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The spread of a connected graph G was introduced by Alon, Boppana and Spencer [1],

and measures how tightly connected the graph is. It is defined as the maximum over all

Lipschitz functions f on V (G) of the variance of f(X) when X is uniformly distributed on

V (G). We investigate the spread for certain models of sparse random graph, in particular

for random regular graphs G(n, d), for Erdős–Rényi random graphs Gn,p in the supercritical

range p > 1/n, and for a ‘small world’ model. For supercritical Gn,p, we show that if

p = c/n with c > 1 fixed, then with high probability the spread of the giant component

is bounded, and we prove corresponding statements for other models of random graphs,

including a model with random edge lengths. We also give lower bounds on the spread

for the barely supercritical case when p = (1 + o(1))/n. Further, we show that for d large,

with high probability the spread of G(n, d) becomes arbitrarily close to that of the complete

graph Kn.

2010 Mathematics subject classification: 60C05

1. Introduction

If G is a graph, a Lipschitz function f on G is a real-valued function defined on the

vertex set V (G) such that |f(v) − f(w)| � 1 for every pair of adjacent vertices v and w. We

may regard a function f : V (G) → R on a graph G as a random variable by evaluating

f at a random, uniformly distributed, vertex. We may thus talk about the mean, median
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and variance of f. For example, if G has n vertices, the mean E f is
∑

v f(v)/n, and the

variance of f is

1

n

∑
v

(f(v) − E f)2 =
1

2n2

∑
v,w

(f(v) − f(w))2. (1.1)

For a fixed connected graph G, we define the spread of G to be the supremum of

the variance of f over all Lipschitz functions f on G, and we denote this quantity by

spread(G). (Note that the supremum would be infinite if we considered a disconnected

graph.) The spread of a graph was introduced by Alon, Boppana and Spencer in [1],

and considered further in [3]. In particular it is shown in [1] that the spread yields the

optimal coefficient in the exponent in a natural asymptotic isoperimetric inequality: we

discuss this briefly below. The spread is a natural measure of the overall connectivity of

a graph, and the purpose of this paper is to investigate the spread for certain models of

random graph.

1.1. The spread of a graph

Before we introduce our results concerning random graphs, let us give some background

on the spread of a graph. Observe first that spread is an edge-monotone function in the

sense that if we add an edge to a graph then the set of Lipschitz functions becomes

smaller, and thus the spread becomes smaller or remains the same.

For every connected graph G, spread(G) is attained, so we can replace supremum by

maximum. In fact, it is shown in Theorem 2.1 of [1] that there is always a Lipschitz

function f achieving spread(G) which is integer-valued and of the following simple form:

if S denotes the set of vertices v with f(v) = 0, then each component H of G \ S has

a sign g(H) = ±1, and for each vertex v in such an H , f(v) is g(H) times the graph

distance between v and S . An integer-valued Lipschitz function on G may be regarded

as a homomorphism from G to a suitably long path with a loop at each vertex, and

spread(G) measures how widely distributed along the path we can make the images of

the vertices of G.

It is easy to see that the complete graph Kn has spread 1/4 if n is even and 1/4 − 1/(4n2)

if n is odd. This of course gives the minimum possible values of the spread for graphs of

order n. The maximum is (n2 − 1)/12, attained by the path Pn.

Denote the graph distance between vertices u and v by dG(u, v), and let diameter(G) be

the maximum value of dG(u, v). It is easily seen from (1.1) that

spread(G) � 1

4
diameter(G)2,

and similarly that

spread(G) � 1

2n2

∑
v,w

dG(v, w)2,

so the spread is at most half the mean squared distance between vertices. Our results will

imply that the spread is typically much smaller for random graphs.
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Given a list of graphs G1, . . . , Gd, the Cartesian product
∏

i Gi is the graph with vertex

set
∏

i V (Gi), in which two vertices (u1, . . . , ud) and (v1, . . . , vd) are adjacent if and only if

they differ in exactly one coordinate i and ui and vi are adjacent in Gi. It is implicit in [1]

and explicit in [3] that, assuming the Gi are connected,

spread

(∏
i

Gi

)
=

∑
i

spread(Gi).

For example, the hypercube Qd is Kd
2 (the product of d copies of K2); since spread(K2) = 1/4

we see that spread(Qd) = d/4.

Alon, Boppana and Spencer in [1] considered the case of a fixed connected graph G,

and were interested in tight isoperimetric inequalities concerning Gd for large d. Given

a graph H , a set S of vertices of H and t > 0, let B(S, t) denote the set of vertices at

distance at most t from S (the t-ball around S), and let

g(H, t) = max
|S |�|V (H)|/2

|V (H) \ B(S, t)|
|V (H)| ,

where the maximum is over subsets S of at least half the vertices of H . Thus g(H, t) is the

maximum proportion of vertices at distance > t from a set of at least half the vertices.

From Theorem 1.1 in [1] (which gives a more general result), we have the following.

Theorem 1.1. Let G be a connected graph and let γ = spread(G). Then, for d1/2 � t � d,

g(Gd, t) = e− t2

2dγ (1+o(1)) as d → ∞.

1.2. Our results on the spread of random graphs

We use w.h.p. (with high probability) for events with probability 1 − o(1) as n → ∞. Our

focus is on whether or not the spread is bounded w.h.p. in various models of sparse

random graph. In these models typical degrees are small and w.h.p. the mean path length

is Θ(log n) (and so the mean squared path length is Ω(log2 n)): see for example Durrett [7]

for results on diameter and mean path length, and the discussion at the end of Section 4.

(We use log to denote natural logarithm, though often the base is irrelevant, as in O(log n).)

We start with random regular graphs G(n, d) with fixed degree d � 3, as that is the

easiest case. It is well known that w.h.p. G(n, d) is connected [4], and so we may talk

of spread(G(n, d)). In Section 2 we prove that such graphs with high probability have

uniformly bounded spread.

Theorem 1.2. There exists a constant C1 such that, for every fixed d � 3, w.h.p.

spread(G(n, d)) � C1.

In fact we prove a stronger result, Theorem 2.1, giving an exponential tail inequality for

Lipschitz functions; we derive this from a corresponding deterministic result for expander

graphs, Theorem 2.5.
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In Section 3 we study the random graph Gn,c/n with fixed c > 1, the supercritical

case. This random graph is w.h.p. disconnected, so we consider the spread of the largest

component of Gn,c/n, which we denote by Hn,c/n. (Recall that for c > 1, there is w.h.p. a

unique giant component Hn,c/n of order ∼ γ(c)n for some γ(c) > 0.) It was shown in [19]

that there is a f(c) > 0 such that the diameter of Hn,p is f(c) log n + Op(1). However, the

spread stays bounded.

Theorem 1.3. For each fixed c > 1 there exists a constant C2 = C2(c) > 0 such that w.h.p.

spread(Hn,c/n) � C2.

As with Theorem 1.2 above, we actually prove a stronger result, Theorem 3.1, giving a

tail inequality for Lipschitz functions which is exponential in
√
n.

In Section 4 we study the random graph Gn,c/n in the barely supercritical case when

c = 1 + ε, and show that the spread tends to infinity (in probability) at least at the rate ε−2.

Theorem 1.4. Let p = (1 + ε)/n with ε = ε(n) → 0 and ε3n → ∞ as n → ∞. Then w.h.p. the

giant component Hn,p of Gn,p satisfies

spread(Hn,p) = Ω(1/ε2).

We do not have matching upper bounds here, but there are precise results on the

diameter which yield upper bounds that complement (though do not quite match) the

lower bound. For ε as here, w.h.p. the diameter of Hn,(1+ε)/n is (3 + o(1))ε−1 log(ε3n) (Ding,

Kim, Lubetsky and Peres [5] and Riordan and Wormald [19]), and it follows immediately

that w.h.p. spread(Hn,p) = O(ε−2 log2(ε3n)), which is within a log2(ε3n) factor of the lower

bound in Theorem 1.4.

In Section 5 we study the random regular graph G(n, d) in the large-d case. As

noted above, the spread of a connected n-vertex graph is always at least spread(Kn) �
1/4 − 1/(4n2). Indeed, for graphs with bounded average degree the spread is bounded

above 1/4: see Proposition 5.1. However, the spread of G(n, d) approaches 1/4 as d

becomes large, in the following sense.

Theorem 1.5. For each ε > 0 there exists a constant d0 such that for each d � d0 we have

w.h.p.

spread(G(n, d)) < 1/4 + ε.

In Section 6 we study a basic ‘small world’ model Rn,c/n of a random graph, following

Watts and Strogatz [21] and Newman and Watts [16]; see also, for example, Durrett [7].

