
c)
d)

If $n \geq 6$, then there are at least two elements in one of the sets $\{x\} \cup B_{0}$, $\{y\} \cup A_{0}, A_{1}$ or B_{1}. However, these two vertices have the same neighbourhood and hence they cannot be separated by the other $n-2 \geq 4$ vertices. Thus, $n=5$.

If $n=5$, and both A_{1} and B_{1} are non-empty, we must have $A_{0}=B_{0}=\emptyset$ and $G=C_{5}$, which is in $\mathfrak{G r}(5,4)$ by Example 3(ii).

Finally, assume $n=5$ and $A_{1}=\emptyset$ (the case $B_{1}=\emptyset$ is the same after relabelling). Then B_{1} is non-empty, since G is connected. If B_{0} is non-empty, let $b_{0} \in B_{0}$ and $b_{1} \in B_{1}$, and observe that $\left\{x, b_{0}, b_{1}, z\right\}$ does not separate z and b_{1}. Hence $B_{0}=\emptyset$. We thus have either $\left|A_{0}\right|=1$ and $\left|B_{1}\right|=1$, or $\left|A_{1}\right|=0$ and $\left|B_{1}\right|=2$, and both cases yield the graph (d) in Figure 1, which easily is seen to be in $\mathfrak{G r}(5,4)$.
(ii) Suppose that there is no induced subgraph $K_{1} \cup K_{2}$. Since G is connected, we can find an edge $x \sim y$. Let, as above, $A=N(x) \backslash\{y\}$ and $B=N(y) \backslash\{x\}$. If $a \in A$ and $b \in B$ and $a \nsim b$, then $(\{a, x, b\},\{\{a, x\}\})$ is an induced subgraph and we are back in case (i). Hence, all edges between sets A and B exist and thus, recalling that G has no triangles, G is the complete bipartite graph with bipartition $(A \cup\{y\}, B \cup\{x\})$. By Example 3(iv), then $n \leq 5$. If $n=5$, we get $G=K_{2,3}$ or $G=K_{1,4}=S_{4}$, which both belong to $\mathfrak{G r}(5,4)$ by Example 3(iv).

We summarize the result in a theorem.
Theorem 17. $\Xi(4)=5$. More precisely, $\mathfrak{G r}(4)=\mathfrak{G r}(4,4) \cup \mathfrak{G r}(5,4)$, where $\mathfrak{G r}(4,4)=\left\{C_{4}, P_{4}, S_{4}, E_{4}, P_{3} \cup K_{1}\right\}$ and $\mathfrak{G r}(5,4)$ consists of the four graphs in Figure 1.

For $k=5$ and 6 , we do not describe $\mathfrak{G r}(k)$ completely, but we find $\Xi(k)$, using some results that will be proved in Section 4. Upper and lower bounds for some other values of k are given in Table 1.

Theorem 18. $\Xi(5)=8, \Xi(6)=9$ and $11 \leq \Xi(7) \leq 12$.
Proof. First observe that $\Xi(5) \geq 8$ since the 3-dimensional cube belongs to $\mathfrak{G r}(8,5)$ by Example 9 . The upper bound follows from Theorem 19.

Example 11 gives an example (a centred cube) showing that $\Xi(6) \geq 9$. (Another example is given by the Paley graph $P(9)$, see Theorem 27.) The upper bound is given by Theorem 22 in Section 4.

Figure 2: A graph in $\mathfrak{G r}(11,7)$ found by a computer search.

The construction of a graph in $\mathfrak{G r}(11,7)$ is given in Figure 2. The upper bound follows both from Theorem 22 and Theorem 19.

4 Upper estimates on the order

In the next theorem we give an upper on bound on $\Xi(k)$, which is obtained using knowledge on error-correcting codes.
Theorem 19. If $k \geq 2$, then $\Xi(k) \leq 2 k-2$.
Proof. We begin by giving a construction from a graph in $\mathfrak{G r}(n, k)$ to errorcorrecting codes. A non-existence result of error-correcting codes then yields the non-existence of $\mathfrak{G r}(n, k)$ graphs of certain parameters. Let $G=(V, E) \in$ $\mathfrak{G r}(n, k)$, where $V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. We construct $n+1$ binary strings $\mathbf{y}_{i}=$ $\left(y_{i 1}, \ldots, y_{i n}\right)$ of length n, for $i=0, \ldots, n$, from the sets $\emptyset=N[\emptyset]$ and $N\left[x_{i}\right]$ for $i=1, \ldots, n$ by defining $y_{0 j}=0$ for all j and

$$
y_{i j}=\left\{\begin{array}{ll}
0 & \text { if } x_{j} \notin N\left[x_{i}\right] \\
1 & \text { if } x_{j} \in N\left[x_{i}\right]
\end{array} \quad 1 \leq i \leq n .\right.
$$

Let C denote the code which consists of these binary strings as codewords. Because $G \in \mathfrak{G r}(n, k)$, the symmetric difference of two closed neighbourhoods $N\left[x_{i}\right]$ and $N\left[x_{j}\right]$, or of one neigbourhood $N\left[x_{i}\right]$ and \emptyset, is at least $n-k+1$ by (2); in other words, the minimum Hamming distance $d(C)$ of the code C is at least $n-k+1$.

We first give a simple proof that $\Xi(k) \leq 2 k-1$. Thus, suppose that there is a $G \in \mathfrak{G r}(n, k)$ such that $n=2 k$. In the corresponding error-correcting code C, the minimum distance is at least $d=n-k+1=k+1>n / 2$. Let the maximum cardinality of the error-correcting codes of length n and minimum distance at least d be denoted by $A(n, d)$. We can apply the Plotkin bound (see for example $[15$, Chapter $2, \S 2]$), which says $A(n, d) \leq 2\lfloor d /(2 d-n)\rfloor$, when $2 d>n$. Thus, we have

$$
A(n, d) \leq 2\left\lfloor\frac{k+1}{2}\right\rfloor \leq k+1 .
$$

Because $k+1<2 k=n<|C|$, this contradicts the existence of C. Hence, there cannot exist a graph $G \in \mathfrak{G r}(2 k, k)$, and thus $\mathfrak{G r}(n, k)=\emptyset$ when $n \geq 2 k$.

The Plotkin bound is not strong enough to imply $\Xi(k) \leq 2 k-2$ in general, but we obtain this from the proof of the Plotkin bound as follows. (In fact, for odd $k, \Xi(k) \leq 2 k-2$ follows from the Plotkin bound for an odd minimum distance. We leave this to the reader since the argument below is more general.)

Suppose that $G=(V, E) \in \mathfrak{G r}(n, k)$ with $n=2 k-1$. We thus have a corresponding error-correcting code C with $|C|=n+1=2 k$ and minimum Hamming distance at least $n-k+1=k$. Hence, letting d denote the Hamming distance,

$$
\begin{equation*}
\sum_{0 \leq i<j \leq n} d\left(y_{i}, y_{j}\right) \geq\binom{ n+1}{2} k=\frac{2 k(2 k-1)}{2} k=(2 k-1) k^{2} . \tag{3}
\end{equation*}
$$

On the other hand, if there are s_{m} strings y_{i} with $y_{i m}=1$, and thus $|C|-s_{m}=$ $2 k-s_{m}$ strings with $y_{i m}=0$, then the number of ordered pairs (i, j) such that $y_{i m} \neq y_{j m}$ is $2 s_{m}\left(2 k-s_{m}\right) \leq 2 k^{2}$. Hence each bit contributes at most k^{2} to the sum in (3), and summing over m we find

$$
\begin{equation*}
\sum_{0 \leq i<j \leq n} d\left(y_{i}, y_{j}\right) \leq n k^{2}=(2 k-1) k^{2} . \tag{4}
\end{equation*}
$$

Consequently, we have equality in (3) and (4), and thus $d\left(y_{i}, y_{j}\right)=k$ for all pairs (i, j) with $i \neq j$.

In particular, $\left|N\left[x_{i}\right]\right|=d\left(y_{i}, y_{0}\right)=k$ for $i=1, \ldots, n$, and thus every vertex in G has degree $k-1$, i.e., G is $(k-1)$-regular. Hence, $2|E|=n(k-1)=$ $(2 k-1)(k-1)$, and k must be odd.

Further, if $i \neq j$, then $\left|N\left[x_{i}\right] \triangle N\left[x_{j}\right]\right|=d\left(y_{i}, y_{j}\right)=k$, and since $N\left[x_{i}\right] \backslash N\left[x_{j}\right]$ and $N\left[x_{j}\right] \backslash N\left[x_{i}\right]$ have the same size $k-\left|N\left[x_{i}\right] \cap N\left[x_{j}\right]\right|$, they have both the size $k / 2$ and k must be even.

This contradiction shows that $\mathfrak{G r}(2 k-1, k)=\emptyset$, and thus $\Xi(k) \leq 2 k-2$.
The next theorem (which does not use Theorem 19) will lead to another upper bound in Theorem 22. It can be seen as an improvement for the extreme case $\mathfrak{G r}(2 k-2, k)$ of Mantel's [16] theorem on existence of triangles in a graph. Note that this result fails for $k=5$ by Example 9.

Theorem 20. Suppose $G \in \mathfrak{G r}(n, k)$ and $k \geq 6$. If $n \geq 2 k-2$, then there is a triangle in G.

Proof. Let $G=(V, E) \in \mathfrak{G r}(n, k)$. Suppose to the contrary that there are no triangles in G. If there is a vertex $x \in V$ such that $\operatorname{deg}(x) \geq k+1$, then we select in $N(x)$ a k-set X and a vertex y outside it; since X has to dominate y, it is clear that there exists a triangle $x y z$. Hence $\operatorname{deg}(x) \leq k$ for every x. On the other hand, we know that for all $x \in V \operatorname{deg}(x) \geq n-k \geq k-2$.

Let $x \in V$ be a vertex whose degree is minimal. We denote $V \backslash N[x]=B$ and we use the fact that $|B| \leq k-1$.

1) Suppose first $\operatorname{deg}(x)=k$. Because $\operatorname{deg}(x)$ is minimal we know that for all $a \in N(x), \operatorname{deg}(a)=k$. This is possible if and only if $|B|=k-1$ and for all $a \in N(x)$ we have $B \cap N(a)=B$. But then in the k-subset $C=\{x\} \cup B$ we have $I(C ; a)=I(C ; b)$ for all $a, b \in N(x)$. This is impossible.
2) Suppose then $\operatorname{deg}(x)=k-1$. If now $|B| \leq k-2$ the graph is impossible as in the first case. Hence, $|B|=k-1$. For every $a \in N(x)$ there are at least $k-2$ adjacent vertices in B, and thus at most 1 non-adjacent. This implies that for all $a, b \in N(x), a \neq b$, we have $|N(a) \cap N(b) \cap B| \geq k-3 \geq 2$, when $k \geq 5$. Hence, by choosing $a, b \in N(x), a \neq b$, we have the k-subset $C=\{x\} \cup(N(x) \backslash\{a, b\}) \cup\left\{c_{1}, c_{2}\right\}$, where $c_{1}, c_{2} \in N(a) \cap N(b) \cap B$. In this k-subset $I(C ; a)=I(C ; b)$, which is impossible.
3) Suppose finally $\operatorname{deg}(x)=k-2$. Now $|B|=k-1$, otherwise we cannot have $n \geq 2 k-2$. If there is $b \in B$ such that $|N(b) \cap N(x)|=k-2$, then because $\operatorname{deg}(b) \leq k$ we have $|B \backslash(N[b] \cap B)| \geq k-4 \geq 2$, when $k \geq 6$. Hence, there are $c_{1}, c_{2} \in B \backslash N[b], c_{1} \neq c_{2}$, and in the k-subset $C=N(x) \cup\left\{c_{1}, c_{2}\right\}$ we have $I(C ; x)=I(C ; b)$ which is impossible.

Thus, for all $b \in B$ we have $|N(b) \cap N(x)| \leq k-3$. On the other hand, each of the $k-2$ vertices in $N(x)$ has at least $k-3$ adjacent vertices in B, so the vertices in B have on the average at least $(k-2)(k-3) /(k-1)>k-4$ adjacent vertices in the set $N(x)$. Hence, we can find $b \in B$ such that $|N(b) \cap N(x)|=k-3$. Because $\operatorname{deg}(b) \geq k-2$ we have at least one $b_{0} \in B$ such that $d\left(b, b_{0}\right)=1$. Because there are no triangles, each of the $k-3$ neighbours of b in $N(x)$ is not adjacent with b_{0}, and therefore adjacent to at least $k-3$ of the $k-2$ vertices in $B \backslash\left\{b_{0}\right\}$. Hence, for all $a_{1}, a_{2} \in N(x) \cap N(b), a_{1} \neq a_{2}$, we have $\left|N\left(a_{1}\right) \cap N\left(a_{2}\right) \cap B\right| \geq k-4 \geq 2$ when $k \geq 6$. In the k-subset $C=\left\{x, b_{0}, c_{1}, c_{2}\right\} \cup\left(N(x) \backslash\left\{a_{1}, a_{2}\right\}\right)$, where $c_{1}, c_{2} \in N\left(a_{1}\right) \cap N\left(a_{2}\right) \cap B$, we have $I\left(C ; a_{1}\right)=I\left(C ; a_{2}\right)$, which is impossible.

Lemma 21. If there is a graph $G \in \mathfrak{G r}(n, k)$ that contains a triangle, then $n \leq 3 k-9$. (In particular, $k \geq 5$.)