We start with a cycle on the vertices 1, . . . , n (with each i and i + 1 adjacent, where

n + 1 means 1). Then the other possible ‘short-cut’ edges are added independently with

probability c/n.
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Theorem 1.6. For each fixed c > 0 there exists a constant C3 = C3(c) such that w.h.p.

spread(Rn,c/n) � C3.

Again, the proof gives a stronger result with a tail inequality for Lipschitz functions

which is exponential in
√
n. To set Theorem 1.6 in context, we shall show also that

for any C there exists a constant c0 = c0(C) > 0 such that if 0 < c � c0 then w.h.p.

spread(Rn,c/n) > C .

In Section 7 we introduce edge lengths. Given a connected graph G with edge lengths

�(uv) � 0, we call a real-valued function f on V (G) Lipschitz if we always have |f(u) −
f(v)| � �(uv). The spread is defined to be the maximum variance of f(X) for such an f,

where X is uniform over V .

Theorem 1.7. There is a constant C4 such that for Kn with edge lengths i.i.d. uniform over

1, . . . , n, the spread is w.h.p. at most C4.

As with other theorems, the proof in fact yields a stretched exponential tail inequality

for Lipschitz functions. The proof also shows that the same result holds for i.i.d. edge

lengths that are exponential with mean n, or such exponentials +1.

Theorem 1.7 is best possible in the following sense. Given any fixed C > 0, if the edge

lengths are uniform over 1, . . . , �Cn	 then w.h.p. the number of vertices with minimum

incident edge length at least C is at least 2�n/6	, and then the spread is at least C2/12.

(Set f(v) = C/2 for �n/6	 such vertices v, f(v) = −C/2 for another �n/6	 such vertices v,

and f(v) = 0 otherwise.)

Finally Section 8 contains some open problems arising from our work.

Given a graph G, we let v(G) denote the number of vertices and e(G) the number

of edges. We use c1, C1, etc., to denote various positive constants. (We use ci for small

constants and Ci for large.) In Sections 3 and 6, where we consider Gn,c/n and Rn,c/n, these

are allowed to depend on c, but they never depend on n.

2. Random regular graphs

Recall from Section 1 that G(n, d) denotes the random regular graph with degree d. (If

d is odd, n is required to be even.) The following result will yield Theorem 1.2 as an

immediate corollary.

Theorem 2.1. Fix d � 3. There exists a constant c1 > 0 for which w.h.p. G(n, d) is such that

every Lipschitz function f : G(n, d) → R satisfies

|{v : |f(v) − m| � x}| < 2e−c1xn for all x � 0,

where m is any median of f.

In principle, numerical values could be given for c1, but we have not tried to find an

explicit value, nor to optimize the arguments. However, c1 can be taken independent of
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d � 3; in fact, it follows by monotonicity [10, Theorem 9.36] that any constant that works

for d = 3 will work for all larger d as well. We will thus consider d = 3 only in the proof.

(Alternatively, and perhaps more elementarily, we are convinced that the proof below

could easily be modified to an arbitrary d, but we have not checked the details.)

For α > 0 we say that a graph G is an α-expander if every set W ⊂ V (G) with

|W | � v(G)/2 contains at least α|W | vertices with neighbours in V (G) \ W . (This is

slightly at odds with the standard definition of expansion but is more convenient for our

purposes.) Observe that an α-expander must be connected. For disjoint sets A and B of

vertices in G let E(A,B) be the set of edges with one end in A and one in B, and let

e(A,B) = |E(A,B)|. The Cheeger constant of a graph G with vertex set V and e(G) > 0 is

Φ(G) = min
{S⊂V : 0<

∑
v∈S d(v) �e(G)}

e(S, V \ S)∑
v∈S d(v)

. (2.1)

Φ(·) measures the edge expansion, rather than the vertex expansion, of graphs. We shall

use the following expander property of G(n, 3), proved (in a more general version) in [2]

(see also [14] and [8, (proof of) Lemma 5.1]).

Lemma 2.2 (Lemma 5.3 of [2]). There is a constant c2 > 0 such that w.h.p. Φ(G(n, 3)) �
c2.

Since G(n, 3) has constant degree, Lemma 2.2 immediately implies vertex expansion for

G(n, 3), with the same constant. We state this as a simple lemma.

Lemma 2.3. If G is regular, and 0 < α � Φ(G), then G is an α-expander.

Proof. Let n := v(G), and let d be the degree of the vertices. Note that G has precisely

dn/2 edges. Fix a set W of vertices in G with |W | � n/2. Then∑
v∈W

d(v) = d|W | � dn/2,

so by (2.1) there are at least Φ(G)d|W | edges from W to its complement. These edges

have at least Φ(G)d|W |/d � α|W | endpoints in W .

Lemma 2.4. G(n, 3) is w.h.p. a c2-expander.

Proof. An immediate consequence of Lemmas 2.2 and 2.3.

The following deterministic result on expanders now yields Theorem 2.1.

Theorem 2.5. For each 0 < α � 1/2 and each α-expander Gn on [n], every Lipschitz function

f for Gn satisfies

|{v : |f(v) − m| � x}| < 2e−(α/2)xn for all x � 0,

where m is a median of f.
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Proof. Let f be a Lipschitz function on Gn, with median m. We may assume that m = 0;

otherwise we replace f by f − m. Let Vt := {v ∈ [n] : f(v) � t}. Then |Vt| � n/2 for t > 0.

If t > 0 and Vt is non-empty then there is a subset of Vt of size at least α|Vt| of vertices

x that are adjacent to at least one vertex y /∈ Vt. Thus f(y) < t, and since f is Lipschitz,

we have f(x) < t + 1 for every such x. Consequently, |Vt+1| � (1 − α)|Vt| when t > 0. Since

|V1| � n/2 � (1 − α)n, we obtain by induction, for simplicity considering integers k only,

|Vk| � (1 − α)kn � e−αkn, k = 1, 2, . . .

By symmetry, we have the same estimate for {v : f(v) � −k}, and thus, for every x � 1,

|{v : |f(v)| � x}| � 2e−α�xn < 2e−(α/2)xn.

Finally, since 2e−α/2 > 1 the last bound also holds for each 0 � x < 1, which completes

the proof.

3. Gn,c/n with c > 1 fixed

In this section we consider supercritical random graphs, and prove the following theorem,

which immediately implies Theorem 1.3.

Theorem 3.1. Given fixed c > 1, there is a constant c3 = c3(c) such that w.h.p. the giant

component H = Hn,c/n of Gn,c/n is such that every Lipschitz function f for H satisfies

|{v : |f(v) − m| > x}| < 2e−c3
√
xv(H) for all x � 0, (3.1)

where m is a median of f.

For this case, in place of Lemma 2.2 we can use another result of [2]. For a graph G and

a set of vertices U ⊂ V (G), we write G \ U for the subgraph of G induced by V (G) \ U.

For 0 < α < 1 we say that a connected graph H is an α-decorated expander if H has a

subgraph F such that:

(DE1) Φ(F) � α;

(DE2) listing the connected components of H \ V (F) as D1, . . . , Dν for some ν,

|{i : e(Di) + e(Di, F) � x}| � e−αxe(H);

(DE3) no vertex v ∈ V (F) is adjacent to (‘decorated by’) more than 1/α of the components

Di.

Note that (DE1) implies that F is connected. Note further that (DE2) implies:

(DE2′) for all x � 0, |{i : v(Di) � x}| � e−αxe(H).

We shall use (DE2′) rather than (DE2) in what follows. Let us say that H is a weak

α-decorated expander if (DE1), (DE2′) and (DE3) hold, and one further condition holds:

(DE4) v(F) � αv(H).

From Benjamini, Kozma and Wormald [2] (their Theorem 4.2 and Lemma 4.7, combined)

we have the following fact.
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Lemma 3.2. Fix c > 1. Then there is a constant α = α(c) > 0 such that w.h.p. the giant

component Hn,c/n of Gn,c/n is a weak α-decorated expander.

Since the expansion guaranteed by Lemma 3.2 is an edge expansion, we will need

to do a little work to derive the vertex expansion required to prove Theorem 3.1. The

following lemma will give some further, more elementary, properties of Gn,c/n that suffice

for our purposes. Given a graph G, let Vi(G) be the set of vertices of degree i, and let

vi(G) = |Vi(G)|.
The constants C5, C6, . . . below may depend on c and α.

Lemma 3.3. For fixed c > 1, Gn,c/n is w.h.p. such that H = Hn,c/n satisfies the following

properties, for suitable constants:

(P1) n′ := v(H) > γn/2 for some γ = γ(c) > 0,

(P2) e(H) � C5v(H),

(P3) vi(H) � e−iv(H) for all i � C6.

Proof. It is well known that n′/n
p

−→ γ(c) > 0. It is also well known and easy to see that

e(Gn,c/n)/n
p

−→ c/2. These two results yield (P1) and (P2).

For (P3), let dj = dj(Gn,c/n) be the degree of vertex j, and let X be the random variable∑n
j=1 e

2dj . Since each dj has a binomial Bin(n − 1, c/n) distribution,

EX = nE e2d1 = n

(
1 +

c

n
(e2 − 1)

)n−1

� nec(e
2−1). (3.2)

A similar calculation shows that

VarX = nVar(e2d1 ) + n(n − 1) Cov(e2d1 , e2d2 ) = O(n).

Consequently, by Chebyshev’s inequality, w.h.p.

∞∑
i=0

e2ivi(Gn,c/n) = X � ece
2

n.

The result follows, using (P1).

Remark 3.4. The proof of (P3) shows that it could be strengthened to vi(H) � e−Civ(H)

for all i � C6, for any fixed C; conversely, it would for our purposes be enough that

vi(H) � 2e−αiv(H) for all i. For simplicity, we use the version above.

Let us call a connected graph H a well-behaved weak α-decorated expander if it is a

weak α-decorated expander and it has properties (P2) and (P3) in the above lemma for

some constants C5, C6, where, for definiteness, we assume C5 = C6 = α−1. By Lemma 3.3,

Lemma 3.2 can be improved (possibly reducing α) as follows.

Lemma 3.5. Fix c > 1. Then there is a constant α = α(c) > 0 such that w.h.p. the giant

component Hn,c/n of Gn,c/n is a well-behaved weak α-decorated expander.
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Theorem 3.1 now follows immediately from the following deterministic lemma.

Lemma 3.6. Let the connected graph H be a well-behaved weak α-decorated expander.

Then (3.1) holds for every Lipschitz function f on H , for some c3 depending on α.

Proof. Fix a subgraph F of H which verifies that H is a weak α-decorated expander.

Let D be the graph H \ V (F), and let D1, . . . , Dν be the components of D. Fix a Lipschitz

function f on H . Let n′ = v(H) as in Lemma 3.3.

We write H�t for the set of vertices v ∈ V (H) with f(v) � t and define H>t, H�t,

H<t similarly. Further, we write F�t (and F>t etc.) for V (F) ∩ H�t, and D�t (etc.) for

H�t ∩ V (D) = H�t \ V (F). We also assume as in the proof of Theorem 2.1 that f has

median m = 0; hence |H�0|, |H�0| � n′/2.

Our plan of attack is as follows. First, we find a large subset of V (F) consisting

exclusively of vertices v with f(v) bounded above by a constant. Such a set is not quite

guaranteed by the fact that |H�0| � n′/2, because H�0 may be largely contained within

V (H) \ V (F). However, we shall use properties (DE2′) and (DE3) to find such a set.

Second, we use the expansion of F to show that the sets F�t decay rapidly in size as

t grows. Finally, we use the fact that the decorations Di are typically small and do not

attach to very many vertices of F�t, to show that the sets D�t also decay rapidly in size

as t grows. We now turn to the details. For simplicity we prove the theorem for x integer,

which easily implies the more general statement.

For λ > 0, let Fλ be the union of F and all components Di with v(Di) < λ. By property

(P2), e(H) � C5n
′. By property (DE2′), for any λ > 0 we have

∑
{i: v(Di)�λ}

v(Di) =

∞∑
j=0

∑
{i: 2j λ�v(Di)<2j+1λ}

v(Di)

�
∞∑
j=0

2j+1λe−αλ2j · C5n
′.

(3.3)

Choose λ = λ1 large enough that the upper bound in (3.3) is less than n′/4; then Fλ1

contains at least 3n′/4 vertices. Since at most n′/2 vertices v in H have f(v) > 0, it follows

that at least n′/4 of the vertices in Fλ1 have f(v) � 0. Since each component of Fλ1 \ F has

less than λ1 vertices, either |F�0| � n′/8 or at least n′/(8λ1) components of Fλ1 \ F contain

a vertex of H�0. Since all vertices in Fλ1 \ F have distance at most λ1 from F , property

(DE3) and the Lipschitz property of f then guarantee that in either case (assuming λ1 > α

as we may)

|F�λ1
| � αn′

8λ1
=: c4n

′.

Since every vertex of F has at least one neighbour in F , it follows that

∑
v∈F�λ1

dF (v) � c4n
′.
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Assuming that
∑

v∈F�λ1
dF (v) � e(F), by the expansion property (DE1) we thus have that

e(F�λ1
, F>λ1

) � αc4n
′. The Lipschitz property of f implies that each edge in E(F�λ1

, F>λ1
)

has one endpoint in F�λ1+1 \ F�λ1
, and thus∑

v∈F�λ1+1\F�λ1

dF (v) � e(F�λ1
, F>λ1

) � αc4n
′.

Repeatedly applying property (DE1) in this manner, and using property (P2), we see that

w.h.p.
∑

v∈F�λ2
dF (v) > e(F), where we may take λ2 = λ1 + C5/(αc4) + 1.

We next apply the expansion of F and properties (P2)–(P3) to bound the sizes of sets

F>λ2+i for positive integers i. As i becomes large and the sets F>λ2+i become small, the

proportion of the sum
∑

v∈F>λ2+i
dF (v) due to vertices of large degree may increase; this is

the reason we are only able to show that the sizes of the sets F>λ2+i decay exponentially

quickly in
√
i.

For given x > 0, let ax be the smallest integer � C6 such that
∑∞

i>ax
ie−i � αx/2. Since

∞∑
i>a

ie−i �
∞∑
i>a

e−i/2 � 3e−a/2,

there exists C7 large enough that ax � C7 log(1/x) for all x � 1/2.

For λ � λ2, if t′ =
∑

v∈F>λ
dF (v) then t′ � e(F) by our choice of λ2. For 0 � t � t′, we

thus have e(F>λ, F�λ) � αt′ � αt by (DE1). Let

∂F>λ = {v ∈ F>λ : v has a neighbour in F�λ}.

Then for any t as above,
∑

v∈∂F>λ
dF (v) � e(F>λ, F�λ) � αt. Also, applying property (P3)

and using the definition of at/n′ ,

∑
v∈F

dF (v)1[dF (v) > at/n′ ] �
∞∑

i>at/n′

ie−i · n′ � αt/2,

and so ∑
v∈∂F>λ

dF (v)1[dF (v) � at/n′ ] � αt −
∑
v∈F

dF (v)1[dF (v) > at/n′ ] � αt/2.

Hence, assuming also that t � n′/2,

|∂F>λ| � αt/2

at/n′
� αt

2C7 log(n′/t)
:= c5

t

log(n′/t)
. (3.4)

Now fix λ � λ2. Taking t = |F>λ| �
∑

v∈F>λ
dF (v) = t′, we also have t � |H>0| � n′/2, so

(3.4) applies with this choice of t. Furthermore, the Lipschitz property of f implies that

∂F>λ ⊆ F�λ+1, and so

|F>λ+1| � |F>λ| − |∂F>λ| � t(1 − c5/ log(n′/t)).

Next, for integers i � 1, let ki = �i/c5	. Then for all t � n′/2i, we have (1 − c5/ log(n′/t))ki <

1/2. It follows immediately that for all integers i � 1 we have

|F>λ2+
∑ i

j=2 kj
| � n′

2i
,
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so there is a C8 > 0 such that for all real x � 1, and trivially for 0 � x � 1,

|F>C8x2 | � n′

2x
. (3.5)

We now deal with the elements of the ‘decorations’ graph D, and assume that its

components D1, . . . , Dν are listed so that v(D1) � · · · � v(Dν). We first remark that by

(DE2′) and (P2), if mk is the number of components Di of D with v(Di) � k, then

mk � C5n
′e−αk for all integers k � 1. Hence, for any real t with 0 < t � n′, we have, with

x = log(C5n
′/t)/α,

�t∑
j=1

v(Dj) =

∞∑
k=1

min
(
�t, mk

)
�

∞∑
k=1

min
(
t, C5n

′e−αk
)

=
∑
k�x

t +
∑
k>x

C5n
′e−αk � C9t(log n′ + 1 − log t).

(3.6)

Next, for w ∈ V (D), let Dw be the component of D containing w and fix an arbitrary

vertex uw of F that is decorated with Dw . By (DE3), for any set S ⊆ V (F) with |S | � s,

the total number of components that decorate S is at most s/α. It then follows from (3.6)

that

|{w ∈ V (D) : uw ∈ S}| �
�s/α∑
j=1

v(Dj) � C10s(log n′ + 1 − log s) (3.7)

if s � αn′, and by taking C10 � 1/α we see that the inequality in fact holds for all s � n′.

For i � 0, if w ∈ D>i then one of the following two events must occur:

(a) v(Dw) � 3i/4,

(b) d(w, uw) < 3i/4 and then uw ∈ F>i/4.