Proof. Suppose that $G=(V, E) \in \mathfrak{G r}(n, k)$ and that there is a triangle $\{x, y, z\}$ in G. Let, for $v, w \in V, J_{w}(v)$ denote the indicator function given by $J_{w}(v)=1$ if $v \in N[w]$ and $J_{w}(v)=0$ if $v \notin N[w]$. Define the set $M_{x y}=\left\{v \in V: J_{x}(v)=\right.$ $\left.J_{y}(v)\right\}$, and $M_{x y}^{\prime}=M_{x y} \backslash\{x, y, z\}$. Since $M_{x y}$ does not separate x and y, we have $\left|M_{x y}\right| \leq k-1$. Further, $\{x, y, z\} \subseteq M_{x y}$, and thus $\left|M_{x y}^{\prime}\right| \leq k-4$. Define similarly $M_{x z}, M_{y z}, M_{x z}^{\prime}, M_{y z}^{\prime}$; the same conclusion holds for these.

Since the indicator functions take only two values, $M_{x y}, M_{x z}$ and $M_{y z}$ cover V, and thus

$$
n=|V|=\left|M_{x y}^{\prime} \cup M_{x z}^{\prime} \cup M_{y z}^{\prime} \cup\{x, y, z\}\right| \leq 3(k-4)+3=3 k-9 .
$$

Since $n \geq k$, this entails $3 k-9 \geq k$ and thus $k \geq 5$.
The following upper bound is generally weaker than Theorem 19, but it gives the optimal result for $k=6$. (Note that the result fails for $k \geq 5$, see Section 3.)

Theorem 22. Suppose $k \geq 6$. Then $\Xi(k) \leq 3 k-9$.

Proof. Suppose that $G \in \mathfrak{G r}(n, k)$. If G does not contain any triangle, then Theorem 20 yields $n \leq 2 k-3 \leq 3 k-9$. If G does contain a triangle, then Lemma 21 yields $n \leq 3 k-9$.

5 Strongly regular graphs

A graph $G=(V, E)$ is called strongly regular with parameters (n, t, λ, μ) if $|V|=n, \operatorname{deg}(x)=t$ for all $x \in V$, any two adjacent vertices have exactly λ common neighbours, and any two nonadjacent vertices have exactly μ common neighbours; we then say that G is a (n, t, λ, μ)-SRG. See [3] for more information. By [3, Proposition 1.4.1] we know that if G is a (n, t, λ, μ)-SRG, then $n=t+1+t(t-1-\lambda) / \mu$.

We give two examples of strongly regular graphs that will be used below.
Example 23. The well-known Paley graph $P(q)$, where q is a prime power with $q \equiv 1(\bmod 4)$, is a $(q,(q-1) / 2,(q-5) / 4,(q-1) / 4)$-SRG, see for example [3]. The vertices of $P(q)$ are the elements of the finite field F_{q}, with an edge $i j$ if and only if $i-j$ is a non-zero square in the field; when q is a prime, this means that the vertices are $\{1, \ldots, q\}$ with edges $i j$ when $i-j$ is a quadratic residue $\bmod q$.
Example 24. Another construction of strongly regular graphs uses a regular symmetric Hadamard matrix with constant diagonal (RSHCD) [6], [4], [5]. In particular, in the case (denoted RSHCD +) of a regular symmetric $n \times n$ Hadamard matrix $H=\left(h_{i j}\right)$ with diagonal entries +1 and constant positive row sums $2 m$ (necessarily even when $n>1$), then $n=(2 m)^{2}=4 m^{2}$ and the graph G with vertex set $\{1, \ldots, n\}$ and an edge $i j$ (for $i \neq j$) if and only if $h_{i j}=+1$ is a $\left(4 m^{2}, 2 m^{2}+m-1, m^{2}+m-2, m^{2}+m\right)$-SRG [4, §8D].

It is not known for which m such RSHCD + exist (it has been conjectured that any $m \geq 1$ is possible) but constructions for many m are known, see [6], [17, V.3] and [5, IV.24.2]. For example, starting with the 4×4 RSHCD +

$$
H_{4}=\left(\begin{array}{rrrr}
1 & 1 & 1 & -1 \\
1 & 1 & -1 & 1 \\
1 & -1 & 1 & 1 \\
-1 & 1 & 1 & 1
\end{array}\right)
$$

its tensor power $H_{4}^{\otimes r}$ is an RSHCD + with $n=4^{r}$, and thus $m=2^{r-1}$, for any $r \geq 1$. This yields a $\left(2^{2 r}, 2^{2 r-1}+2^{r-1}-1,2^{2 r-2}+2^{r-1}-2,2^{2 r-2}+\right.$ $\left.2^{r-1}\right)$-SRG with vertex set $\{1,2,3,4\}^{r}$, where two different vertices $\left(i_{1}, \ldots, i_{r}\right)$ and $\left(j_{1}, \ldots, j_{r}\right)$ are adjacent if and only if the number of coordinates ν such that $i_{\nu}+j_{\nu}=5$ is even.
Theorem 25. A strongly regular graph $G=(V, E)$ with parameters (n, t, λ, μ) belongs to $\mathfrak{G r}(n, k)$ if and only if

$$
k \geq \max \{n-t, n-2 t+2 \lambda+3, n-2 t+2 \mu-1\}
$$

or, equivalently, $t \geq n-k$ and $2 \max \{\lambda+1, \mu-1\} \leq k+2 t-n-1$.

Proof. An immediate consequence of Theorem 7, since $|N[x]|=t+1$ for every vertex x and $|N[x] \triangle N[y]|$ equals $2(t-\lambda-1)$ when $x \sim y$ and $2(t+1-\mu)$ when $x \nsim y, x \neq y$.

We can extend this construction to other values of n by modifying the strongly regular graph.

Theorem 26. If there exists a strongly regular graph with parameters $\left(n_{0}, t, \lambda, \mu\right)$, then for every $i=0, \ldots, n_{0}+1$ there exists a graph in $\mathfrak{G r}\left(n_{0}+i, k_{0}+i\right)$, where
$k_{0}=\max \left\{n_{0}-t, t, n_{0}-2 t+2 \lambda+3, n_{0}-2 t+2 \mu-1,2 t-2 \lambda-1,2 t-2 \mu+2\right\}$,
provided $k_{0} \leq n_{0}$.
Proof. For $i=0$, this is a weaker form of Theorem 25. For $i \geq 1$, we suppose that $G_{0}=\left(V_{0}, E_{0}\right)$ is $\left(n_{0}, t, \lambda, \mu\right)$-SRG and build a graph G_{i} in $\mathfrak{G r}\left(n_{0}+i, k_{0}+i\right)$ from G_{0} by adding suitable new vertices and edges.

If $1 \leq i \leq n_{0}$, choose i different vertices $x_{1}, x_{2}, \ldots, x_{i}$ in V_{0}. Construct a new graph $\bar{G}_{i}=\left(V_{i}, E_{i}\right)$ by taking G_{0} and adding to it new vertices $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{i}^{\prime}$ and new edges $x_{j}^{\prime} y$ for $j \leq i$ and all $y \notin N_{G_{0}}\left(x_{j}\right)$.

First, $\operatorname{deg}_{G_{i}}(x) \geq \operatorname{deg}_{G_{0}}(x)=t$ for $x \in V_{0}$ and $\operatorname{deg}_{G_{i}}\left(x^{\prime}\right)=n_{0}-t$ for $x^{\prime} \in V_{i}^{\prime}=V_{i} \backslash V_{0}$. We proceed to investigate $N[x] \triangle N[y]$, and separate several cases.
(i) If $x, y \in V_{0}$, with $x \neq y$, then

$$
|N[x] \triangle N[y]| \geq\left|(N[x] \triangle N[y]) \cap V_{0}\right|=\left|\left(N_{G_{0}}[x] \triangle N_{G_{0}}[y]\right)\right|,
$$

which equals $2(t-\lambda-1)$ if $x \sim y$ and $2(t-\mu+1)$ if $x \nsim y$.
(ii) If $x \in V_{0}, y^{\prime} \in V_{i}^{\prime}$, then, since \triangle is associative and commutative,
$\left|\left(N[x] \triangle N\left[y^{\prime}\right]\right) \cap V_{0}\right|=\mid\left(N_{G_{0}}[x] \triangle\left(V_{0} \triangle N_{G_{0}}(y)\right)\left|=n_{0}-\left|\left(N_{G_{0}}[x] \triangle N_{G_{0}}(y)\right)\right|\right.\right.$,
which equals $n_{0}-1$ if $x=y, n_{0}-(2 t-2 \lambda-1)$ if $x \sim y$, and $n_{0}-(2 t-2 \mu+1)$ if $x \nsim y$ and $x \neq y$. If $x \sim y$, further, $\left|\left(N[x] \triangle N\left[y^{\prime}\right]\right) \cap V_{i}^{\prime}\right| \geq 1$, since $y^{\prime} \notin N[x]$.
(iii) If $x^{\prime}, y^{\prime} \in V_{i}^{\prime}$, with $x^{\prime} \neq y^{\prime}$, then
$\left|\left(N\left[x^{\prime}\right] \triangle N\left[y^{\prime}\right]\right) \cap V_{0}\right|=\left|\left(V_{0} \backslash N_{G_{0}}(x)\right) \triangle\left(V_{0} \backslash N_{G_{0}}(y)\right)\right|=\left|\left(N_{G_{0}}(x) \triangle N_{G_{0}}(y)\right)\right|$,
which equals $2(t-\lambda)$ if $x \sim y$ and $2(t-\mu)$ if $x \nsim y$. Further, $\mid\left(N\left[x^{\prime}\right] \Delta N\left[y^{\prime}\right]\right) \cap$ $V_{i}^{\prime}\left|=\left|\left\{x^{\prime}, y^{\prime}\right\}\right|=2\right.$.

Collecting these estimates, we see that $G_{i} \in \mathfrak{G r}\left(n_{0}+i, k_{0}+i\right)$ by Theorem 7 (or Corollary 8) with our choice of k_{0}. Note that $2 k_{0} \geq\left(n_{0}-2 t+2 \lambda+3\right)+$ $(2 t-2 \lambda-1)=n_{0}+2 \geq 3$, so $k_{0} \geq 2$.

Finally, for $i=n_{0}+1$, we construct $G_{n_{0}+1}$ by adding a new vertex to $G_{n_{0}}$ and connecting it to all other vertices. The graph $G_{n_{0}}$ has by construction maximum degree $\Delta_{G_{n_{0}}}=n_{0} \leq k_{0}+n_{0}-2$. Hence, Lemma 10 shows that $G_{n_{0}+1} \in \mathfrak{G r}\left(n_{0}+1, k_{0}+n_{0}+1\right)$.

We specialize to the Paley graphs, and obtain from Example 23 and Theorems 25-26 the following.

Theorem 27. Let q be an odd prime power such that $q \equiv 1(\bmod 4)$.
(i) The Paley graph $P(q) \in \mathfrak{G r}(q,(q+3) / 2)$.
(ii) There exists a graph in $\mathfrak{G r}(q+i,(q+3) / 2+i)$ for all $i=0,1, \ldots, q+1$.

Note that the rate $2 q /(q+3)$ for the Paley graphs approaches 2 as $q \rightarrow \infty$; in fact, with $n=q$ and $k=(q+3) / 2$ we have $n=2 k-3$, almost attaining the bound $2 k-2$ in Theorem 19. (The Paley graphs thus almost attain the bound in Theorem 19, but never attain it exactly.)

Corollary 28. $\Xi(k) \geq 2 k-o(k)$ as $k \rightarrow \infty$.
Proof. Let $q=p^{2}$ where (for $k \geq 6$) p is the largest prime such that $p \leq \sqrt{2 k-3}$. It follows from the prime number theorem that $p / \sqrt{2 k-3} \rightarrow 1$ as $k \rightarrow \infty$, and thus $q=2 k-o(k)$. Hence, if k is large enough, then $k \leq q \leq 2 k-3$, and Theorem 27 shows that $P(q) \in \mathfrak{G r}(q,(q+3) / 2) \subseteq \mathfrak{G r}(q, k)$, so $\Xi(k) \geq$ $q=2 k-o(k)$. (Alternatively, we may let q be the largest prime such that $q \leq 2 k-3$ and $q \equiv 1(\bmod 4)$ and use the prime number theorem for arithmetic progressions [8, Chapter 17] to see that then $q=2 k-o(k)$.)

We turn to the strongly regular graphs constructed in Example 24 and find from Theorem 25 that they are in $\mathfrak{G r}\left(4 m^{2}, 2 m^{2}+1\right)$, thus attaining the bound in Theorem 19. We state that as a theorem.

Theorem 29. The strongly regular graph constructed in Example 24 from an $n \times n$ RSHCD + belongs to $\mathfrak{G r}(n, n / 2+1)$.

Corollary 30. There exist infinitely many integers k such that $\Xi(k)=2 k-2$.
Proof. If $k=n / 2+1$ for an even n such that there exists an $n \times n$ RSHCD + , then $\Xi(k) \geq n=2 k-2$ by Theorem 29. The opposite inequality is given by Theorem 19. By Example 24, this holds at least for $k=2^{2 r-1}+1$ for any $r \geq 1$.

6 Smaller identifying sets

The fact that all sets of k vertices in a given graph are identifying implies typically that there exist many identifying sets of smaller size s too, as is shown by the following result.