By (DE2′) and (P2),

|{w ∈ D : v(Dw) � 3i/4}| �
∑

j�3i/4

j · C5n
′e−αj � C11n

′(i + 1)e−3αi/4. (3.8)

Furthermore, by (3.5),

|F>i/4| � n′/2c6

√
i

and thus by (3.7) we have

|{w ∈ D : uw ∈ F>i/4}| � C10
n′

2c6

√
i

(
1 + c6

√
i log 2

)
,

so for all i we have

|{w ∈ D : uw ∈ F>i/4}| � C12n
′e−c7

√
i (3.9)

for suitable constants C12 and c7 > 0. Thus, by (3.8) and (3.9),

|D>i| � |{w ∈ D : v(Dw) � 3i/4}| + |{w ∈ D : uw ∈ F>i/4}| � C13n
′e−c7

√
i. (3.10)

Hence, using this together with (3.5) to bound |F>i|, we have

|H>i| = |F>i| + |D>i| � C14e
−c8

√
in′
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for fixed C14 sufficiently large. Now note that −f is also a Lipschitz function on H with

a median 0, and so for all i � 0

|{v : |f(v)| > i}| � 2C14e
−c8

√
in′.

To complete the proof, let i0 > 0 satisfy 2C14e
−c8

√
i0 � 1, and then choose c9 with 0 <

c9 � c8 satisfying 2e−c9

√
i0 > 1. Now 2e−c9

√
i > min{1, 2C14e

−c8

√
i} for each i � 0, and so

|{v : |f(v)| > i}| < 2e−c9

√
in′ for all i � 0, and the theorem follows.

4. Gn,(1+ε)/n with ε → 0, ε � n−1/3

In this section we consider the barely supercritical case, and prove Theorem 1.4. Fix a

function ε = ε(n) as above and let p = (1 + ε)/n. As above, denote by Hn,p the largest

component of Gn,p. Further, write Cn,p (resp. Kn,p) for the core (resp. kernel) of Hn,p. For

such ε, it is known (see [15] and also [10], Chapter 5) that w.h.p.

v(Hn,p) = (1 + o(1))2εn,

v(Cn,p) = (1 + o(1))2ε2n, and (4.1)

v(Kn,p) = (1 + o(1))
4

3
ε3n.

For a connected graph G, we write κ(G) = e(G) − v(G), and call κ the excess of G. A

moment’s reflection reveals that κ(Hn,p) = κ(Cn,p) = κ(Kn,p), and it is known [9, 10, 13]

that for ε as above, w.h.p.

κ(Hn,p) = (1 + o(1))
2

3
ε3n. (4.2)

We fix δ < 1/10 and say that Hn,p behaves if

(2 − δ)εn � v(Hn,p) � (2 + δ)εn,

and if similar inequalities hold for v(Cn,p), v(Kn,p), and κ(Hn,p). By the above comments,

w.h.p. Hn,p behaves. Using this fact and one further lemma, we may prove Theorem 1.4.

The complement Hn,p \ V (Cn,p) of the core in the largest component Hn,p is a forest

consisting of trees that are attached to the core by (exactly) one edge each. We call these

trees pendant, and denote them (in some order) by T1, . . . , TN . We begin with an estimate

of the maximum size of the pendant trees.

Lemma 4.1. There exists a constant C15 such that w.h.p.

max
i

v(Ti) � C15ε
−2 log(nε3). (4.3)

Proof. We create another forest by removing all edges in the core Cn,p from Hn,p; the

result is a forest where each component consists of a single vertex in V (Cn,p) together with

all pendant trees attached to it (if any). We regard these trees as rooted, with the vertices

in V (Cn,p) as the roots, and denote them by T ∗
w , w ∈ V (Cn,p).

Conditioned on V (Hn,p) and Cn,p, this forest {T ∗
w}w is a uniformly distributed forest of

rooted trees, with given sets of M := v(Cn,p) roots and m := v(Hn,p) − M non-roots.
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The maximum size of a tree in a random forest of rooted trees has been studied by

Pavlov [17] (see also [12, Section 3.6] and [18]). In our case, if Hn,p behaves and n is

large enough, we have (2 − δ)nε2 � M � (2 + δ)nε2 and (2 − 2δ)nε � m � (2 + δ)nε. In

particular, m/M → ∞ and m/M2 � (nε3)−1 → 0. This is the range of [17, Theorem 3 (and

the remark following it)], which implies that w.h.p., conditioned on M and m,

max
w

v(T ∗
w) = (1 + o(1))

2m2

M2
log

(
M2

m

)
� C15ε

−2 log(nε3).

The same estimate thus holds unconditionally w.h.p., and the result follows since every

pendant tree is contained in some T ∗
w .

We say that e ∈ E(Kn,p) has length �(e) if the path in Cn,p corresponding to e contains

�(e) edges (so �(e) − 1 internal vertices). To prove Theorem 1.4, we construct a function

f on V (Hn,p) which has large spread; the construction is roughly as follows. Vertices v

of the kernel have value f(v) = 0. For e ∈ E(Kn,p), if �(e) is large then we may choose f

giving many distinct values to the vertices of the path in Cn,p corresponding to e, while

maintaining that f is Lipschitz. (If �(e) is too small then we set f(v) = 0 for all edges of

the path corresponding to e.) We extend the domain from V (Cn,p) to V (Hn,p) by assigning

to each vertex in a pendant tree the value of the unique core vertex to which the tree is

attached. We now turn to details.

Proof of Theorem 1.4. Since Hn,p behaves w.h.p., it suffices to prove that given that

Hn,p behaves, w.h.p. spread(Hn,p) = Ω(1/ε2). We shall define a Lipschitz function f on the

vertices of Hn,p for which, given that Hn,p behaves, w.h.p. Var(f) � γ/ε2 for some fixed

γ > 0. We define f in a few steps, starting from the core. We say that e ∈ E(Kn,p) has

length �(e) if the path in Cn,p corresponding to e contains �(e) edges (so �(e) − 1 internal

vertices). Since Hn,p behaves,

e(Kn,p) = v(Kn,p) + κ(Kn,p)

�
(

4

3
+ δ

)
ε3n +

(
2

3
+ δ

)
ε3n

= (2 + 2δ)ε3n, (4.4)

and

|V (Cn,p) \ V (Kn,p)| � (2 − δ)ε2n −
(

4

3
+ δ

)
ε3n

� (2 − 2δ)ε2n, (4.5)

for n sufficiently large.

We say that an edge e ∈ E(Kn,p) is short if

�(e) �
⌊

1 − δ

2ε(1 + δ)

⌋

(and long otherwise), and that v ∈ V (Cn,p) \ V (Kn,p) is useless if it is contained in a path

corresponding to a short edge (and useful otherwise). By (4.4) and (4.5), the number of
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useful vertices is at least

|V (Cn,p) \ V (Kn,p)| − e(Kn,p) · 1 − δ

2ε(1 + δ)
� (1 − δ)ε2n. (4.6)

Next, let r = r(n) be the largest integer divisible by 3 and with 2r � (1 − δ)/(2ε(1 + δ)).

For each long edge e ∈ E(Kn,p), let Pe be the path in Cn,p corresponding to e (so the

endpoints of Pe are in Kn,p), and let P ′
e be a sub-path of Pe, not containing the endpoints

of Pe, which is as long as possible subject to the condition that 2r divides v(P ′
e) (picked

according to some rule); such a sub-path certainly exists since

v(Pe) = e(Pe) + 1 �
⌊

1 − δ

2ε(1 + δ)

⌋
+ 2 � 2r + 2,

so Pe has at least 2r internal vertices. Since Pe has v(Pe) − 2 internal vertices, we also have

that v(P ′
e) � (v(Pe) − 2)/2, so by (4.4) and (4.6),

|{v : v ∈ P ′
e for some e ∈ E(Kn,p)}| �

∑
{e:e is long}

v(Pe) − 2

2

� (1 − δ)ε2n

2
− 2(1 + δ)ε3n

� (1 − δ)ε2n

3
, (4.7)

for n large enough. We now define the restriction of f to V (Cn,p) as follows.

• If v ∈ V (Kn,p), v is useless, or v is not in P ′
e for any long edge e, then set f(v) = 0.

• For each long edge e, repeat the sequence of values 12 . . . (r − 1)rr(r − 1) . . . 1 along P ′
e

(so if v is the ith or (2r + 1 − i)th vertex mod 2r along some path P ′
e then f(v) = i).

To extend f from Cn,p to the remainder of Hn,p, for each vertex v ∈ V (Hn,p), we define

the point of attachment a(v) to be the vertex x ∈ Cn,p whose distance from v in Hn,p is

minimum, and we set f(v) = f(a(v)). In other words, for each pendant tree T in Hn,p that

hooks up to the core at v ∈ V (Cn,p), we set f(w) = f(v) for all w ∈ V (T ).