Theorem 31. Let $G=(V, E) \in \mathfrak{G r}(n, k)$. Then, for a random subset S of V of size s

$$
\mathbb{P}(S \text { is identifying in } G) \geq 1-\binom{n+1}{2} \frac{\binom{k-1}{s}}{\binom{n}{s}} .
$$

Figure 3: The bound in Theorem 31 for the graphs in $\mathfrak{G r}(29,16)$.

Proof. Let $G=(V, E) \in \mathfrak{G r}(n, k)$ and \mathcal{S} be the set of all s-subsets of V. Clearly, $|\mathcal{S}|=\binom{n}{s}$. Denote by $F_{2}(S), S \in \mathcal{S}$, the number of unordered pairs $\{u, v\} \in\binom{V}{2}$ such that u and v are not separated by S, that is, $I(S ; u) \triangle I(S ; v)=\emptyset$, and by $F_{1}(S)$ the number of vertices $w \in V$ such that $I(S ; w)=\emptyset$.

We count

$$
\begin{aligned}
\sum_{S \in \mathcal{S}} F_{2}(S)+\sum_{S \in \mathcal{S}} F_{1}(S) & =\sum_{S \in \mathcal{S}} \sum_{\substack{\{u, v\} \in\left(\begin{array}{l}
V \\
2
\end{array}\right) \\
I(u) \Delta I(v)=\emptyset}} 1+\sum_{S \in \mathcal{S}} \sum_{\substack{w \in V \\
I(w)=\emptyset}} 1 \\
& =\sum_{\{u, v\} \in\binom{V}{2}} \sum_{\substack{S \in \mathcal{S} \\
I(u) \triangle I(v)=\emptyset}} 1+\sum_{w \in V} \sum_{\substack{S \in \mathcal{S} \\
I(w)=\emptyset}} 1 \\
& \leq\left(\binom{n}{2}+n\right)\binom{k-1}{s}=\binom{n+1}{2}\binom{k-1}{s} .
\end{aligned}
$$

This bounds from above the number of sets $S \in \mathcal{S}$ that have an unidentified pair or a vertex with empty I-set. Thus

$$
\mathbb{P}(S \in \mathcal{S} \text { is identifying }) \geq 1-\frac{\binom{n+1}{2}\binom{k-1}{s}}{\binom{n}{s}}
$$

It follows that for many graphs, for example Paley graphs, almost all s subsets are identifying even when s is not too far away from the smallest value where there exists any identifying subset. We illustrate this for $P(29)$ in Figure 3 , and state the following consequences.

Theorem 32. If $G \in \mathfrak{G r}(n, k)$ with $k \geq 2$ and s is an integer with $\log \binom{n+1}{2} / \log (n /(k-$ $1))<s \leq n$, then there exists an identifying s-set of vertices of G.
Proof. If $s \geq k$, then every s-set will do, so suppose $s \leq k-1$. Then

$$
\frac{\binom{k-1}{s}}{\binom{n}{s}} \leq\left(\frac{k-1}{n}\right)^{s}<e^{-\log \binom{n+1}{2}}
$$

and Theorem 31 shows that there is a positive probability that a random s-set is identifying.

Theorem 33. For the Paley graphs,

$$
\min \{|S|: S \text { is identifying in } P(q)\}=\Theta(\log q)
$$

Proof. Theorems 27 and 32 show that there is an identifying s-set in $P(q)$ when $s>\log _{2}\left(\left(q^{2}+q\right) / 2\right) / \log _{2}(2 q /(q+1))=2 \log _{2}(q)-1+o(1)$. The lower bound $\log _{2}(q+1)$ is clear since all the sets $I(v), v \in V$, must be nonempty and distinct.

$7 \quad$ On $\mathfrak{G r}(n, k, \ell)$

In this section we consider $\mathfrak{G r}(n, k, \ell)$ for $\ell \geq 2$. Let us denote

$$
\Xi(k, \ell)=\max \{n: \mathfrak{G} \mathfrak{r}(n, k, \ell) \neq \emptyset\} .
$$

Trivially, the empty graph $E_{k} \in \mathfrak{G r}(k, k, \ell)$ for any $\ell \geq 1$; thus $\Xi(k, \ell) \geq \mathrm{k}$.
Note that a graph $G=(V, E)$ with $|V|=n$ admits a $(1, \leq \ell)$-identifying set $\Longleftrightarrow V$ is $(1, \leq \ell)$-identifying $\Longleftrightarrow G \in \mathfrak{G r}(n, n, \ell)$.

Theorem 34. Suppose that $G=(V, E) \in \mathfrak{G r}(n, k, \ell)$, where $n>k$ and $\ell \geq 2$. Then the following conditions hold:
(i) For all $x \in V$ we have $\ell+1<n-k+\ell+1 \leq|N[x]| \leq k-\ell$. In other words, $\delta_{G} \geq n-k+\ell$ and $\Delta_{G} \leq k-\ell-1$.
(ii) For all $x, y \in V, x \neq y,|N[x] \cap N[y]| \leq k-2 \ell+1$.
(iii) $n \leq 2 k-2 \ell-1$ and $k \geq 2 \ell+2$.

Proof. (i) Suppose first that there is a vertex $x \in V$ such that $|N[x]| \leq n-k+\ell$. By removing $n-k$ vertices from V, starting in $N[x]$, we find a k-subset C with $I(C ; x)=\left\{c_{1}, \ldots, c_{m}\right\}$ for some $m \leq \ell$. If $m=0$, then $I(C ; x)=I(C ; \emptyset)$, which is impossible. If $1 \leq m<\ell$, we can arrange (by removing x first) so that $x \notin C$, and thus $x \notin Y=\left\{c_{1}, \ldots, c_{m}\right\}$. Then $I(C ;\{x\} \cup Y)=I(C ; Y)$, a contradiction. If $m=\ell \geq 2$, we can conversely arrange so that $x \in C$, and thus $x \in I(C ; x)$, say $c_{1}=x$. Then $I\left(C ; c_{2}, \ldots, c_{m}\right)=I\left(C ; c_{1}, \ldots, c_{m}\right)$, another contradiction. Consequently, $|N[x]| \geq n-k+\ell+1$.