To analyse the variance of f, for i = 1, 2, 3, let

Bi =

{
v ∈ V (Cn,p) :

i − 1

3
r < f(v) � i

3
r

}
,

and let B0 be all remaining vertices of Cn,p, i.e., those with f(v) = 0. By the definition of

f and since 3 divides r, the sizes of B1, B2, and B3 are identical, and are each at least

(1 − δ)ε2n/9. Also, for i = 1, 2, 3, let B+
i be the set of vertices v ∈ V (Hn,p) with a(v) ∈ Bi.

We will prove the following assertion:

(�) given that Hn,p behaves, w.h.p. |B+
i | � εn/44 for each i = 1, 2, 3.

Assuming for the moment that (�) holds, we can quickly complete the proof of the

theorem. For each graph Hn,p which behaves, the corresponding (fixed) function f satisfies

Var(f) =
1

2(n′)2

∑
x,y∈V (Hn,p)

(f(x) − f(y))2

� (n′)−2
∑
x∈B+

1

∑
y∈B+

3

(f(x) − f(y))2
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� (n′)−2|B+
1 ||B+

3 | r2/9

� (εn/44)2

((2 + δ)εn)2

r2

9

=
r2

69696(1 + δ/2)2
.

But r = Ω(1/ε), and so it follows that, conditional on the event that Hn,p behaves, w.h.p.

Var(f) = Ω(ε−2), as needed.

It thus remains to prove (�), and we now turn to this. Let X = |B+
1 |, the number of

vertices v ∈ V (Hn,p) with a(v) ∈ B1. Our aim is to show that P{X � εn/44} = 1 − o(1).

We note that given Cn,p, we can specify Hn,p by listing the pendant subtrees of Hn,p, and

their points of attachment in Cn,p, as T1, . . . , TN and U1, . . . , UN . By routine calculation it

is easily seen that given Cn,p and the pendant subtrees T1, . . . , TN , the points of attachment

U1, . . . , UN are independent and uniformly random elements of V (Cn,p). We further note

that given Cn,p and the pendant subtrees T1, . . . , TN , we can determine whether or not Hn,p

behaves. Then, recalling Lemma 4.1,

P{X � εn/44} � inf
S

P{X � εn/44 | Cn,p, T1, . . . , TN} − o(1), (4.8)

where S represents all possible choices of Cn,p and N and T1, . . . , TN for which Hn,p

behaves and (4.3) holds. Fix any such choice and let ti = v(Ti) for i = 1, . . . , N. To shorten

forthcoming formulae, let

Pc{·} = P{· | Cn,p, T1, . . . , TN},

and define Ec and Varc similarly. Given Cn,p and T1, . . . , TN , we may write X as

X = |B1| +

N∑
i=1

ti1[Ui ∈ B1].

Since Hn,p behaves, by the estimates above,

|B1|
v(Cn,p)

� (1 − δ)ε2n/9

(2 + δ)ε2n
� 1 − δ

18(1 + δ)
� 1

22
.

Since the points of attachment U1, . . . , UN of T1, . . . , TN in Cn,p are uniform and

N∑
i=1

ti = |V (Hn,p) \ V (Cn,p)|,

it thus follows that

Ec(X) = |B1| +
|B1|

v(Cn,p)
· |V (Hn,p) \ V (Cn,p)| >

εn

22
, (4.9)

the preceding inequality holding for n sufficiently large since Hn,p behaves. Next, given

Cn,p and T1, . . . , TN , |B1| is determined and X − |B1| is a sum of independent random

variables ti1[Ui ∈ B1], i = 1, . . . , N. Hence,

Varc(X) =

N∑
i=1

t2i Varc(1[Ui ∈ B1]) �
N∑
i=1

t2i .
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By Chebyshev’s inequality, when n is large enough that (4.9) holds, we thus have

Pc

{
X <

εn

44

}
�

∑N
i=1 t

2
i

(εn/44)2
.

Since we have assumed that (4.3) holds, and that Hn,p behaves,

N∑
i=1

t2i � max
1�i�N

ti ·
N∑
i=1

ti � C16ε
−2 log(nε3) · nε,

and thus, for n large enough,

Pc

{
X <

εn

44

}
� C17

nε−1 log(nε3)

(εn)2
= C17

log(nε3)

nε3
→ 0

as n → ∞. An identical argument yields the same lower bound with X equal to |B+
2 |

or |B+
3 |. (We do not actually care about |B+

2 |.) This establishes (�) and completes the

proof.

5. Regular graphs with large degrees

We saw that w.h.p. the random regular graph G(n, d) has bounded spread for any fixed

d � 3, and similarly the random graph Hn,c/n has bounded spread for any fixed c > 1.

As noted in the Introduction, the minimum possible values of the spread (achieved for

the complete graph Kn) are 1/4 if n is even and 1/4 − 1/(4n2) if n is odd. This suggests

another natural question for random graphs. How large must degrees be for the spread

to be close to 1/4? We shall see that for random regular graphs, what is needed is simply

for the degree d to be big enough.

First we note the deterministic result that the average degree must be large in order for

the spread to be close to 1/4, and then we give a matching result that for random regular

graphs graphs high degree is sufficient.

Proposition 5.1. For any fixed d � 2 there exists δ > 0 such that if the connected graph

G has average degree at most d and v(G) � 3d then spread(G) � 1/4 + δ. (We can take

δ = 1/(6d).)

Proof. We shall show that if V (G) = [n] then

spread(G) � 1

4
+

(
1

d
− 2

n

)(
1 − 1

d

)
. (5.1)

Note that this gives spread(G) � 1/4 + 1/6d if d � 2 and n � 3d.

Let t = �n/2d, let T consist of t vertices of least degree, and let U be the set of vertices

adjacent to a vertex in T . Note that |U| � n/2. Let A ⊆ [n] \ T be such that A ⊇ U \ T

and |A| = a := �n/2. Let B = [n] \ (T ∪ A).
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Let f(v) = 0 on B, 1 on A and 2 on T . For X uniformly distributed over the vertices,

and writing f for f(X), we have E f = (1/n)(a + 2t) and E f2 = (1/n)(a + 4t), and hence

Var(f) = (1/n)(a + 4t) − (1/n2)(a2 + 4at + 4t2)

=
a

n
(1 − a

n
) +

4t

n
− 2t

n
+

2t

n2
1[n odd] − 4t2

n2

= 1/4 − 1

4n2
1[n odd] +

2t

n
+

2t

n2
1[n odd] − 4t2

n2

� 1/4 +
2t

n

(
1 − 2t

n

)

� 1/4 +

(
1

d
− 2

n

)(
1 − 1

d

)
.

To prove Theorem 1.5 we need an expansion result for random regular graphs with high

degree. Given β > 1 and 0 < η < 1, let us say that a graph G = (V , E) has (β, η)-expansion

if, for each T ⊂ V with |T | � (1 − η)|V |/β, we have |T ∪ N(T )| � β|T |.

Lemma 5.2. For each β > 1 and 0 < η < 1/2, there exists d0 such that for all d � d0 w.h.p.

G(n, d) has (β, η)-expansion.

Proof. We consider the configuration model (see [10], Section 9.1) for G(n, d). Let α > 0

(α large). For a positive integer t let fn,d(t) be the expected number of pairs T and U

of sets of disjoint cells where |T | = t and |U| = u := �αt, and each neighbour of a stub

in a cell in T is in T ∪ U. Let t0 = �(1 − η)|V |/β. We aim to bound this quantity from

above by fn,d(t), in order to show that
∑t0

t=1 fn,d(t) = o(1). The lemma will then follow,

with β = 1 + α.

Note first that, since

d(t + u) − j

dn − j
� t + u

n

for each 0 < j < dn, the probability that each neighbour of a stub in a cell in T is in

T ∪ U is at most (
t + u

n

)dt/2

.

(If we choose the neighbours of the dt stubs in cells in T first, we have to make at least

dt/2 such choices.) Hence

fn,d(t) �
(
n

t

)(
n

u

)(
t + u

n

)dt/2

�
(
ne

t

)t(
ne

u

)u(
t + u

n

)dt/2

�
(
ne

t

)t(
ne

αt

)αt(
(1 + α)t

n

)dt/2
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=
(
e1+αα−α(1 + α)d/2td/2−1−αn1+α−d/2

)t

=

(
e1+αα−α(1 + α)1+α

(
(1 + α)t

n

)d/2−1−α)t

.

Now α−α(1 + α)1+α = (1 + α)(1 + 1/α)α � (1 + α)e. So

fn,d(t) �
(

(1 + α)e2+α

(
(1 + α)t

n

)d/2−1−α)t

.