Suppose then $|N[x]| \geq k-\ell+1$. If $|N[x]| \geq k$, we can choose a k-subset C of $N[x]$; then $I(C ; x)=C=I(C ; x, y)$ for any y, which is impossible. If $k>|N[x]| \geq k-\ell+1$, we can choose a k-subset $C=N[x] \cup\left\{c_{1}, \ldots c_{k-|N[x]|}\right\}$. Choose also $a \in N\left(c_{1}\right)$ (which is possible because $\operatorname{deg}\left(c_{1}\right) \geq 1$ by (i)). Now $I\left(C ; x, c_{1}, \ldots, c_{k-|N[x]|}\right)=C=I\left(C ; x, a, c_{2}, \ldots, c_{k-|N[x]| \mid}\right)$, which is impossible.
(ii) Suppose to the contrary that there are $x, y \in V, x \neq y$, such that $|N[x] \cap N[y]| \geq k-2 \ell+2$. Let $A=N(y) \backslash N[x]$. Then, according to (i), $|A| \leq|N[y] \backslash N[x]|=|N[y]|-|N[x] \cap N[y]| \leq k-\ell-(k-2 \ell+2)=\ell-2$.

Since $k>\ell-2$ by (i), there is a k-subset $C \subseteq V \backslash\{y\}$ such that $A \subset C$. Then $I(C ; A \cup\{x, y\})=I(C ; A \cup\{x\})$, a contradiction.
(iii) An immediate consequence of (i), which implies $n-k+\ell+1 \leq k-\ell$ and $\ell+1<k-\ell$.
Theorem 35. For $\ell \geq 2, \Xi(k, \ell) \leq \max \left\{\frac{\ell}{\ell-1}(k-2), k\right\}$.
Proof. If $\Xi(k, \ell)=k$, there is nothing to prove. Assume then that there exists a graph $G=(V, E) \in \mathfrak{G r}(n, k, \ell)$, where $n>k$. By Theorem 34(iii), $\ell<k / 2<n$. Let us consider any set of vertices $Z=\left\{z_{1}, z_{2}, \ldots, z_{\ell}\right\}$ of size ℓ. We will estimate $|N[Z]|$ as follows. By Theorem 34(i) we know $\left|N\left[z_{1}\right]\right| \geq n-k+\ell+1$. Now $N\left[z_{1}, z_{2}\right]$ must contain at least $n-k+1$ vertices, which do not belong to $N\left[z_{1}\right]$ due to Theorem 7 which says that $|N[X] \triangle N[Y]| \geq n-k+1$, where we take $X=\left\{z_{1}\right\}$ and $Y=\left\{z_{1}, z_{2}\right\}$. Analogously, each set $N\left[z_{1}, \ldots, z_{i}\right](i=2, \ldots, \ell)$ must contain at least $n-k+1$ vertices which are not in $N\left[z_{1}, \ldots, z_{i-1}\right]$. Hence, for the set Z we have $|N[Z]| \geq n-k+\ell+1+(\ell-1)(n-k+1)=\ell(n-k+2)$. Since trivially $|N[Z]| \leq n$, we have $(\ell-1) n \leq \ell(k-2)$, and the claim follows.

Corollary 36. For $\ell \geq 2$, we have $\frac{\Xi(k, \ell)}{k} \leq 1+\frac{1}{\ell-1}$.
The next results improve the result of Theorem 35 for $\ell=2$.
Lemma 37. Assume that $n>k$. Let $G=(V, E)$ belong to $\mathfrak{G r}(n, k, 2)$. Then

$$
n+\frac{n-k+2}{n-1}(n-k+3) \leq 2 k-3
$$

Proof. Suppose $x \in V$. Let

$$
f(n, k)=\frac{n-k+2}{n-1}(n-k+3) .
$$

Our aim is first to show that there exists a vertex in $N(x)$ or in $S_{2}(x)$ which dominates at least $f(n, k)$ vertices of $N[x]$. Let

$$
\lambda_{x}=\max \{|N[x] \cap N[a]| \mid a \in N(x)\} .
$$

If $\lambda_{x} \geq f(n, k)$, we are already done. But if $\lambda_{x}<f(n, k)$, then we show that there is a vertex in $S_{2}(x)$ that dominates at least $f(n, k)$ vertices of $N[x]$. Let us estimate the number of edges between the vertices in $N(x)$ and in $S_{2}(x)$ we denote this number by M. By Theorem 34(i), every vertex $y \in N(x)$ yields at least $|N[y]|-\lambda_{x} \geq n-k+3-\lambda_{x}$ such edges and there are at least $n-k+2$ vertices in $N(x)$. Consequently, $M \geq(n-k+2)\left(n-k+3-\lambda_{x}\right)$. On the other hand, again by Theorem 34(i), $\left|S_{2}(x)\right| \leq n-|N[x]| \leq k-3$. Hence, there must exist a vertex in $S_{2}(x)$ incident with at least $M /(k-3)$ edges whose other endpoint is in $N(x)$. Now, if $\lambda_{x}<f(n, k)$, then

$$
\frac{M}{k-3}>\frac{(n-k+2)(n-k+3-f(n, k))}{k-3}=f(n, k)
$$

Hence there exists in this case a vertex in $S_{2}(x)$ that is incident to at least $f(n, k)$ such edges, i.e., it dominates at least $f(n, k)$ vertices in $N(x)$.

In any case there thus exists $z \neq x$ such that $|N[x] \cap N[z]| \geq f(n, k)$. Let $C=(N[x] \cap N[z]) \cup(V \backslash N[x])$. Then $I(C ; x, z)=I(C ; z)$, so C is not $(1, \leq 2)$ identifying and thus $|C|<k$. Hence, using Theorem 34(i),

$$
k-1 \geq|C| \geq f(n, k)+n-|N[x]| \geq f(n, k)+n-(k-2),
$$

and thus $n+f(n, k) \leq 2 k-3$ as asserted.
Theorem 38. If $k \leq 5$, then $\Xi(k, 2)=k$. If $k \geq 6$, then

$$
\Xi(k, 2)<\left(1+\frac{1}{\sqrt{2}}\right)(k-2)+\frac{1}{4} .
$$

Proof. Let $n=\Xi(k, 2)$, and let $m=k-2$. If $n>k$, then $k \geq 6$ by Theorem 34(iii); hence $n=k$ when $k \leq 5$. Further, still assuming $n>k$, Lemma 37 yields

$$
n+\frac{(n-m)(n-m+1)}{n-1} \leq 2 m+1
$$

or
$0 \geq n(n-1)+(n-m)^{2}+n-m-(2 m+1)(n-1)=2\left(n-\left(m+\frac{1}{4}\right)\right)^{2}-m^{2}+\frac{7}{8}$.
Hence, $n-\left(m+\frac{1}{4}\right)<m / \sqrt{2}$.
Corollary 39. For $\ell=2$, we have $\Xi(k, 2) / k \leq 1+\frac{1}{\sqrt{2}}$.
Problem 40. What is $\limsup _{k \rightarrow \infty} \Xi(k, \ell) / k$ for $\ell \geq 2$? In particular, is $\lim \sup _{k \rightarrow \infty} \Xi(k, \ell) / k>1$?

The following theorem implies that for any $\ell \geq 2$ there exist graphs in $\mathfrak{G r}(n, k, \ell)$ for $n \approx k+\log _{2} k$. In particular, we have such graphs with $n>k$.

Theorem 41. Let $\ell \geq 2$ and $m \geq \max \{2 \ell-2,4\}$. A binary hypercube of dimension m belongs to $\mathfrak{G r}\left(2^{m}, 2^{m}-m+2 \ell-2, \ell\right)$

Proof. Suppose first $\ell \geq 3$. By [11] we know that then a set in a binary hypercube is $(1, \leq \ell)$-identifying if and only if every vertex is dominated by at least $2 \ell-1$ different vertices belonging to the set. Hence, we can remove any $m+1-(2 \ell-1)$ vertices from the graph, and there will still be a big enough multiple domination to assure that the remaining set is $(1, \leq \ell)$-identifying.

Suppose then that $\ell=2$ and $G=(V, E)$ is the binary m-dimensional hypercube. Let us denote by $C \subseteq V$ a $\left(2^{m}-m+2\right)$-subset. Every vertex is dominated by at least $m+1-(m-2)=3$ vertices of C. For all $x, y \in V$, $x \neq y$ we have $|N[x] \cap N[y]|=2$ if and only if $1 \leq d(x, y) \leq 2$ and otherwise $|N[x] \cap N[y]|=0$. Hence, for all $x, y, z \in V$ with $x \neq y, I(y)=N[y] \cap C$ contains at least 3 vertices, and these cannot all be dominated by x; thus, we have $I(x) \neq I(y)$ and $I(x) \neq I(y, z)$.

We still need to show that $I(x, y) \neq I(z, w)$ for all $x, y, z, w \in V, x \neq y$, $z \neq w,\{x, y\} \neq\{z, w\}$. By symmetry we may assume that $x \notin\{z, w\}$. Suppose $I(x, y)=I(z, w)$.

If $|I(x)| \geq 5$, then any two vertices $z, w \neq x$ cannot dominate $I(x)$, a contradiction.

If $|I(x)|=4$, then $|I(z) \cap I(x)|=|I(w) \cap I(x)|=2$ and $I(x) \cap I(z) \cap I(w)=\emptyset$. It follows that $3 \leq d(z, w) \leq 4$ which implies $I(z) \cap I(w)=\emptyset$. Since $|N[x] \backslash C|=$ $|N[x]|-|I(x)|=m-3$, all except one vertex, say v, of $V \backslash C$ belong to $N[x]$, so $V \backslash N[x] \subseteq C \cup\{v\}$; the vertex v cannot belong to both $N[z]$ and $N[w]$ since these are disjoint, so we may (w.l.o.g.) assume that $v \notin N[z]$, and thus $N[z] \backslash N[x] \subseteq C$, whence $N[z] \backslash N[x] \subseteq I(z) \backslash I(x)$. Hence, $|I(z) \cap I(y)| \geq$ $|I(z) \backslash I(x)| \geq|N[z] \backslash N[x]|=|N[z]|-|N[z] \cap N[x]|=m+1-2 \geq 3$. Thus $y=z$; however, then $I(y) \cap I(w)=I(z) \cap I(w)=\emptyset$ and since $I(w) \nsubseteq I(x)$, we have $I(w) \nsubseteq I(x, y)$.

Suppose finally that $|I(x)|=3$; w.l.o.g. we may assume $|I(z) \cap I(x)|=2$. Now $|N[x] \backslash C|=|N[x]|-|I(x)|=m-2=|V \backslash C|$, and thus $V \backslash C=N[x] \backslash C \subseteq$ $N[x]$; hence, $V \backslash N[x] \subseteq C$ and thus $N[z] \backslash N[x] \subseteq I(z) \backslash I(x)$. Consequently, $|I(z) \cap I(y)| \geq|I(z) \backslash I(x)| \geq|N[z] \backslash N[x]| \geq m+1-2 \geq 3$, and thus $z=y$. But similarly $N[w] \backslash N[x] \subseteq I(w) \backslash I(x)$ and the same argument shows $w=y$, and thus $w=z$, a contradiction.

We finally consider graphs without isolated vertices (i.e., no vertices with degree zero), and in particular connected graphs.

By [13, Theorem 8] a graph with no isolated vertices admitting a $(1, \leq \ell)$ identifying set has minimum degree at least ℓ. Hence, always $n \geq \ell+1$.

In [7] and [12] it has been proven that there exist connected graphs which admit $(1, \leq \ell)$-identifying set. For example, the smallest known connected graph admitting a ($1, \leq 3$)-identifying set has 16 vertices [12]. It is unknown whether there are such graphs with smaller order. In the next theorem we solve the case of graphs admitting $(1, \leq 2)$-identifying sets.

Theorem 42. The smallest $n \geq 2$ such that there exists a connected graph (or a graph without isolated vertices) in $\mathfrak{G r}(n, n, 2)$ is $n=7$.
(If we allow isolated vertices, we can trivially take the empty graph E_{n} for any $n \geq 2$.)

Proof. The cycle $C_{n} \in \mathfrak{G r}(n, n, 2)$ for $n \geq 7$ by Example 3(ii) (see also [12]).
Assume that $G=(V, E) \in \mathfrak{G r}(n, n, 2)$ is a graph of order $n \leq 6$ without isolated vertices; we will show that this leads to a contradiction. By [13], we know that $\operatorname{deg}(v) \geq 2$ for all $v \in V$. We will use this fact frequently in the sequel.

If G is disconnected, the only possibility is that $n=6$ and that G consists of two disjoint triangles, but this graph is not even in $\mathfrak{G r}(n, n, 1)$.

Hence, G is connected. Let $x, y \in V$ be such that $d(x, y)=\operatorname{diam}(G)$.
(i) Suppose that $\operatorname{diam}(G)=1$, or more generally that there exists a dominating vertex x. Then $N[x, y]=N[x]$ for any $y \in V$, which is a contradiction.
(ii) Suppose next $\operatorname{diam}(G)=2$. Moreover, by the previous case we can assume that for any $v \in V$ there is $w \in V$ such that $d(v, w)=2$.

Assume first $|N(x)|=4$. Then $S_{2}(x)=\{y\}$. Since $\operatorname{deg}(y) \geq 2$, there exist two vertices $w_{1}, w_{2} \in N(y) \cap N(x)$, but then $N\left[x, w_{1}\right]=N\left[x, w_{2}\right]$.

Assume next $|N(x)|=3$, say $N(x)=\left\{u_{1}, u_{2}, u_{3}\right\}$. Then $\left|S_{2}(x)\right|=n-$ $|N[x]| \leq 2$. Since the four sets $N[x]$ and $N\left[x, u_{i}\right], i=1,2,3$, must be distinct, we can assume without loss of generality that $\left|S_{2}(x)\right|=2$, say $S_{2}(x)=\{y, w\}$, and that the only edges between the elements in $S_{2}(x)$ and $N(x)$ are $u_{1} y, u_{2} w$, $u_{3} y$ and $u_{3} w$. Then $N\left[x, u_{3}\right]=N\left[y, u_{2}\right]$.