Let α > 0 be sufficiently large that log(1 + α) + 2 + α � 2α. Let d0 � 6(1 + α), so that

d/2 − 1 − α � d/3 when d � d0. For such d,

fn,d(t) �
(
e2α

(
(1 + α)t

n

)d/3)t

.

If 1 � t � log2 n, say, then

fn,d(t) �
(
e2α

(
(1 + α) log2 n

n

)d/3)t

= O(1/n),

since d � 6. Also, since

(1 + α)t

n
� 1 − η � e−η,

for 1 � t � t0 we have

fn,d(t) � (e2αe−ηd/3)t.

From these bounds it is easy to complete the proof, with β = 1 + α.

Lemma 5.3. Let β � 3, η = β−1 and n � 6β + β2/2, and let G = (V , E) have (β, η)-ex-

pansion. Let f be an integer-valued function on V with median 0. Let V�i denote {v ∈ V :

f(v) � i} and so on. Assume that |V�1| � |V�−1|. Then

|V�i| � β−(i−1)n/2 and |V�−i| � 2β−in for each i � 1. (5.2)

Proof. Note that |V�0| � n/2 and |V�0| � n/2. Observe also that N(V�i) ⊆ V�i−1. If

|V�2| > (1 − η)n/β then, choosing a set T ⊂ V�2 with |T | = �(1 − η)n/β,

|V�1| � |T ∪ N(T )| � β|T | > (1 − η)n − β � n/2 � |V�1|, (5.3)

a contradiction: thus |V�2| � (1 − η)n/β. Hence

|V�2| � 1

β
|V�1| � n

2β
,

and further, for all i � 1 we have |V�i| � β−(i−1)|V�1|. Similarly, for all i � 1 we have

|V�−i| � β−(i−1)|V�−1|. Hence it suffices to show (5.2) for i = 1, i.e., that |V�1| � n/2, which

is trivial, and |V�−1| � 2n/β.
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Recall that |V�1| � |V�−1|. We consider two cases, depending on the size of V�1.

If |V�1| � (1 − η)n/β then |V�−1| � |V�1| < 2n/β. If |V�1| > (1 − η)n/β then |V�0| �
(1 − η)n − β as in (5.3), so |V�−1| � ηn + β � 2n/β.

The last lemma easily yields that sufficiently strong expansion yields spread close to

1/4.

Lemma 5.4. For any ε > 0 there exists β > 1 such that each graph G with (β, β−1)-

expansion and n large enough satisfies spread(G) < 1/4 + ε.

Proof. Let f be an integer-valued Lipschitz function on G. We may assume that the

median of f is 0, and (by symmetry) that |V�1| � |V�−1|. Then, if β � 3 and n is large,

Lemma 5.3 yields

Var(f) � E

∣∣∣∣f − 1

2

∣∣∣∣
2

� 1

4
+

∑
i�=0,1

|Vi|
n

(i − 1/2)2 � 1

4
+ O(β−1).

Lemmas 5.2 and 5.4 complete the proof of Theorem 1.5.

6. Small worlds

In this section we consider the small world model Rn,c/n for c > 0, and prove Theorem 1.6.

We need some preliminary work so that we can appeal to Lemma 3.6. The first step is to

show that we may assume that c � 2, by contracting sections of the ring. Now, if we delete

the edges of the ring randomly, keeping each with probability c/n, we obtain a random

graph Gn,c/n, whose giant component H is a well-behaved weak α-decorated expander by

Lemma 3.5. We show that using the ring to join the other vertices to H yields further

decorations, but w.h.p. we still have a well-behaved weak α′-decorated expander.

Step 1: Reduction to the case c = 2. We start with a deterministic lemma, which will show

that the spread does not shrink too much when we contract sections of the ring.

Lemma 6.1. Let G be a connected graph on V where |V | = n, let k be an integer with

1 � k < n, and let n̄ = �n/k. Let V1, . . . , Vn̄ be a partition of V such that each induced

subgraph G[Vi] is a connected graph with k or k + 1 vertices. Form the graph Ḡ on [n̄] by

contracting each Vi to a single new vertex i. Then

spread(G) � (k+1)3

k
spread(Ḡ) +

k2

4
.

Proof. Let f be a Lipschitz function for G, with mean μ. Let μi be the mean of f|Vi
, that

is,

μi = (1/|Vi|)
∑
w∈Vi

f(w).
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Then, by a standard decomposition of variance,

Var(f) =
1

n

∑
i

∑
w∈Vi

(f(w) − μi + μi − μ)2

=
1

n

∑
i

(∑
w∈Vi

((f(w) − μi)
2 + (μi − μ)2)

)

=
∑
i

|Vi|
n

Var(f|Vi
) +

∑
i

|Vi|
n

(μi − μ)2.

(6.1)

We consider the two terms here separately. Since the induced subgraph G[Vi] has diameter

at most k,

Var(f|Vi
) � spread(G[Vi]) � k2/4.

Thus

∑
i

|Vi|
n

Var(f|Vi
) � k2

4
.

Now consider the second term above. Observe that for each i and each w ∈ Vi, |f(w) −
μi| � k/2. Thus if i and j are adjacent in Ḡ then |μi − μj | � k + 1. Let f̄(i) = μi for each

i ∈ [n̄]. Then (1/(k + 1))f̄ is Lipschitz for Ḡ, and so

Var(f̄) � (k + 1)2 spread(Ḡ).

Next, let μ̄ = (1/n̄)
∑

i μi; let h(i) = μi − μ̄ for each i ∈ [n̄]; and let the random variable X

take values in [n̄] with P(X = i) = |Vi|/n. Observe that E[f̄(X)] = μ. Then

∑
i

|Vi|
n

(μi − μ)2 = Var f̄(X) = Var h(X) � E[h(X)2]

�
∑
i

k+1

n
(μi − μ̄)2 � k+1

k
Var(h)

=
k+1

k
Var(f̄) � (k+1)3

k
spread(Ḡ).

Now (6.1) and the above bounds let us complete the proof.

With the above lemma in hand, we may quickly complete the reduction to the case

c = 2. Consider 0 < c < 2. Fix a positive integer k with k2c > 2(k + 1). Observe that given

two disjoint k-subsets of [n], the probability that there is an edge in Gn,c/n between the

sets is 1 − (1 − c/n)k
2

= k2c/n + O(1/n2). Assume that w.h.p. spread(Rn,2/n) � b for some

constant b.

Consider a large n, partition the vertex set of Cn into paths of k or k + 1 vertices

(which we can always do once n � k(k − 1)), and from Rn,c/n form the corresponding

contracted graph as in Lemma 6.1. Call the contracted graph Rn̄. Then Rn̄ contains a

deterministic Hamilton cycle arising from the cycle Cn, and edges not in the cycle appear

independently, each with probability at least 2(k + 1)/n � 2/n̄. Thus w.h.p. spread(Rn̄) � b
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by the assumption above. Hence, by Lemma 6.1, w.h.p.

spread(Rn,c/n) � (k+1)3

k
b +

k2

4
.

This completes the reduction to the case c = 2.

Step 2: Joining the other vertices to the giant component H of Gn,2/n. Let us think of Rn,c/n

as generated by starting with Gn,c/n on vertex set [n], picking an independent uniform

random Hamilton cycle C in the complete graph on [n], and adding the edges of C if

they are not already present. We shall see that adding some edges of C to the edges of

H w.h.p. yields a well-behaved weak α-decorated expander G+ on [n] (for a suitable fixed

value of α > 0).

Condition on H being a fixed well-behaved α0-decorated expander (for some fixed

α0 > 0), fix a corresponding subgraph F , and let D1, . . . , Dν be the decorations. As usual,

let n′ := v(H). We further assume (using Lemma 3.3 and Remark 3.4) that H satisfies (P1)

and that (P3) holds in the stronger version vi(H) � e−2iv(H) for all i � C6.

Discard all edges outside H other than those from the random cycle C , which we take

as oriented. The vertices in V (H) divide the remaining vertices into n′ paths: for each

vertex w in V (H) let Qw be the maximal path of vertices outside H ending at w with

Xw � 0 vertices (not counting w). We attach the path Qw at w for each w in H , forming

the graph G+. If w is in V (F) then we have one new decoration attached at w (if Xw > 0).

If w is in decoration Di then we add Xw vertices and edges to Di (and no extra edge to

E(Di, F)).

The properties (DE1), (DE3), (DE4), (P2), (P3) are easily seen to hold for G+ (for a

suitable value of α > 0). We must check that also (DE2′) holds.

What is the distribution of (Xw : w ∈ V (H))? We may assume without loss of generality

that vertex n is in V (H). Think of the vertices in [n] as white. Re-colour vertex n black.