Assume finally that $|N(x)|=2$. By the previous discussion we may assume that $|N(v)|=2$ for all $v \in V$. Then G must be a cycle C_{n}, but it can easily be seen that $C_{n} \notin \mathfrak{G r}(n, n, 2)$ for $3 \leq n \leq 6$.
(iii) Suppose that $\operatorname{diam}(G)=3$. Clearly $|N(x)| \geq 2$ and $\left|S_{2}(x)\right| \geq 1$. If $\left|S_{2}(x)\right|=1$, say $S_{2}(x)=\{w\}$, then $N[w, y]=N[w]$, which is not allowed. Since $n \leq 6$, we thus have $|N(x)|=2$ and $\left|S_{2}(x)\right|=2$, say $N(x)=\left\{u_{1}, u_{2}\right\}$ and $S_{2}(x)=\left\{w_{1}, w_{2}\right\}$. We can assume without loss of generality that $u_{1} w_{1} \in E$. If $w_{2} u_{2} \in E$, then $N\left[w_{1}, u_{2}\right]=N[x, y]$. If $w_{2} u_{2} \notin E$, then $N\left[w_{1}, w_{2}\right]=N\left[w_{1}\right]$.
(iv) Suppose that $\operatorname{diam}(x, y) \geq 4$. Then G contains an induced path P_{5}. There is at most one additional vertex, but it is impossible to add it to P_{5} and obtain $\delta_{G} \geq 2$ and $\operatorname{diam}(G) \geq 4$.

This completes the proof.
Acknowledgement. Part of this research was done during the Workshop on Codes and Discrete Probability in Grenoble, France, 2007.

References

[1] D. Auger. Induced paths in twin-free graphs. Electron. J. Combin., 15:N 17, 7 pp., 2008.
[2] D. Auger, I. Charon, I. Honkala, and A. Lobstein. Edge number, minimum degree, maximum independent set, radius and diameter in twin-free graphs. Adv. Math. Commun., to appear.
[3] A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-regular graphs, volume 18 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1989.
[4] A. E. Brouwer and J. H. van Lint. Strongly regular graphs and partial geometries. In Enumeration and design (Waterloo, Ont., 1982), pages 85122. Academic Press, Toronto, ON, 1984.
[5] C. J. Colbourn and J. H. Dinitz, editors. The CRC handbook of combinatorial designs. CRC Press Series on Discrete Mathematics and its Applications. CRC Press, Boca Raton, FL, 1996.

Table 1: Lower and upper bounds for $\Xi(k)$ for some k. The lower bounds come from the examples given in the last column; for $n \geq 8$ using Theorem 25, 27 or 29 or Lemma 10. The strongly regular graphs used here can be found from [5]. The upper bounds for $k \geq 7$ come from Theorem 19 .

k	lower bound	upper bound	example
1	1	1 (Ex. 13)	E_{1}
2	2	$2($ Ex. 14)	E_{2}
3	4	$4($ Ex. 15, Th.19)	C_{4}, S_{4}
4	5	5 (Th. 17)	Figure 1
5	8	8 (Th. 19)	Example 9
6	9	$9($ Th. 22)	Example 11, P(9)
7	11	12 (Th. 19, Th. 22)	Figure 2
8	13	14	$P(13)$
9	16	16	RSHCD+
10	17	18	$P(17)$
11	18	20	Th. 27(ii)
12	21	22	$(21,10,3,6)-$ SRG
13	22	24	Lemma 10
14	25	26	$P(25)$
15	26	28	$(26,15,8,9)-$ SRG
16	29	30	$P(29)$
17	30	32	Th. 27(ii)
18	31	34	Th. $27(\mathrm{ii)}$
19	36	36	RSHCD +
20	37	38	$P(37)$
33	64	64	RSHCD +
51	100	100	RSHCD+
73	144	144	RSHCD+
99	196	196	RSHCD+
129	256	256	RSHCD+

[6] J.-M. Goethals and J. J. Seidel. Strongly regular graphs derived from combinatorial designs. Canad. J. Math., 22:597-614, 1970.
[7] S. Gravier and J. Moncel. Construction of codes identifying sets of vertices. Electron. J. Combin., 12:R 13, 9 pp., 2005.
[8] M. N. Huxley. The Distribution of Prime Numbers. Oxford University Press, London, 1972.
[9] M. G. Karpovsky, K. Chakrabarty, and L. B. Levitin. On a new class of codes for identifying vertices in graphs. IEEE Trans. Inform. Theory, 44(2):599-611, 1998.
[10] M. Laifenfeld and A. Trachtenberg. Identifying codes and covering problems. IEEE Trans. Inform. Theory, 54(9):3929-3950, 2008.
[11] T. Laihonen. Sequences of optimal identifying codes. IEEE Trans. Inform. Theory, 48(3):774-776, 2002.
[12] T. Laihonen. On cages admitting identifying codes. European J. Combin., 29(3):737-741, 2008.
[13] T. Laihonen and S. Ranto. Codes identifying sets of vertices. In Applied algebra, algebraic algorithms and error-correcting codes (Melbourne, 2001), volume 2227 of Lecture Notes in Computer Science, pages 82-91. Springer, Berlin, 2001.
[14] A. Lobstein. Identifying and locating-dominating codes in graphs, a bibliography. Published electronically at http://perso.enst.fr/~lobstein/debutBIBidetlocdom.pdf.
[15] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes, volume 16 of North-Holland Mathematical Library. North-Holland, Amsterdam, 1977.
[16] W. Mantel. Problem 28. Wiskundige Opgaven, pages 60-61, 1907.
[17] J. Seberry Wallis. Hadamard matrices. In W. D. Wallis, A. P. Street, and J. S. Wallis, editors, Combinatorics: Room squares, sum-free sets, Hadamard matrices, Lecture Notes in Mathematics, vol. 292, SpringerVerlag, Berlin-New York, 1972.

[^0]: *Institut Fourier Université Joseph Fourier, 100 rue des Maths - BP 74, 38402 Saint Martin d'Hères, France, Sylvain.Gravier@ujf-grenoble.fr
 ${ }^{\dagger}$ Uppsala University, Department of Mathematics P.O. Box 480 S-751 06 Uppsala, Sweden, svante.janson@math.uu.se
 ${ }^{\ddagger}$ Department of Mathematics, University of Turku, 20014 Turku, Finland, terolai@utu.fi. Research supported by the Academy of Finland under grant 111940.
 ${ }^{\S}$ Department of Mathematics, University of Turku, 20014 Turku, Finland, samano@utu.fi. Research supported by the Academy of Finland under grant 111940.