Choose a uniformly random subset S of [n − 1] of size n′ − 1, and re-colour these

elements black. Let X̃1 be the number of white elements before the first black one, and

for i = 2, . . . , n′ let X̃i be the number of white elements between the (i − 1)th black vertex

and the ith. The distribution of (Xw : w ∈ V (H)) is the same as that of (X̃1, . . . , X̃n′ ). Thus

for each list k1, . . . , kn′ of non-negative integers with
∑

i ki = n − n′ we have

P(Xi = ki for each i) =

(
n − 1

n′ − 1

)−1

.

It follows (see for example [6]) that the family (Xw : w ∈ V (H)) is negatively associated.

Also Xw �s X̃ for each w, where X̃ is geometric with parameter p′ = (n′ − 1)/(n − 1) (and

mean 1/p′ − 1), and �s means stochastic ordering (i.e., there exists a coupling such that

Xw � X). But p′ � p := γ/3 for n sufficiently large by (P1). Then Xw �s X, where X is

geometric with parameter p (note that this value p is fixed).

Let A = (Ai : i ∈ I) be the partition of V (H) into the vertex sets V (D) of the decorations

D of H together with the singletons {w} for each w ∈ V (F). Thus |I | = ν + v(F). For each

i, let D+
i :=

⋃
{Qw : w ∈ Ai} be the (possibly empty) union of the paths Qw attached to Ai.

Let Yi := v(D+
i ) =

∑
w∈Ai

Xw for each i ∈ I . The family (Yi : i ∈ I) is negatively associ-

ated, since it is formed by taking sums of disjoint members of (Xw : w ∈ V (H)): see [11].
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Hence, letting MX(t) := E etX denote the moment generating function, MYi
(t) � MX(t)|Ai|.

Also, the family (1[Yi � j] : i ∈ I) is negatively associated for each j. Let

Ij := {i ∈ I : |Ai| � (p/2)j},

and

Zj :=
∑
i∈I

1[Yi � j] and Z ′
j :=

∑
i∈Ij

1[Yi � j].

Note that for each j � 2/p,

Zj − Z ′
j � |{i ∈ I : |Ai| > (p/2)j}| � e(H) e−α0(p/2)j , (6.2)

by (DE2′) for H .

Observe that if f(t) = e−tMX(t)p/2, then

d

dt
(log f(t)) |t=0= −1 +

p

2

M ′
X(0)

MX(0)
= −1 +

p

2
EX = −1 + p

2
< 0,

and so there exists t0 > 0 such that f(t0) < 1. Let α = − log f(t0) so α > 0 and f(t0) = e−α.

For each i ∈ Ij , by Markov’s inequality

E[1[Yi � j]] = P(Yi � j) � e−t0jMYi
(t0)

� e−t0jMX(t0)|Ai| � (e−t0MX(t0)p/2)j = e−αj .
(6.3)

Since the family (1[Yi � j] : i ∈ I) is negatively associated,

MZ ′
j
(t) �

∏
i∈Ij

M1[Yi�j](t) � M
|Ij |
Be(e−αj )

(t) = MBi(|Ij |,e−αj )(t)

for each t � 0. Hence, the usual Chernoff estimates for the upper tail for Bi(|Ij |, e−αj)

apply to Z ′
j too, and thus

P
(
Z ′
j � 2|I |e−(α/3)j

)
� exp

(
− 1

3
|I |e−(α/3)j

)
; (6.4)

see, for example, Corollary 2.4 (and its proof: see Theorems 2.8 and 2.10) of [10]. For

j � (2/α) log |I |, we have |I |e−(α/3)j � |I |1/3 � (c10n)1/3, and thus

P
(
Z ′
j � 2|I |e−(α/3)j

)
� exp

(
−c11n

1/3
)
. (6.5)

For j > (2/α) log |I |, we use Markov’s inequality and (6.3), which yield

P(Z ′
j > 0) � EZ ′

j � |I |e−αj . (6.6)

Summing (6.5) or (6.6) for j � 0 yields

P
(
Z ′
j > 2|I |e−(α/3)j for some j � 0

)
�

∑
j�(2/α) log |I |

exp
(
−c11n

1/3
)

+
∑

j>(2/α) log |I |

|I |e−αj

= o(1) + O(|I |−1) → 0

as n → ∞, since |I | � c12n. Hence

P(Z ′
j < 2|I |e−(α/3)j for each j = 0, 1, . . .) → 1 as n → ∞.
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This result together with (6.2) shows that, for some fixed α′ > 0,

P(Zj < 3e(H)e−α′j for each j = 0, 1, . . .) → 1 as n → ∞,

which by (DE2′) for H easily implies that (DE2′) holds for G+ w.h.p.

Hence, w.h.p. G+ is a well-behaved weak α-decorated expander, and we may use

Lemma 3.6 to see that then (3.1) holds for G+, and consequently for Rn,c/n, which

completes the proof of Theorem 1.6.

In Lemma 3.2, we may insist that the giant component satisfies (DE2) rather than just

(DE2′): see [2]. Using this result, it is not hard to adapt the above proof to deduce that

w.h.p. G+ satisfies (DE2) rather than just (DE2′).

To set Theorem 1.6 in context, note that for any K there exists a constant c0 > 0 such

that if 0 < c � c0 then w.h.p. spread(Rn,c/n) > K . Indeed, we have the following result.

Proposition 6.2. For any K there exists a constant ε > 0 such that the following holds. Let

Gn be formed from the cycle Cn by adding at most εn edges. Then spread(Gn) � K for n

sufficiently large.

Proof. Let t := �
√

6K	, and assume that 0 < ε � 1/16t. We shall show that spread(Gn) �
t2/6 � K if n is sufficiently large.

We first define a Lipschitz function for Cn. It is convenient to let the vertex set of Cn

be V = {0, 1, . . . , n − 1}. Divide V into �n/4t sections {0, . . . , 4t − 1}, {4t, . . . , 8t − 1}, . . .

plus a ‘remainder’ (possibly). If i ∈ V satisfies i ≡ j (mod 4t) where 0 � j < 4t, we set

f(i) = j if 0 � j < t, f(i) = 2t − j if t � j < 3t and f(i) = j − 4t if 3t � j < 4t. (Thus, on

the section {0, . . . , 4t − 1}, f increases from 0 to t, then decreases from t to −t and then

increases to −1, always taking unit steps.) Observe that

4t−1∑
j=0

f(j)2 = 4

t−1∑
j=0

j2 + 2t2 =
4

3
t

(
t2 +

1

2

)
.

Now re-set f(v) to 0 for each v in the ‘remainder’ (that is, for 4�n/4t � v � n), and for

each v in a section which contains a vertex of degree > 2 in Gn. Then f is a Lipschitz

function for Gn, and f is unchanged on at least

n

4t
− 1 − 2εn � n

8t
− 1

sections. Now
∑

v∈V f(v) = 0, and

∑
v∈V

f(v)2 �
(

n

8t
− 1

)
4

3
t

(
t2 +

1

2

)
� n · t2/6

for n sufficiently large. Then Var(f) � t2/6, and so spread(Gn) � t2/6 � K , as required.
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7. Kn with random edge lengths

In this section we prove Theorem 1.7. Given α > 0, following [2], we say that a family

A = (ai : i ∈ I) of non-negative numbers has an α-exponential tail if

|{i ∈ I : ai � j}|
|I | � 2e−αj for all j � 0.

We need two lemmas.

Lemma 7.1. For each λ > 0 there is an α > 0 such that the following holds. Consider Kn,n

with independent edge lengths Xe, where Xe is exponentially distributed with parameter λ/n

(and thus mean n/λ). Then w.h.p. there is a perfect matching such that the edge lengths have

an α-exponential tail.

Proof. This follows from the result of Walkup [20] that, if each vertex independently

and uniformly picks arcs to two vertices in the other part, then w.h.p. there is a perfect

matching using only such arcs (ignoring orientations). (With minimal changes, we could

allow each vertex to pick three arcs instead of two, and then the corresponding weakened

version of Walkup’s result follows directly from Hall’s Theorem: see [20].)

Replace each edge of Kn,n with a pair of oppositely directed arcs. Let the arcs e have

independent edge lengths X ′
e, each exponentially distributed with parameter λ/2n. For

each edge e of Kn,n, we may assume that Xe is the minimum of X ′
e1 and X ′

e2, where e1

and e2 are the two arcs arising from orienting e. Let S be the set of 4n arcs formed from

the two shortest arcs leaving each vertex.

By Walkup’s result [20], there is w.h.p. a perfect matching using only arcs in S . Let

Zj = |{e ∈ S : X ′
e � j}|. It will suffice to show (by changing α) that

P
(
Zj < 16ne−αj/3 for each j

)
→ 1 as n → ∞. (7.1)

Let Yn be the second smallest of n independent random variables X̃1, . . . , X̃n which are

each exponentially distributed with parameter λ/2n. Let p = P(X̃1 < j) = 1 − e−λj/2n, and

observe that p � λj/2n. Then

P(Yn � j) = P(Bin(n, p) � 1) = (1 − p)n + np(1 − p)n−1

�
(

1 +
1

2
λjeλj/2n

)
· e−λj/2.

Thus there is a constant α > 0 such that

P(Yn � j) � 2e−αj for each j � 0. (7.2)

Let Ỹ1, . . . , Ỹ2n be independent, each distributed like Yn. Let

Z̃j :=

2n∑
i=1

1[Ỹi � j],

and note that Zj �s 2Z̃j (recall that �s denotes stochastic domination). Then, by (7.2),

Z̃j �s Bin(2n, 1 ∧ 2e−αj).
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The remainder of the proof is quite similar to the end of the proof of Theorem 1.6. By a

Chernoff estimate,

P(Z̃j � 8ne−αj/3) � exp
(
− 1

6
· 8ne−αj/3

)
.

When j � (2/α) log n this is � exp(−n1/3). For larger j we simply use Markov’s inequality,

P(Z̃j > 0) � E Z̃j � 4ne−αj ,

and thus

∑
j�(2/α) log n

P(Z̃j > 0) � 4

1 − e−α
n−1.

It follows that

P
(
Z̃j � 8ne−αj/3 for some j � 0

)
�

∞∑
j=0

P(Z̃j � 8ne−αj/3) → 0

as n → ∞, and (7.1) follows, completing the proof.

Lemma 7.2. Fix 0 < γ < 1. Fix λ > 0. Then there is an α > 0 such that the following holds.

Consider a complete bipartite graph Ka,b, with parts A of size a and B of size b, where

γn � a, b � n. Let the edges e have independent lengths �(e), each exponentially distributed

with parameter λ/n. Then w.h.p. there is a set of edges S = {uw} ⊂ A × B such that:

(a) |{u ∈ A : uw ∈ S}| = 1 for each w ∈ B,

(b) |{w ∈ B : uw ∈ S}| � �b/a	 for each u ∈ A,

(c) the family (�(uw) : uw ∈ S) has α-exponential tails.

Proof. By considering adding at most a vertices to B, we see that it suffices to consider

the case a|b. But now we see that it suffices to assume that a = b, and so the result follows

from the last lemma.

Now we are ready to prove Theorem 1.7. If X is uniform on [n] and Y is exponentially

distributed with parameter 1/n, then X �s 1 + Y ; thus we may assume that edge lengths

are i.i.d., each distributed like 1 + Y . Next, replace each edge e by a blue copy eB and a

red copy eR , and give these copies i.i.d. edge lengths, each distributed like 1 + Y ′, where

Y ′ is exponentially distributed with parameter 1/2n. We may assume that the length �(e)

of e is the smaller of the lengths of eR and eB . Note that if

b = b(n) = −2n log

(
1 − 2

n

)

then b ∼ 4 and

P(Y ′ � b) = 1 − e−b/2n =
2

n
.

Thus, by keeping only blue edges with an appropriate length b + 1 � 6 (for large n), we

may generate a random graph Gn,2/n.
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For some α1 > 0, w.h.p. there is in this random graph a giant component H and a

subgraph F showing that H is a well-behaved weak α1-decorated expander: see Lemma 3.5.

Condition on there being such an H and F , and fix them. We also assume that (P1) holds,

i.e., n′ > γn/2: see Lemma 3.3. Thus, v(F) � α1n
′ � c13n. List the decorations as D1, . . . , Dν .

Let W = [n] \ V (H).

Now we use the red edges. By Lemma 7.2 applied to the red edges between V (F) and

W , there is a set S of red edges {uw} ⊂ V (F) × W such that:

(a) |{u ∈ V (F) : uw ∈ S}| = 1 for each w ∈ W ,

(b) |{w ∈ W : uw ∈ S}| � �|W |/|F |	 � 1/α for each u ∈ V (F),

(c) the family (�(uw) : uw ∈ S) has α2-exponential tails (for a suitable α2 > 0).

Let G be the graph on [n] with edge set E(H) ∪ S . We still have the subgraph F

and decorations D1, . . . , Dν , but now for each edge uw ∈ S we have a new one-vertex

decoration {w} decorating u ∈ V (F). For i = 1, . . . , ν let ṽ(Di) = v(Di), and for each w ∈ W

let ṽ({w}) = �(uw) (� 1), where uw ∈ S . Now use Di to refer to any of the ν + |W |
decorations of G. Then G is a well-behaved weak α3-decorated expander, for a suitable

α3, except that in condition (DE2′), v(Di) is replaced by ṽ(Di).

To show that each Lipschitz function for G then satisfies inequality (3.1), which

implies Theorem 1.7, we follow the proof of Lemma 3.6. We need no changes until

just after inequality (3.5) when the proof starts to deal with decorations. From there until

inequality (3.8), replace each appearance of v by ṽ. Now the proof works just as before.

8. Open problems

We saw in the preceding sections that high degree is precisely what is needed to force

the spread of the random regular graph G(n, d) to be close to 1/4. We believe that a

corresponding result should hold for the giant component Hn,c/n of Gn,c/n.

Problem 8.1. Is it the case that for each ε > 0 there exists c0 such that, for each c � c0,

w.h.p. spread(Hn,c/n) < 1/4 + ε?

If Lemma 3.2 holds uniformly (in the sense that for any c > 1, α = α(c) can be chosen

such that the conclusions of the theorem hold in Hn,c′/n for all c′ � c, with this value of α),

then the proof of Theorem 3.1 can be modified to yield an affirmative answer to the above

question. This uniformity seems very likely to hold, but does not follow immediately from

the proof of Lemma 3.2 given in [2].

There is a natural similar question for the ‘small world’ random graph Rn,c/n, to complete

the picture described in Theorem 1.6 and Proposition 6.2.

Problem 8.2. Is it the case that for each ε > 0 there exists c1 such that, for each c � c1,

w.h.p. spread(Rn,c/n) < 1/4 + ε?

Theorem 1.2 suggests that the spread of G(n, d) might converge (in probability) to a

constant, and similarly for Theorem 1.3 and Hn,c/n.
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Problem 8.3. Do there exist constants αd for each d � 3 and βc for each c > 1 such that

spread(G(n, d))
p

−→ αd and spread(Hn,c/n)
p

−→ βc as n → ∞?

We know that if the constants αd exist then they are (weakly) decreasing in d and tend

to 1/4 as d → ∞. It seems likely that the analogous result should hold for Gn,c/n.

Problem 8.4. If the constants βc exist, are they decreasing in c, and do they tend to 1/4

as c → ∞? If so, how quickly?

A related problem is to determine the rate with which the spread of G(n, d) approaches

1/4 as d becomes large.

Problem 8.5. What is the best possible dependence of d0 on ε in Theorem 1.5.

Again, there are natural similar questions for Rn,c/n.

For Rn,c/n, we can also ask about the constant C3(c) in Theorem 1.6 as c → 0. Proposition

6.2 shows that C3(c) → ∞ as c → 0. The proof of Theorem 1.6 in Section 6 yields,

through the argument in Step 1 of the proof with, for example, k = �3/c	, that we can

take C3(c) = O(c−2) as c → 0. We conjecture that this is best possible, in analogy with

Theorem 1.4 for Gn,c/n.

Problem 8.6. Is the optimal C3(c) = Θ(c−2) as c → 0?

In the small worlds model Rn,c/n we start with the deterministic cycle Cn and add edges

independently with probability c/n. Suppose that we start instead with a deterministic

graph Gn on [n]: let us denote the corresponding random graph by R(Gn, c/n), so Rn,c/n

is R(Cn, c/n). For example a popular small worlds model takes Gn as a power Cr
n of Cn,

where two vertices are adjacent in Cr
n if they are at distance at most r in Cn.

We may adapt the proof of Theorem 1.6 to show the same result when Gn is the n-vertex

path Pn; that is, there is a constant C18 = C18(c) > 0 such that w.h.p. spread(R(Pn, c/n)) �
C18. (Indeed, we could take Gn as Cn less any set of edges which are at distance at least

C19 log n apart, for a sufficiently large constant C19 depending on c. For we could think

of these edges as simply being coloured red, and w.h.p. no two red edges appear on the

cycle in the same path Qw between vertices in V (H). If there is a red edge in Qw , we of

course join the part before the red edge to H by an edge from the first vertex in Qw to its

predecessor in the cycle.)

It seems likely that starting with the path Pn is the worst case, which leads to the

following problem.

Problem 8.7. Is it the case that w.h.p. spread(R(Gn, c/n)) � C20(c) for every sequence Gn

of connected graphs on [n] and every c > 0?
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